EP3766117A1 - Bioélectrode nanostructurée pour l'oxydation du glucose à partir de composés aromatiques électrogénérés - Google Patents

Bioélectrode nanostructurée pour l'oxydation du glucose à partir de composés aromatiques électrogénérés

Info

Publication number
EP3766117A1
EP3766117A1 EP19711899.5A EP19711899A EP3766117A1 EP 3766117 A1 EP3766117 A1 EP 3766117A1 EP 19711899 A EP19711899 A EP 19711899A EP 3766117 A1 EP3766117 A1 EP 3766117A1
Authority
EP
European Patent Office
Prior art keywords
glucose
pyrene
electrode
bioelectrode
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19711899.5A
Other languages
German (de)
English (en)
Inventor
Michaël HOLZINGER
Pierre-Yves BLANCHARD
Alan Le Goff
Serge Cosnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Grenoble Alpes
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Grenoble Alpes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Grenoble Alpes filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3766117A1 publication Critical patent/EP3766117A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/99Oxidoreductases acting on the CH-OH group of donors (1.1) with other acceptors (1.1.99)
    • C12Y101/9901Glucose dehydrogenase (acceptor) (1.1.99.10)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a nanostructured bioelectrode from electrogenerated aromatic compounds as well as the use of these electrogenerated aromatic compounds as a mediator particularly suitable for the transfer of electrons between a glucose oxidation catalyzing enzyme such as Flavine.
  • biofuels biofuel cells
  • enzymes biocatalysts, called enzymes, to perform an oxidation reaction of a fuel (H 2 , alcohols, glucose, ...) at the anode and the reduction of an oxidant (mainly 0 2 ) at the cathode.
  • the advantage of the use of enzymes for the production of energy is their high selectivity with respect to the substrate.
  • the enzyme FAD-GDH has the properties of oxidizing glucose to gluconic acid. This enzyme has an active site within its structure: therefore direct electron transfer is impossible and it is necessary to use a redox mediator to transfer electrons from the enzyme to the electrode.
  • Several approaches are described for the immobilization of the redox mediator within the electrode such as encapsulation, polymerization, covalent grafting. These studies generally show immobilization of the mediator in a state that is already active.
  • Barathi et al. (B arathi, P, Senthil Kumar, A. Electrochemical Conversion of a Pyrene to Highly Active Redox Activates 1,2-Qulnone Derivatives on a Carbon Nanotube-Modified Gold Electrode Surface and Its Selective Hydrogen Peroxide Sensing., Langmuir 2013, 29 (34), 10617-10623) describes a method of degradation of pyrene to an active quinone derivative. The compound is deposited under form of pyrene inactive on the electrode then activated (oxidized) by electrochemistry. Barathi et al. also describes the use of such an electrode on which is also deposited a cytochrome C and copper (Cu 2+ ). This electrode is used as a cathode for the reduction of oxygenated water.
  • the present invention relates to the identification and use of a redox mediator particularly suitable for the manufacture of a bioanode for enzymatic biopile, in particular an enzymatic biopile comprising a FAD-GDH.
  • This mediator has a much better stability over time compared to redox mediators conventionally used such as 1, 4 naphthoquinone.
  • one aspect of the invention is a bioelectrode comprising a conductive material on the surface of which are deposited carbon nanotubes, a redox mediator based on pyrene, or one of its derivatives, oxidized in situ and an enzyme capable of catalyze the oxidation of glucose.
  • glucose refers in particular to the enantiomer D - (+) - glucose (dextrose) which is naturally present in living organisms.
  • the electrode according to the invention is preferably of the multilayer type and advantageously comprises a layer of carbon nanotubes, an oxidized pyrene layer in situ and an enzyme layer capable of catalyzing the oxidation of glucose.
  • the layers may be successively deposited on a conductive material, which may constitute the support of these layers or may itself be deposited on an inert support.
  • the conductive material may be vitreous carbon, pyrolytic graphite (in particular HOPG "Highly Ordered Pyrolytic Graphite") gold, platinum and / or indium oxide and tin.
  • the material is vitreous carbon or pyrolytic graphite.
  • the use of carbon nanotubes makes it possible to increase the specific surface area of the electrode (porosity) and the formation of a nanostructured 3D network and also makes it possible to ensure the conductivity within the material with its p conjugated system which allows a strong non-covalent interaction with aromatic oligomers.
  • the ratio of specific surface area to the number of redox molecules is relatively high and allows the absence of passivation during the electrosynthesis step. Indeed, it is conventionally accepted that the electropolymerization of an organic molecule on electrodes induces a passivation resulting in a decrease in the electron transfer rate.
  • the porous electrodes based on carbon nanotubes (CNT) are produced using commercial, preferably nonfunctional, multiwall carbon CNTs.
  • GDL Gas Diffusion Layer
  • Carbon nanotubes are fullerenes composed of one or more layers of carbon atoms wound on themselves forming a tube.
  • the tube may or may not be closed at its ends by a half-sphere.
  • Single-walled carbon nanotubes SWNT or SWCNT, for Single-Walled (Carbon) Nanotubes
  • MWNT or MWCNT for Multi-Walled (Carbon) Nanotubes
  • the combination of the conductive material and carbon nanotubes which can advantageously be deposited on said material in the form of a layer, makes it possible to obtain a porous support capable of receiving the enzyme and its particular mediator (oxidized pyrene in situ). ).
  • pyrene derivative denotes a molecule comprised in the group consisting of pyrene where at least one hydrogen atom present on the aromatic polycyclic carbonaceous structure of pyrene is substituted with at least one C2-C22 alkyl group, and in particular by a C 2 -C 4 alkyl group, such as ethyl, propyl or butyl. It is also advantageous to avoid using pyrene derivatives comprising amine or hydroxyl groups, or alternatively halogen atoms.
  • Pyrene, or one of its derivatives, oxidized in situ is an organic compound derived from pyrene or a derivative thereof, which has been deposited on the electrode. Once deposited on the surface of the electrode, the oxidation of pyrene or its derivative can be carried out either by cyclic voltammetry or by chronoamperometry.
  • the compounds formed are one or more types of electroactive quinoid oxide (s). Pyrene, or one of its derivatives, oxidized in situ acts as a redox mediator of the enzyme which is part of the bioelectrode according to the invention.
  • the mediator obtained in situ can in particular be obtained by chronoamperometry and include the application to pyrene, or to one of its derivatives, deposited in situ on the surface of the electrode, with a potential of 1 V at said electrode for a given time, preferably from 10 seconds to 3 minutes, advantageously from 30 seconds to 3 minutes.
  • the pyrene, or one of its derivatives, oxidized in situ can be obtained by cyclic voltammetry and comprises the application to pyrene, or to one of its derivatives, deposited in situ on the surface of the electrode with a cyclically varying potential of -0.4V to 1 V.
  • the number of cycles applied during this step varies from 3 to 20.
  • the enzyme capable of catalyzing the oxidation of glucose is preferably a Glucose Dehydrogenase (GDH) catalyzing reaction:
  • the acceptor, or co-factor is generally a NAD7NADP + or flavin type coenzyme, such as FAD (Flavin Adenine Dinucleotide), or FMN (Flavin mononucleotide) which is linked to GDH.
  • FAD Fluor Adenine Dinucleotide
  • FMN Fluor mononucleotide
  • a particularly preferred glucose dehydrogenase is Flavin Adenine Dinucleotide-Glucose Deshydrogenase (FAD-GDH) (EC 1.1.5.9).
  • FAD-GDH Flavin Adenine Dinucleotide-Glucose Deshydrogenase
  • FAD-GDH extends to native proteins and their derivatives, mutants and / or functional equivalents. This term extends in particular to proteins which do not differ substantially in structure and / or enzymatic activity.
  • an enzymatic protein GDH having an amino acid sequence having at least 75%, preferably 95%, and even more preferably 99% identity.
  • GDH sequence as listed in the databanks (eg SWISS PROT).
  • FAD-GDH of Aspergillus sp. is particularly preferred and effective but other FAD-GDH from Glomerella cingulata (GcGDH), or a recombinant form expressed in Pichia pastoris (rGcGDH), could also be used.
  • glucose oxidase GOx, GOD
  • EC 1.1.3.4 glucose oxidase oxidoreductase enzyme
  • FAD Fevin Adenine Dinucleotide
  • a particularly preferred glucose oxidase is Flavin Adenine Dinucleotide Glucose Oxidase (FAD-GOx). This term extends to native proteins and their derivatives, mutants and / or functional equivalents.
  • FAD-GOx extends in particular to proteins which do not substantially differ in structure and / or enzymatic activity.
  • a GOx enzyme protein having an amino acid sequence having at least 75%, preferably 95%, and even more preferably 99%, of amino acids can be used. identity with the GOx sequence (s) as listed in the databanks (eg SWISS PROT). FAD-GOx extracted from Aspergillus niger is particularly preferred.
  • FAD-GDH has a higher activity than glucose oxidase and therefore a higher catalytic current. This is of great interest in order to increase the powers generated in the enzymatic biopiles. It should be noted that unlike Glucose Oxidase, the enzyme FAD-GDH does not produce hydrogen peroxide. Hydrogen peroxide because of its oxidizing properties may have disadvantages for the stability of the biopiles (membrane, stability of the enzymes at the cathode, ).
  • Another aspect of the invention relates to a method for manufacturing a bioelectrode suitable for the oxidation of glucose, said method comprising:
  • a pyrene oxidation step or a derivative thereof, said pyrene or said derivative being previously deposited on the surface of a conductive material, a conductive material on the surface of which carbon nanotubes are also deposited, and
  • step b) a step, preferably subsequent to step a), of depositing an enzyme capable of catalyzing the oxidation of glucose on the surface of said electrode.
  • bioelectrode according to the method of the invention are advantageously as described above.
  • the nanotubes are deposited on the conductive material by a so-called dropcasting step.
  • a homogeneous solution or dispersion of a product is deposited on a support, then a step of evaporation of the solvent is carried out which allows the deposition of a thin layer of said product on said support.
  • the solvent is an organic solvent except for the enzyme.
  • the solvent chosen may be N-methyl-2 pyrrolidone (NMP).
  • NMP N-methyl-2 pyrrolidone
  • concentration of the solution / dispersion of nanotubes can vary from 1 to 10 mg.mL 1 , preferably around 5 mg.mL 1 .
  • the electrode of conductive material is oriented vertically during the deposition of the nanotubes.
  • the pyrene oxidation step is carried out by chronoamperometry and may comprise applying a 1 V potential to said surface for a given time, preferably ranging from 10 seconds to 3 hours. minutes, preferably 30 seconds to 3 min.
  • the pyrene oxidation step is carried out by cyclic voltammetry and may include the application of a cyclically-varying potential of -0.4V to 1V on the surface of the electrode.
  • the number of cycles applied varies from 3 to 20 for a scanning speed of 100m Vs 1 .
  • the electrolytic solution that can be used for the chronoamperometry step and / or cyclic voltammetry may be a buffer solution, for example phosphate.
  • the pH of the electrolytic solution is generally from 6.5 to 7.5, preferably around 7, because of an optimal enzymatic activity around 7.
  • the pyrene is deposited on a surface of the electrode comprising carbon nanotubes also using a dropcasting step.
  • the solvent is advantageously dichloromethane.
  • the concentration of the solution can be chosen from 5 to 15 mM, in particular around 10 mM.
  • the enzyme used is a Flavine Adenine Dinucleotide - glucose dehydrogenase or a Flavine Adenine Dinucleotide - glucose oxidase, as described above.
  • the step of depositing the enzyme on the surface of the bioelectrode is also carried out using a dropcasting step.
  • the solvent is advantageously an aqueous solution, preferably buffered to pH 7.
  • the concentration of the solution may be from 1 to 10 mg.mL 1 , preferably 5 mg.mL 1 .
  • Deposition and / or evaporation of the solvent can advantageously be carried out at atmospheric pressure and at room temperature.
  • the drying time is usually chosen from 2 to 4 hours.
  • the invention also relates to a bioelectrode obtained directly by the process according to the invention as described above as well as in the implementation examples below.
  • the invention also relates to the applications and uses of such an electrode in various technologies.
  • the invention also relates to the use of a bioelectrode according to the invention as a bioanode suitable for the manufacture of a biopile.
  • a biopile is advantageously an enzymatic fuel biopile.
  • Such a biopile includes in association with at least one electrode according to the invention a biocathode.
  • This biocathode may for example comprise an enzyme for reducing oxygen, for example based on bilirubin oxidase or Laccase.
  • It may comprise, as conductive material, a material of the type as described above and advantageously protoporphyrin-modified carbon nanotubes enabling direct electronic transfer with bilirubin oxidase.
  • these carbon nanotubes are advantageously modified with a hydrophobic group such as adamantane, anthracene or pyrene.
  • a mediated electron transfer can also be obtained from MWCNT and the ABTS molecule for both enzymes.
  • Another use of the electrode according to the invention relates to its use in a glucose biosensor.
  • the invention also relates to the use of a pyrene derivative as described above, in place of or in combination with pyrene.
  • the substituted pyrene derivative may also be oxidized in situ using the steps described above and the glucose electrodes and cells and biosensor, as well as their methods of manufacture are also an object of the invention.
  • (B) Represents the intensities of the anodic and cathodic peaks of a vitreous carbon / MWCNT / pyreneRedox electrode as a function of the scanning rate.
  • FIG. 3 (A) Voltammograms of a vitreous carbon electrode / MWCNT / pyreneRedox at different pH (2, 3, 4, 5, 6, 7, 8)
  • a commercial 0.071 cm 2 carbon glass electrode (sold by Bio-Logic, France) is modified by adding carbon nanotubes (suspension at 5 mg.mL 1 in carbon nanotubes).
  • This suspension is carried out by adding 10 mg of non-functionalized multiwall wall nanotubes (MWCNT Nanocyl TM, 97%) in 2 ml of NMP (N-methyl-2-pyrrolidone). The dispersion is placed under ultrasonic agitation for 2 hours. 20 ⁇ l of this suspension of previously stirred MWCNT are then deposited on the surface of the vitreous carbon electrode.
  • MWCNT Nanocyl TM non-functionalized multiwall wall nanotubes
  • NMP N-methyl-2-pyrrolidone
  • the electrode is then placed under vacuum in a desiccator.
  • the electrode is then removed from the desiccator when the solvent is evaporated and the carbon nanotubes are dry (on average a few hours, generally from 3 to 5 hours).
  • the electrode After functionalization of the electrode by the carbon nanotubes, it is modified by the addition of 20 ⁇ l of a solution containing 10 mM of pyrene dissolved in dichloromethane (conc 5 mg / mL). The solvent is then evaporated at atmospheric pressure (about 100 kPa) and at room temperature (about 25 ° C).
  • the electrode modified with pyrene is placed in an electrolytic solution (0.2 M Na 2 HPO 4 phosphate buffer and 0.2 M NaH 2 PO 4 of pH 7) previously degassed under argon.
  • the electrode is then subjected by chronoamperometry to a current of 1 V using as a counter electrode a platinum electrode and an Ag / AgCl type reference electrode for 30 seconds.
  • the electrode is then rinsed with distilled water to remove any traces of carrier electrolyte or organic molecules.
  • the FAD-GDH used in this example is a FAD-GDH of Aspergillus sp. (SEKISUI DIAGNOSTICS, Lexington, MA, GLDE Catalog Number - 70 - 1192) which has the following characteristics:
  • Solubility Dissolves easily in water at a concentration of: 10mg / mL.
  • One unit of activity amount of enzyme that will convert one micromole of glucose per minute to 37 ° C.
  • K m value 5.10 2 M (D-Glucose).
  • D-Xylose has 11%, D-galactose 0.7%, D-Mannose 0.4%, D-Trehalose 0.2% and D-Fructose 0.1%, activity compared to that D-Glucose.
  • L-Glucose, D-Mannitol, D-Lactose, D-Sorbitol, D-Ribose, D-Maltose and D-Sucrose each have less than 0.1% activity compared to D -Glucose.
  • a solution of 5 mg.mL 1 of FAD-GDH is prepared in a buffer solution (0.2 M Na 2 HPO 4 phosphate buffer and 0.2 NaH 2 PO 4 pH 7) and stored at -20 ° C. Before each deposit, the solution is removed from the freezer and thawed. 20 ⁇ L of this solution are deposited by dropcasting on the modified electrode. The solvent is then evaporated at atmospheric pressure (about 100 kPa) and at room temperature (about 25 ° C).
  • the bioanode obtained is used in a standard electrolytic cell (with a platinum counter electrode and an Ag / AgCl reference electrode) to constitute a cell when positioned in a glucose-concentrated medium.
  • This cell is studied below has the following characteristics:
  • Figure 1 shows the electrochemical response of a glassy carbon electrode coated with carbon nanotubes and pyrene.
  • the black curve represents the electrochemical response of the electrode, only a capacitive current is observed corresponding to the contribution of the carbon nanotubes.
  • the gray curve was recorded after imposing a potential of 1 V for 30 seconds. A faradic signal is observed at a potential of -0.036 V vs. Ag / AgCl. The application of a potential of 1 V thus induces the synthesis of a new species presenting redox properties.
  • Diagram 1 Mechanism assumed during the oxidation of pyrene 2. Characterization of the redox signal
  • the electrochemical response of the generated electro-redox electrode is characteristic of a species immobilized at an electrode DE close to OmV (10 mV to 2mV.s 1 ) and peak intensity of oxidation and reduction proportional to the scanning speed. ( Figure 2).
  • the supposed formed product is 1,6-pyrenedione or 1,4-pyrenedione.
  • the electrogenerated redox couple is thus pyrenedione / dihydroxypyrene with an exchange with 2 electrons and 2 protons.
  • the literature eg P. Barathi, Senthil Kumar, Langmuir, 29 (2013) 10617-10623, aroused
  • Figure 4 shows the electrochemical response of the bioanode described above (MWCNT / pyreneRedox / FAD-GDH) in the absence and in the presence of glucose.
  • the black curve in the absence of glucose shows only the reversible electrochemical response of the immobilized redox probe.
  • an oxidation wave is observed and characteristic of a catalytic activity.
  • the catalytic current occurs at the potential of the redox probe. This shows that the electrogenerated redox probe makes it possible to ensure a mediated electron transfer between the electrode and the enzyme FAD-GDH.
  • the figure on the right shows the evolution of the current when adding increasing amounts of glucose.
  • Figure 5 shows the electrochemical response of the oxygenated anthracene derivative after activation by cyclic voltammetry.
  • the signature exactly matches that of anthraquinone, a commercial product.
  • the figure on the right shows the electrosynthesis of a perylene derivative under the same conditions. It is very probably a perylenequinone but such derivatives are not marketed which does not allow to determine the exact structure.
  • the potential of these two components ( ⁇ -0.5 V for anthraquinone and ⁇ -0.2 for perylenequinone) does not allow electron transfer with FAD-GDH.
  • Figure 6 shows the electrochemical response of the oxygenated phenanthrene derivative after activation by cyclic voltammetry. This shows an electron transfer after electro-oxidation. The signature exactly matches that of phenantraquinone, a commercial product. The catalytic current nevertheless remains low (a few tens of mA) compared to the electro-oxidized pyrene (several hundred of mA).
  • Figure 7 shows the comparison of a pyrenedione electrode (according to the invention) with a 1,4 naphthoquinone electrode by cyclic voltammetry in terms of the efficiency and stability of the electron transfer.
  • a pyrenedione electrode according to the invention
  • a 1,4 naphthoquinone electrode by cyclic voltammetry in terms of the efficiency and stability of the electron transfer.
  • the pyrene unit In the case of the pyrene unit, it has certain advantages for use in bioanodes as a redox mediator for FAD-GDH.
  • the product is easily electrosynthesized and has a fast electronic transfer.
  • the redox potential of the pyrene-quinone pyrene-dihydroquinone pair has a potential close to the redox potential of the active site of the enzyme.
  • a catalysis current is observed ( Figure 7A).
  • the maximum catalytic currents obtained for an MWCNT / pyrene-quinone IFAD-GDH electrode are 1.4 mA.
  • This catalytic wave appears at potentials close to the redox potential of the FAD-GDH and thus makes it possible to obtain high open circuit potentials (OCV) in the case of the integration of this bioanode into a biopile-type device.
  • OCV is a crucial parameter for obtaining devices delivering high powers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Bioélectrode comprenant un matériau conducteur à la surface duquel sont déposés des nanotubes de carbone, un médiateur redox à base de pyrène, ou d'un de ses dérivés, oxydé in-situ et une enzyme apte à catalyser l'oxydation du glucose. Un procédé de fabrication d'une telle bioélectrode ainsi que ses utilisations sont également décrits.

Description

Bioélectrode nanostructurée pour l’oxydation du glucose à partir de composés aromatiques électrogénérés Domaine de l’invention
La présente invention porte sur une bioélectrode nanostructurée à partir de composés aromatiques électrogénérés ainsi que sur l’utilisation de ces composés aromatiques électrogénérés comme médiateur particulièrement approprié pour le transfert d'électrons entre une enzyme de catalyse de l’oxydation du glucose telle que la Flavine Adénine Dinucléotide - Glucose DésHydrogénase (FAD-GDH) et une électrode.
Art antérieur
Le développement des biopiles (biofuel cells) utilisant des enzymes est largement décrit dans la littérature (Cf. US2002/0025469 et EP2375481 A1 ). Ces piles à combustibles enzymatiques utilisent des biocatalyseurs, appelés enzymes, permettant d’effectuer une réaction d’oxydation d’un combustible (H2, alcools, glucose, ...) à l’anode et la réduction d’un oxydant (majoritairement 02) à la cathode.
L'avantage de l'utilisation des enzymes pour la production d'énergie est leur grande sélectivité vis-à-vis du substrat. L'enzyme FAD-GDH présente les propriétés d’oxyder le glucose en acide gluconique. Cette enzyme possède un site actif à l'intérieur de sa structure : un transfert électronique direct est donc impossible et il est nécessaire d'utiliser un médiateur redox afin de transférer les électrons de l’enzyme à l'électrode. Plusieurs approches sont décrites pour l'immobilisation du médiateur redox au sein de l'électrode comme l'encapsulation, la polymérisation, le greffage covalent. Ces études présentent généralement l'immobilisation du médiateur dans un état d'ores et déjà actif.
Barathi et al. (B arathi, P; Senthil Kumar, A. Electrochemical Conversion of Unreactive Pyrene to Highly Redox Active 1,2-Qulnone Dérivatives on a Carbon Nanotube-Modified Gold Electrode Surface and Its Sélective Hydrogen Peroxide Sensing. Langmuir 2013, 29 (34), 10617-10623) décrit une méthode de dégradation du pyrène en un dérivé de quinone actif. Le composé est déposé sous forme de pyrène inactif sur l’électrode puis activé (oxydé) par électrochimie. Barathi et al. décrit également l’utilisation d’une telle électrode sur laquelle est également déposé un cytochrome C et du cuivre (Cu2+). Cette électrode est utilisée en tant que cathode pour la réduction de l’eau oxygénée.
Les médiateurs redox doivent répondre à plusieurs critères. Le transfert électronique doit être rapide afin de ne pas limiter le processus catalytique. Le médiateur redox doit être peu, ou ne doit pas, être relargué en solution. Pour cela, les molécules employées dans cette étude sont des molécules aromatiques car elles présentent des très bonnes interactions vis-à-vis des nanotubes de carbone. Les molécules sont physisorbées par interactions de type TT-TT. Le potentiel redox de la sonde doit être supérieur au potentiel redox du site actif de l'enzyme mais assez proche (>50mV) afin d'obtenir une force électromotrice élevée (f.e.m = potentiel de la cathode - potentiel de l'anode) dans les biopiles.
Description de l’invention
La présente invention porte sur l’identification et l’utilisation d’un médiateur redox particulièrement adapté à la fabrication d’une bioanode pour biopile enzymatique, en particulier une biopile enzymatique comprenant une FAD-GDH. Ce médiateur présente une bien meilleure stabilité au cours de temps par rapport aux médiateurs redox utilisés classiquement telle que la 1 ,4 naphtoquinone.
Ainsi un aspect de l’invention est une bioélectrode comprenant un matériau conducteur à la surface duquel sont déposés des nanotubes de carbone, un médiateur redox à base de pyrène, ou d’un de ses dérivés, oxydé in-situ et une enzyme apte à catalyser l’oxydation du glucose. Il est à noter que le terme glucose utilisé ici se rapporte en particulier à l’énantiomère D -(+)-glucose (dextrose) qui se trouve naturellement présent dans les organismes vivants.
L’électrode selon l’invention est de préférence de type multicouches et comprend avantageusement une couche de nanotubes de carbone, une couche de pyrène oxydé in-situ et une couche d’enzyme apte à catalyser l’oxydation du glucose. Les couches peuvent être déposées successivement sur un matériau conducteur, qui peut constituer le support de ces couches ou être lui-même déposé sur un support inerte. Le matériau conducteur peut être du carbone vitreux, du graphite pyrolytique (en particulier du HOPG « Highly Ordered Pyrolytic Graphite ») de l’or, du platine et/ou de l’oxyde d’indium et d’étain. De préférence le matériau est du carbone vitreux ou du graphite pyrolytique.
L’utilisation de nanotubes de carbone permet l'augmentation de la surface spécifique de l'électrode (porosité) et la formation d'un réseau 3D nanostructuré et permet également d'assurer la conductivité au sein du matériau avec son système p conjugué qui permet une forte interaction non-covalente avec les oligo-cycles aromatiques. Le ratio surface spécifique/nombre de molécule redox est relativement élevé et permet l'absence de passivation lors de l'étape d'électrosynthèse. En effet il est classiquement admis que l'électro polymérisation de molécule organique sur des électrodes induit une passivation se traduisant par une diminution de la vitesse de transfert électronique. Les électrodes poreuses à base de nanotubes de carbone (CNT) sont réalisées en utilisant des CNTs multi- paroi commerciaux, de préférence non fonctionnalisés. Plusieurs méthodes de fabrication sont adaptées, et permettent de former, entre autres, soit des feuilles (buckypapers), soit des pastilles, soit des dépôts sur le matériau conducteur support. Le matériau conducteur sur lequel les nanotubes de carbone sont déposés peut également faire partie d’une électrode microporeuse à diffusion de gaz comprenant une couche GDL (GDL =Gas Diffusion Layer), couche qui comprend généralement des fibres de carbone.
Les nanotubes de carbone sont des fullerènes composés d'un ou plusieurs feuillets d'atomes de carbone enroulés sur eux-mêmes formant un tube. Le tube peut être fermé ou non à ses extrémités par une demi-sphère. Les nanotubes de carbone simple-feuillet (SWNT ou SWCNT, pour Single-Walled (Carbon) Nanotubes) et/ou multi-feuillets (MWNT ou MWCNT, pour Multi-Walled (Carbon) Nanotubes) peuvent être utilisés, bien que ces derniers soient préférés.
La combinaison du matériau conducteur et des nanotubes de carbone, qui peuvent avantageusement être déposés sur ledit matériau sous forme d’une couche, permet d’obtenir un support poreux apte à recevoir l’enzyme et son médiateur particulier (le pyrène oxydé in-sitü).
Le pyrène, ainsi que ses dérivés, lorsque oxydés in situ forment des médiateurs particulièrement efficaces notamment de l’enzyme FAD-GDH. En particulier, le terme « dérivé du pyrène » désigne une molécule comprise dans le groupe constitué par le pyrène où au moins un atome d'hydrogène présent sur la structure carbonée polycyclique aromatique du pyrène est substitué par au moins un groupement alkyle en C2-C22, et en particulier par un groupement alkyle en C2- C4, tel que l’éthyle, le propyle ou le butyle. Il est également avantageux d’éviter d’utiliser les dérivés du pyrène comprenant des groupes amines ou hydroxyles, ou encore des atomes d’halogène.
Le pyrène, ou un de ses dérivés, oxydé in-situ, est un composé organique provenant de pyrène ou d’un de ses dérivés, qui a été déposé sur l’électrode. Une fois déposé sur la surface de l’électrode, l’oxydation du pyrène ou de son dérivé, peut être effectuée soit par voltampérométrie cyclique, soit par chronoampérométrie. Les composés formés sont un ou plusieurs type(s) d’oxyde(s) quinoïque(s) électroactif (s). Le pyrène, ou un de ses dérivés, oxydé in-situ agit comme médiateur redox de l’enzyme qui fait partie de la bioélectrode selon l’invention.
Le médiateur obtenu in-situ peut notamment être obtenu par chronoampérométrie et comprendre l’application à du pyrène, ou à un de ses dérivés, déposé in-situ sur la surface de l’électrode, d’un potentiel de 1 V à ladite électrode pendant un temps donné, de préférence allant de 10 secondes à 3 minutes, avantageusement allant de 30 secondes à 3 min.
Alternativement ou en combinaison, le pyrène, ou un de ses dérivés, oxydé in- situ peut être obtenu par voltampérométrie cyclique et comprend l’application à du pyrène, ou à un de ses dérivés, déposé in-situ sur la surface de l’électrode d’un potentiel variant de manière cyclique de -0.4V à 1 V. De préférence le nombre de cycles appliqués lors de cette étape varie de 3 à 20.
L'application d'un tel signal engendre la formation de liaisons cétones sur le composé aromatique. Le mécanisme de formation n'est pas complètement résolu et donc la nature exacte du composé formé diffère selon les différents travaux de la littérature notamment sur le nombre de fonctions cétones crées. Cependant l'ensemble des travaux est en accord sur la nature quinoïque des produits de la réaction.
L’enzyme apte à catalyser l’oxydation du glucose est de préférence une glucose DésHydrogénase (GDH) catalysant la réaction :
D-glucose + accepteur D-glucono-1 ,5-lactone + accepteur réduit. L’accepteur, ou co-facteur, est généralement une coenzyme de type NAD7NADP+ ou flavine, comme la FAD (Flavine Adénine Dinucléotide), ou la FMN (Flavine mononucléotide) qui est lié à la GDH. Une glucose déshydrogénase particulièrement préférée est la Flavine Adénine Dinucléotide - Glucose DesHydrogénase (FAD-GDH) (EC 1 .1.5.9). Le terme FAD-GDH s’étend aux protéines natives et à leurs dérivés, mutants et/ou équivalents fonctionnels. Ce terme s’étend en particulier aux protéines qui ne diffèrent pas de manière substantielle au niveau de la structure et/ou de l’activité enzymatique. Ainsi on peut utiliser pour l’électrode selon l’invention, en association avec un cofacteur, une protéine enzymatique GDH présentant une séquence d’acides aminées possédant au moins 75%, de préférence 95%, et encore plus préférentiellement 99% d’identité avec la ou les séquences GDH telles que répertoriées dans les banques de données (par exemple SWISS PROT). Une FAD-GDH d’aspergillus sp. est particulièrement préférée et efficace mais d’autres FAD-GDH provenant de Glomerella cingulata (GcGDH), ou une forme recombinante exprimée dans Pichia pastoris (rGcGDH), pourraient également être utilisées.
Il est également possible de réaliser une électrode selon l’invention en utilisant une enzyme oxydo-réductase (EC 1.1.3.4) de type glucose oxydase (GOx, GOD) qui catalyse l'oxydation du glucose en peroxyde d'hydrogène et en D-glucono-d- lactone. Cette enzyme qui est une enzyme de référence pour les piles à glucose est également liée à un co-facteur comme le FAD (Flavine Adénine Dinucléotide). Une glucose oxydase particulièrement préférée est la Flavine Adénine Dinucléotide - Glucose oxydase (FAD-GOx). Ce terme s’étend aux protéines natives et à leurs dérivés, mutants et/ou équivalents fonctionnels. Le terme FAD-GOx s’étend en particulier aux protéines qui ne diffèrent pas de manière substantielle au niveau de la structure et/ou de l’activité enzymatique. Ainsi on peut utiliser pour l’électrode selon l’invention, en association avec un co-facteur, une protéine enzymatique GOx présentant une séquence d’acides aminées possédant au moins 75%, de préférence 95%, et encore plus préférentiellement 99% d’identité avec la ou les séquences GOx telles que répertoriées dans les banques de données (par exemple SWISS PROT). Une FAD-GOx extraite d’aspergillus niger est particulièrement préférée.
La FAD-GDH présente une activité plus élevée que la glucose oxydase et donc un courant catalytique plus élevé. Ceci est d'un grand intérêt afin d'augmenter les puissances générées dans les biopiles enzymatiques. Il est à noter que contrairement à la Glucose Oxydase, l'enzyme FAD-GDH ne produit pas de peroxyde d'hydrogène. Le peroxyde d'hydrogène en raison de ses propriétés oxydantes peut présenter des inconvénients pour la stabilité des biopiles (membrane, stabilité des enzymes à la cathode,...).
Un autre aspect de l’invention porte sur un procédé de fabrication d’une bioélectrode apte à l’oxydation du glucose, ladite méthode comprenant :
a) une étape d’oxydation de pyrène, ou d’un de ses dérivés, ledit pyrène ou ledit dérivé étant préalablement déposé sur la surface d’un matériau conducteur, matériau conducteur à la surface duquel sont également déposés des nanotubes de carbone, et
b) une étape, de préférence subséquente à l’étape a), de dépôt d’une enzyme apte à catalyser l’oxydation du glucose à la surface de ladite électrode.
Les caractéristiques structurelles de la bioélectrode selon le procédé de l’invention sont avantageusement telles que décrites précédemment.
Selon un aspect préféré du procédé selon l’invention, les nanotubes sont déposés sur le matériau conducteur par une étape dite de dropcasting.
Selon cette méthode, une solution, ou dispersion, homogène d’un produit est déposée sur un support, puis une étape d’évaporation du solvant est effectuée ce qui permet le dépôt d’une couche mince dudit produit sur ledit support. Généralement le solvant est un solvant organique excepté pour l’enzyme.
Ainsi pour le dépôt de nanotubes de carbone, le solvant choisi peut être du N- Méthyl-2 Pyrrolidone (NMP). La concentration de la solution/dispersion de nanotubes peut varier de 1 à 10 mg.mL 1, de préférence aux environs de 5 mg.mL 1. Selon un aspect du procédé l’électrode de matériau conducteur est orientée verticalement lors du dépôt des nanotubes.
Selon un autre aspect préféré de l’invention l’étape d’oxydation du pyrène est effectuée par chronoampérométrie et peut comprendre l’application d’un potentiel de 1 V à ladite surface pendant un temps donné, de préférence allant de 10 secondes à 3 minutes, avantageusement de 30 secondes à 3 min. Alternativement ou en combinaison, l’étape d’oxydation du pyrène est effectuée par voltampérométrie cyclique et peut comprendre l’application d’un potentiel variant de manière cyclique de -0.4V à 1 V à la surface de l’électrode. De préférence le nombre de cycles appliqués varie de 3 à 20 pour une vitesse de balayage de 100m V.s 1.
La solution électrolytique pouvant être utilisée pour l’étape de chronoampérométrie et/ou de voltampérométrie cyclique peut être une solution tampon, par exemple au phosphate. Le pH de la solution électrolytique est généralement de 6,5 à 7,5, de préférence aux alentours de 7, ceci du fait d’une activité enzymatique optimale aux alentours de 7.
Selon un aspect préféré du procédé selon l’invention, le pyrène est déposé sur une surface de l’électrode comprenant des nanotubes de carbone également en utilisant une étape de dropcasting. Dans ce cas le solvant est avantageusement le dichlorométhane. La concentration de la solution peut être choisie de 5 à 15 mM, en particulier aux environs de 10 mM.
Selon un aspect préféré du procédé selon l’invention l’enzyme utilisée est une Flavine Adénine Dinucléotide - glucose déshydrogénase ou une Flavine Adénine Dinucléotide - glucose oxydase, telle que décrite précédemment. Selon un autre aspect préféré du procédé selon l’invention, l’étape de dépôt de l’enzyme à la surface de la bioélectrode est également effectuée en utilisant une étape de dropcasting. Dans ce cas, le solvant est avantageusement une solution aqueuse, de préférence tamponnée à pH 7, La concentration de la solution peut-être de 1 à 10 mg.mL 1, de préférence de 5 mg.mL 1. Le dépôt et/ou l’évaporation du solvant peut avantageusement se faire à pression atmosphérique et température ambiante. Le temps de séchage est généralement choisi de 2h à 4h.
Bien évidement l’invention porte également sur une bioélectrode obtenue directement par le procédé selon l’invention tel que décrit précédemment ainsi que dans les exemples de mise en oeuvre ci-dessous. L’invention porte également sur les applications et utilisations d’une telle électrode dans diverses technologies. Par exemple l’invention porte également sur l’utilisation d’une bioélectrode selon l’invention en tant que bioanode apte à la fabrication d’une biopile. Une telle biopile est avantageusement une biopile enzymatique à combustible. Une telle biopile comprend en association avec au moins une électrode selon l’invention une biocathode. Cette biocathode peut par exemple comprendre une enzyme permettant de réduire l’oxygène, par exemple à base de bilirubine oxydase ou de Laccase. Elle peut comprendre comme matériau conducteur un matériau de type tel que décrit précédemment et avantageusement des nanotubes de carbone modifiés par une protoporphyrine permettant un transfert électronique direct avec la bilirubine oxydase. Dans le cas où l’enzyme est la Laccase, ces nanotubes de carbone sont avantageusement modifiés avec un groupement hydrophobe comme l’adamantane, l’anthracène ou le pyrène. Un transfert électronique médié peut également être obtenu à partir de MWCNT et la molécule ABTS pour les deux enzymes.
Une autre utilisation de l’électrode selon l’invention porte sur son utilisation dans un biocapteur à glucose.
Enfin, l’invention porte également sur l’utilisation d’un dérivé du pyrène tel que décrit ci-dessus, à la place de ou en combinaison avec le pyrène. Le dérivé du pyrène substitué peut être également oxydé in situ en utilisant les étapes décrites ci-dessus et les électrodes et piles et biocapteur à glucose, ainsi que leurs procédés de fabrication sont également un objet de l’invention.
Un mode de réalisation de l’invention donné à titre d’exemple non limitatif et qui inclus des Figures annexées sur lesquelles :
- Figure 1 : (A) Voltampérogrammes d’une électrode de carbone vitreux/MWCNT/pyrène avant (noir) et après chronoampérométrie de 1 V vs. Ag/AgCI pendant 30 secondes (tampon phosphate 0,2M pH = 7)
(B) Réponse électrochimique de l’électrosynthèse d’une électrode de carbone vitreux/MWCNT/pyrène (noir = 1 er cycle / gris = cycle de 2 à 6)
- Figure 2 : (A) Voltampérogrammes d’une électrode de carbones vitreux/MWCNT/pyrèneRedox différentes vitesses de balayage (tampon phosphate 0,2 M pH = 7).
(B) Représente les intensités des pics anodiques et cathodiques d’une électrode de carbone vitreux/MWCNT/pyrèneRedox en fonction de la vitesse de balayage.
- Figure 3 : (A) Voltampérogrammes d’une électrode de carbone vitreux/MWCNT/pyrèneRedox à différents pH (2, 3, 4, 5, 6, 7, 8)
(B) Représentation de l’évolution du potentiel standard en fonction du pH d’une électrode de carbone vitreux/MWCNT/pyrèneRedox
- Figure 4 : (A) Réponse électrochimique de l’électrode modifiée MWCNT/pyrèneRedox/FAD-GDH en l’absence (courbe noire) et en présence de 200 mM glucose (courbe grise)
(B) Chronoampérométrie à 0,2 V vs. Ag/AgCI de l’électrode modifiée MWCNT/pyrèneRedox/FAD-GDH lors d’injection de glucose (1 , 2, 5, 10, 20, 50, 100, 200 mM glucose) (cf. insert) Représentation de l’évolution du courant catalytique en fonction de la concentration en glucose obtenue lors de chronoampérométrie à 0,2 V vs. Ag/AgCI
- Figure 5 : (A) Réponse électrochimique de l’électrosynthèse d’une électrode de carbone vitreux/MWCNT/anthracène
(B) Réponse électrochimique de l’électrosynthèse d’une électrode de carbone vitreux/MWCNT/perylène
- Figure 6 : Réponse électrochimique de l’électrode modifiée
MWCNT/phénanthèneRedox/FAD-GDH en l’absence (courbe noire) et en présence de 200 mM glucose (gris).
- Figure 7 : comparaison du pyrènedione avec le 1 ,4 naphtoquinone par C V en termes de l'efficacité et la stabilité du transfert d'électrons (courants catalytiques, A et C) et en termes de la stabilité de l’activité redox après 100 cycles (courant non catalytique, B et D).
Réalisation d’une bioélectrode selon l’invention
Une électrode de carbone vitreux de 0,071 cm2 commerciale (vendue par Bio-Logic, France) est modifiée par l’ajout de nanotubes de carbone (suspension à 5 mg.mL 1 en nanotubes de carbone).
Cette suspension est réalisée par addition de 10 mg de nanotubes de carbone multi- paroi non fonctionnalisés (MWCNT Nanocyl™, 97%) dans 2 ml_ de NMP (N-Méthyl-2- pyrrolidone). La dispersion est placée sous agitation ultrasonique pendant 2h. 20 pL de cette suspension de MWCNT préalablement agitée sont ensuite déposés sur la surface de l’électrode de carbone vitreux.
L’électrode est alors placée sous vide dans un dessiccateur. L’électrode est alors retirée du dessiccateur lorsque le solvant est évaporé et que les nanotubes de carbone sont secs (en moyenne quelques heures, généralement de 3h à 5h).
Fonctionnalisation des électrodes v/a dropcasting par du pyrène
Après fonctionnalisation de l’électrode par les nanotubes de carbone, celle-ci est modifiée par l’adjonction de 20 pL d’une solution concentrée à 10 mM de pyrène dissous dans le dichlorométhane (conc. 5 mg/mL). Le solvant est ensuite évaporé à pression atmosphérique (env.100 kPa) et température ambiante (env. 25C°).
Electrosynthèse de l’électrode par chronoampérométrie et voltampérométrie cyclique
L’électrode modifiée par le pyrène est placée dans une solution électrolytique (tampon phosphate 0.2 M Na2HP04 et 0.2M NaH2P04 de pH 7) préalablement dégazée sous Argon. L’électrode est alors soumise par chronoampérométrie à un courant de 1 V en utilisant comme contre électrode une électrode de platine et une électrode de référence de type Ag/AgCI pendant 30 secondes. L’électrode est alors rincée à l’eau distillée afin de retirer toutes traces d’électrolyte support ou de molécules organiques.
Il convient de noter que l’activation du pyrène a également été effectuée par des balayages successifs par voltampérométrie cyclique allant de -0.4V à 1 V vs. Ag/AgCI. Le nombre de cycles variant de 3 à 20 et l’électrode est ensuite rincée à l’eau distillée afin de retirer toutes traces d’électrolyte support ou de molécules organiques. Les résultats présentés ci-dessous ont été effectués en général en utilisant l’électrode obtenue par chronoampérométrie mais des résultats similaires ont été obtenus par voltampérométrie cyclique (par exemple Figure 1 (droite)) et ces deux électrodes sont considérées comme étant de structures et de performances quasi-identiques.
Fonctionnalisation de l’électrode wa dropcasting du biocomposé
La FAD-GDH utilisée dans cet exemple est une FAD-GDH d’aspergillus sp. (SEKISUI DIAGNOSTICS, Lexington, MA, No. Catalogue GLDE - 70 - 1192) qui présente les caractéristiques suivantes :
Aspect : poudre jaune lyophilisée.
Activité : > 900 U/mg poudre 37°C.
Solubilité : se dissout aisément dans l’eau à une concentration de : 10mg/mL.
Une unité d’activité : quantité d’enzyme qui va convertir une micromole de glucose par minute à 37°C.
Poids moléculaire (Gel Filtration) 130KD.
Poids moléculaire (SDS Page) : bande diffuse à 97 kD indicative d’une protéine glycosylée.
Point isoélectrique : 4,4.
Valeur Km : 5.10 2 M (D-Glucose).
Cette enzyme est spécifique. D’autres sucres que le D-Glucose ont été testés à une concentration de 30 mM. Le 2-Déoxy-D-Glucose présente seulement 25% d’activité comparé à celle du D-Glucose.
Le D-Xylose présente 11 %, le D-Galactose 0,7%, le D-Mannose 0,4%, le D- Trehalose 0,2% et le D-Fructose 0,1 %, d’activité comparé à celle du D-Glucose. Le L- Glucose, le D- Mannitol, le D-Lactose, le D-Sorbitol, le D-Ribose, le D-Maltose et le D- Sucrose présentent chacun moins de 0,1 % d’activité comparée à celle du D-Glucose.
Préalablement une solution à 5 mg.mL 1 de FAD-GDH est préparée dans une solution tampon (tampon phosphate 0.2 M Na2HP04 et 0.2 NaH2P04 pH 7) et stockée à -20°C. Avant chaque dépôt, la solution est retirée du congélateur et décongelée. 20 pL de cette solution sont déposés par dropcasting sur l’électrode modifiée. Le solvant est ensuite évaporé à pression atmosphérique (env. 100 kPa) et température ambiante (env. 25°C).
Caractérisation de la bioélectrode
La bioanode obtenue est utilisée dans une cellule électrolytique standard (avec une contre électrode de platine et une électrode de référence de type Ag/AgCI) pour constituer une cellule lorsque positionnée dans un milieu concentré en glucose. Cette cellule est étudiée ci-dessous présente les caractéristiques suivantes :
Caractérisation électrochimique
1. Electrosynthèse
La Figure 1 (gauche) représente la réponse électrochimique d’une électrode de carbone vitreux recouverte de nanotubes de carbone et de pyrène. La courbe noire représente la réponse électrochimique de l’électrode, seul un courant capacitif est observé correspondant à la contribution des nanotubes de carbone. La courbe grise a été enregistrée après avoir imposé un potentiel de 1 V pendant 30 secondes. Un signal faradique est observé à un potentiel de -0,036 V vs. Ag/AgCI. L’application d’un potentiel de 1 V induit donc la synthèse d’une nouvelle espèce présentant des propriétés redox.
L’expérience précédente a été réalisée en imposant un potentiel pendant un temps donné. Il est également possible d’électrogénérer la sonde redox par balayages successifs. Les différents cycles électrochimiques sont représentés sur la Figure 1 (droite). La courbe noire représente le premier cycle de balayage et les courbes en grise représentent les cycles suivants. On remarque lors du premier cycle l’absence de signal redox à -0,05V au cycle aller. Le pic redox apparaît au cycle retour. Ce comportement est similaire aux réactions d’électropolymérisation.
Ici il ne s’agit pas de la formation d’un polymère redox mais d’électrosynthèse d’un système électroactif. A des potentiels proches de 1 V une oxydation du composé se produit formant des liaisons cétones sur les composés aromatiques qui deviennent alors électroactifs (schéma 1 ). Les molécules formées contiennent des fonctions quinones leur conférant des propriétés redox.
Schéma 1 : Mécanisme supposé lors de l’oxydation du pyrène 2. Caractérisation du signal redox
La réponse électrochimique de l’électrode redox électro générée est caractéristique d’une espèce immobilisée à une électrode i.e. DE proche de OmV (10 mV à 2mV.s 1) et intensité du pic d’oxydation et de réduction proportionnelle à la vitesse de balayage (Figure 2).
La nature de ce produit a également été étudiée en faisant varier le pH de la solution électrolytique (Figure 3). La variation du pH engendre une modulation du potentiel redox. La pente est de -0,056 soit proche de la valeur théorique -0,059 ceci indique qu’il s’agit d’un système redox mettant en jeu l’échange du même nombre de protons que d’électrons. Il est fort probable qu’il s’agisse d’un échange de 2 électrons et de 2 protons comme de nombreuses sondes redox aromatiques (naphtoquinone, anthraquinone,...). On peut donc supposer que l’électrosynthèse engendre la formation de fonctions cétones sur les noyaux aromatiques. Dans le cas de cette électrode qui est fonctionnalisée par un motif pyrène, le produit formé supposé est le 1 ,6 pyrènedione ou le 1 ,4 pyrènedione. Le couple redox électrogénérée est donc pyrènedione/dihydroxypyrène avec un échange à 2 électrons et 2 protons. Cependant la littérature (ex. P. Barathi, A. Senthil Kumar, Langmuir, 29 (2013) 10617-10623, suscité) diffère sur la nature exacte du composé formé et il n’est pas forcement possible de conclure sur le nombre de fonctions cétones formé.
Etude des propriétés catalytiques des bioélectrodes
La Figure 4 représente la réponse électrochimique de la bioanode décrite ci-dessus (MWCNT/pyrèneRedox/ FAD-GDH) en l’absence et en présence de glucose. La courbe noire en l’absence de glucose présente uniquement la réponse électrochimique réversible de la sonde redox immobilisée. A l’inverse en présence d’une solution aqueuse de 200 mM de glucose, une vague d’oxydation est observée et caractéristique d’une activité catalytique. Le courant catalytique se produit au niveau du potentiel de la sonde redox. Ceci montre que la sonde redox électrogénérée permet d’assurer un transfert électronique médié entre l’électrode et l’enzyme FAD-GDH. La Figure de droite montre l’évolution du courant lors d’ajout de quantités croissantes de glucose. Le courant maximal de catalyse de l’ordre de 1 ,3 mA (6,5 mA.cm 2) est atteint pour des concentrations en glucose de 200 mM. Ceci est également observé par l’insert de la Figure de droite (4B) présentant l’évolution du courant en fonction de la concentration qui atteint un plateau pour des concentrations de 200 mM. La constante de Michaelis- Menten apparente du système est de 39,8 mM.
Etudes comparatives d’autres composants polyaromatiques activés.
De manière à établir les propriétés surprenantes de l’électrode enzymatique selon l’invention, plusieurs études comparatives ont été réalisées en utilisant d’autres matériaux de base que le pyrène. Les bioanodes ont été réalisées de la même manière et selon les mêmes étapes, que pour l’électrode au pyrène activé décrit ci- dessus. La méthode d’activation choisie a été la voltampérométrie cyclique (figure 5A et 5B) et la chronoampérométrie (figure 6) qui engendre les mêmes comportements. La seule modification a été la nature du composé polycyclique.
Ainsi La Figure 5 (gauche) montre la réponse électrochimique du dérivé oxygéné d’anthracène après l’activation par voltampérométrie cyclique. La signature correspond exactement à celle d’anthraquinone, un produit commercial. La Figure à droite montre l’électrosynthèse d’un dérivé de perylène sous les mêmes conditions. Il s’agit très probablement d’un perylènequinone mais de tels dérivés ne sont pas commercialisés ce qui ne permet pas de déterminer la structure exacte. Le potentiel de ces deux composants (~-0.5 V pour l’anthraquinone et ~-0.2 pour le perylènequinone) ne permet pas un transfert d’électron avec la FAD-GDH.
La figure 6 montre la réponse électrochimique du dérivé oxygéné de phénanthrène après l’activation par voltampérométrie cyclique. Celui-ci montre un transfert d’électrons après électro-oxydation. La signature correspond exactement à celle de phénanthraquinone, un produit commercial. Le courant catalytique reste néanmoins faible (quelques dizaines de mA) comparé au pyrène électro-oxydé (plusieurs centaines de mA).
La figure 7 montre la comparaison d’une électrode au pyrènedione (selon l’invention) avec une électrode au 1 ,4 naphtoquinone par voltampérométrie cyclique en termes de l'efficacité et la stabilité du transfert d’électrons. Dans le cadre de la réalisation de biopiles il est nécessaire d'éviter le relargage du médiateur redox en solution ce qui induit une diminution des performances au cours du temps ainsi qu'une possible pollution dans le cas de l'implantation de biopiles dans des organismes vivants. Après 100 cycles de voltamétrie cyclique de l'électrode en présence de 200mM de glucose, le courant catalytique diminue de 60% pour le dérivé pyrènedione tandis qu’il diminue de plus de 93% dans le cas de l'électrode fonctionnalisée par le motif 1 ,4 naphtoquinone (Figure 2 A et C). Une diminution de 47% et 77% du signal faradique non catalytique est observée respectivement pour le pyrènedione et le 1 ,4 napthoquinone (Figure 2 B et D).
Dans le cas du motif pyrène celui-ci présente certains avantages pour une utilisation dans les bioanodes en tant que médiateur redox pour la FAD-GDH. Le produit est facilement électrosynthétisé et présente un transfert électronique rapide. Le potentiel redox du couple pyrène-quinone' pyrène-dihydroquinone a un potentiel proche du potentiel redox du site actif de l'enzyme. En présence de l'enzyme FAD-GDH et de glucose, un courant de catalyse est observé (Figure 7A). Dans notre exemple, les courants catalytiques maximaux obtenus pour une électrode MWCNT/ pyrène-quinone IFAD-GDH sont de 1 ,4 mA. Cette vague catalytique apparaît à des potentiels proches du potentiel redox de la FAD- GDH et permet donc d'obtenir des potentiels de circuit ouvert (OCV) élevé dans le cas de l'intégration de cette bioanode dans un dispositif de type biopile. L’OCV est un paramètre crucial pour obtenir des dispositifs délivrant des puissances élevées.

Claims

Revendications
1 . Bioélectrode comprenant un matériau conducteur à la surface duquel sont déposés des nanotubes de carbone, un médiateur redox à base de pyrène, ou d’un de ses dérivés, oxydé in-situ, cette oxydation formant des liaisons cétones sur le cycle aromatique du pyrène, et une enzyme apte à catalyser l’oxydation du glucose.
2. La bioélectrode selon la revendication 1 , où ladite enzyme est une Flavine Adénine Dinucléotide - Glucose DesHydrogénase ou une Flavine Adénine Dinucléotide - Glucose Oxydase.
3. La bioélectrode selon la revendication 1 ou 2, où ledit médiateur est obtenu par chronoampérométrie et comprend l’application à du pyrène, ou à un de ses dérivés, déposé in-situ sur ladite surface de ladite électrode, d’un potentiel de 1 V à ladite électrode pendant un temps donné, de préférence allant de 30 secondes à 3 min.
4. La bioélectrode selon la revendication 1 ou 2, où ledit médiateur oxydé in- situ est obtenu par voltampérométrie cyclique et comprend l’application à du pyrène, ou à un de ses dérivés, déposé in-situ sur ladite surface de ladite électrode d’un potentiel variant de manière cyclique de -0.4V à 1 V, de préférence le nombre de cycles appliqués varie de 3 à 20.
5. Un procédé de fabrication d’une bioélectrode apte à l’oxydation du glucose, ladite méthode comprenant :
a) une étape d’oxydation de pyrène, ou d’un de ses dérivés, ledit pyrène, ou ledit dérivé, étant préalablement déposé sur la surface d’un matériau conducteur, matériau conducteur à la surface duquel sont également déposés des nanotubes de carbone, et
b) une étape subséquente à l’étape a), de dépôt d’une enzyme apte à catalyser l’oxydation du glucose à la surface de ladite électrode.
6. Le procédé de fabrication selon la revendication 5, où ladite étape d’oxydation de pyrène est effectuée par chronoampérométrie et comprend l’application d’un potentiel de 1 V à ladite surface pendant un temps donné, de préférence allant de 30 secondes à 3 min.
7. Le procédé de fabrication selon la revendication 5, où ladite étape d’oxydation est effectuée par voltampérométrie cyclique et comprend l’application d’un potentiel variant de manière cyclique de -0.4V à 1 V à ladite surface, de préférence le nombre de cycles appliqués varie de 3 à 20.
8. Le procédé selon l’une quelconque des revendications 5 à 7, où ladite enzyme est une Flavine Adénine Dinucléotide - Glucose DésHydrogénase ou une Flavine Adénine Dinucléotide - Glucose Oxydase.
9. Une bioélectrode fabriquée par le procédé décrit aux revendications 5 à 8.
10. Utilisation de la bioélectrode décrite aux revendications 1 à 4 et 9 pour la fabrication d’une biopile ou d’un biocapteur à glucose.
EP19711899.5A 2018-03-16 2019-03-15 Bioélectrode nanostructurée pour l'oxydation du glucose à partir de composés aromatiques électrogénérés Pending EP3766117A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852284A FR3079073B1 (fr) 2018-03-16 2018-03-16 Bioelectrode nanostructuree pour l'oxydation du glucose a partir de composes aromatiques electrogeneres
PCT/EP2019/056628 WO2019175426A1 (fr) 2018-03-16 2019-03-15 Bioélectrode nanostructurée pour l'oxydation du glucose à partir de composés aromatiques électrogénérés

Publications (1)

Publication Number Publication Date
EP3766117A1 true EP3766117A1 (fr) 2021-01-20

Family

ID=63014646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19711899.5A Pending EP3766117A1 (fr) 2018-03-16 2019-03-15 Bioélectrode nanostructurée pour l'oxydation du glucose à partir de composés aromatiques électrogénérés

Country Status (5)

Country Link
US (1) US20210050613A1 (fr)
EP (1) EP3766117A1 (fr)
CA (1) CA3093571A1 (fr)
FR (1) FR3079073B1 (fr)
WO (1) WO2019175426A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040150A1 (fr) * 2021-02-04 2022-08-10 Centre national de la recherche scientifique Procédé de détection d'hydrocarbures aromatiques polycycliques

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294281B1 (en) 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
FR2958801B1 (fr) 2010-04-08 2012-05-25 Univ Joseph Fourier Biopile a glucose
US9827517B2 (en) * 2011-01-25 2017-11-28 President And Fellows Of Harvard College Electrochemical carbon nanotube filter and method
US10050296B2 (en) * 2013-01-11 2018-08-14 Stc.Unm Highly efficient enzymatic bioanodes and biocathodes
EP3249050B1 (fr) * 2016-05-23 2019-01-23 ARKRAY, Inc. Électrode à enzyme et biodétecteur l'utilisant
CN106409538B (zh) * 2016-10-20 2018-09-28 青岛大学 一种生物质能量转化和储存的集成器件及其制备方法
FR3060859B1 (fr) * 2016-12-21 2019-05-31 Centre National De La Recherche Scientifique Bio-electrode pour la detection et/ou l'oxydation du glucose et son procede de fabrication et dispositif la comprenant.

Also Published As

Publication number Publication date
WO2019175426A1 (fr) 2019-09-19
CA3093571A1 (fr) 2019-09-19
US20210050613A1 (en) 2021-02-18
FR3079073A1 (fr) 2019-09-20
FR3079073B1 (fr) 2024-03-01

Similar Documents

Publication Publication Date Title
Gross et al. A high power buckypaper biofuel cell: exploiting 1, 10-phenanthroline-5, 6-dione with FAD-dependent dehydrogenase for catalytically-powerful glucose oxidation
Ramanavicius et al. Enzymatic biofuel cell based on anode and cathode powered by ethanol
Kavanagh et al. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives
Trifonov et al. Enzyme-capped relay-functionalized mesoporous carbon nanoparticles: effective bioelectrocatalytic matrices for sensing and biofuel cell applications
Narváez Villarrubia et al. Methylene green electrodeposited on SWNTs-based “bucky” papers for NADH and l-malate oxidation
Zayats et al. Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes
Zafar et al. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials
Gao et al. Electrocatalytic activity of carbon spheres towards NADH oxidation at low overpotential and its applications in biosensors and biofuel cells
Nien et al. Encapsulating benzoquinone and glucose oxidase with a PEDOT film: application to oxygen-independent glucose sensors and glucose/O2 biofuel cells
Sato et al. Development of single-wall carbon nanotubes modified screen-printed electrode using a ferrocene-modified cationic surfactant for amperometric glucose biosensor applications
Pereira et al. Advances in enzyme bioelectrochemistry
Lee et al. Construction of uniform monolayer-and orientation-tunable enzyme electrode by a synthetic glucose dehydrogenase without electron-transfer subunit via optimized site-specific gold-binding peptide capable of direct electron transfer
Dutta et al. Electron transfer-driven single and multi-enzyme biofuel cells for self-powering and energy bioscience
Nasri et al. A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt
Hyun et al. New biocatalyst including a 4-nitrobenzoic acid mediator embedded by the cross-linking of chitosan and genipin and its use in an energy device
Zumpano et al. A glucose/oxygen enzymatic fuel cell exceeding 1.5 V based on glucose dehydrogenase immobilized onto polyMethylene blue-carbon nanotubes modified double-sided screen printed electrodes: Proof-of-concept in human serum and saliva
Bonfin et al. Ethanol bioelectrooxidation in a robust poly (methylene green-pyrrole)-mediated enzymatic biofuel cell
Zafar et al. An efficient and versatile membraneless bioanode for biofuel cells based on Corynascus thermophilus cellobiose dehydrogenase
US20230366849A1 (en) Oxygen insensitive amperometric biosensors
Little et al. A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb
Karajić et al. Enzymatic glucose-oxygen biofuel cells for highly efficient interfacial corrosion protection
EP3766117A1 (fr) Bioélectrode nanostructurée pour l'oxydation du glucose à partir de composés aromatiques électrogénérés
EP2351048A2 (fr) Fibres a conductivite electrique pour systemes bioelectrochimiques, electrodes realisees avec de telles fibres et systemes comportant une ou plusieurs de telles electrodes
EP3560021B1 (fr) Bio-électrode pour la détection et/ou l'oxydation du glucose et son procédé de fabrication et dispositif la comprenant
WO2021019418A1 (fr) Biocathode enzymatique, son procede de fabrication ainsi que biopile a combustible et biocapteur comportant cette biocathode enzymatique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLANCHARD, PIERRE-YVES

Inventor name: COSNIER, SERGE

Inventor name: HOLZINGER, MICHAEL

Inventor name: LE GOFF, ALAN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230928