EP3765073A2 - Methods for treating hpv-associated diseases - Google Patents
Methods for treating hpv-associated diseasesInfo
- Publication number
- EP3765073A2 EP3765073A2 EP19713307.7A EP19713307A EP3765073A2 EP 3765073 A2 EP3765073 A2 EP 3765073A2 EP 19713307 A EP19713307 A EP 19713307A EP 3765073 A2 EP3765073 A2 EP 3765073A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cell
- composition
- cells
- hpv
- adjuvant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 381
- 201000010099 disease Diseases 0.000 title claims abstract description 102
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 102
- 210000002865 immune cell Anatomy 0.000 claims abstract description 660
- 239000000427 antigen Substances 0.000 claims abstract description 610
- 102000036639 antigens Human genes 0.000 claims abstract description 610
- 108091007433 antigens Proteins 0.000 claims abstract description 610
- 239000002671 adjuvant Substances 0.000 claims abstract description 363
- 230000028993 immune response Effects 0.000 claims abstract description 96
- 241000701806 Human papillomavirus Species 0.000 claims description 568
- 210000004027 cell Anatomy 0.000 claims description 483
- 239000000203 mixture Substances 0.000 claims description 340
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 179
- 229940046168 CpG oligodeoxynucleotide Drugs 0.000 claims description 177
- 239000003795 chemical substances by application Substances 0.000 claims description 88
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 83
- 150000001413 amino acids Chemical group 0.000 claims description 73
- 206010028980 Neoplasm Diseases 0.000 claims description 68
- 230000004048 modification Effects 0.000 claims description 67
- 238000012986 modification Methods 0.000 claims description 67
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 claims description 64
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 claims description 64
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 claims description 61
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 claims description 61
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 claims description 57
- 239000006285 cell suspension Substances 0.000 claims description 52
- 230000006870 function Effects 0.000 claims description 52
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 43
- 102000043129 MHC class I family Human genes 0.000 claims description 40
- 108091054437 MHC class I family Proteins 0.000 claims description 40
- 102000043131 MHC class II family Human genes 0.000 claims description 40
- 108091054438 MHC class II family Proteins 0.000 claims description 40
- 150000001875 compounds Chemical class 0.000 claims description 37
- 229920001184 polypeptide Polymers 0.000 claims description 37
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 36
- 239000000725 suspension Substances 0.000 claims description 36
- 230000004044 response Effects 0.000 claims description 35
- 238000002512 chemotherapy Methods 0.000 claims description 34
- 201000011510 cancer Diseases 0.000 claims description 32
- 108091036414 Polyinosinic:polycytidylic acid Proteins 0.000 claims description 30
- 229940115272 polyinosinic:polycytidylic acid Drugs 0.000 claims description 30
- 230000000735 allogeneic effect Effects 0.000 claims description 28
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 27
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims description 27
- 150000007523 nucleic acids Chemical class 0.000 claims description 25
- 108020004707 nucleic acids Proteins 0.000 claims description 24
- 102000039446 nucleic acids Human genes 0.000 claims description 24
- 102000009027 Albumins Human genes 0.000 claims description 21
- 108010088751 Albumins Proteins 0.000 claims description 21
- 229940044606 RIG-I agonist Drugs 0.000 claims description 21
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 claims description 21
- 230000001965 increasing effect Effects 0.000 claims description 21
- -1 LIGHT Proteins 0.000 claims description 20
- 229940044665 STING agonist Drugs 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 19
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 claims description 18
- 102000017578 LAG3 Human genes 0.000 claims description 18
- VQWNELVFHZRFIB-UHFFFAOYSA-N odn 1826 Chemical compound O=C1NC(=O)C(C)=CN1C(O1)CC(O)C1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC1CC(N2C3=C(C(NC(N)=N3)=O)N=C2)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C3=NC=NC(N)=C3N=C2)OC1COP(O)(=O)OC1CC(N2C3=C(C(NC(N)=N3)=O)N=C2)OC1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC(C(O1)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(O)=O)CC1N1C=C(C)C(=O)NC1=O VQWNELVFHZRFIB-UHFFFAOYSA-N 0.000 claims description 18
- KDWFDOFTPHDNJL-TUBOTVQJSA-N odn-2006 Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=S)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=S)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(S)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C(N=C(N)C=C2)=O)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C(N=C(N)C=C2)=O)O)[C@@H](O)C1 KDWFDOFTPHDNJL-TUBOTVQJSA-N 0.000 claims description 18
- 108010074708 B7-H1 Antigen Proteins 0.000 claims description 17
- 108010021064 CTLA-4 Antigen Proteins 0.000 claims description 17
- 229940045513 CTLA4 antagonist Drugs 0.000 claims description 17
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 claims description 17
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 claims description 17
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 claims description 17
- 230000004913 activation Effects 0.000 claims description 17
- 230000015788 innate immune response Effects 0.000 claims description 17
- 108091033409 CRISPR Proteins 0.000 claims description 16
- 108091006905 Human Serum Albumin Proteins 0.000 claims description 16
- 102000008100 Human Serum Albumin Human genes 0.000 claims description 16
- 210000004443 dendritic cell Anatomy 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000003381 stabilizer Substances 0.000 claims description 16
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 claims description 14
- 108020004414 DNA Proteins 0.000 claims description 14
- 101710083479 Hepatitis A virus cellular receptor 2 homolog Proteins 0.000 claims description 14
- 229940126547 T-cell immunoglobulin mucin-3 Drugs 0.000 claims description 14
- 230000000890 antigenic effect Effects 0.000 claims description 14
- 150000001768 cations Chemical class 0.000 claims description 14
- 210000000172 cytosol Anatomy 0.000 claims description 14
- 210000001163 endosome Anatomy 0.000 claims description 14
- 210000001616 monocyte Anatomy 0.000 claims description 14
- 210000000822 natural killer cell Anatomy 0.000 claims description 14
- 230000035899 viability Effects 0.000 claims description 14
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 13
- 210000002540 macrophage Anatomy 0.000 claims description 13
- 229960004793 sucrose Drugs 0.000 claims description 13
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 12
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 12
- 101000666896 Homo sapiens V-type immunoglobulin domain-containing suppressor of T-cell activation Proteins 0.000 claims description 12
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 12
- 102100038282 V-type immunoglobulin domain-containing suppressor of T-cell activation Human genes 0.000 claims description 12
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 12
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 12
- IJJVMEJXYNJXOJ-UHFFFAOYSA-N fluquinconazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1N1C(=O)C2=CC(F)=CC=C2N=C1N1C=NC=N1 IJJVMEJXYNJXOJ-UHFFFAOYSA-N 0.000 claims description 12
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 claims description 11
- 102100034459 Hepatitis A virus cellular receptor 1 Human genes 0.000 claims description 11
- 101000864344 Homo sapiens B- and T-lymphocyte attenuator Proteins 0.000 claims description 11
- 101001068136 Homo sapiens Hepatitis A virus cellular receptor 1 Proteins 0.000 claims description 11
- 101000831286 Homo sapiens Protein timeless homolog Proteins 0.000 claims description 11
- 101000752245 Homo sapiens Rho guanine nucleotide exchange factor 5 Proteins 0.000 claims description 11
- 101000831007 Homo sapiens T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 claims description 11
- 101000955999 Homo sapiens V-set domain-containing T-cell activation inhibitor 1 Proteins 0.000 claims description 11
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 11
- 102100024834 T-cell immunoreceptor with Ig and ITIM domains Human genes 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 11
- 230000012202 endocytosis Effects 0.000 claims description 11
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 claims description 10
- 241000283690 Bos taurus Species 0.000 claims description 10
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 10
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 10
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 claims description 10
- 229930064664 L-arginine Natural products 0.000 claims description 10
- 235000014852 L-arginine Nutrition 0.000 claims description 10
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims description 10
- 101000930477 Mus musculus Albumin Proteins 0.000 claims description 10
- 229920002535 Polyethylene Glycol 1500 Polymers 0.000 claims description 10
- 108010079206 V-Set Domain-Containing T-Cell Activation Inhibitor 1 Proteins 0.000 claims description 10
- 210000004405 cytokine-induced killer cell Anatomy 0.000 claims description 10
- 239000008103 glucose Substances 0.000 claims description 10
- 210000000581 natural killer T-cell Anatomy 0.000 claims description 10
- 239000011591 potassium Substances 0.000 claims description 10
- 229910052700 potassium Inorganic materials 0.000 claims description 10
- 230000002829 reductive effect Effects 0.000 claims description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 9
- 102100034980 ICOS ligand Human genes 0.000 claims description 9
- 230000001143 conditioned effect Effects 0.000 claims description 9
- 210000002443 helper t lymphocyte Anatomy 0.000 claims description 9
- 210000003071 memory t lymphocyte Anatomy 0.000 claims description 9
- 239000013612 plasmid Substances 0.000 claims description 9
- 238000010354 CRISPR gene editing Methods 0.000 claims description 8
- 108010051219 Cre recombinase Proteins 0.000 claims description 8
- 206010061218 Inflammation Diseases 0.000 claims description 8
- 101710163270 Nuclease Proteins 0.000 claims description 8
- 108091027967 Small hairpin RNA Proteins 0.000 claims description 8
- 108020004459 Small interfering RNA Proteins 0.000 claims description 8
- 238000010459 TALEN Methods 0.000 claims description 8
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 claims description 8
- 210000003651 basophil Anatomy 0.000 claims description 8
- 239000003814 drug Substances 0.000 claims description 8
- 210000003714 granulocyte Anatomy 0.000 claims description 8
- 210000003630 histaminocyte Anatomy 0.000 claims description 8
- 230000004054 inflammatory process Effects 0.000 claims description 8
- 210000004964 innate lymphoid cell Anatomy 0.000 claims description 8
- 210000000066 myeloid cell Anatomy 0.000 claims description 8
- 210000000440 neutrophil Anatomy 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 8
- 239000004055 small Interfering RNA Substances 0.000 claims description 8
- 108010082808 4-1BB Ligand Proteins 0.000 claims description 7
- 208000007860 Anus Neoplasms Diseases 0.000 claims description 7
- 101150013553 CD40 gene Proteins 0.000 claims description 7
- 102100036008 CD48 antigen Human genes 0.000 claims description 7
- 102100025221 CD70 antigen Human genes 0.000 claims description 7
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 7
- 208000035473 Communicable disease Diseases 0.000 claims description 7
- 102000025850 HLA-A2 Antigen Human genes 0.000 claims description 7
- 108010074032 HLA-A2 Antigen Proteins 0.000 claims description 7
- 101000716130 Homo sapiens CD48 antigen Proteins 0.000 claims description 7
- 101000934356 Homo sapiens CD70 antigen Proteins 0.000 claims description 7
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 claims description 7
- 101000669511 Homo sapiens T-cell immunoglobulin and mucin domain-containing protein 4 Proteins 0.000 claims description 7
- 101100207070 Homo sapiens TNFSF8 gene Proteins 0.000 claims description 7
- 101710093458 ICOS ligand Proteins 0.000 claims description 7
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 claims description 7
- 108010061593 Member 14 Tumor Necrosis Factor Receptors Proteins 0.000 claims description 7
- 101100207071 Mus musculus Tnfsf8 gene Proteins 0.000 claims description 7
- 101000597780 Mus musculus Tumor necrosis factor ligand superfamily member 18 Proteins 0.000 claims description 7
- 102100035488 Nectin-2 Human genes 0.000 claims description 7
- 102000004473 OX40 Ligand Human genes 0.000 claims description 7
- 108010042215 OX40 Ligand Proteins 0.000 claims description 7
- 208000002471 Penile Neoplasms Diseases 0.000 claims description 7
- 102100029740 Poliovirus receptor Human genes 0.000 claims description 7
- 102000008115 Signaling Lymphocytic Activation Molecule Family Member 1 Human genes 0.000 claims description 7
- 108010074687 Signaling Lymphocytic Activation Molecule Family Member 1 Proteins 0.000 claims description 7
- 102100039367 T-cell immunoglobulin and mucin domain-containing protein 4 Human genes 0.000 claims description 7
- 102100024587 Tumor necrosis factor ligand superfamily member 15 Human genes 0.000 claims description 7
- 108090000138 Tumor necrosis factor ligand superfamily member 15 Proteins 0.000 claims description 7
- 102100035283 Tumor necrosis factor ligand superfamily member 18 Human genes 0.000 claims description 7
- 102100032100 Tumor necrosis factor ligand superfamily member 8 Human genes 0.000 claims description 7
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 claims description 7
- 102100028785 Tumor necrosis factor receptor superfamily member 14 Human genes 0.000 claims description 7
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 claims description 7
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 7
- 208000004354 Vulvar Neoplasms Diseases 0.000 claims description 7
- 235000001014 amino acid Nutrition 0.000 claims description 7
- 239000002246 antineoplastic agent Substances 0.000 claims description 7
- 201000010881 cervical cancer Diseases 0.000 claims description 7
- 229940127089 cytotoxic agent Drugs 0.000 claims description 7
- 201000010536 head and neck cancer Diseases 0.000 claims description 7
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 7
- 208000015181 infectious disease Diseases 0.000 claims description 7
- 108010048507 poliovirus receptor Proteins 0.000 claims description 7
- 208000013139 vaginal neoplasm Diseases 0.000 claims description 7
- 206010061424 Anal cancer Diseases 0.000 claims description 6
- 241000341655 Human papillomavirus type 16 Species 0.000 claims description 6
- 229930182816 L-glutamine Natural products 0.000 claims description 6
- 208000032271 Malignant tumor of penis Diseases 0.000 claims description 6
- 206010034299 Penile cancer Diseases 0.000 claims description 6
- 206010047741 Vulval cancer Diseases 0.000 claims description 6
- 201000011165 anus cancer Diseases 0.000 claims description 6
- 206010046885 vaginal cancer Diseases 0.000 claims description 6
- 230000003612 virological effect Effects 0.000 claims description 6
- 201000005102 vulva cancer Diseases 0.000 claims description 6
- 241001465754 Metazoa Species 0.000 claims description 5
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 claims description 5
- 208000000453 Skin Neoplasms Diseases 0.000 claims description 5
- 239000013592 cell lysate Substances 0.000 claims description 5
- 201000000849 skin cancer Diseases 0.000 claims description 5
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 claims description 4
- 206010031096 Oropharyngeal cancer Diseases 0.000 claims description 4
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 claims description 4
- 229960004316 cisplatin Drugs 0.000 claims description 4
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims description 4
- 201000006958 oropharynx cancer Diseases 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 102000007562 Serum Albumin Human genes 0.000 claims description 3
- 108010071390 Serum Albumin Proteins 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 229940124597 therapeutic agent Drugs 0.000 claims description 3
- 208000003445 Mouth Neoplasms Diseases 0.000 claims description 2
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 101001019455 Homo sapiens ICOS ligand Proteins 0.000 claims 2
- 238000003745 diagnosis Methods 0.000 claims 1
- 238000001356 surgical procedure Methods 0.000 claims 1
- 238000002560 therapeutic procedure Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000011148 porous material Substances 0.000 description 84
- 230000000875 corresponding effect Effects 0.000 description 28
- 238000002474 experimental method Methods 0.000 description 21
- 108020004999 messenger RNA Proteins 0.000 description 18
- 238000001959 radiotherapy Methods 0.000 description 18
- 108090000623 proteins and genes Proteins 0.000 description 17
- 230000000694 effects Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 210000000612 antigen-presenting cell Anatomy 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 239000000556 agonist Substances 0.000 description 9
- 230000003833 cell viability Effects 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 229940074410 trehalose Drugs 0.000 description 9
- 230000005867 T cell response Effects 0.000 description 7
- 230000005684 electric field Effects 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 230000003834 intracellular effect Effects 0.000 description 7
- 108091033319 polynucleotide Proteins 0.000 description 7
- 239000002157 polynucleotide Substances 0.000 description 7
- 102000040430 polynucleotide Human genes 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000002255 vaccination Methods 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 201000010153 skin papilloma Diseases 0.000 description 6
- 230000004936 stimulating effect Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 239000006166 lysate Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 230000004614 tumor growth Effects 0.000 description 5
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 4
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 101000643024 Homo sapiens Stimulator of interferon genes protein Proteins 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 102100035533 Stimulator of interferon genes protein Human genes 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000022131 cell cycle Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 230000002631 hypothermal effect Effects 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 238000009169 immunotherapy Methods 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 229920006008 lipopolysaccharide Polymers 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 210000005259 peripheral blood Anatomy 0.000 description 4
- 239000011886 peripheral blood Substances 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 206010059313 Anogenital warts Diseases 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 208000000901 Focal Epithelial Hyperplasia Diseases 0.000 description 3
- 101001068133 Homo sapiens Hepatitis A virus cellular receptor 2 Proteins 0.000 description 3
- 101000767631 Human papillomavirus type 16 Protein E7 Proteins 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 208000025009 anogenital human papillomavirus infection Diseases 0.000 description 3
- 201000004201 anogenital venereal wart Diseases 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 210000000601 blood cell Anatomy 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- DHYWDEXXBWTTEH-UHFFFAOYSA-N odn 2007 Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(O)=O)C(O)C1 DHYWDEXXBWTTEH-UHFFFAOYSA-N 0.000 description 3
- UIRLPEMNFBJPIT-UHFFFAOYSA-N odn 2395 Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(O)=O)C(OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)O)C1 UIRLPEMNFBJPIT-UHFFFAOYSA-N 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000011321 prophylaxis Methods 0.000 description 3
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 210000004988 splenocyte Anatomy 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 230000003614 tolerogenic effect Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 208000019751 Anorectal disease Diseases 0.000 description 2
- 206010008263 Cervical dysplasia Diseases 0.000 description 2
- 108700023353 CpG ODN 2216 Proteins 0.000 description 2
- 108091029430 CpG site Proteins 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 229920001917 Ficoll Polymers 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 101000831496 Homo sapiens Toll-like receptor 3 Proteins 0.000 description 2
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 2
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 2
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 206010023849 Laryngeal papilloma Diseases 0.000 description 2
- 206010064912 Malignant transformation Diseases 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 102000043276 Oncogene Human genes 0.000 description 2
- 101500027983 Rattus norvegicus Octadecaneuropeptide Proteins 0.000 description 2
- 208000032124 Squamous Intraepithelial Lesions Diseases 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 108020000411 Toll-like receptor Proteins 0.000 description 2
- 102000002689 Toll-like receptor Human genes 0.000 description 2
- 102100024324 Toll-like receptor 3 Human genes 0.000 description 2
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 2
- 206010046905 Vaginal dysplasia Diseases 0.000 description 2
- 208000018777 Vulvar intraepithelial neoplasia Diseases 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 208000007951 cervical intraepithelial neoplasia Diseases 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 229960001338 colchicine Drugs 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 208000031513 cyst Diseases 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 230000003467 diminishing effect Effects 0.000 description 2
- 210000001808 exosome Anatomy 0.000 description 2
- 230000030279 gene silencing Effects 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 210000002288 golgi apparatus Anatomy 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000006450 immune cell response Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 208000009000 laryngeal papillomatosis Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 210000003712 lysosome Anatomy 0.000 description 2
- 230000001868 lysosomic effect Effects 0.000 description 2
- 230000036212 malign transformation Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000000869 mutational effect Effects 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 2
- 231100000590 oncogenic Toxicity 0.000 description 2
- 230000002246 oncogenic effect Effects 0.000 description 2
- 208000003154 papilloma Diseases 0.000 description 2
- 229940023041 peptide vaccine Drugs 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000022983 regulation of cell cycle Effects 0.000 description 2
- 229950010550 resiquimod Drugs 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229940054269 sodium pyruvate Drugs 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 2
- JFMGVNVAZVRZMU-UHFFFAOYSA-N 3-[[4-(2,4-dimethyl-1,3-thiazol-5-yl)pyrimidin-2-yl]amino]benzonitrile Chemical compound S1C(C)=NC(C)=C1C1=CC=NC(NC=2C=C(C=CC=2)C#N)=N1 JFMGVNVAZVRZMU-UHFFFAOYSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 108010083359 Antigen Receptors Proteins 0.000 description 1
- 102000006306 Antigen Receptors Human genes 0.000 description 1
- 102100037435 Antiviral innate immune response receptor RIG-I Human genes 0.000 description 1
- 208000016583 Anus disease Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 229940123587 Cell cycle inhibitor Drugs 0.000 description 1
- 108091007741 Chimeric antigen receptor T cells Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 208000000907 Condylomata Acuminata Diseases 0.000 description 1
- 206010011732 Cyst Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 108010006464 Hemolysin Proteins Proteins 0.000 description 1
- 101000952099 Homo sapiens Antiviral innate immune response receptor RIG-I Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 229940121849 Mitotic inhibitor Drugs 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 239000012124 Opti-MEM Substances 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 208000009608 Papillomavirus Infections Diseases 0.000 description 1
- 208000022034 Penile disease Diseases 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003972 antineoplastic antibiotic Substances 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- JVHIPYJQMFNCEK-UHFFFAOYSA-N cytochalasin Natural products N1C(=O)C2(C(C=CC(C)CC(C)CC=C3)OC(C)=O)C3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 JVHIPYJQMFNCEK-UHFFFAOYSA-N 0.000 description 1
- ZMAODHOXRBLOQO-UHFFFAOYSA-N cytochalasin-A Natural products N1C(=O)C23OC(=O)C=CC(=O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 ZMAODHOXRBLOQO-UHFFFAOYSA-N 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 239000003145 cytotoxic factor Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 208000021245 head disease Diseases 0.000 description 1
- 239000003228 hemolysin Substances 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 230000017555 immunoglobulin mediated immune response Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000005414 inactive ingredient Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- DDVBPZROPPMBLW-ZJBINBEQSA-N latrunculin a Chemical compound C([C@H]1[C@@]2(O)C[C@H]3C[C@H](O2)CC[C@@H](/C=C\C=C/CC\C(C)=C/C(=O)O3)C)SC(=O)N1 DDVBPZROPPMBLW-ZJBINBEQSA-N 0.000 description 1
- DDVBPZROPPMBLW-UHFFFAOYSA-N latrunculin-A Natural products O1C(=O)C=C(C)CCC=CC=CC(C)CCC(O2)CC1CC2(O)C1CSC(=O)N1 DDVBPZROPPMBLW-UHFFFAOYSA-N 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229940041290 mannose Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229940045641 monobasic sodium phosphate Drugs 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- OGIAAULPRXAQEV-UHFFFAOYSA-N odn 2216 Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(O)=O)C(OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)O)C1 OGIAAULPRXAQEV-UHFFFAOYSA-N 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000008298 phosphoramidates Chemical group 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 208000001307 recurrent respiratory papillomatosis Diseases 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 230000009450 sialylation Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 208000013464 vaginal disease Diseases 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 208000015317 vulvar disease Diseases 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/243—Platinum; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4612—B-cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4615—Dendritic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/462—Cellular immunotherapy characterized by the effect or the function of the cells
- A61K39/4622—Antigen presenting cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464499—Undefined tumor antigens, e.g. tumor lysate or antigens targeted by cells isolated from tumor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/464838—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
- C07K14/01—DNA viruses
- C07K14/025—Papovaviridae, e.g. papillomavirus, polyomavirus, SV40, BK virus, JC virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5154—Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55516—Proteins; Peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/58—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
- A61K2039/585—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/39—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by a specific adjuvant, e.g. cytokines or CpG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/55—Lung
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/20011—Papillomaviridae
- C12N2710/20034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Definitions
- the present disclosure relates generally to immune cells comprising an antigen and an adjuvant, methods of manufacturing such modified immune cells, and methods of using such modified immune cells for treating an HPV-associated disease, preventing an HPV-associated disease and for modulating an immune response in an individual with an HPV-associated disease.
- Papillomaviruses are small nonenveloped DNA viruses with a virion size of ⁇ 55 nm in diameter. More than 100 HPV genotypes are completely characterized, and a higher number is presumed to exist. HPV is a known cause of cervical cancers, as well as some vulvar, vaginal, penile, oropharyngeal, anal, and rectal cancers. Although most HPV infections are asymptomatic and clear spontaneously, persistent infections with one of the oncogenic HPV types can progress to precancer or cancer.
- HPV-associated diseases can include common warts, plantar warts, flat warts, anogenital warts, anal lesions, epidermodysplasia, focal epithelial hyperplasia, mouth papillomas, verrucous cysts, laryngeal papillomatosis, squamous intraepithelial lesions (SILs), cervical intraepithelial neoplasia (CIN), vulvar intraepithelial neoplasia (VIN) and vaginal intraepithelial neoplasia (VAIN).
- SILs squamous intraepithelial lesions
- CIN cervical intraepithelial neoplasia
- VIN vulvar intraepithelial neoplasia
- VAIN vaginal intraepithelial neoplasia
- HPV types are classified into fifteen“high risk types” (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82) and three“probable high risk types” (HPV 26, 53, and 66), which together are known to manifest as low and high grade cervical changes and cancers, as well as other anogential cancers such as vulval, vaginal, penile, anal, and perianal cancer, as well as head and neck cancers. Recently, the association of high risk types HPV 16 and 18 with breast cancer was also described.
- HPV types classified as“low risk types” are known to manifest as benign low-grade cervical changes, genital warts and recurrent respiratory papillomatosis. Cutaneous HPV types 5, 8, and 92 are associated with skin cancer. In some HPV-associated cancers, the immune system is depressed and
- Immunotherapy can be divided into two main types of interventions, either passive or active.
- Passive protocols include administration of pre-activated and/or engineered cells (e.g., CAR T cells), disease-specific therapeutic antibodies, and/or cytokines.
- Active immunotherapy strategies are directed at stimulating immune system effector functions in vivo.
- Several current active protocols include vaccination strategies with disease-associated peptides, lysates, or allogeneic whole cells, infusion of autologous DCs as vehicles for tumor antigen delivery, and infusion of immune checkpoint modulators. See Papaioannou, Nikos E., et al. Annals of translational medicine 4.14 (2016).
- Adoptive immunotherapy can be employed to modulate the immune response, enhance antitumor activity, and achieve the goal of treating or preventing HPV-associated cancers.
- CD8 + cytotoxic T lymphocytes (CTL) and CD4 + helper T (Th) cells stimulated by disease-associated antigens have the potential to target and destroy diseased cells.
- CTL cytotoxic T lymphocytes
- Th helper T cells stimulated by disease-associated antigens
- the invention provides a method for treating a human papilloma virus (HPV)-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly.
- the invention provides a method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly.
- the invention provides a method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly.
- the invention provides a method for treating an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented
- the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- the invention provides a method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- the invention provides a method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell comprising an HPV antigen through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- the diameter of the constriction is less than the diameter of the cell. In some embodiments the diameter of the constriction is about 20% to 99% of the diameter of the cell. In some embodiments, the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell. In some embodiments, the constriction is in a channel. In some embodiments, a deforming force is applied to the input cell as it passes through the constriction.
- the HPV antigen and/or the adjuvant are present in the cytosol and/or endosomes. In some embodiments, the antigen and/or adjuvant are present in multiple compartments of the cell. In some embodiments, the modified immune cell further comprises an HPV antigen and/or an adjuvant on the outside of the cell. In some embodiments, the concentration of adjuvant incubated with the perturbed input cell is between about 0.1 mM and about 1 mM. In some embodiments, the concentration of HPV antigen incubated with the perturbed input cell is between aboutO.1 pM and about 1 mM. In some embodiments, the ratio of HPV antigen to adjuvant incubated with the perturbed input cell is between about 10000: 1 and about 1 : 10000.
- the immune response is enhanced. In some embodiments, the immune response to the HPV antigen is enhanced.
- the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists or poly I:C. In some embodiments, the adjuvant is CpG ODN. In some embodiments, the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006. In some embodiments, the modified immune cell comprises more than one adjuvant.
- the HPV antigen is a pool of multiple polypeptides that elicit a response against the same and or different HPV antigens. In some embodiments,
- an antigen in the pool of multiple antigens does not decrease the immune response directed toward other antigens in the pool of multiple antigens.
- the HPV antigen is a polypeptide comprising an antigenic HPV epitope and one or more
- the HPV antigen complexes with itself, with other antigens, or with the adjuvant.
- the HPV antigen is an HPV-16 or an HPV-18 antigen.
- the HPV antigen is comprised of an HLA-A2-specific epitope.
- the HPV antigen is an HPV E6 antigen or an HPV E7 antigen.
- the modified immune cell comprises an HPV E6 antigen and an HPV E7 antigen.
- the HPV antigen is a polypeptide comprising an antigenic epitope that is flanked on the N-terminus and/or the C-terminus by one or more heterologous peptide sequences.
- the HLA-A2-restricted peptide comprises the amino acid sequence of any one of SEQ ID NOs: 1-4.
- the N-terminal flanking polypeptide comprises the amino acid sequence of any one of SEQ ID NOs: 5-10 and/or the C-terminal flanking polypeptide comprises the amino acid sequence of any one of SEQ ID NOs: 11-17.
- the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26.
- the HPV antigen comprises an amino acid sequence with at least 90% similarity to SEQ ID NO:23. In some embodiments, the HPV antigen is capable of being processed into an MHC class I-restricted peptide. In some embodiments, the HPV antigen is capable of being processed into an MHC class II-restricted peptide.
- the modified immune cell comprises the adjuvant at a concentration between about 0.1 mM and about 1 mM. In some embodiments, the modified immune cell comprises the HPV antigen at a concentration between about about 0.1 pM and about 1 mM. In some embodiments, the ratio of the HPV antigen to the adjuvant is between about 10000: 1 to about 1 : 10000. [0017] In some embodiments, the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a
- the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- the agent is albumin.
- the albumin is mouse, bovine, or human albumin.
- the agent is a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L-arginine, L-glutamine, or EDTA.
- the agent comprises mouse serum albumin (MSA).
- the modified immune cells are further modified to increase expression of one or more of co- stimulatory molecules.
- the co-stimulatory molecule is B7-H2, B7-1, B7- 2, CD70, LIGHT, HVEM, CD40, 4-1BBL, OX40L, TL1A, GITRL, CD30L, TIM4, SLAM, CD48, CD58, CD155, or CD112.
- the cell comprises a nucleic acid that results in increased expression of the one or more co-stimulatory molecules.
- the immune cell is a T cell, a dendritic cell, a monocyte, a macrophage, a myeloid cell, a granulocyte, a neutrophil, a mast cell, a natural killer cell, an innate lymphoid cell, a basophil, or a hematopoetic precursor cell.
- the immune cell is not a B cell.
- the immune cell is a T cell.
- the T cell comprises a further modification to modulate MHC class I expression.
- the T cell comprises a further modification to modulate MHC class II expression.
- the T cell comprises a further modification to reduce MHC class I and/or MHC class II expression.
- the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease.
- the T cell comprises a further modification to increase MHC class I and/or MHC class II expression.
- the further modification comprises increasing MHC class I and/or MHC class II expression using RNA or plasmid DNA.
- an innate immune response mounted in an individual in response to administration, in an allogeneic context, of the further modified T cells is reduced compared to an innate immune response mounted in an individual in response to administration, in an allogeneic context, of corresponding modified T cells that do not comprise the further modification.
- the T cell in an individual to which they were administered is modulated compared to the circulating half-life of corresponding modified T cells that do not comprise the further modification in an individual to which they were administered.
- the T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells and natural killer T cells.
- the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD45RA+ T cells, CD45RO+ T cells, and gd-T cells.
- the modified cell is allogeneic to the individual. In some embodiments, the modified cell is autologous to the individual. In some embodiments, the individual is pre- conditioned to have modulated inflammation and/or a modulated immune response.
- the methods further comprise administering to the individual an adjuvant.
- the adjuvant is IFNa or CpG ODN.
- the composition comprising the modified immune cells and the adjuvant are administered simultaneously.
- the composition comprising the modified immune cells and the adjuvant are administered sequentially.
- the composition comprising the modified immune cells is administered prior to administering the adjuvant.
- the composition comprising the modified immune cells is administered following administration of the adjuvant.
- the composition comprising the modified immune cells is administered in combination with administration of an immune checkpoint inhibitor.
- the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered simultaneously.
- the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered sequentially.
- the composition comprising the modified immune cells is administered prior to administering the immune checkpoint inhibitor.
- the composition comprising the modified immune cells is administered following administration of the immune checkpoint inhibitor.
- the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3 or TIM-3.
- the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3, TIM- 3, TIGIT, VISTA, TIM1, B7-H4 (VTCN1) or BTLA.
- administration of the composition comprising the modified immune cells to the individual results in activation and/or expansion of cytotoxic T lymphocytes (CTLs) specific for the HPV antigen.
- administration of the composition comprising the modified immune cells to the individual results in activation and/or expansion of helper T (T h ) cells specific for the antigen.
- CTLs cytotoxic T lymphocytes
- T h helper T
- the effective amount of the composition comprises between about 1 x 10 6 and about 1 c 10 12 modified immune cells.
- the method comprises multiple administrations of the composition comprising the modified immune cells.
- the method comprises a first administration of the composition comprising the modified immune cells followed by a second administration of the composition comprising the modified immune cells.
- the second administration is about one month following the first administration.
- the HPV-associated disease is an HPV-associated cancer.
- the HPV-associated cancer is cervical cancer, anal cancer, oropharyngeal cancer, vaginal cancer, vulvar cancer, penile cancer, skin cancer or head and neck cancer.
- the HPV-associated disease is an HPV-associated infectious disease.
- the invention provides a method for treating a human papilloma virus (HPV)-related disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- the invention provides a method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- the invention provides a method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- the modified immune cells comprise an HPV antigen comprising an amino acid sequence of any one of SEQ ID NOs: 18-25.
- the modified immune cells comprise an HPV antigen comprising the amino acid sequence of SEQ ID NO:23.
- the invention provides a method for treating an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the antigen to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- the invention provides a method for preventing an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25
- HPV-associated disease in an individual comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NO: 1
- the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- the invention provides a method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- the modified immune cells comprise an HPV antigen comprising an amino acid sequence of any one of SEQ ID NOs: 18-25. In some embodiments, the modified immune cells comprise an HPV antigen comprising the amino acid sequence of SEQ ID NO:23.
- the diameter of the constriction is less than the diameter of the cell. In some embodiments, the diameter of the constriction is about 20% to 99% of the diameter of the cell. In some
- the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell. In some embodiments, the constriction is in a channel. In some
- a deforming force is applied to the input cell as it passes through the constriction
- the method further comprises administering to the individual an adjuvant.
- the adjuvant is IFNa or CpG ODN.
- the composition comprising the modified immune cells and the adjuvant are administered simultaneously.
- the composition comprising the modified immune cells and the adjuvant are administered sequentially.
- the composition comprising the modified immune cells is administered prior to administering the adjuvant.
- the composition comprising the modified immune cells is administered following administration of the adjuvant.
- the modified immune cell further comprises an adjuvant.
- the perturbed immune cell of step b is incubated with the HPV antigen and an adjuvant.
- the HPV antigen and/or the adjuvant are present in the cytosol and/or endosomes. In some embodiments, the antigen and/or adjuvant are present in multiple compartments of the cell. In some embodiments, the modified immune cell further comprises an HPV antigen and/or an adjuvant on the outside of the cell.
- the concentration of adjuvant incubated with the perturbed input cell is between about 0.1 mM and about lmM. In some embodiments, the concentration of HPV antigen incubated with the perturbed input cell is between about 0.1 pM and about lmM. In some embodiments, the ratio of HPV antigen to adjuvant incubated with the perturbed input cell is between about 10000: 1 to about 1 : 10000.
- the immune response is enhanced. In some embodiments, the immune response to the HPV antigen is enhanced.
- the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists or poly I:C. In some embodiments, the adjuvant is CpG ODN. In some embodiments, the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006. In some embodiments, the modified immune cell comprises more than one adjuvant.
- the HPV antigen is a pool of multiple polypeptides that elicit a response against the same and or different HPV antigens. In some embodiments, an antigen in the pool of multiple antigens does not decrease the immune response directed toward other antigens in the pool of multiple antigens.
- the HPV antigen is a polypeptide comprising an antigenic HPV epitope and one or more heterologous peptide sequences. In some embodiments, the HPV antigen complexes with itself, with other antigens, or with the adjuvant. In some embodiments, the HPV antigen is an HPV-16 or an HPV-18 antigen. In some embodiments, the HPV antigen is comprised of an HLA-A2-specific epitope. In some embodiments, the HPV antigen is an HPV E6 antigen or an HPV E7 antigen. In some embodiments, the modified immune cell comprises an HPV E6 antigen and an HPV E7 antigen.
- the HPV antigen is a polypeptide comprising an antigenic epitope that is flanked on the N-terminus and/or the C-terminus by one or more heterologous peptide sequences. In some embodiments, the HPV antigen is capable of being processed into an MHC class I-restricted peptide. In some embodiments, the HPV antigen is capable of being processed into an MHC class II-restricted peptide.
- the modified immune cell comprises the adjuvant at a concentration between about 0.1 mM and about 1 mM. In some embodiments, the modified immune cell comprises the HPV antigen at a concentration between about about 0.1 pM and about 1 mM. In some embodiments, the ratio of the HPV antigen to the adjuvant is between about 10000: 1 to about 1 : 10000.
- the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a
- the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- the agent is albumin.
- the albumin is mouse, bovine, or human albumin.
- the agent is a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L-arginine, L-glutamine, or EDTA.
- the agent comprises mouse serum albumin (MSA).
- the modified immune cells are further modified to increase expression of one or more of co- stimulatory molecules.
- the co-stimulatory molecule is B7-H2, B7-1, B7- 2, CD70, LIGHT, HVEM, CD40, 4-1BBL, OX40L, TL1A, GITRL, CD30L, TIM4, SLAM, CD48, CD58, CD155, or CD112.
- the cell comprises a nucleic acid that results in increased expression of the one or more co-stimulatory molecules.
- the immune cell is a T cell, a dendritic cell, a monocyte, a macrophage, a myeloid cell, a granulocyte, a neutrophil, a mast cell, a natural killer cell, an innate lymphoid cell, a basophil, or a hematopoetic precursor cell.
- the immune cell is not a B cell.
- the immune cell is a T cell.
- the T cell comprises a further modification to modulate MHC class I expression.
- the T cell comprises a further modification to modulate MHC class II expression.
- the T cell comprises a further modification to reduce MHC class I and/or MHC class II expression.
- the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease.
- the T cell comprises a further modification to increase MHC class I and/or MHC class II expression.
- the further modification comprises increasing MHC class I and/or MHC class II expression using RNA or plasmid DNA.
- an innate immune response mounted in an individual in response to administration, in an allogeneic context, of the further modified T cells is reduced compared to an innate immune response mounted in an individual in response to administration, in an allogeneic context, of corresponding modified T cells that do not comprise the further modification.
- the T cell in an individual to which they were administered is modulated compared to the circulating half-life of corresponding modified T cells that do not comprise the further modification in an individual to which they were administered.
- the T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells and natural killer T cells.
- the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD45RA+ T cells, CD45RO+ T cells, and gd-T cells.
- the modified cell is allogeneic to the individual. In some embodiments, the modified cell is autologous to the individual. In some embodiments, the individual is pre- conditioned to have modulated inflammation and/or a modulated immune response.
- the methods further comprise administering to the individual an adjuvant.
- the adjuvant is IFNa or CpG ODN.
- the composition comprising the modified immune cells and the adjuvant are administered simultaneously.
- the composition comprising the modified immune cells and the adjuvant are administered sequentially.
- the composition comprising the modified immune cells is administered prior to administering the adjuvant.
- the composition comprising the modified immune cells is administered following administration of the adjuvant.
- the composition comprising the modified immune cells is administered in combination with administration of an immune checkpoint inhibitor.
- the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered simultaneously.
- the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered sequentially.
- the composition comprising the modified immune cells is administered prior to administering the immune checkpoint inhibitor.
- the composition comprising the modified immune cells is administered following administration of the immune checkpoint inhibitor.
- the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3 or TIM-3.
- the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3, TIM- 3, TIGIT, VISTA, TIM1, B7-H4 (VTCN1) or BTLA.
- administration of the composition comprising the modified immune cells to the individual results in activation and/or expansion of cytotoxic T lymphocytes (CTLs) specific for the HPV antigen.
- administration of the composition comprising the modified immune cells to the individual results in activation and/or expansion of helper T (T h ) cells specific for the antigen.
- CTLs cytotoxic T lymphocytes
- T h helper T
- the effective amount of the composition comprises between about 1 x 10 6 and about 1 c 10 12 modified immune cells.
- the method comprises multiple administrations of the composition comprising the modified immune cells.
- the method comprises a first administration of the composition comprising the modified immune cells followed by a second administration of the composition comprising the modified immune cells.
- the second administration is about one month following the first administration.
- the HPV-associated disease is an HPV-associated cancer.
- the HPV-associated cancer is cervical cancer, anal cancer, oropharyngeal cancer, vaginal cancer, vulvar cancer, penile cancer, skin cancer or head and neck cancer.
- the HPV-associated disease is an HPV-associated infectious disease.
- the invention provides a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly a CpG ODN and an HPV antigen with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- the HPV antigen comprises the amino acid sequence with at least 90% similarity to SEQ ID NO:23.
- the modified immune cells comprise intracellularly a CpG ODN and an HPV antigen wherein the HPV antigen comprises the amino acid sequence of any one of SEQ ID NOs: 18-25.
- the HPV antigen comprises the amino acid sequence of SEQ ID NO:23.
- the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen and the CpG ODN to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen and the CpG ODN for a sufficient time to allow the HPV antigen and the CpG ODN to enter the perturbed input cell; thereby generating the modified immune cells.
- the diameter of the constriction is less than the diameter of the cell.
- the diameter of the constriction is about 20% to about 99% of the diameter of the cell. In some embodiments, the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell. In some embodiments, the constriction is in a channel. In some embodiments, a deforming force is applied to the input cell as it passes through the constriction.
- the composition further comprises an adjuvant.
- the HPV antigen and/or the CpG ODN are present in the cytosol and/or endosomes.
- the antigen and/or the CpG ODN are present in multiple compartments of the cell.
- the modified immune cell further comprises an
- the concentration of CpG ODN incubated with the perturbed input cell is between about 0.1 mM and about 1 mM. In some embodiments, the concentration of HPV antigen incubated with the perturbed input cell is between about 0.1 pM and about 1 mM. In some embodiments, the ratio of HPV antigen to CpG ODN incubated with the perturbed input cell is between about 10000: 1 to about 1 : 10000. In some embodiments, the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006. In some embodiments, the modified immune cell comprises more than one adjuvant. In some embodiments, the adjuvant comprises CpG ODN, IFN-a, STING agonists, RIG-I agonists, or poly I:C.
- the HPV antigen is a pool of multiple polypeptides that elicit a response against the same and or different HPV antigens. In some embodiments, an antigen in the pool of multiple antigens does not decrease the immune response directed toward other antigens in the pool of multiple antigens.
- the HPV antigen is a polypeptide comprising an antigenic HPV epitope and one or more heterologous peptide sequences. In some embodiments, the HPV antigen complexes with itself, with other antigens, with an adjuvant or with the CpG ODN. In some embodiments, the HPV antigen is comprised of an HLA-A2-specific epitope. In some embodiments, the HPV antigen is a polypeptide comprising an antigenic epitope that is flanked on the N-terminus and/or the C-terminus by one or more heterologous peptide sequences.
- the modified immune cell comprises the CpG ODN at a concentration between about 0.1 mM and about 1 mM. In some embodiments, the modified immune cell comprises the HPV antigen at a concentration between about 0.1 mM and about 1 mM. In some embodiments, the ratio of the HPV antigen to the CpG ODN is between about 10000: 1 to about 1 : 10000.
- the invention comprises a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen, wherein the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18- 25.
- the HPV antigen comprises the amino acid sequence with at least 90% similarity to SEQ ID NO:23.
- the HPV antigen comprises the amino acid sequence of any one of SEQ ID NOs: 18-25.
- the HPV antigen comprises the amino acid sequence of SEQ ID NO:23.
- the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- the diameter of the constriction is less than the diameter of the cell.
- the diameter of the constriction is about 20% to about 99% of the diameter of the cell. In some embodiments, the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell. In some embodiments, the constriction is in a channel. In some embodiments, a deforming force is applied to the input cell as it passes through the constriction.
- the composition further comprises an adjuvant.
- the HPV antigen and/or the adjuvant are present in the cytosol and/or endosomes.
- the antigen and/or adjuvant are present in multiple compartments of the cell.
- the modified immune cell further comprises an HPV antigen and/or an adjuvant on the surface of the cell.
- the concentration of adjuvant incubated with the perturbed input cell is between about 0.1 mM and about 1 mM. In some embodiments, the concentration of HPV antigen incubated with the perturbed input cell is between about 0.1 pM and about 1 mM.
- the ratio of HPV antigen to adjuvant incubated with the perturbed input cell is between about 10000: 1 to about 1 : 10000.
- the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists, or poly I:C.
- the adjuvant is CpG ODN.
- the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006.
- the modified immune cell comprises more than one adjuvant.
- the HPV antigen is a pool of multiple polypeptides that elicit a response against the same and or different HPV antigens. In some embodiments, an antigen in the pool of multiple antigens does not decrease the immune response directed toward other antigens in the pool of multiple antigens. In some embodiments, the HPV antigen is a polypeptide comprising an antigenic HPV epitope and one or more heterologous peptide sequences. In some embodiments, the HPV antigen complexes with itself, with other antigens, or with the adjuvant. In some embodiments, the HPV antigen is comprised of an HLA-A2- specific epitope.
- the modified immune cell comprises the adjuvant at a concentration between about 0.1 mM and about 1 mM. In some embodiments, the modified immune cell comprises the HPV antigen at a concentration between about 0.1 pM and about 1 mM. In some embodiments, the ratio of the HPV antigen to the adjuvant is between about 10000: 1 to about 1 : 10000. In some embodiments, the HPV antigen is capable of being processed into an MHC class I-restricted peptide. In some embodiments, the HPV antigen is capable of being processed into an MHC class II-restricted peptide. [0050] In some embodiments, the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a
- the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- the agent is albumin.
- the albumin is mouse, bovine, or human albumin.
- the agent is a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L-arginine, L-glutamine, or EDTA.
- the agent comprises MSA.
- the cells are further modified to increase expression of one or more of co-stimulatory molecules.
- the co-stimulatory molecule is B7-H2 (ICOSL), B7-1 (CD80), B7-2 (CD86), CD70, LIGHT, HVEM, CD40, 4-1BBL, OX40L, TL1A, GITRL, CD30L, TIM4, SLAM, CD48, CD58, CD155, or CD112.
- the cell comprises a nucleic acid that results in increased expression of the one or more co-stimulatory molecules.
- the immune cell is a T cell, a dendritic cell, a monocyte, a macrophage, a myeloid cell, a granulocyte, a neutrophil, a mast cell, a natural killer cell, an innate lymphoid cell, a basophil, or a hematopoetic precursor cell.
- the immune cell is not a B cell.
- the immune cell is a T cell.
- the T cell comprises a further modification to modulate MHC class I expression.
- the T cell comprises a further modification to modulate MHC class II expression.
- the T cell comprises a further modification to reduce MHC class I and/or MHC class II expression.
- the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease.
- the T cell comprises a further modification to increase MHC class I and/or MHC class II expression.
- the further modification comprises increasing MHC class I and/or MHC class II expression using RNA or plasmid DNA.
- an innate immune response mounted in an individual in response to administration, in an allogeneic context, of the further modified T cells is reduced compared to an innate immune response mounted in an individual in response to administration, in an allogeneic context, of corresponding modified T cells that do not comprise the further modification.
- the circulating half- life of the further modified T cells in an individual to which they were administered is modulated compared to the circulating half-life of corresponding modified T cells that do not comprise the further modification in an individual to which they were administered.
- the T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells and natural killer T cells. In some embodiments, the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD45RA+ T cells,
- the modified cell is allogeneic to an individual. In some embodiments, the modified cell is autologous to an individual. In some embodiments, an individual is pre-conditioned to have modulated inflammation and/or a modulated immune response.
- the composition further comprises an immune checkpoint inhibitor.
- the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3, TIM-3, LAG3, TIGIT, VISTA, TIM1, B7-H4 (VTCN1) or BTLA.
- administration of the composition comprising the modified immune cells to an individual results in activation and/or expansion of cytotoxic T lymphocytes (CTLs) specific for the HPV antigen.
- CTLs cytotoxic T lymphocytes
- administration of the composition comprising the modified immune cells to an individual results in activation and/or expansion of helper T (T h ) cells specific for the antigen.
- the effective amount of the composition comprises between about 1 x 10 6 and about 1 c 10 12 modified immune cells.
- the antigen comprises an amino acid sequence with at least 90% similarity to SEQ ID NO:23. In some embodiments, the antigen comprises the amino acid sequence of SEQ ID NO: 23.
- the immune cell is a T cell, a dendritic cell, a monocyte, a macrophage, a myeloid cell, a granulocyte, a neutrophil, a mast cell, a natural killer cell, an innate lymphoid cell, a basophil, or a hematopoetic precursor cell.
- the immune cell is not a B cell.
- the immune cell is a T cell.
- the T cell comprises a further modification to modulate MHC class I expression.
- the T cell comprises a further modification to modulate MHC class II expression.
- the T cell comprises a further modification to reduce MHC class I and/or MHC class II expression.
- the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease.
- the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease.
- T cell comprises a further modification to increase MHC class I and/or MHC class II expression.
- the further modification comprises increasing MHC class I and/or MHC class II expression using RNA or plasmid DNA.
- an innate immune response mounted in an individual in response to administration, in an allogeneic context, of the further modified T cells is reduced compared to an innate immune response mounted in an individual in response to administration, in an allogeneic context, of corresponding modified T cells that do not comprise the further modification.
- the circulating half- life of the further modified T cells in an individual to which they were administered is modulated compared to the circulating half-life of corresponding modified T cells that do not comprise the further modification in an individual to which they were administered.
- the T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells and natural killer T cells.
- the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD45RA+ T cells, CD45RO+ T cells, and gd-T cells.
- the modified cell is allogeneic to an individual.
- the modified cell is autologous to an individual.
- an individual is pre-conditioned to have modulated inflammation and/or a modulated immune response.
- the composition further comprises an immune checkpoint inhibitor.
- the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3, or TIM-3.
- administration of the composition comprising the modified immune cells to an individual results in activation and/or expansion of cytotoxic T lymphocytes (CTLs) specific for the HPV antigen.
- administration of the composition comprising the modified immune cells to an individual results in activation and/or expansion of helper T (T h ) cells specific for the antigen.
- CTLs cytotoxic T lymphocytes
- T h helper T cells specific for the antigen.
- the effective amount of the composition comprises between about 1 x 10 6 and about 1 c 10 12 modified immune cells.
- the antigen comprises an amino acid sequence with at least 90% similarity to SEQ ID NO:23. In some embodiments, the antigen comprises the amino acid sequence of SEQ ID NO: 23.
- the invention provides a method for treating or preventing an HPV- associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell comprising an HPV antigen through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the adjuvant for a sufficient time to allow the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- the invention provides a method for treating or preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell comprising the adjuvant through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- the diameter of the constriction is less than the diameter of the cell. In some embodiments, the diameter of the constriction is about 20% to about 99% of the diameter of the cell. In some embodiments, the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell. In some embodiments, the constriction is in a channel. In some embodiments, a deforming force is applied to the input cell as it passes through the constriction.
- the HPV antigen and/or the adjuvant are present in the cytosol and/or endosomes. In some embodiments, the antigen and/or adjuvant are present in multiple compartments of the cell. In some embodiments, the concentration of adjuvant incubated with the perturbed input cell is between about 0.1 mM and about 1 mM. In some embodiments, the concentration of HPV antigen incubated with the perturbed input cell is between aboutO.1 pM and about 1 mM.
- the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists or poly I:C. In some embodiments, the adjuvant is CpG ODN. In some embodiments, the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006.
- the HPV antigen is an HPV-16 or an HPV-18 antigen. In some embodiments, the HPV antigen is an HPV E6 antigen or an HPV E7 antigen. In some embodiments, the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- the HPV antigen comprises an amino acid sequence of any one of SEQ ID NOs: 18-25. In some embodiments, the HPV antigen comprises an amino acid sequence with at least 90% similarity to SEQ ID NO:23. In some embodiments, the HPV antigen comprises an amino acid sequence of SEQ ID NO:23.
- the invention provides a method for treating or preventing an HPV- associated disease in an individual comprising administering to the individual a modified immune cell associated with an HPV antigen, wherein the modified immune cell is prepared by a process comprising the steps of: a) incubating an input cell with the HPV antigen and/or an adjuvant for a sufficient time to allow the HPV antigen to associate with the input cell; thereby generating the modified immune cell associated with the antigen.
- the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- the HPV antigen comprises the amino acid sequence of SEQ ID NO:23.
- the adjuvant is CpG ODN.
- the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006.
- Fig. 1A shows a representative schematic of the treatment groups and schedule.
- Fig. IB shows tumor growth, as measured by the formula ((length x width 2 )/2) compared between mice from the untreated group (no adoptive transfer of T cells) and the treatment groups B-E outlined in Fig. 1 A.
- Fig. 2A shows a representative schematic for evaluating E7 antigens.
- Fig. 2B shows that the impact of SLP sequence on IFN-y-producing CD8+ T cells generated in response to T APC vaccination.
- Fig. 3 is a graph showing the ability of E6 SLPs to induce an antigens-specific immune response in E6 responder T cells in an in vitro human model.
- Fig. 4 shows the ability of E7 SLPs to induce an antigen-specific immune response in E7 I I-2O responder T cells, as well as the impact of SLP sequence on SQZ T cell APC (T apc ) activation in an in vitro human model.
- Fig. 5 shows results of a study to evaluate the dose of antigen for SQZ T cell APCs in an in vitro human model.
- Fig. 6 shows the results of a study to determine the donor variability for SQZ T cell APCs in an in vitro human model.
- Fig. 7A is a schematic of an experiment to compare the robustness of immune responses using different adjuvants.
- Fig. 7B shows the results of the experiment to compare robustness of immune responses using poly I:C and a CpG ODN.
- Fig. 8A is a schematic of an experiment evaluating the effect of concentration of CpG ODN on immune responses.
- Fig. 8B shows the results of the experiment evaluating the effect of concentration of CpG ODN on immune responses.
- Fig. 9A is a schematic of an experiment evaluating the dosing schedule of CpG ODN on immune responses.
- Fig. 9B shows the results of the experiment evaluating the dosing schedule of CpG ODN on immune responses.
- Fig. 10A is a schematic of an experiment to evaluate the combination of intracellular and systemic adjuvant administration for T APC antitumor function.
- Fig. 10B shows T cell responses for each experimental group and
- Fig. 10C shows growth of tumors for each experimental group.
- Fig. 10D shows tumor growth following rechallenge in animals treated with SQZ (E7+CpG) relative to untreated animals.
- FIG. 11A is a schematic of an experiment to evaluate the effect of combining multiple HPV antigens for TAPC antitumor function.
- Fig. 11B shows T cell responses for each
- Fig. 11C shows growth of tumors for each experimental group.
- Fig. 12A shows the results of an experiment evaluating the importance of the route of administration of CpG adjuvant for the E7-specific T APC antitumor effect.
- the dosing schedule is provided.
- Fig 12B shows tumor volume over time for individual mice within each treatment group.
- Fig. 13 shows a schematic of an experiment to assess the ability of co-administered adjuvants to lead to E7-specific T cell tumor infiltration. T cell responses are shown in the lower panel.
- Fig. 14A is a schematic of an experiment to determine a vaccination schedule for both prime and boost of TAPC S loaded with an E7 synthetic long peptide (SLP) + CpG.
- Fig. 14B shows growth of tumors for each experimental group.
- Fig. 15 shows the results of an experiment to show that SQZ’d TAPCS can present antigen directly.
- Fig. 16 shows that SQZ delivery of an adjuvant does not significantly alter T cell cytokine levels in vitro.
- Fig 17 shows that SQZ delivery of antigen +/- adjuvant does not significantly alter serum cytokine levels in vivo.
- Fig. 18 shows that SQZ delivery of HPV-E7 containing cell lysates in dendritic cells (as APCs), followed by co-culturing the SQZ’d dendritic cells with CD8 T cell responders leads to a more robust T cell response compared to delivery of same lysates into dendritic cells by endocytosis.
- Fig. 19A shows a representative schematic of an experiment to evaluate the ability of B cell as APCs to induce an endogenous response.
- Fig. 19B shows the levels of IFN-g positive CD8+ T cells induced by B9-23 challenge, generated in response to OVA-loaded BAPC vaccination.
- Fig. 19C shows the levels of IFN-g positive CD8+ T cells induced by E7 challenge, generated in response to E7-loaded B APC vaccination.
- Fig. 20A shows the tumor volume over time in an experiment to determine the ability of SQZ-loaded B cells to act as APCs for prophylactic treatment for HPV-associated
- Fig. 20B shows the corresponding survival data over time from B cell APC
- Fig. 21A shows the tumor volume over time in an experiment to determine the ability of SQZ-loaded B cells to act as APCs for therapeutic treatment for HPV-associated tumors.
- Fig. 21B shows the corresponding survival data over time from B cell APC therapeutic treatment for HPV-associated tumors.
- Fig. 22A shows the tumor volume over time in an experiment to determine the ability of SQZ-loaded B cells to act as APCs for therapeutic treatment for HPV-associated tumors.
- Fig. 22B shows the profiles and percentrages of various phenotypes of tumor infiltrating cells that were recruited to the tumors.
- Fig. 23 shows the IFN-g secretion by E7 responders, as an in vitro antigen-specific response to BAPC SQZ-loaded with HPV16 E7 SLP.
- Fig. 24 shows the relative amounts of tumor infiltrating lymphocyte (TIL) recruitment to tumors administered with T APC SQZ-loaded with HPV16 E7 SLP, with or without co administration of adjuvant.
- Fig. 25 shows the tumor volume over time in an experiment to determine the ability of SQZ-loaded T cells to act as APCs for prophylactic treatment for HPV-associated tumors, for both shorter term (right flank tumor, injected on Day 0) as well as longer term protection (left flank tumor, injected on Day 60)
- Fig. 26 shows the tumor volume over time in an experiment to determine the effect of T cell dose, co-administration of adjuvant as well as number of administrations (prime vs.
- Prime/boost on the ability of SQZ-loaded T cells to act as APCs for therapeutic treatment for HPV-associated tumors.
- P indicates prime
- B indicates boost in Fig. 26.
- Fig. 27A shows the tumor volume over time in an experiment to determine the ability of SQZ-loaded B cells to act as APCs for therapeutic treatment for HPV-associated tumors, as compared to electroporated B cells, and a high dosage peptide vaccine at high dose (SC SLP).
- Fig. 27B shows the corresponding survival data over time from B cell APC therapeutic treatment for HPV-associated tumors, as compared to lectroporated B cells, and a high dosage peptide vaccine.
- Fig. 28A shows a representative schematic of an experiment to evaluate the ability of splenocytes as APCs to induce an endogenous response.
- Fig. 28B shows the levels of IFN-g positive CD8+ T cells induced by B9-23 challenge, generated in response to OVA-loaded splenocyte AP c vaccination.
- Fig. 28C shows the levels of IFN-g positive CD8+ T cells induced by E7 challenge, generated in response to E7 -loaded splenocyte AP c vaccination.
- Fig. 29A shows the tumor volume over time in an experiment to determine the ability of SQZ-loaded splenocytes to act as APCs for therapeutic treatment for HPV-associated tumors.
- Fig. 29B shows the corresponding survival data over time from splenocyte APC therapeutic treatment for HPV-associated tumors.
- Fig. 30 shows the IFN-g secretion by E7 responders, as an in vitro antigen-specific response to PBMCAPC SQZ-loaded with HPV16 E7 SLP.
- the present invention provides methods for treating and preventing an HPV-associated disease, and/or modulating the immune response in an individual with an HPV- associated disease comprising administering to the individual a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- the present invention provides methods for treating and preventing an HPV-associated disease, and/or modulating the immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant; wherein the modified immune cells are prepared by first passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, , thereby causing perturbations of the input cell large enough for the antigen and the adjuvant to pass through to form a perturbed input cell; and then incubating the perturbed input cell with the HPV antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell;
- Certain aspects of the present disclosure relate to methods for generating a composition comprising modified immune cells, wherein an immune cell is passed through a constriction, wherein the constriction deforms the cell thereby causing a perturbation of the cell such that an HPV antigen and/or an adjuvant enters the immune cell to be modified.
- the present invention provides methods for treating and preventing an HPV-associated disease, and/or modulating the immune response in an individual with an HPV- associated disease comprising administering to the individual a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen.
- the present invention provides methods for treating and preventing an HPV-associated disease, and/or modulating the immune response in an individual with an HPV- associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen, wherein the modified immune cells are prepared by first passing a cell suspension comprising an input cell through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the antigen to pass through to form a perturbed input cell; and then incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- Certain aspects of the present disclosure relate to methods for generating a composition comprising modified immune cells, wherein an immune cell is passed through a constriction, wherein the constriction deforms the cell thereby causing a perturbation of the cell such that an HPV antigen enters the immune cell to be modified.
- the method for treating and preventing an HPV-associated disease, and/or modulating the immune response in an individual with an HPV-associated disease further comprises administering an adjuvant to the individual.
- the composition of modified immune cells further comprises an adjuvant (e.g., a CpG oligonucleotide (CpG ODN) or IFNa.
- the modified immune cells further comprises an adjuvant (e.g., a CpG oligonucleotide (CpG ODN) or IFNa.
- the modified immune cells further comprises
- an adjuvant such as a CpG ODN.
- beneficial or desired clinical results covers any administration or application of a therapeutic for disease in a mammal, including a human.
- beneficial or desired clinical results include, but are not limited to, any one or more of: alleviation of one or more symptoms, diminishment of extent of disease, preventing or delaying spread (e.g., metastasis, for example metastasis to the lung or to the lymph node) of disease, preventing or delaying recurrence of disease, delay or slowing of disease progression, amelioration of the disease state, inhibiting the disease or progression of the disease, inhibiting or slowing the disease or its progression, arresting its development, and remission (whether partial or total). Also
- treatment is a reduction of pathological consequence of a proliferative disease.
- the methods of the invention contemplate any one or more of these aspects of treatment.
- the term“treating” includes any or all of: inhibiting growth of cancer cells, inhibiting replication of cancer cells, lessening of overall tumor burden and ameliorating one or more symptoms associated with the disease.
- pore refers to an opening, including without limitation, a hole, tear, cavity, aperture, break, gap, or perforation within a material.
- the term refers to a pore within a surface of the present disclosure.
- a pore can refer to a pore in a cell membrane.
- membrane refers to a selective barrier or sheet containing pores.
- the term includes a pliable sheetlike structure that acts as a boundary or lining.
- the term refers to a surface or filter containing pores. This term is distinct from the term“cell membrane”.
- filter refers to a porous article that allows selective passage through the pores. In some examples the term refers to a surface or membrane containing pores.
- heterogeneous refers to something which is mixed or not uniform in structure or composition. In some examples the term refers to pores having varied sizes, shapes or distributions within a given surface.
- homogeneous refers to something which is consistent or uniform in structure or composition throughout. In some examples, the term refers to pores having consistent sizes, shapes, or distribution within a given surface.
- homologous refers to a molecule which is derived from the same organism. In some examples, the term refers to a nucleic acid or protein which is normally found or expressed within the given organism.
- heterologous as it relates to nucleic acid sequences such as coding sequences and control sequences, denotes sequences that are not normally joined together, and/or are not normally associated with a particular cell.
- a“heterologous” region of a nucleic acid construct or a vector is a segment of nucleic acid within or attached to another nucleic acid molecule that is not found in association with the other molecule in nature.
- a heterologous region of a nucleic acid construct could include a coding sequence flanked by sequences not found in association with the coding sequence in nature.
- Another example of a heterologous coding sequence is a construct where the coding sequence itself is not found in nature (e.g., synthetic sequences having codons different from the native gene).
- a cell transformed with a construct which is not normally present in the cell would be considered heterologous for purposes of this invention.
- Allelic variation or naturally occurring mutational events do not give rise to heterologous DNA, as used herein.
- heterologous as it relates to amino acid sequences such as peptide sequences and polypeptide sequences, denotes sequences that are not normally joined together, and/or are not normally associated with a particular cell.
- a“heterologous” region of a peptide sequence is a segment of amino acids within or attached to another amino acid molecule that is not found in association with the other molecule in nature.
- a heterologous region of a peptide construct could include the amino acid sequence of the peptide flanked by sequences not found in association with the amino acid sequence of the peptide in nature.
- heterologous peptide sequence is a construct where the peptide sequence itself is not found in nature (e.g., synthetic sequences having amino acids different as coded from the native gene).
- a cell transformed with a vector that expresses an amino acid construct which is not normally present in the cell would be considered heterologous for purposes of this invention.
- Allelic variation or naturally occurring mutational events do not give rise to heterologous peptides, as used herein.
- the term“inhibit” may refer to the act of blocking, reducing, eliminating, or otherwise antagonizing the presence, or an activity of, a particular target.
- Inhibition may refer to partial inhibition or complete inhibition.
- inhibiting an immune response may refer to any act leading to a blockade, reduction, elimination, or any other antagonism of an immune response.
- inhibition of the expression of a nucleic acid may include, but not limited to reduction in the transcription of a nucleic acid, reduction of mRNA abundance (e.g., silencing mRNA transcription), degradation of mRNA, inhibition of mRNA translation, and so forth.
- the term“suppress” may refer to the act of decreasing, reducing, prohibiting, limiting, lessening, or otherwise diminishing the presence, or an activity of, a particular target. Suppression may refer to partial suppression or complete suppression. For example, suppressing an immune response may refer to any act leading to decreasing, reducing, prohibiting, limiting, lessening, or otherwise diminishing an immune response. In other examples, suppression of the expression of a nucleic acid may include, but not limited to reduction in the transcription of a nucleic acid, reduction of mRNA abundance (e.g, silencing mRNA transcription), degradation of mRNA, inhibition of mRNA translation, and so forth.
- the term“enhance” may refer to the act of improving, boosting, heightening, or otherwise increasing the presence, or an activity of, a particular target.
- enhancing an immune response may refer to any act leading to improving, boosting, heightening, or otherwise increasing an immune response.
- enhancing an immune response may refer to employing an antigen and/or adjuvant to improve, boost, heighten, or otherwise increase an immune response.
- enhancing the expression of a nucleic acid may include, but not limited to increase in the transcription of a nucleic acid, increase in mRNA abundance (e.g, increasing mRNA transcription), decrease in degradation of mRNA, increase in mRNA translation, and so forth.
- modulate may refer to the act of changing, altering, varying, or otherwise modifying the presence, or an activity of, a particular target.
- modulating an immune response may refer to any act leading to changing, altering, varying, or otherwise modifying an immune response.
- “modulate” refers to enchancing the presence or activity of a particular target.
- “modulate” refers to suppressing the presence or activity of a particular target.
- modulating the expression of a nucleic acid may include, but not limited to a change in the transcription of a nucleic acid, a change in mRNA abundance (e.g, increasing mRNA transcription), a
- the term“induce” may refer to the act of initiating, prompting, stimulating, establishing, or otherwise producing a result.
- inducing an immune response may refer to any act leading to initiating, prompting, stimulating, establishing, or otherwise producing a desired immune response.
- inducing the expression of a nucleic acid may include, but not limited to initiation of the transcription of a nucleic acid, initiation of mRNA translation, and so forth.
- a“peripheral blood mononuclear cells” or“PBMCs” refers to a heterogeneous population of blood cells having a round nucleus. Examples of cells that may be found in a population of PBMCs include lymphocytes such as T cells, B cells, NK cells
- a plurality of PBMCs refers to a preparation of PBMCs comprising cells of at least two types of blood cells.
- a plurality of PBMCs comprises two or more of T cells, B cells, NK cells, macrophages or dendritic cells.
- a plurality of PBMCs comprises three or more of T cells, B cells, NK cells, macrophages or dendritic cells.
- a plurality of PBMCs comprises four or more of T cells,
- a plurality of PBMCs comprises T cells, B cells, NK cells, macrophages and dendritic cells.
- PBMCs can be isolated by means known in the art.
- PBMCs can be derived from peripheral blood of an individual based on density of PBMCs compared to other blood cells.
- PBMCs are derived from peripheral blood of an individual using Ficoll (e.g., a ficoll gradient).
- PBMCs are derived from peripheral blood of an individual using ELUTRA® cell separation system.
- a population of PBMCs is isolated from an individual.
- a plurality of PBMCs is an autologous population of PBMCs where the population is derived from a particular individual, manipulated by any of the methods described herein, and returned to the particular individual.
- a plurality of PBMCs is an allogeneic population of PBMCs where the population is derived from one individual, manipulated by any of the methods described herein, and administered to a second individual.
- a plurality of PBMCs is a reconstituted preparation of PBMCs.
- the plurality of PBMCs may be generated by mixing cells typically found in a population of PBMCs; for example, by mixing populations of two or more of T cells, B cells, NK cells, or monocytes.
- polynucleotide or “nucleic acid” as used herein refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides.
- this term includes, but is not limited to, single-, double- or multi -stranded DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids, or a polymer comprising purine and pyrimidine bases, or other natural, chemically or biochemically modified, non-natural, or derivatized nucleotide bases.
- the backbone of the polynucleotide can comprise sugars and phosphate groups (as may typically be found in RNA or DNA), or modified or substituted sugar or phosphate groups.
- the backbone of the polynucleotide can comprise a polymer of synthetic subunits such as phosphoramidates and phosphorothioates, and thus can be an oligodeoxynucleoside
- a double-stranded polynucleotide can be obtained from the single stranded polynucleotide product of chemical synthesis either by synthesizing the complementary strand and annealing the strands under appropriate conditions, or by synthesizing the complementary strand de novo using a DNA polymerase with an appropriate primer.
- polypeptide and protein are used interchangeably to refer to a polymer of amino acid residues, and are not limited to a minimum length. Such polymers of amino acid residues may contain natural or non-natural amino acid residues, and include, but are not limited to, peptides, oligopeptides, dimers, trimers, and multimers of amino acid residues. Both full- length proteins and fragments thereof are encompassed by the definition.
- the terms also include post-expression modifications of the polypeptide, for example, glycosylation, sialylation, acetylation, phosphorylation, and the like.
- a "polypeptide” refers to a protein which includes modifications, such as deletions, additions, and substitutions (generally conservative in nature), to the native sequence, as long as the protein maintains the desired activity. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the proteins or errors due to PCR amplification.
- the term“adjuvant” refers to a substance which modulates and/or engenders an immune response. Generally, the adjuvant is administered in conjunction with an antigen to effect enhancement of an immune response to the antigen as compared to antigen alone. Various adjuvants are described herein.
- CpG oligodeoxynucleotide and “CpG ODN” herein refer to DNA molecules of 10 to 30 nucleotides in length containing a dinucleotide of cytosine and guanine separated by a phosphate (also referred to herein as a“CpG” dinucleotide, or“CpG”).
- the CpG ODNs of the present disclosure contain at least one unmethylated CpG dinucleotide. That is, the cytosine in the CpG dinucleotide is not methylated (i.e., is not 5-methylcytosine).
- CpG ODNs may have a partial or complete phosphorothioate (PS) backbone.
- PS phosphorothioate
- pharmaceutically acceptable or“pharmacologically compatible” is meant a material that is not biologically or otherwise undesirable, e.g ., the material may be incorporated into a pharmaceutical composition administered to a patient without causing any significant undesirable biological effects or interacting in a deleterious manner with any of the other components of the composition in which it is contained.
- Pharmaceutically acceptable carriers or excipients have preferably met the required standards of toxicological and
- Microfluidic channels to provide cell-deforming constrictions
- the present invention provides methods for treating and preventing an HPV- associated disease, and/or modulating the immune response in an individual with an HPV- associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant; wherein the modified immune cells are prepared by first passing a cell suspension comprising an input cell through a cell- deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the antigen and the adjuvant to pass through to form a perturbed input cell; and then incubating the perturbed input cell with the HPV antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- the constriction is contained within a microfluidic channel.
- multiple constrictions can be placed in parallel and/or in series within the microfluidic channel.
- a deforming force is applied to the input cell as it passes through the constriction.
- Exemplary microfluidic channels containing cell-deforming constrictions for use in the methods disclosed herein are described in WO2013059343.
- the microfluidic channel includes a lumen and is configured such that an immune cell suspended in a buffer can pass through, wherein the microfluidic channel includes a constriction.
- the microfluidic channel can be made of any one of a number of materials, including silicon, metal (e.g., stainless steel), plastic (e.g., polystyrene), ceramics, glass, crystalline substrates, amorphous substrates, or polymers (e.g., Poly-methyl methacrylate (PMMA), PDMS, Cyclic Olefin Copolymer (COC), etc.). Fabrication of the microfluidic channel can be performed by any method known in the art, including dry etching, wet etching, photolithography, injection molding, laser ablation, or SET-8 masks.
- the constriction within the microfluidic channel includes an entrance portion, a centerpoint, and an exit portion.
- the length, depth, and width of the constriction within the microfluidic channel can vary.
- the diameter of the constriction within the microfluidic channel is a function of the diameter of the immune cell.
- the diameter of the constriction within the microfluidic channel is about 20%, to about 99% of the diameter of the immune cell.
- the constriction size is about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or about 99% of the immune cell diameter.
- the constriction size is about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or about 99% of the minimum cross-sectional distance of the immune cell.
- the channel comprises a constriction width of between about 2 pm and about 10 pm or any width or range of widths therebetween.
- the constriction width can be any one of about 2pm, about 3pm, about 4pm, about 5pm, about 6pm, or about 7pm.
- the channel comprises a constriction length of about 10 pm and a constriction width of about 4 pm.
- the cross-section of the channel, the entrance portion, the centerpoint, and the exit portion can also vary.
- the cross-sections can be circular, elliptical, an elongated slit, square, hexagonal, or triangular in shape.
- the entrance portion defines a constriction angle, wherein the constriction angle is optimized to reduce clogging of the channel and optimized for enhanced delivery of a compound into the immune cell.
- the angle of the exit portion can vary as well.
- the angle of the exit portion is configured to reduce the likelihood of turbulence that can result in non-laminar flow.
- the walls of the entrance portion and/or the exit portion are linear. In other embodiments, the walls of the entrance portion and/or the exit portion are curved.
- the flow rate through the channel can also be adjusted. In some embodiments, the flow rate through the channel is between about 0.001 mL/cm 2 /sec to about 100 L/cm 2 /sec or any rate or range of rates therebetween.
- the diameter of the constriction is a function of a diameter of the PBMCs, such as the mean diameter of a plurality of PBMCs, or a mean diameter of a subpopulation within plurality of the PBMCs.
- the diameter of a cell is measured by the minimum cross-sectional distance of the cell (e.g. a cell within the plurality of PBMCs).
- the diameter of the constriction is about 10% to about 99% of the mean diameter of the plurality of input PBMCs. In some embodiments, the diameter of the constriction is any one of about 10% to about 90%, about 10% to about 80%, about 10% to about 70%, about 20% to about 60%, about 40% to about 60%, or about 30% to about 45% of the mean diameter of the plurality of input PBMCs.
- the diameter of the constriction is any one of about 10% to about 20%, about 20% to about 30%, about 30% to about 40%, about 40% to about 50%, about 50% to about 60%, about 60% to about 70%, about 70% to about 80%, about 80% to about 90%, or about 90% to about 99% of the mean diameter of the plurality of input PBMCs. In some embodiments, the diameter of the constriction is any one of about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the mean diameter of the plurality of input PBMCs.
- the diameter of the constriction is about 10% to about 99% of the mean diameter of a subpopulation of cells having the smallest diameter within the plurality of input PBMCs.
- the diameter of the constriction is any one of about 10% to about 90%, about 10% to about 80%, about 10% to about 70%, about 20% to about 60%, about 40% to about 60%, about 30% to about 45%, about
- the diameter of the constriction is any one of about 10% to about 20%, about 20% to about 30%, about 30% to about 40%, about 40% to about 50%, about
- the diameter of the constriction is any one of about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%,
- the subpopulation of cells having the smallest mean diameter within the plurality of input PBMCs is a population of lymphocytes, wherein the diameter of the population of lymphocytes is about 6 pm to about 10 pm. In some embodiments, the mean diameter of the population of lymphocytes is about 7 pm. In some embodiments, the population of lymphocytes is a population of T cells.
- the lymphocytes are T cells.
- the subpopulation of cells having the smallest mean diameter within the plurality of input PBMCs are T cells.
- the diameter of the constriction is about 10% to about 99% of the mean diameter of a subpopulation of cells having the largest diameter within the plurality of input PBMCs.
- the diameter of the constriction is any one of about 10% to about 90%, about 10% to about 80%, about 10% to about 70%, about 20% to about 60%, about 40% to about 60%, about 30% to about 45%, about 15% to about 30%, about 15% to about 20%, about 20% to about 25%, about 25% to about 30%, about 20% to about 30% , about 30% to about 70%, or about 30% to about 60% of the mean diameter of a subpopulation of cells having the largest diameter within the plurality of input PBMCs.
- the diameter of the constriction is any one of about 5% to about 10%, about 10% to about 20%, about 20% to about 30%, about 30% to about 40%, about 40% to about 50%, about 50% to about 60%, about 60% to about 70%, about 70% to about 80%, about 80% to about 90%, or about 90% to about 99% of the mean diameter of a subpopulation of cells having the largest diameter within the plurality of input PBMCs.
- the diameter of the constriction is any one of about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% of the mean diameter of a subpopulation of cells having the largest diameter within the plurality of input PBMCs.
- the subpopulation of cells having the largest mean diameter within the plurality of input PBMCs is a population of monocytes, wherein the diameter of the population of monocytes is about 15 pm to about 25 pm.
- the mean diameter of the population of monocytes is about 20 pm.
- the subpopulation of cells having the largest mean diameter within the plurality of input PBMCs are monocytes.
- the diameter of the constriction is about 3 pm to about 15 pm. In some embodiments, the diameter of the constriction is about 3 pm to about 10 pm. In some embodiments, the diameter of the constriction is about 4 pm to about 10 pm. In some embodiments, the diameter of the constriction is about 4.2 pm to about 6 pm. In some embodiments, the diameter of the constriction is about 4.2 pm to about 4.8 pm.
- the diameter of the constriction is any one of about 2 pm to about 14 pm, about 4 pm to about 12 pm, , about 6 pm to about 9 pm, , about 4 pm to about 6 pm, , about 4 pm to about 5 pm, , about 3.5 pm to about 7 pm, , about 3.5 pm to about 6.3 pm, , about 3.5 pm to about 5.6 pm, , about 3.5 pm to about 4.9 pm, , about 4.2 pm to about 6.3 pm, , about 4.2 pm to about 5.6 pm, or about 4.2 pm to about 4.9 pm.
- the diameter of the constriction is any one of about 2 pm, 2.5 pm, 3 pm, 3.5 pm, 4 pm, 4.5 pm, 5 pm, 5.5 pm, 6 pm, 6.5 pm, 7 pm, 7.5 pm, 8 pm, 8.5 pm, 9 pm, 9.5 pm, 10 pm, 10.5 pm, 11 pm, 11.5 pm, 12 pm, 12.5 pm, 13 pm, 13.5 pm, 14 pm, 14.5 pm or 15 pm.
- the diameter of the constriction is any one of about 4.0 mih, 4.1 mih, 4.2 mhi, 4.3 mhi, 4.4 mih, 4.5 mhi, 4.6 mih, 4.7 mhi, 4.8 mhi, 4.9 mih, or 5.0 mhi In some embodiments, the diameter of the constriction is about 4.5 mih.
- the input immune cell is passed through the constriction at a flow rate between about 0.001 mL/min to about 200 mL/min or any rate or range of rates therebetween.
- the flow rate is between about 0.001 mL/min to about 175 mL/min, about 0.001 mL/min to about 150 mL/min, about 0.001 mL/min to about 125 mL/min, about 0.001 mL/min to about 100 mL/min, about 0.001 mL/min to about 50 mL/min, about 0.001 mL/min to about 25 mL/min, about 0.001 mL/min to about 10 mL/min, about 0.001 mL/min to about 7.5 mL/min, about 0.001 mL/min to about 5.0 mL/min, about 0.001 mL/min to about 2.5 mL/min, about 0.001 mL/min to about 1 mL/min, about 0.001 mL/min to about 0.1 mL/min or about 0.001 mL/min to about 0.01 mL/min.
- the flow rate is between about 0.001 mL/min to about 200 mL/min, about 0.01 mL/min to about 200 mL/min, about O.lmL/min to about 200 mL/min, about 1 mL/min to about 200 mL/min, about 10 mL/min to about 200 mL/min, about 50 mL/min to about 200 mL/min, about 75 mL/min to about 200 mL/min, about 100 mL/min to about 200 mL/min, about 150 mL/min to about 200 mL/min, about 0.5 mL/min to about 200 mL/min, about 1 mL/min to about 200 mL/min, about 2.5 mL/min to about 200 mL/min, about 5 mL/min to about 200 mL/min, about 7.5 mL/min to about 200 mL/min, about 10 mL/min to about 200 mL/min
- the input immune cell is passed through the constriction at a flow rate of about 100 mL/min.
- the constriction can have any shape known in the art; e.g. a 3-dimensional shape or a 2- dimensional shape.
- the 2-dimensional shape, such as the cross-sectional shape, of the constriction can be, without limitation, circular, elliptical, round, square, star-shaped, triangular, polygonal, pentagonal, hexagonal, heptagonal, or octagonal.
- the 3 -dimensional shape of the constriction can be, without limitation, cylindrical, conical, or cuboidal.
- the cross-sectional shape of the constriction is a rectangle.
- the cross- sectional shape of the constriction is a slit. In some embodiments, the cross-sectional shape of the constriction is a slit comprising a width of about 4 pm to about 10 pm and/or a depth of about 1 mih to about 200 mih. In some embodiments, the cross-sectional shape of the constriction is a slit comprising a width of about 3 pm to about 6 pm and/or a depth of about 20 pm to about 120 pm. In some embodiments, the cross-sectional shape of the constriction is a slit comprising a width of about 4.2 pm to about 6 pm and/or a depth of about 20 pm to about 120 pm.
- the cross-sectional shape of the constriction is a slit comprising a width of about 4.2 pm to about 6 pm and/or a depth of about 40 pm to about 120 pm. In some embodiments, the cross-sectional shape of the constriction is a slit comprising a width of about 4.2 pm to about 6 pm and/or a depth of about 20 pm to about 80 pm. In some embodiments, the cross-sectional shape of the constriction is a slit comprising a width of about 4.5 pm and/or a depth of about 80 pm. In some embodiments, the slit comprises a length of about 5 pm to about 50 pm. In some embodiments, the slit comprises a length of about 10 pm to about 30 pm. In some
- the slit comprises a length of about 2 pm to about 50 pm. In some embodiments, the slit comprises a length of any one of about 2 pm to about 5 pm, about 5 pm to about 10 pm, about 10 pm to about 15 pm, about 15 pm to about 20 pm, about 20 pm to about 25 pm, about 25 pm to about 30 pm, about 30 pm to about 35 pm, about 35 pm to about 40 pm, about 40 pm to about 45 pm, or about 45pm to about 50 pm. In some embodiments, the slit comprises a length of about 10 pm.
- the present invention provides methods for treating and preventing an HPV-associated disease, and/or enhancing the immune response in an individual with an HPV- associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and an adjuvant; wherein the modified immune cells are prepared by first passing a cell suspension comprising an input cell through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspensionthereby causing perturbations of the input cell large enough for the antigen and the adjuvant to pass through to form a perturbed input cell; and then incubating the perturbed input cell with the HPV antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- a deforming force is applied to the input cell as it passes through the constriction.
- the constriction is a pore or contained within a pore.
- the pore is contained in a surface. Exemplary surfaces having pores for use in the methods disclosed herein are described in W02017041050.
- the surfaces as disclosed herein can be made of any one of a number of materials and take any one of a number of forms.
- the surface is a filter.
- the surface is a membrane.
- the filter is a tangential flow filter.
- the surface is a sponge or sponge-like matrix.
- the surface is a matrix
- the surface is a tortuous path surface.
- the tortuous path surface comprises cellulose acetate.
- the surface comprises a material selected from, without limitation, synthetic or natural polymers, polycarbonate, silicon, glass, metal, alloy, cellulose nitrate, silver, cellulose acetate, nylon, polyester, polyethersulfone, polyacrylonitrile (PAN), polypropylene, PVDF, polytetrafluorethylene, mixed cellulose ester, porcelain, and ceramic.
- the surface disclosed herein can have any shape known in the art; e.g. a 3 -dimensional shape.
- the 2-dimensional shape of the surface can be, without limitation, circular, elliptical, round, square, star-shaped, triangular, polygonal, pentagonal, hexagonal, heptagonal, or octagonal.
- the surface is round in shape.
- the surface 3-dimensional shape is cylindrical, conical, or cuboidal.
- the surface can have various cross-sectional widths and thicknesses.
- the surface cross-sectional width is between about lmm and about lm or any cross-sectional width or range of cross-sectional widths therebetween.
- the surface has a defined thickness.
- the surface thickness is uniform.
- the surface thickness is variable. For example, in some embodiments, portions of the surface are thicker or thinner than other portions of the surface. In some embodiments, the surface thickness varies by about 1% to about 90% or any percentage or range of percentages therebetween. In some embodiments, the surface is between about 0.01 pm to about 5mm thick or any thickness or range of thicknesses therebetween.
- the constriction is a pore or contained within a pore.
- the cross- sectional width of the pores is related to the type of immune cell to be treated.
- the pore size is a function of the diameter of the immune cell or cluster of immune cells to be treated.
- the pore size is such that an immune cell is perturbed upon passing through the pore.
- the pore size is less than the diameter of the immune cell.
- the pore size is about 10% to about 99% of the diameter of the immune cell.
- the pore size is about 10%, about 15%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or about 99% of the immune cell diameter.
- Optimal pore size or pore cross-sectional width can vary based upon the application and/or immune cell type.
- the pore size is about 2 pm to about 14 pm.
- the pore size is about 2 pm, about 3 pm, about 4 pm, about 5 pm, about 8pm, about 10 pm, about 12 pm, or about 14 pm.
- the cross-sectional width is about 2 pm to about 14 pm.
- the pore cross-sectional is about 2 pm, about 3 pm, about 4 pm, about 5 pm, about 8 pm, about 10 pm, about 12 pm, or about 14 pm.
- the entrances and exits of the pore passage may have a variety of angles.
- the pore angle can be selected to minimize clogging of the pore while immune cells are passing through.
- the angle of the entrance or exit portion can be between about 0 and about 90 degrees. In some embodiments, the entrance or exit portion can be greater than 90 degrees.
- the pores have identical entrance and exit angles. In some embodiments, the pores have different entrance and exit angles.
- the pore edge is smooth, e.g. rounded or curved. A smooth pore edge has a continuous, flat, and even surface without bumps, ridges, or uneven parts. In some embodiments, the pore edge is sharp.
- a sharp pore edge has a thin edge that is pointed or at an acute angle.
- the pore passage is straight.
- a straight pore passage does not contain curves, bends, angles, or other irregularities.
- the pore passage is curved.
- a curved pore passage is bent or deviates from a straight line.
- the pore passage has multiple curves, e.g. about 2, 3, 4, 5, 6, 7, 8, 9, 10 or more curves.
- the flow rate through the pore can also be adjusted. In some embodiments, the flow rate through the pore is between about 0.001 mL/cm 2 /sec to about 100 L/cm 2 /sec or any rate or range of rates therebetween.
- the pores can have any shape known in the art, including a 2-dimensional or 3- dimensional shape.
- the pore shape e.g., the cross-sectional shape
- the pore shape can be, without limitation, circular, elliptical, round, square, star-shaped, triangular, polygonal, pentagonal, hexagonal, heptagonal, and octagonal.
- the cross-section of the pore is round in shape.
- the 3-dimensional shape of the pore is cylindrical or conical.
- the pore has a fluted entrance and exit shape.
- the pore shape is homogenous (i.e. consistent or regular) among pores within a given surface.
- the pore shape is heterogeneous (i.e. mixed or varied) among pores within a given surface.
- the surfaces described herein can have a range of total pore numbers.
- the pores encompass about 10% to about 80% of the total surface area.
- the surface contains about l.OxlO 5 to about l.OxlO 30 total pores or any number or range of numbers therebetween.
- the surface comprises between about 10 and about l.OxlO 15 pores/mm 2 surface area.
- the pores can be distributed in numerous ways within a given surface.
- the pores are distributed in parallel within a given surface.
- the pores are distributed side-by-side in the same direction and are the same distance apart within a given surface.
- the pore distribution is ordered or homogeneous.
- the pores are distributed in a regular, systematic pattern or are the same distance apart within a given surface.
- the pore distribution is random or heterogeneous.
- the pores are distributed in an irregular, disordered pattern or are different distances apart within a given surface.
- multiple surfaces are distributed in series. The multiple surfaces can be homogeneous or heterogeneous in surface size, shape, and/or roughness. The multiple surfaces can further contain pores with
- an individual pore has a uniform width dimension (i.e. constant width along the length of the pore passage). In some embodiments, an individual pore has a variable width (i.e. increasing or decreasing width along the length of the pore passage). In some embodiments, pores within a given surface have the same individual pore depths. In some embodiments, pores within a given surface have different individual pore depths. In some embodiments, the pores are immediately adjacent to each other. In some embodiments, the pores are separated from each other by a distance. In some embodiments, the pores are separated from each other by a distance of about 0.001 pm to about 30 mm or any distance or range of distances therebetween.
- the surface is coated with a material.
- the material can be selected from any material known in the art, including, without limitation, Teflon, an adhesive coating, surfactants, proteins, adhesion molecules, antibodies, anticoagulants, factors that modulate cellular function, nucleic acids, lipids, carbohydrates, or transmembrane proteins.
- the surface is coated with polyvinylpyrrolidone (PVP).
- PVP polyvinylpyrrolidone
- the material is covalently attached to the surface.
- the material is non-covalently attached or adsorbed to the surface.
- the surface molecules are released as the immune cells pass through the pores.
- the surface has modified chemical properties.
- the surface is polar.
- the surface is hydrophilic.
- the surface is non-polar.
- the surface is hydrophobic.
- the surface is charged.
- the surface is positively and/or negatively charged.
- the surface can be positively charged in some regions and negatively charged in other regions.
- the surface has an overall positive or overall negative charge.
- the surface can be any one of smooth, electropolished, rough, or plasma treated.
- the surface comprises a zwitterion or dipolar compound.
- the surface is plasma treated.
- the surface is contained within a larger module.
- the surface is contained within a syringe, such as a plastic or glass syringe.
- the surface is contained within a plastic filter holder.
- the surface is contained within a pipette tip.
- the invention provides methods for modulating an immune response by passing a cell suspension comprising an immune cell through a constriction, thereby causing a perturbation of the immune cell such that an antigen and/or adjuvant enters the immune cell, wherein the perturbation in the immune cell is a breach in the immune cell that allows material from outside the immune cell to move into the immune cell (e.g., a hole, tear, cavity, aperture, pore, break, gap, perforation).
- a deforming force is applied to the input cell as it passes through the constriction. The deformation can be caused by, for example, mechanical strain and/or shear forces.
- the perturbation is a perturbation within the immune cell membrane.
- the perturbation is transient. In some embodiments, the immune cell perturbation lasts from about l.OxlO 9 seconds to about 2 hours, or any time or range of times therebetween. In some embodiments, the immune cell perturbation lasts for about 1.0x1 O 9 second to about 1 second, about 1 second to about 1 minute, or about 1 minute to about 1 hour.
- the immune cell perturbation lasts for between any one of about l.OxlO 9 to about l.OxlO 1 , about l.OxlO 9 to about l.OxlO 2 , about l.OxlO 9 to about l.OxlO 3 , about l.OxlO 9 to about l.OxlO 4 , about l.OxlO 9 to about l.OxlO 5 , about l.OxlO 9 to about l.OxlO 6 , about l.OxlO 9 to about l.OxlO 7 , or about l.OxlO 9 to about l.OxlO 8 seconds.
- the immune cell perturbation lasts for any one of about l.OxlO 8 to about l.OxlO 1 , about l.OxlO 7 to about l.OxlO 1 , about l.OxlO 6 to about l.OxlO 1 , about l.OxlO 5 to about l.OxlO 1 , about l.OxlO 4 to about l.OxlO 1 , about l.OxlO 3 to about l.OxlO 1 , or about l.OxlO 2 to about l.OxlO 1 seconds.
- the immune cell perturbations e.g., pores or holes
- the immune cell perturbations are not formed as a result of assembly of protein subunits to form a multimeric pore structure such as that created by complement or bacterial hemolysins.
- the constriction temporarily imparts injury to the immune cell membrane that allows for passive diffusion of material through the perturbation.
- the immune cell is only deformed for a brief period of time, on the order of 100 ps to minimize the chance of activating apoptotic pathways through cell signaling mechanisms, although other durations are possible (e.g., ranging from nanoseconds to hours).
- the immune cell is deformed for about 1.0 xlO 9 seconds to about 2 hours, or any time or range of times therebetween.
- the immune cell is deformed for about l.OxlO 9 second to about 1 second, about 1 second to about 1 minute, or about 1 minute to about 1 hour.
- the immune cell is deformed for between any one of about l.OxlO 9 to about l.OxlO 1 , about l.OxlO 9 to about l.OxlO 2 , about l.OxlO 9 to about l.OxlO 3 , about l.OxlO 9 to about l.OxlO 4 , about l.OxlO 9 to about l.OxlO 5 , about l.OxlO 9 to about l.OxlO 6 , about l.OxlO 9 to about l.OxlO 7 , or about l.OxlO 9 to about l.OxlO 8 seconds.
- the immune cell is deformed for any one of about l.OxlO 8 to about l.OxlO 1 , about l.OxlO 7 to about l.OxlO 1 , about l.OxlO 6 to about l.OxlO 1 , about l.OxlO 5 to about l.OxlO 1 , about l.OxlO 4 to about l.OxlO 1 , about l.OxlO 3 to about l.OxlO 1 , or about l.OxlO 2 to about l.OxlO 1 seconds.
- deforming the immune cell includes deforming the immune cell for a time ranging from, without limitation, about 1 ps to at least about 750 ps, e.g., at least about 1 ps, 10 ps, 50 ps, 100 ps, 500 ps, or 750 ps.
- the passage of the antigen and/or adjuvant into the immune cell occurs simultaneously with the immune cell passing through the constriction and/or the perturbation of the immune cell.
- passage of the compound into the immune cell occurs after the immune cell passes through the constriction.
- passage of the compound into the immune cell occurs on the order of minutes after the immune cell passes through the constriction.
- the passage of the compound into the immune cell occurs from about l.OxlO 2 seconds to at least about 30 minutes after the immune cell passes through the constriction.
- the passage of the compound into the immune cell occurs from about l.OxlO 2 seconds to about 1 second, about 1 second to about 1 minute, or about 1 minute to about 30 minutes after the immune cell passes through the constriction.
- the passage of the compound into the immune cell occurs about l.OxlO 2 seconds to about 10 minutes, about l.OxlO 2 seconds to about 5 minutes, about l.OxlO 2 seconds to about 1 minute, about l.OxlO 2 seconds to about 50 seconds, about l.OxlO 2 seconds to about 30 seconds, about l.OxlO 2 seconds to about 10 seconds, about l.OxlO 2 seconds to about 1 second, or about l.OxlO 2 seconds to about 0.1 second after the immune cell passes through the constriction.
- the passage of the compound into the immune cell occurs about l.OxlO 1 seconds to about 10 minutes, about 1 second to about 10 minutes, about 10 seconds to about 10 minutes, about 50 seconds to about 10 minutes, about 1 minute to about 10 minutes, or about 5 minutes to about 10 minutes after the immune cell passes through the constriction.
- a perturbation in the immune cell after it passes through the constriction is corrected within the order of about five minutes after the immune cell passes through the constriction.
- the cell viability after passing through a constriction is about
- constriction is at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%,
- the cell viability is measured from about l.OxlO 2 seconds to at least about 10 days after the immune cell passes through the constriction.
- the cell viability is measured from about l.OxlO 2 seconds to about 1 second, about 1 second to about
- the cell viability is measured about l.OxlO 2 seconds to about 2 hours, about l.OxlO 2 seconds to about 1 hour, about l.OxlO 2 seconds to about 30 minutes, about l.OxlO 2 seconds to about 1 minute, about l.OxlO 2 seconds to about 30 seconds, about l.OxlO 2 seconds to about 1 second, or about l.OxlO 2 seconds to about 0.1 second after the immune cell passes through the constriction.
- the cell viability is measured about 1.5 hours to about 2 hours, about 1 hour to about 2 hours, about 30 minutes to about 2 hours, about 15 minutes to about 2 hours, about 1 minute to about 2 hours, about 30 seconds to about 2 hours, or about 1 second to about 2 hours after the immune cell passes through the constriction. In some embodiments, the cell viability is measured about 2 hours to about 5 hours, about 5 hours to about 12 hours, about 12 hours to about 24 hours, or about 24 hours to about 10 days after the immune cell passes through the constriction.
- a number of parameters may influence the delivery of a compound to an immune cell for modulating an immune response by the methods described herein.
- the cell suspension is contacted with the compound before, concurrently, or after passing through the constriction.
- the immune cell may pass through the constriction suspended in a solution that includes the compound to deliver, although the compound can be added to the cell suspension after the immune cells pass through the constriction.
- the compound to be delivered is coated on the constriction.
- parameters that may influence the delivery of the compound into the immune cell include, but are not limited to, the dimensions of the constriction, the entrance angle of the constriction, the surface properties of the constrictions (e.g., roughness, chemical modification, hydrophilic, hydrophobic, etc.), the operating flow speeds (e.g., cell transit time through the constriction), the immune cell concentration, the concentration of the compound in the cell suspension, and the amount of time that the immune cell recovers or incubates after passing through the constrictions can affect the passage of the delivered compound into the immune cell.
- Additional parameters influencing the delivery of the compound into the immune cell can include the velocity of the immune cell in the constriction, the shear rate in the constriction, the viscosity of the cell suspension, the velocity component that is perpendicular to flow velocity, and time in the constriction. Such parameters can be designed to control delivery of the compound.
- the immune cell concentration ranges from about 10 to at least about 10 12 cells/mL or any concentration or range of concentrations therebetween.
- delivery compound concentrations can range from about 10 ng/mL to about 1 g/mL or any concentration or range of concentrations therebetween.
- delivery compound concentrations can range from about 1 pM to at least about 2 M or any concentration or range of concentrations therebetween.
- the temperature used in the methods of the present disclosure can be adjusted to affect compound delivery and cell viability.
- the method is performed between about -5°C and about 45°C.
- the methods can be carried out at room temperature (e.g., about 20°C), physiological temperature (e.g., about 37°C), higher than physiological temperature (e.g., greater than about 37°C to 45°C or more), or reduced temperature (e.g., about
- pressure can be applied by a pump on the entrance side (e.g. compressor), a vacuum can be applied by a vacuum pump on the exit side, capillary action can be applied through a tube, and/or the system can be gravity fed.
- Displacement based flow systems can also be used (e.g., syringe pump, peristaltic pump, manual syringe or pipette, pistons, etc.).
- the immune cells are passed through the constrictions by positive pressure or negative pressure.
- the immune cells are passed through the constrictions by constant pressure or variable pressure.
- pressure is applied using a syringe.
- the pressure is applied using a gas cylinder.
- the pressure is applied using the gas cylinder positive pressure method. In some embodiments, pressure is applied using a pump. In some embodiments, the pump is a peristaltic pump or a diaphragm pump. In some embodiments, pressure is applied using a vacuum. In some embodiments, the immune cells are passed through the constrictions by g-force. In some embodiments, the immune cells are passed through the constrictions by centrifugal force. In some embodiments, the immune cells are passed through the constrictions by capillary pressure.
- fluid flow directs the immune cells through the constrictions.
- the fluid flow is turbulent flow prior to the immune cells passing through the constriction.
- Turbulent flow is a fluid flow in which the velocity at a given point varies erratically in magnitude and direction.
- the fluid flow through the constriction is laminar flow. Laminar flow involves uninterrupted flow in a fluid near a solid boundary in which the direction of flow at every point remains constant.
- the fluid flow is turbulent flow after the immune cells pass through the constriction.
- the velocity at which the immune cells pass through the constrictions can be varied.
- the immune cells pass through the constrictions at a uniform cell speed.
- the immune cells pass through the constrictions at a fluctuating cell speed.
- a combination treatment is used to modulate an immune response by passing a cell suspension comprising an immune cell through a constriction, wherein the constriction deforms the immune cell thereby causing a perturbation of the immune cell such that an antigen and/or adjuvant enters the immune cell, e.g., the methods described herein, followed by exposure to an electric field downstream of the constriction.
- the immune cell is passed through an electric field generated by at least one electrode after passing through the constriction.
- the electric field assists in delivery of compounds to a second location inside the immune cell such as the immune cell nucleus.
- the combination of a cell-deforming constriction and an electric field delivers a plasmid encoding an antibody into the immune cell (e.g., the cell nucleus), resulting in the de novo production of antibody.
- one or more electrodes are in proximity to the cell-deforming constriction to generate an electric field.
- the electric field is between about 0.1 kV/m to about 100 MV/m, or any number or range of numbers therebetween.
- an integrated circuit is used to provide an electrical signal to drive the electrodes.
- the immune cells are exposed to the electric field for a pulse width of between about 1 ns to about 1 s and a period of between about 100 ns to about 10 s or any time or range of times therebetween.
- the cell suspension may be a mixed or purified population of immune cells.
- the cell suspension is a mixed cell population, such as whole blood or PBMCs.
- the mixed cell population is a mixture of defined or purified populations.
- the cell suspension is a purified cell population, such as a purified population of immune cells.
- the composition of the cell suspension (e.g., osmolarity, salt concentration, serum content, cell concentration, pH, etc.) can impact delivery of the compound for modulating an immune response.
- the suspension comprises whole blood.
- the cell suspension is a mixture of cells in a physiological saline solution or physiological medium other than blood.
- the cell suspension comprises an aqueous solution.
- the aqueous solution comprises cell culture medium, (phosphate buffered saline) PBS, salts, metal ions, sugars, growth factors, animal derived products, bulking materials, surfactants, lubricants, lipids, vitamins, amino acids, proteins, cell cycle inhibitors, and/or an agent that impacts actin polymerization.
- the cell culture medium is X-VIVOTM 10, X-VIVOTM 15, DMEM, Opti-MEM®, IMDM, or RPMI.
- solution buffer can include one or more lubricants (pluronics or other surfactants) that can be designed, for example, to reduce or eliminate clogging of the constriction and improve cell viability.
- lubricants include, without limitation, poloxamer, polysorbates, sugars or sugar alcohols such as mannitol, sorbitol, animal derived serum, and albumin protein.
- the immune cells can be incubated in one or more solutions that aid in the delivery of the compound to the interior of the immune cell.
- the aqueous solution comprises an agent that impacts actin polymerization.
- the agent that impacts actin polymerization is
- the immune cells can be incubated in a depolymerization solution such as Lantrunculin A (0.1 pg/mL) for 1 hour prior to delivery to depolymerize the actin cytoskeleton.
- the immune cells can be incubated in 10mM Colchicine (Sigma) for 2 hours prior to delivery to depolymerize the microtubule network.
- the cell population is enriched prior to use in the disclosed methods.
- cells are obtained from a bodily fluid, e.g., peripheral blood, and optionally enriched or purified to concentrate immune cells.
- Cells may be enriched by any methods known in the art, including without limitation, magnetic cell separation, fluorescent activated cell sorting (FACS), or density gradient centrifugation.
- FACS fluorescent activated cell sorting
- the viscosity of the cell suspension can also impact the methods disclosed herein.
- the viscosity of the cell suspension ranges from about 8.9x10-4 Pa s to about 4.0xl0-3Pa.s or any value or range of values therebetween.
- the viscosity ranges between any one of about 8.9xl0 4 Pa s to about 4.0xl0 3 Pa s or any value or range of values therebetween.
- the viscosity ranges between any one of about 8.9xl0 4 Pa s to about 4.0 xlO 3 Pa s, about 8.9xl0 4 Pa s to about 3.0 xlO 3 Pa s, about
- the viscosity ranges between any one of about 0.89 cP to about 4.0 cP, about 0.89 cP to about 3.0 cP, about 0.89 cP to about 2.0 cP, or about 0.89 cP to about 1.0 cP.
- a shear thinning effect is observed, in which the viscosity of the cell suspension decreases under conditions of shear strain.
- Viscosity can be measured by any method known in the art, including without limitation, viscometers, such as a glass capillary viscometer, or rheometers.
- a viscometer measures viscosity under one flow condition, while a rheometer is used to measure viscosities which vary with flow conditions.
- the viscosity is measured for a shear thinning solution such as blood.
- the viscosity is measured between about -5°C and about 45°C.
- the viscosity is measured at room temperature (e.g., about 20°C), physiological temperature (e.g., about 37°C), higher than physiological temperature (e.g., greater than about 37°C to 45°C or more), reduced temperature (e.g., about -5°C to about 4°C), or temperatures between these exemplary temperatures.
- Certain aspects of the present disclosure relate to a method of treating a patient by introducing the immune cells modified according to the methods described herein to a patient.
- the immune cells are for use in immunotherapy.
- the disclosure relates to a method for treating a human papilloma virus (HPV)-related disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- HPV human papilloma virus
- the disclosure relates to a method for treating an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension thereby causing perturbations of the input cell large enough for the antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- a deforming force is applied to the input cell as it passes through the constriction.
- the disclosure relates to a method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- the disclosure relates to a method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- a deforming force is applied to the input cell as it passes through the constriction.
- the disclosure relates to a method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- the disclosure relates to a method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell comprising an HPV antigen through a microfluidic channel that includes a cell- deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the
- HPV antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- a deforming force is applied to the input cell as it passes through the constriction.
- the immune response is enhanced.
- the immune response to the HPV antigen is enhanced.
- Some aspects of the invention provide delivery of antigens to an individual with an
- HPV-associated disease to enhance an immune response to the antigen, by administering an immune cell comprising an intracellular antigen wherein the antigen is delivered to the cell by any of the methods described herein.
- the antigen is a single antigen.
- the antigen is a mixture of antigens.
- An antigen is a substance that stimulates a specific immune response, such as a cell or antibody-mediated immune response.
- Antigens bind to receptors expressed by immune cells, such as T cell receptors (TCRs), which are specific to a particular antigen.
- TCRs T cell receptors
- Antigen-receptor binding subsequently triggers intracellular signaling pathways that lead to downstream immune effector pathways, such as cell activation, cytokine production, cell migration, cytotoxic factor secretion, and antibody production.
- the modified immune cells are prepared by a) passing a cell suspension comprising an input cell comprising an HPV antigen through a constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- the diameter of the constriction is less than the diameter of the cell.
- the diameter of the constriction is smaller than the diameter of the immune cells. In some embodiments, the diameter of the constriction is about 20% to about 99% of the diameter of the cell. In some embodiments, the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell. In some embodiments, the diameter of the constriction is any of about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, or about 99% of the diameter of the cell.
- the diameter of the constriction is any of between about 20% and about 30%, between about 30% and about 40%, between about 40% and about 50%, between about 50% and about 60%, between about 60% and about 70%, between about 70% and about 80%, between about 80% and about 90%, between about 90% and about 95%, or between about 95% and about 99% of the diameter of the cell.
- a deforming force is applied to the input cell as it passes through the constriction.
- the constriction is in a channel.
- the constriction is contained in a microfluidic channel.
- the constriction is contained within a filter. In other embodiments, the
- constriction is a pore on a filter.
- the modified immune cells comprise intracellular an HPV antigen and an adjuvant.
- the HPV antigen and/or the adjuvant are present in the cytosol and/or endosomes.
- the antigen and/or adjuvant are present in multiple compartments of the cell.
- the antigen and/or adjuvant are present in compartments of the cell including one or more of the endoplasmic recticulum (ER), Golgi apparatus, lysosome, or exosomes.
- the antigen and the adjuvant are in the same compartment.
- the antigen and adjuvant are in different compartments from each other.
- the antigen is present in the cytosol whereas the adjuvant is present in the endosome.
- the modified immune cell further comprises an HPV antigen and/or an adjuvant on the outside of the cell.
- the concentration of adjuvant incubated with the perturbed input cell is between about 0.01 mM and about 10 mM.
- the concentration of adjuvant incubated with the perturbed input cell is any of less than about 0.01 mM, about 0.1 pM, about 1 pM, about 10 pM, about 100 pM, about 1 mM or about 10 mM.
- the concentration of adjuvant incubated with the perturbed input cell is greater than about 10 mM.
- the concentration of adjuvant incubated with the perturbed input cell is any of between about 0.01 pM and about 0.1 pM, between about 0.1 pM and about 1 pM, between about 1 pM and about 10 pM, between about 10 pM and about 100 pM, between about 100 pM and about 1 mM, or between 1 mM and about 10 mM. In some embodiments, the concentration of adjuvant incubated with the perturbed input cell is between about 0.1 pM and about 1 mM.
- the concentration of HPV antigen incubated with the perturbed input cell is between about 0.01 pM and about 10 mM.
- the concentration of HPV antigen incubated with the perturbed input cell is any of less than about 0.01 pM, about 0.1 pM, about 1 pM, about 10 pM, about 100 pM, about 1 mM or about 10 mM.
- the concentration of HPV antigen incubated with the perturbed input cell is greater than about 10 mM.
- the concentration of HPV antigen incubated with the perturbed input cell is any of between about 0.01 pM and about 0.1 pM, between about 0.1 pM and about 1 pM, between about 1 pM and about 10 pM, between about 10 pM and about 100 pM, between about 100 pM and about 1 mM, or between 1 mM and about 10 mM. In some embodiments, the concentration of HPV antigen incubated with the perturbed input cell is between about 0.1 pM and about 1 mM.
- the molar ratio of HPV antigen to adjuvant incubated with the perturbed input cell is any of between about 10000: 1 to about 1 : 10000.
- the molar ratio of HPV antigen to adjuvant incubated with the perturbed input cell is about any of 10000: 1, about 1000: 1, about 100: 1, about 10: 1, about 1 : 1, about 1 : 10, about 1 : 100, about 1 : 1000, or about 1 : 10000.
- the molar ratio of HPV antigen to adjuvant incubated with the perturbed input cell is any of between about 10000: 1 and about 1000: 1, between about 1000: 1 and about 100: 1, between about 100: 1 and about 10: 1, between about 10: 1 and about 1 : 1, between about 1 : 1 and about 1 : 10, between about 1 : 10 and about 1 : 100, between about 1 : 100 and about 1 : 1000, between about 1 : 1000 and about 1 : 10000.
- the modified immune cell comprises the adjuvant at a concentration between about 0.01 mM and about 10 mM.
- the immune cell comprises the adjuvant at a concentration of any of less than about 0.01 pM, about 0.1 pM, about 1 pM, about 10 pM, about 100 pM, about 1 mM or about 10 mM.
- the immune cell comprises the adjuvant at a concentration of greater than about any of 10 mM. in some embodiments, the immune cell comprises the adjuvant at a
- the modified immune cell comprises the adjuvant at a concentration between about 0.1 pM and about 1 mM.
- the concentration of HPV antigen in the modified immune cell is between about 0.01 pM and about 10 mM.
- the concentration of HPV antigen in the modified immune cell is any of less than about 0.01 pM, about 0.1 pM, about 1 pM, about 10 pM, about 100 pM, about 1 mM or about 10 mM. In some embodiments, the concentration of HPV antigen in the modified immune cell is greater than about 10 mM.
- the concentration of HPV antigen in the modified immune cell is any of between about 0.1 pM and about 1 pM, between about 1 pM and about 10 pM, between about 10 pM and about 100 pM, between about 100 pM and about 1 mM, or between 1 mM and about 10 mM. In some embodiments, the concentration of HPV antigen in the modified immune cell is between about 0.1 pM and about 1 mM.
- the molar ratio of HPV antigen to adjuvant in the modified immune cell is any of between about 10000: 1 to about 1 : 10000.
- the molar ratio of HPV antigen to adjuvant in the modified immune cell is about any of 10000: 1, about 1000: 1, about 100: 1, about 10: 1, about 1 : 1, about 1 : 10, about 1 : 100, about
- the molar ratio of HPV antigen to adjuvant in the modified immune cell is any of between about 10000: 1 and about 1000: 1, between about
- the antigen is a polypeptide antigen. In some embodiments, the antigen is modified with a lipid. In some embodiments, the modified antigen is modifiedwith a polysaccharide or a carbohydrate moiety. In some embodiments, the antigen is associated with a virus. In some embodiments, the antigen is a viral antigen. Exemplary viral antigens include HPV antigens. In further embodiments, the antigen is an HPV antigen. In some embodiments, the HPV antigen consists of a selection from the group of: HPV- 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, and 82.
- HPV- 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82 are high risk types in causing cancer whereas HPV- 26, 53, and 66 are“probably high risk types” in causing cancer.
- the HPV antigen is a polypeptide comprising an antigenic HPV epitope and one or more heterologous peptide sequences.
- the antigen is an HPV-16 antigen or an HPV-18 antigen.
- the HPV antigen is comprised of an HLA-A2 specific epitope.
- HPV E6 and E7 genes are the oncogenes of the virus and expression of these genes is required for malignant transformation.
- the HPV antigen is an HPV E6 antigen or an HPV E7 antigen.
- the modified immune cells comprise an HPV E6 antigen and an HPV E7 antigen.
- the HPV antigen is a polypeptide comprising an immunogenic epitope that is flanked on the N-terminus and/or the C-terminus by one or more heterologous peptide sequences.
- the HPV antigen is an HPV E7 epitope flanked by sequences from the HPV E6 polypeptide (E7.6).
- the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26. In some embodiments, the HPV antigen comprises the amino acid sequence of SEQ ID NO:23. In some embodiments, the HPV antigen comprises the amino acid sequence of any one of SEQ ID NOs: 18-26. In some embodiments, the HPV antigen comprises the amino acid sequence of SEQ ID NO:23.
- the antigen is derived from a cell lysate, such as a lysate of disease cells. In some embodiments, the antigen is in a cell lysate. In some embodiments, the antigen is derived from a tumor lysate. In some mebodiments, the antigen is derived from a lysate of HPV-associated cancer cells. In some embodiments, the HPV-associated cancer is any one of head and neck cancer, cervical cancer, vulvar cancer, vaginal cancer, penile cancer, anal cancer, perianal cancer, anogenital cancer, oral cancer or salivary cancer.
- the disclosure relates to a method for treating a human papilloma virus (HPV)-related cancer in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26.
- HPV human papilloma virus
- the disclosure relates to a method for treating an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the antigen to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- a deforming force is applied to the input cell as it passes through the constriction.
- the disclosure relates to a method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26. In some aspects, the disclosure relates to a method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26. In some aspects, the disclosure relates to a method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26. In some aspects
- HPV-associated disease in an individual comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NO: 1
- the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- a deforming force is applied to the input cell as it passes through the constriction.
- the disclosure relates to a method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26.
- the disclosure relates to a method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- a deforming force is applied to the input cell as it passes through the constriction.
- the HPV antigen is a pool of multiple polypeptides that elicit a response against the same and or different HPV antigens.
- the antigens comprised in a pool of multiple antigens do not decrease the immune response directed toward the other antigens.
- the respective immune responses directed towards HPV E6 and E7 antigens would be comparable to using HPV E6 alone or using HPV E7 alone as antigen, respectively.
- the HPV antigen is a polypeptide comprising an immunogenic
- HPV epitope and one or more heterologous peptide sequences.
- the one or more HPV antigen complexes with itself, with other antigens or with the adjuvant.
- the term“adjuvant” refers to a substance which directly or indirectly modulates and/or engenders an immune response.
- the adjuvant is administered in conjunction with an antigen to effect enhancement of an immune response to the antigen as compared to antigen alone. Therefore, adjuvants can be used to boost elicitation of an immune cell response (e.g. T cell response) to an antigen.
- the invention provides immune cells modified to comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- the immune cells perturbed as described herein are incubated with both the HPV antigen and an adjuvant.
- intracellular adjuvants include, without limitation, CpG ODN, interferon-a (IFN-a), stimulator of interferon genes (STING) agonsists and retinoic acid-induicible gene I (RIG-I) agonists, and polyinosinic:polycytidylic acid
- the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists or polyTC.
- the adjuvant is a CpG ODN polynucleotide.
- the CpG ODN adjuvant comprise of a selection from the group of CpG ODN 1018, CpG ODN 1585, CpG ODN 2216, CpG ODN 2336, CpG ODN 1668, CpG ODN 1826, CPG ODN 2006, CpG ODN 2007, CpG ODN BW006, CpG ODN D-SL01, CpG ODN 2395, CpG ODN M362, CpG ODN D-SL03.
- the CpG ODN adjuvant is CpG ODN 1826 (TCCATGACGTTCCTGACGTT; SEQ ID NO:30) or CpG ODN 2006 (also known as CpG ODN 7909) (TCGTCGTTTTGTCGTTTTGTCGTT; SEQ ID NO:3 l) oligonucleotide.
- the RIG-I agonist comprises polyinosinic:polycytidylic acid (polyTC). Multiple adjuvants can also be used in conjunction with antigens to enhance the elicitation of immune response.
- the modified immune cell comprises more than one adjuvant.
- the modified immune cell comprises more than one adjuvant.
- the modified immune cell comprises any combination of the adjuvants CpG ODN, IFN-a, STING agonists, RIG-I agonists or polyTC.
- Exemplary adjuvants include, without limitation, CpG ODN, interferon-a (IFN-a), polyinosinic:polycytidylic acid (polyTC), imiquimod (R837), resiquimod (R848), or
- the adjuvant is CpG ODN, LPS, IFN-a,
- STING agonists RIG-I agonists, poly I:C, R837, R848, a TLR3 agonist, a TLR4 agonist or a
- the adjuvant is a CpG ODN. In some embodiments, the adjuvant is a CpG ODN. In some embodiments, the CpG ODN is a Class A CpG ODN, a
- the CpG ODN adjuvant comprise of a selection from the group of CpG ODN 1018, CpG ODN 1585, CpG ODN 2216, CpG ODN 2336, CpG ODN 1668, CpG ODN 1826, CPG ODN 2006, CpG ODN 2007, CpG ODN BW006, CpG ODN D-SL01, CpG ODN 2395, CpG ODN M362, CpG ODN D-SL03.
- the CpG ODN adjuvant is CpG ODN 1826
- the adjuvant is CpG ODN 7909.
- the RIG-I agonist comprises polyinosinic:polycytidylic acid (polyLC). Multiple adjuvants can also be used in conjunction with antigens to enhance the elicitation of immune response.
- the modified immune cell comprises more than one adjuvant. Multiple adjuvants can also be used in conjunction with antigens to enhance the elicitation of immune response. In some embodiments, the modified immune cell comprises more than one adjuvant. In some
- the modified immune cell comprises any combination of the adjuvants CpG ODN, LPS, IFN-a, STING agonists, RIG-I agonists, poly I:C, R837, R848, a TLR3 agonist, a TLR4 agonist or a TLR 9 agonist.
- the adjuvant may refer to (a) an adjuvant that is incubated with and passes through a perturbed input immune cell, (b) an adjuvant incubated with PBMCs for the PBMCs to condition, (c) an adjuvant co- administered with modified immune cells to an individual.
- the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a
- the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- the stabilizing agent is complexed to the HPV antigen and/or the adjuvant.
- the stabilizing agent increases the solubility and/or solution half-life of the HPV antigen and/or the adjuvant.
- the plurality of modified immune cells have greater viability than corresponding modified immune cells that do not comprise the stabilizing agent.
- the agent is albumin. In further embodiments, the albumin is mouse, bovine, or human albumin.
- the agent is a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L-arginine, L- glutamine, or EDTA.
- the divalent metal cation is one more of Mg 2+ , Zn 2+ or Ca 2+ .
- the agent comprises MSA.
- the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a corresponding plurality of the modified immune cell that does not comprise the agent.
- the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell upon freeze-thaw cycle as compared to a corresponding the modified immune cell that does not comprise the agent.
- the agent is a cyropreservation agent and/or a hypothermic preservation agent.
- netiher the cyropreservation agent nor the hypothermic preservation agent cause more than 10% or 20% of cell death in the modified immune cell comprising the agent compared to a corresponding modified immune cell that does not comprise the agent before any freeze-thaw cycles.
- at least about 70%, about 80%, or about 90% of the modified immune cells are viable after up to 1, 2, 3, 4, 5 freeze-thaw cycles.
- the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- the agent is albumin.
- the albumin is mouse, bovine, or human albumin.
- the agent is human albumin.
- the agent is one or more of: a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L-arginine, L- glutamine, or EDTA.
- the divalent metal cation is one more of Mg 2+ , Zn 2+ or Ca 2+ .
- the agent is one or more of: sodium pyruvate, adenine, trehalose, dextrose, mannose, sucrose, human serum albumin (HSA), DMSO, HEPES, glycerol, glutathione, inosine, dibasic sodium phosphate, monobasic sodium phosphate, sodium metal ions, potassium metal ions, magnesium metal ions, chloride, acetate, gluoconate, sucrose, potassium hydroxide, or sodium hydroxide.
- the agent is one or more of: Sodium pyruvate, adenine, Rejuvesol®, trehalose, dextrose, mannose, sucrose, human serum albumin (HSA), PlasmaLyte®, DMSO, Cryostor® CS2, Cryostor® CS5, Cryostor® CS10, Cryostor® CS15, HEPES, glycerol, glutathione, HypoThermosol®.
- the modified immune cells are further modified to increase expression of one or more of co-stimulatory molecules.
- the co- stimulatory molecule is B7-H2 (ICOSL), B7-1 (CD80), B7-2 (CD86), CD70, LIGHT, HVEM, CD40, 4-1BBL, OX40L, TL1A, GITRL, CD30L, TIM4, SLAM, CD48, CD58, CD155, or CD112.
- the cell comprises a nucleic acid that results in increased expression of the one or more co-stimulatory molecules.
- the immune cell is a T cell, a dendritic cell, a monocyte, a macrophage, a myeloid cell, a granulocyte, a neutrophil, a mast cell, a natural killer cell, an innate lymphoid cell, a basophil, or a hematopoetic precursor cell.
- the immune cell is not a B cell.
- the immune cell is a T cell.
- the immune cell other than a B cell.
- the modified T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells, or natural killer T cells.
- the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells , CD45RA+ T cells, CD45RO+ T cells, and gd-T cells.
- MHC expression in allogeneic T cells can result in an innate immune response mounted in an individual in response to their administrations, and will result in a shortened half-life of such T cells.
- the T cell comprises a further modification to modulate MHC class I expression.
- the T cell comprises a further modification to modulate MHC class II expression.
- the T cell comprises a further modification to reduce MHC class I and/or MHC class II expression.
- the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease.
- the T cell comprises a further modification to increase MHC class I and/or MHC class II expression.
- the further modification comprises increasing MHC class I and/or MHC class II expression using mRNA, plasmid DNA, or cDNA.
- an innate immune response mounted in an individual in response to administration, in an allogeneic context, of the further modified T cells is reduced compared to an innate immune response mounted in an individual in response to administration, in an allogeneic context, of
- the circulating half-life of the further modified T cells in an individual to which they were administered is increased compared to the circulating half-life of corresponding modified T cells that do not comprise the further modification in an individual to which they were administered.
- the modified T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells, or natural killer T cells.
- the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells , CD45RA+ T cells, CD45RO+ T cells, or gd-T cells.
- Immune cells and other cells can be used as a source of autologous or allogeneic cells.
- the modified immune cell is allogeneic to the individual. In other embodiments, the modified immune cell is autologous to the individual. In some embodiments, the individual to be treated is pre-conditioned to modulate inflammation.
- Adjuvants can be employed to further enhance the immune response to HPV antigens.
- the method for treating further comprises administering to the individual an adjuvant.
- exemplary adjuvant includes, without limitation, IFN-a, CpG ODN, STING agonists , RIG-I agonists and polyLC.
- the adjuvant is IFN-a or CpG ODN.
- the adjuvant is IFN-a, CpG ODN, STING agonists, RIG-I agonists or polyLC.
- the adjuvant comprises any combination of IFN-a, CpG ODN, STING agonists , RIG-I agonists or polyLC.
- the method comprises multiple administrations of the modified immune cells. In some embodiments, the method comprises about 3 to about 9 administrations of the modified immune cells. In some embodiments, the method comprises about any one of 1,
- the method comprises continuous administrations of the modified immune cells as needed.
- the time interval between two successive administrations of modified immune cells is between about 1 day and about 30 days. In some embodiments, the time interval between two successive administrations of the modified immune cells is about 21 days. In some embodiments, the time the time interval between two successive administrations of the modified immune cells is about any one of 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 25, 30,
- the modified immune cells are a plurality of modified PBMCs. In some embodiments, the modified immune cells are a conditioned plurality of modified PBMCs. Methods to condition PBMCs is provided by U.S. Provisional Application No. 62/812,225 and European Patent Application No.
- composition comprising the modified immune cells and the adjuvant are administered simultaneously. In some embodiments, the composition comprising the modified immune cells and the adjuvant are administered sequentially.
- the composition comprising the modified immune cells is administered prior to administering the adjuvant.
- the composition comprising the modified immune cells is administered from about 1 hour to about 1 week prior to
- the composition comprising the modified immune cells is administered about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 14 hours, about 16 hours, about 18 hours, about 20 hours, about 24 hours, about 30 hours, about 36 hours, about 42 hours, about 48 hours, about 60 hours, about 3 days, about 4 days, about 5 days, about 6 days, or about 7 days prior to administration of the adjuvant.
- the composition comprising the modified immune cells is administered from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 10 hours and about 12 hours, from between about 12 hours and about 14 hours, from between about 14 hours and about 16 hours, from between about 16 hours and about 18 hours, from between about 18 hours and about 20 hours, from between about 20 hours and about 24 hours, from between about 24 hours and about 30 hours, from between about 30 hours and about 36 hours, from between about 36 hours and about 42 hours, from between about 42 hours and about 48 hours, from between about 48 hours and about 60 hours, from between about 60 hours and about 3 days, from between about 3 days and about 4 days, from between about 4 days and about 5 days, from between about 5 days and about 6 days, from between about 6 days and about 7 days prior to administration of the adjuvant.
- the composition comprising the modified immune cells is administered following administration of the adjuvant.
- the composition comprising the modified immune cells is administered from about 1 hour to about 1 week following administration of the adjuvant.
- the composition comprising the modified immune cells is administered about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 14 hours, about 16 hours, about 18 hours, about 20 hours, about 24 hours, about 30 hours, about 36 hours, about 42 hours, about 48 hours, about 60 hours, about 3 days, about 4 days, about 5 days, about 6 days, or about 7 days following administration of the adjuvant.
- the composition comprising the modified immune cells is administered from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about
- 10 hours and about 12 hours from between about 12 hours and about 14 hours, from between about 14 hours and about 16 hours, from between about 16 hours and about 18 hours, from between about 18 hours and about 20 hours, from between about 20 hours and about 24 hours, from between about 24 hours and about 30 hours, from between about 30 hours and about 36 hours, from between about 36 hours and about 42 hours, from between about 42 hours and about 48 hours, from between about 48 hours and about 60 hours, from between about 60 hours and about 3 days, from between about 3 days and about 4 days, from between about 4 days and about 5 days, from between about 5 days and about 6 days, from between about 6 days and about 7 days following administration of the adjuvant.
- Immune checkpoints are regulators of the immune system and keep immune responses in check. Immune checkpoint inhibitors can be employed to facilitate the enhancement of immune response.
- the composition comprising the modified immune cells is administered in combination with administration of an immune checkpoint inhibitor. In some embodiments, the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered simultaneously. In some embodiments, the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered sequentially.
- the composition comprising the modified immune cells is administered prior to administration of the immune checkpoint inhibitor. In some embodiments, the composition comprising the modified immune cells is administered following administration of the immune checkpoint inhibitor. For example, the composition comprising the modified immune cells is administered from about 1 hour to about 1 week prior to administration of the immune checkpoint inhibitor.
- the composition comprising the modified immune cells is administered about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 14 hours, about 16 hours, about 18 hours, about 20 hours, about 24 hours, about 30 hours, about 36 hours, about 42 hours, about 48 hours, about 60 hours, about 3 days, about 4 days, about 5 days, about 6 days, or about 7 days prior to administration of the immune checkpoint inhibitor.
- the composition comprising the modified immune cells is administered from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about
- 10 hours and about 12 hours from between about 12 hours and about 14 hours, from between about 14 hours and about 16 hours, from between about 16 hours and about 18 hours, from between about 18 hours and about 20 hours, from between about 20 hours and about 24 hours, from between about 24 hours and about 30 hours, from between about 30 hours and about 36 hours, from between about 36 hours and about 42 hours, from between about 42 hours and about 48 hours, from between about 48 hours and about 60 hours, from between about 60 hours and about 3 days, from between about 3 days and about 4 days, from between about 4 days and about 5 days, from between about 5 days and about 6 days, from between about 6 days and about 7 days prior to administration of the immune checkpoint inhibitor.
- the composition comprising the modified immune cells is administered following administration of the immune checkpoint inhibitor.
- the composition comprising the modified immune cells is administered from about 1 hour to about 1 week following administration of the immune checkpoint inhibitor.
- the composition comprising the modified immune cells is administered about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 14 hours, about 16 hours, about 18 hours, about 20 hours, about 24 hours, about 30 hours, about 36 hours, about 42 hours, about 48 hours, about 60 hours, about 3 days, about 4 days, about 5 days, about 6 days, or about 7 days following administration of the immune checkpoint inhibitor.
- the composition comprising the modified immune cells is administered from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 10 hours and about 12 hours, from between about 12 hours and about 14 hours, from between about 14 hours and about 16 hours, from between about 16 hours and about 18 hours, from between about 18 hours and about 20 hours, from between about 20 hours and about 24 hours, from between about 24 hours and about 30 hours, from between about 30 hours and about 36 hours, from between about 36 hours and about 42 hours, from between about 42 hours and about 48 hours, from between about 48 hours and about 60 hours, from between about 60 hours and about 3 days, from between about 3 days and about 4 days, from between about 4 days and about 5 days, from between about 5 days and about 6 days, from between about 6 days and about 7 days following administration of the immune checkpoint inhibitor.
- the method comprises multiple administration of the composition comprising the modified immune cells and/or multiple administration of the checkpoint inhibitor.
- the method comprises two
- administrations three administrations, four administrations, five administrations, six
- the method comprises less than five administrations, less than ten administrations, less than fifteen administrations, less than twenty administrations, less than twenty-five administrations, less than thirty administrations, less than fifty administrations, less than seventy-five administrations, less than one hundred, or less than two hundred administrations of the composition comprising the modified immune cells and/or the checkpoint inhibitor.
- immune checkpoint inhibitor is targeted to, without limitation, PD-l, PD-
- the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3 or TIM-3.
- the immune checkpoint inhibitor is one or more of: an antibody that binds to PD-l, an antibody that binds PD-L1, an antibody that binds CTLA-4, an antibody that binds LAG3, or an antibody that binds TIM-3.
- the antibody can be a full length antibody or any variants, for example but not limited to, an antibody fragment, a single chain variable fragment (ScFv), or a fragment antigen-binding (Fab).
- the antibody can be bispecific, trispecific or multispecific.
- the immune checkpoint inhibitor is one or more chemical compounds that binds to and/or inhibits one or more of PD-l, PD-L1, CTLA-4,
- the immune checkpoint inhibitor is one or more peptides that binds to and/or inhibits one or more of PD-l, PD-L1, CTLA-4, LAG3 or TIM-3.
- exemplary immune checkpoint inhibitor is targeted to, without limitation, TIGIT,
- the immune checkpoint inhibitor is targeted to one or more of TIGIT, VISTA, TIM1, B7-H4 (VTCN1) or BTLA. In some embodiments, the immune checkpoint inhibitor is one or more of: an antibody that binds to
- TIGIT an antibody that binds VISTA, an antibody that binds TIM1, an antibody that binds B7-
- the antibody can be a full length antibody or any variants, for example but not limited to, an antibody fragment, a single chain variable fragment (ScFv), or a fragment antigen-binding (Fab).
- the antibody can be bispecific, trispecific or multispecific.
- the immune checkpoint inhibitor is one or more chemical compounds that binds to and/or inhibits one or more of PD-l, PD-L1, CTLA-4, LAG3, TIM-3, TIGIT, VISTA, TIM1, B7-H4 (VTCN1) or BTLA.
- the immune checkpoint inhibitor is one or more peptides that binds to and/or inhibits one or more of PD-l, PD-L1, CTLA-4, LAG3, TIM- 3, TIGIT, VISTA, TIM1, B7-H4 (VTCN1) or BTLA.
- Chemotherapy or radiotherapy can be used in combination with any one of the modified immune cells described herein to achieve additive or synergistic effects against cancers, for example, HPV-associated cancers.
- the composition comprising the modified immune cells is administered in combination with administration of a chemotherapy.
- the composition comprising the modified immune cells and the chemotherapy are administered simultaneously.
- the composition comprising the modified immune cells and the chemotherapy are administered sequentially.
- the composition comprising the modified immune cells is administered prior to administration of the chemotherapy. In some embodiments, the composition comprising the modified immune cells is administered following administration of the chemotherapy. For example, the composition comprising the modified immune cells is administered from about 1 hour to about 1 week prior to administration of the chemotherapy.
- the composition comprising the modified immune cells is administered about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 14 hours, about 16 hours, about 18 hours, about 20 hours, about 24 hours, about 30 hours, about 36 hours, about 42 hours, about 48 hours, about 60 hours, about 3 days, about 4 days, about 5 days, about 6 days, or about 7 days prior to administration of the chemotherapy.
- the composition comprising the modified immune cells is administered from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 10 hours and about 12 hours, from between about 12 hours and about 14 hours, from between about 14 hours and about 16 hours, from between about 16 hours and about 18 hours, from between about 18 hours and about
- 20 hours from between about 20 hours and about 24 hours, from between about 24 hours and about 30 hours, from between about 30 hours and about 36 hours, from between about 36 hours and about 42 hours, from between about 42 hours and about 48 hours, from between about 48 hours and about 60 hours, from between about 60 hours and about 3 days, from between about 3 days and about 4 days, from between about 4 days and about 5 days, from between about 5 days and about 6 days, from between about 6 days and about 7 days prior to administration of the chemotherapy.
- the composition comprising the modified immune cells is administered following administration of the chemotherapy.
- the composition comprising the modified immune cells is administered from about 1 hour to about 1 week following administration of the chemotherapy.
- the composition comprising the modified immune cells is administered about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 14 hours, about 16 hours, about 18 hours, about 20 hours, about 24 hours, about 30 hours, about 36 hours, about 42 hours, about 48 hours, about 60 hours, about 3 days, about 4 days, about 5 days, about 6 days, or about 7 days following administration of the chemotherapy.
- the composition comprising the modified immune cells is administered from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 10 hours and about 12 hours, from between about 12 hours and about 14 hours, from between about 14 hours and about 16 hours, from between about 16 hours and about
- 18 hours from between about 18 hours and about 20 hours, from between about 20 hours and about 24 hours, from between about 24 hours and about 30 hours, from between about 30 hours and about 36 hours, from between about 36 hours and about 42 hours, from between about 42 hours and about 48 hours, from between about 48 hours and about 60 hours, from between about
- 60 hours and about 3 days from between about 3 days and about 4 days, from between about 4 days and about 5 days, from between about 5 days and about 6 days, from between about 6 days and about 7 days following administration of the chemotherapy.
- the method comprises multiple administration of the
- the method comprises two administrations, three administrations, four administrations, five administrations, six administrations, seven administrations, eight administrations, nine administrations, ten administrations, eleven administrations, twelve administrations, thirteen administrations, fourteen administrations, or fifteen administrations of the composition comprising the modified immune cells and/or the chemotherapy.
- the method comprises less than five administrations, less than ten administrations, less than fifteen administrations, less than twenty administrations, less than twenty-five administrations, less than thirty administrations, less than fifty administrations, less than seventy-five administrations, less than one hundred, or less than two hundred administrations of the composition comprising the modified immune cells and/or the chemotherapy.
- Exemplary chemotherapy can be cell cycle dependent or cell cycle independent.
- the chemotherapy comprises one or more chemotherapeutic agents.
- a chemotherapeutic agent can target one or more of cell division, DNA, or metabolism in cancer.
- the chemotherapeutic agent is a platinum-based agent, such as but not limited to cisplatin, oxaliplatin or carboplatin.
- the chemotherapeutic agent is a taxane (such as docetaxel or paclitaxel).
- the chemotherapeutic agent is 5-fluorouracil, doxorubicin, or irinotecan.
- the chemotherapeutic agent is one or more of: an alkylating agent, an antimetabolite, an antitumor antibiotic, a topoisomerase inhibitor or a mitotic inhibitor.
- the chemotherapy comprises cisplatin.
- one or more of chemotherapies or immune checkpoint inhibitors can be combined with any one of the modified immune cells described herein for treating or preventing a HPV-associated disease.
- Radiotherapy can be used in combination with any one of the modified T cells described herein to achieve additive or synergistic effects against cancers, for example, HPV- associated cancers.
- the composition comprising the modified T cells is administered in combination with administration of a radiotherapy.
- the composition comprising the modified T cells and the radiotherapy are administered
- composition comprising the modified T cells and the radiotherapy are administered sequentially.
- composition comprising the modified T cells is administered in combination with administration of a radiotherapy, in combination with a chemotherapy, and/or in combination with an immune checkpoint inhibitor.
- composition comprising the modified T cells is
- composition comprising the modified T cells is administered following administration of the radiotherapy.
- composition comprising the modified T cells is administered from about 1 hour to about 1 week prior to administration of the radiotherapy.
- the composition comprising the modified T cells is administered about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about
- the composition comprising the modified T cells is administered from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 10 hours and about 12 hours, from between about 12 hours and about 14 hours, from between about 14 hours and about 16 hours, from between about 16 hours and about 18 hours, from between about 18 hours and about 20 hours, from between about 20 hours and about
- 24 hours from between about 24 hours and about 30 hours, from between about 30 hours and about 36 hours, from between about 36 hours and about 42 hours, from between about 42 hours and about 48 hours, from between about 48 hours and about 60 hours, from between about 60 hours and about 3 days, from between about 3 days and about 4 days, from between about 4 days and about 5 days, from between about 5 days and about 6 days, from between about 6 days and about 7 days prior to administration of the radiotherapy.
- composition comprising the modified T cells is
- the composition comprising the modified T cells is administered following administration of the radiotherapy.
- the composition comprising the modified T cells is administered from about 1 hour to about 1 week following administration of the radiotherapy.
- the composition comprising the modified T cells is administered about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 6 hours, about 8 hours, about 10 hours, about 12 hours, about 14 hours, about 16 hours, about 18 hours, about 20 hours, about 24 hours, about 30 hours, about 36 hours, about 42 hours, about 48 hours, about 60 hours, about 3 days, about 4 days, about 5 days, about
- the composition comprising the modified T cells is administered from between about 1 hour and about 2 hours, from between about 2 hours and about 3 hours, from between about 3 hours and about 4 hours, from between about 4 hours and about 6 hours, from between about 6 hours and about 8 hours, from between about 8 hours and about 10 hours, from between about 10 hours and about 12 hours, from between about 12 hours and about 14 hours, from between about 14 hours and about 16 hours, from between about 16 hours and about 18 hours, from between about 18 hours and about 20 hours, from between about 20 hours and about 24 hours, from between about 24 hours and about 30 hours, from between about 30 hours and about 36 hours, from between about 36 hours and about 42 hours, from between about 42 hours and about 48 hours, from between about 48 hours and about 60 hours, from between about 60 hours and about 3 days, from between about 3 days and about 4 days, from between about 4 days and about 5 days, from between about 5 days and about 6 days, from between about 6 days and about 7 days following administration of the radiotherapy.
- the method comprises multiple administration of the
- composition comprising the modified T cells and/or multiple administration of the radiotherapy.
- the method comprises two administrations, three administrations, four administrations, five administrations, six administrations, seven
- administrations eight administrations, nine administrations, ten administrations, eleven administrations, twelve administrations, thirteen administrations, fourteen administrations, or fifteen administrations of the composition comprising the modified T cells and/or the
- the method comprises less than five administrations, less than ten administrations, less than fifteen administrations, less than twenty administrations, less than twenty-five administrations, less than thirty administrations, less than fifty administrations, less than seventy-five administrations, less than one hundred, or less than two hundred administrations of the composition comprising the modified T cells and/or the radiotherapy.
- the HPV antigen is capable of being processed into an MHC class I-restricted peptide. In some embodiments, the HPV antigen is capable of being processed into an MHC class II-restricted peptide. In some embodiments, the immune response is enhanced. In further embodiments, the immune response to the HPV antigen is enhanced. In some embodiments, administration of the composition comprising the modified immune cells to the individual results in activation and/or expansion of cytotoxic T lymphocytes (CTLs) specific for the HPV antigen. In some embodiments, administration of the composition comprising the modified immune cells to the individual results in activation and/or expansion of helper T (T h ) cells specific for the antigen.
- CTLs cytotoxic T lymphocytes
- the effective amount of the composition comprises between about 1 x 10 6 and about 1 c 10 12 modified immune cells. In some embodiments, the effective amount of the composition comprises any of about 1 x 10 6 , about 1 x 10 7 , about 1 x 10 8 , about 1 x 10 9 , about 1 x 10 10 , about 1 c 10 11 , or about 1 c 10 12 modified immune cells.
- the effective amount of the composition comprises any of between about 1 x 10 6 to about 1 x 10 7 , , between about 1 c 10 7 to about 1 c 10 8 , between about 1 c 10 8 to about 1 c 10 9 , between about 1 c 10 9 to about 1 c 10 10 , between about 1 c 10 10 to about 1 c 10 11 , or between about 1 c 10 11 to about 1 c 10 12 modified immune cells.
- the method comprises multiple administrations of the composition comprising the modified immune cells.
- the method comprises two administrations, three administrations, four administrations, five administrations, six administrations, seven administrations, eight administrations, nine administrations, ten administrations, eleven administrations, twelve administrations, thirteen administrations, fourteen administrations, or fifteen administrations of the composition comprising the modified immune cells.
- the method comprises less than five administrations, less than ten administrations, less than fifteen administrations, less than twenty administrations, less than twenty-five administrations, less than thirty administrations, less than fifty administrations, less than seventy-five administrations, less than one hundred, or less than two hundred administrations of the composition comprising the modified immune cells.
- the method comprises a first administration of the composition comprising the modified immune cells followed by a second administration of the composition comprising the modified immune cells.
- the timing of the administration can also be modified to achieve desired results.
- the first administration of the composition to the individual occurs before second administration of the composition.
- the first administration is introduced to the individual more than any of about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 1 month, about 2 months, about 3 months, about 4 months, about 5 months, about 6 months, about 7 months, about 8 months, about 9 months, about 10 months, about 11 months, about 12 months, about 18 months, or about 24 months before introduction of the second administration.
- the method comprises multiple administrations of the modified T cell. In some embodiments, the method comprises any of about 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than about 10 administrations. In some embodiments, the time interval between two successive administrations of the modified T cell is between about 1 day and about 1 month. In some embodiments, the administration is daily, every 2 days, every 3 days, every 4 days, every 5 days, every 6 days, weekly, biweekly, or monthly. In some embodiments, successive
- administrations are given for up to one year or more.
- the composition comprising modified cells can be used to treat, prevent an HPV-associated disease, and/or modulate an immune response in an individual with an HPV-associated disease.
- the HPV-associated disease is an HPV- associated cancer.
- the HPV-associated cancer is cervical disease, anal disease, oropharyngeal disease, vaginal disease, vulvar disease, penile disease, skin disease, or head and home disease.
- the HPV-associated disease is an HPV-associated infectious disease.
- HPV-associated diseases can include common warts, plantar warts, flat warts, anogenital warts, anal lesions, epidermodysplasia, focal epithelial hyperplasia, mouth papillomas, verrucous cyst and laryngeal papillomatosis.
- the disclosure relates to the use of modified immune cells for treating an HPV-associated disease, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- the disclosure relates to the use of modified immune cells for treating an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, such that a deforming force is applied to the input cell as it passes through the constriction, thereby causing perturbations of the input cell large enough for the HPV antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HP
- the disclosure relates to a composition comprising modified immune cells for the manufacture of a medicament used for treating an HPV-associated disease, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- the disclosure relates to a composition comprising modified immune cells for the manufacture of a medicament used for treating an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, such that a deforming force is applied to the input cell as it passes through the constriction, thereby causing perturbations of the input cell large enough for the HPV antigen and the adjuvant to pass through to form a perturbations
- the disclosure relates to a composition comprising modified immune cells for use in a method of medical treatment, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- the disclosure relates to a composition comprising modified immune cells for use in a method of medical treatment, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell- deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, such that a deforming force is applied to the input cell as it passes through the constriction, thereby causing perturbations of the input cell large enough for the HPV antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbe
- the disclosure relates to a composition comprising modified immune cells for use in a method of treating cancer, an infectious disease or a viral-associated disease, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- the disclosure relates to a composition comprising modified immune cells for use in treating an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant; wherein the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell-deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, such that a deforming force is applied to the input cell as it passes through the constriction, thereby causing perturbations of the input cell large enough for the HPV antigen and the adjuvant to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen and the adjuvant for a sufficient time to allow the HPV antigen and the adjuvant to enter the perturbed input cell; thereby generating the modified immune cells.
- this disclosure relates to a method for treating or preventing an HPV- associated disease in an individual comprising administering to the individual a modified immune cell associated with an HPV antigen, wherein the modified immune cell is prepared by a process comprising the steps of: a) incubating an input cell with the HPV antigen and/or an adjuvant for a sufficient time to allow the HPV antigen to associate with the cell surface of the input cell; thereby generating the modified immune cell associated with the antigen.
- the modified immune cells of the invention do not induce tolerance in an individual. In some embodiments, the modified immune cells do not suppress an immune response in an individual. In some embodiments, the modified immune cells do not comprise a tolerogenic factor. In some embodiments, the modified immune cells are not administered in combination with a tolerogenic factor. In some embodiments, the modified immunce cells arenot administered before, simultaneous with, or after administration of a tolerogenic factor.
- the invention provides a composition comprising modified immune cells, wherein the modified immune cells comprise intracellular HPV antigen and an
- the disclosure relates to a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen, wherein the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-26.
- the HPV antigen comprises t an amino acid sequence with at least 90% similarity to SEQ ID NO:23.
- the HPV antigen comprises the amino acid sequence of SEQ ID NO:23.
- the modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the HPV antigen to pass through to form a perturbed input cell; and b) incubating the perturbed input cell with the HPV antigen for a sufficient time to allow the HPV antigen to enter the perturbed input cell; thereby generating the modified immune cells.
- a deforming force is applied to the input cell as it passes through the constriction.
- the composition further comprises intracellularly an adjuvant.
- the HPV antigen and/or the adjuvant are present in the cytosol or endosomes. In some embodiments, the antigen and/or adjuvant are present in multiple compartments of the cell. In further embodiments, the antigen and/or adjuvant are present in compartments of the cell comprising the endoplasmic recticulum (ER), Golgi apparatus, lysosome, exosomes, cell surface or cell membrane. In some embodiments, the antigen and the adjuvant are in the same compartment. In some embodiments, the antigen and adjuvant are in different compartments from each other. For example, in some embodiments, the antigen is present in the cytosol whereas the adjuvant is present in the endosome. In some embodiments, the modified immune cell further comprises an HPV antigen and/or an adjuvant on the outside of the cell.
- the antigen is a polypeptide antigen.
- the antigen is a modified antigen.
- antigens may be fused with therapeutic agents or targeting peptides.
- the modified antigen is fused with a polypeptide.
- the antigen is modified with a lipid.
- the antigen ismodified with a polysaccharide or a carbohydrate moiety.
- the antigen is associated with a virus.
- the antigen is a viral antigen. Exemplary viral antigens include HPV antigens.
- the antigen is an HPV antigen.
- the HPV antigen consists of a selection from the group of: HPV- 16, 18, 26, 31,
- the antigen is an HPV- 16 antigen or an HPV- 18 antigen.
- the HPV antigen is comprised of an HLA-A2 specific epitope.
- HPV E6 and E7 genes are the oncogenes of the virus and expression of these genes is required for malignant transformation. The E6 and E7 proteins target a number of negative regulators of the cell cycle, primarily pl05Rb and p53, respectively, and thus interfere with cell-cycle regulation.
- the HPV antigen is an HPV E6 antigen or an HPV E7 antigen.
- the modified immune cells comprise an HPV E6 antigen and an HPV E7 antigen.
- the HPV antigen is a polypeptide comprising an immunogenic epitope that is flanked on the N-terminus and/or the C- terminus by one or more heterologous peptide sequences.
- the HPV antigen is an HPV E7 epitope flanked by sequences from the HPV E6 polypeptide.
- the HPV antigen comprises an amino aicd with at least 90% similarity to any one of SEQ ID NOs: 18-26.
- the HPV antigen comprises the amino acid sequence of SEQ ID NO: 23.
- an adjuvant when added to an immunogenic agent, nonspecifically enhances or potentiates an immune response to the agent in the recipient host upon exposure to the mixture. Therefore, adjuvants can be used to boost elicitation of an immune cell response (e.g. T cell response) to an antigen.
- the perturbed cells are incubated with both the HPV antigen and an adjuvant.
- exemplary intracellular adjuvants include, without limitation, CpG ODN, Interferon-a (IFN-a), stimulator of interferon genes (STING) agonists, retinoic acid- inducible gene I (RIG-I) agonists and polyinosinic:polycytidylic acid (polyTC.).
- the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists or polyTC.
- the adjuvant is a CpG ODN polynucleotide.
- the CpG ODN adjuvant comprise of a selection from the group of CpG ODN 1585, CpG ODN2216, CpG ODN 2336, CpG ODN 1668, CpG ODN 1826, CPG ODN 2006, CpG ODN 2007, CpG ODN BW006, CpG ODN D-SL01, CpG ODN 2395, CpG ODN M362, CpG ODN D-SL03 (InvivoGen).
- the CpG ODN adjuvant is CpG ODN 1826
- the modified immune cell comprises more than one adjuvant.
- the modified immune cell comprises any combination of the adjuvants CpG ODN, IFN-a, STING agonists, RIG-I agonists and polyTC.
- the modified immune cell comprises the adjuvant at a concentration between about 0.01 mM and about 10 mM.
- the modified immune cell comprises the adjuvant at a concentration of any of less than about 0.01 mM, about 0.1 mM, about 1 mM, about 10 pM, about 100 pM, about 1 mM or about 10 mM.
- the modified immune cell comprises the adjuvant at a concentration of more than about 10 mM.
- the modified immune cell comprises the adjuvant at a concentration of less than any of about 0.01 pM, about 0.1 pM, about 1 mM, about 10 pM, about 100 pM, about 1 mM or about 10 mM. In some embodiments, the modified immune cell comprises the adjuvant at a concentration of more than any of about 10 mM. In some embodiments, the modified immune cell comprises the adjuvant at a concentration any of between about 0.1 pM and about 1 mM, between about 1 mM and about 10 pM, between about 10 pM and about 100 pM, between about 100 pM and about 1 mM, or between 1 mM and about 10 mM.
- the modified immune cell comprises the HPV antigen at a concentration between about 0.01 pM and about 10 mM.
- the modified immune cell comprises the adjuvant at a concentration of any of less than about 0.01 pM, about 0.1 pM, about 1 mM, about 10 pM, about 100 pM, about 1 mM or about 10 mM.
- the modified immune cell comprises the adjuvant at a concentration of more than about 10 mM.
- the modified immune cell comprises the HPV antigen at a concentration of less than any of about 0.01 pM, about 0.1 pM, about 1 mM, about 10 pM, about 100 pM, about 1 mM or about 10 mM. In some embodiments, the modified immune cell comprises the adjuvant at a concentration of more than any of about 10 mM. In some embodiments, the modified immune cell comprises the HPV antigen at a concentration any of between about 0.1 pM and about 1 mM, between about 1 mM and about 10 pM, between about 10 pM and about 100 pM, between about 100 pM and about 1 mM, or between 1 mM and about 10 mM.
- the ratio of the HPV antigen to the adjuvant is between about
- the ratio of HPV antigen to the adjuvant is any of about 10000: 1, about 1000: 1, about 200: 1, about 100: 1, about 10: 1, about 1 : 1, about 1 : 10, about 1 : 100, about 1 : 1000, or about 1 : 10000. In some embodiments, the ratio of
- the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a
- the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- the stabilizing agent is complexed to the HPV antigen and/or the adjuvant.
- the stabilizing agent increases the solubility and/or solution half-life of the HPV antigen and/or the adjuvant.
- the plurality of modified immune cells have greater viability than corresponding modified immune cells that do not comprise the stabilizing agent.
- the agent is albumin. In further embodiments, the albumin is mouse, bovine, or human albumin.
- the agent is a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L-arginine, L- glutamine, or EDTA.
- the divalent metal cation is one more of Mg 2+ , Zn 2+ or Ca 2+ .
- the agent comprises MSA.
- the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a corresponding plurality of the modified immune cell that does not comprise the agent.
- the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell upon freeze-thaw cycle as compared to a corresponding the modified immune cell that does not comprise the agent.
- the agent is a cyropreservation agent and/or a hypothermic preservation agent.
- the cyropreservation agent nor the hypothermic preservation agent cause not more than 10% or 20% of cell death in a the modified immune cell comprising the agent compared to a corresponding the modified immune cell that does not comprise the agent before any freeze-thaw cycles.
- at least about 70%, about 80%, or about 90% of the modified immune cells are viable after up to 1, 2, 3,
- the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- the agent is albumin.
- the albumin is mouse, bovine, or human albumin.
- the agent is human albumin.
- the agent is one or more of: a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L-arginine, L- glutamine, or EDTA.
- the divalent metal cation is one more of Mg 2+ , Zn 2+ or Ca 2+ .
- the agent is one or more of: sodium pyruvate, adenine, trehalose, dextrose, mannose, sucrose, human serum albumin (HSA), DMSO, HEPES, glycerol, glutathione, inosine, dibasic sodium phosphate, monobasic sodium phosphate, sodium metal ions, potassium metal ions, magnesium metal ions, chloride, acetate, gluoconate, sucrose, potassium hydroxide, or sodium hydroxide.
- the agent is one or more of: Sodium pyruvate, adenine, Rejuvesol®, trehalose, dextrose, mannose, sucrose, human serum albumin (HSA), PlasmaLyte®, DMSO, Cryostor® CS2, Cryostor® CS5, Cryostor® CS10, Cryostor® CS15, HEPES, glycerol, glutathione, HypoThermosol®.
- the modified immune cells are further modified to increase expression of one or more of co-stimulatory molecules.
- the co- stimulatory molecule is B7-H2 (ICOSL), B7-1 (CD80), B7-2 (CD86), CD70, LIGHT, HVEM, CD40, 4-1BBL, OX40L, TL1A, GITRL, CD30L, TIM4, SLAM, CD48, CD58, CD155, or CD112.
- the cell comprises a nucleic acid that results in increased expression of the one or more co-stimulatory molecules.
- the immune cell is a T cell, a dendritic cell, a monocyte, a macrophage, a myeloid cell, a granulocyte, a neutrophil, a mast cell, a natural killer cell, an innate lymphoid cell, a basophil, or a hematopoetic precursor cell.
- the immune cell is not a B cell.
- the immune cell is a T cell.
- the immune cell other than a B cell.
- the modified T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells, or natural killer T cells.
- the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells , CD45RA+ T cells, CD45RO+ T cells, and gd-T cells.
- MHC expression in allogeneic T cells can result in an innate immune response mounted in an individual in response to their administrations, and will result in a shortened half-life of such T cells.
- the T cell comprises a further modification to modulate MHC class I expression.
- the T cell comprises a further modification to modulate MHC class II expression. In some embodiments, the T cell comprises a further modification to reduce MHC class I and/or MHC class II expression. In particular embodiments, the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease. In some embodiments, the
- T cell comprises a further modification to increase MHC class I and/or MHC class II expression.
- the further modification comprises increasing MHC class I and/or MHC class II expression using mRNA, plasmid DNA, or cDNA.
- an innate immune response mounted in an individual in response to administration, in an allogeneic context, of the further modified T cells is reduced compared to an innate immune response mounted in an individual in response to administration, in an allogeneic context, of
- the circulating half-life of the further modified T cells in an individual to which they were administered is increased compared to the circulating half-life of corresponding modified T cells that do not comprise the further modification in an individual to which they were administered.
- the modified T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells, or natural killer T cells.
- the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells , CD45RA+ T cells, CD45RO+ T cells, or gd-T cells.
- .Immune cells and other cells can be used as a source of autologous or allogeneic cells.
- the modified immune cell is allogeneic to the individual.
- the modified immune cell is autologous to the individual.
- the individual to be treated is pre-conditioned to have decreased inflammation or a modulated immune response.
- PBMCs may be isolated by leukapheresis from whole blood obtained from an individual. Also provided are PBMC compositions are reconstituted by mixing different pools of PBMCs from the same individual or different individuals. In other examples, PBMCs may also be reconstituted by mixing different populations of cells into a mixed cell composition with a generated profile. In some embodiments, the populations of cells used for reconstituting PBMCs are mixed populations of cells (such as a mixture of one or more of T cells, B cells, NK cells or monocytes). In some embodiments, the populations of cells used for reconstituting PBMCs are purified populations of cells (such as purified T cells, B cells, NK cells or monocytes).
- the different populations of cells used in reconstituting a PBMC composition can be isolated from the same individual (e.g. autologous) or isolated from different individuals (e.g. allogenic and/or heterologous).
- the immune cell is a plurality of PBMCs
- the plurality of input PBMCs comprises one or more of T cells, B cells, NK cells, monocytes, dendritic cells or NK-T cells.
- the plurality of input PBMCs comprises T cells, B cells, NK cells, monocytes, dendritic cells or NK-T cells.
- the plurality of input PBMCs comprises one or more of CD3+ T cells, CD20+ B cells, CD14+ monocytes, CD56+ NK cells.
- the plurality of input PBMCs comprises T cells, B cells, NK cells and monocytes, and the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in the plurality of input PBMCs is essentially the same as the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in whole blood.
- the plurality of input PBMCs comprises T cells, B cells, NK cells and monocytes, and the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in the plurality of input PBMCs is essentially the same as the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in a leukapheresis product from whole blood.
- the plurality of input PBMCs comprises T cells, B cells, NK cells and monocytes, and the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in the plurality of input PBMCs differs by not more than any one of 1%, 2%, 5%, 10% 15%, 20%, 25%, 30%, 40%, or 50% from the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in whole blood.
- the plurality of input PBMCs comprises T cells, B cells, NK cells and monocytes, and the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in the plurality of input PBMCs differs by not more than any one of 10% from the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in whole blood.
- the plurality of input PBMCs comprises T cells, B cells, NK cells and monocytes, and the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in the plurality of input PBMCs differs by not more than any one of 1%, 2%, 5%, 10% 15%, 20%, 25%, 30%, 40%, or 50% from the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in a leukapheresis product from whole blood.
- the plurality of input PBMCs comprises T cells, B cells, NK cells and monocytes, and the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in the plurality of input PBMCs differs by not more than any one of 10% from the ratio of T cells, B cells, NK cells and monocytes to the total number of PBMCs in a leukapheresis product from whole blood.
- the immune cell is a plurality of PBMCs
- about 25% to about 70% of the modified PBMCs are T cells. In some embodiments, about 2.5% to about 14% of the modified
- PBMCs are B cells. In some embodiments, about 3.5% to about 35% of the modified PBMCs are NK cells. In some embodiments, about 4% to about 25% of the modified PBMCs are NK cells. In some embodiments according to any one of the methods or compositions described herein, wherein the immune cell is a plurality of PBMCs, at least about 90% to about 99% of the input PBMCs consist of T cells, B cells, NK cells and monocytes. In some embodiments, at least any one of about 80% to about 85%, about 85% to about 90%, about 90% to about 95% or about 95% to about 99% of the input PBMCs consist of T cells, B cells, NK cells and
- monocytes In some embodiments, at least about any one of 80%, 81%, 82%, 83%, 84%, 85%,
- PBMCs consist of T cells, B cells, NK cells and monocytes. In some embodiments, at least about 90% of the input PBMCs consist of T cells, B cells, NK cells and monocytes. In some embodiments, the input PBMCs consist of T cells, B cells, NK cells and monocytes.
- the immune cell is a plurality of PBMCs
- at least about 90% to about 99% of the modified PBMCs consist of T cells, B cells, NK cells and monocytes.
- at least any one of about 80% to about 85%, about 85% to about 90%, about 90% to about 95% or about 95% to about 99% of the modified PBMCs consist of T cells, B cells, NK cells and monocytes.
- the modified PBMCs consist of T cells, B cells, NK cells and monocytes. In some embodiments, at least about 90% of the modified PBMCs consist of T cells, B cells, NK cells and monocytes. In some embodiments, the modified PBMCs consist of T cells, B cells, NK cells and monocytes.
- the immune cell is a plurality of PBMCs, at least about any one of 15%, 20%,
- the input PBMCs are T cells. In some embodiments, at least about 25% of the input PBMCs are T cells. In some embodiments, at least about any one of 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 4%, 5%, 6%, 7%, 7.5%,
- the input PBMCs are B cells.
- at least about 2.5% of the input PBMCs are B cells.
- at least about any one of 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 4%, 5%, 6%, 7%, 7.5%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, or 30% of the input PBMCs are B cells.
- at least about 2.5% of the input PBMCs are B cells.
- 30% of the input PBMCs are NK cells. In some embodiments, at least about 3.5% of the input PBMCs are NK cells. In some embodiments, at least about any one of 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12%, 14%, 16%, 18%, 20%, 25%, 30%, 35% or 40% of the input PBMCs are monocytes. In some embodiments, at least about 4% of the input PBMCs are monocytes.
- At least about 25 % of the input PBMCs are T cells; at least about 2.5 % of the input PBMCs are B cells; at least about 3.5% of the input PBMCs are NK cells; and at least about 4% of the input PBMCs are monocytes.
- the immune cell is a plurality of PBMCs
- at least about any one of 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, or 70% of the modified PBMCs are T cells.
- at least about 20% of the modified PBMCs are T cells.
- At least about any one of 0.25%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 4%, 5%, 6%, 7%, 7.5%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25% or 30% of the modified PBMCs are B cells.
- at least about 2% of the modified PBMCs are B cells.
- 19%, 20%, 25%, or 30% of the modified PBMCs are NK cells.
- at least about 3% of the modified PBMCs are NK cells.
- the modified PBMCs are monocytes. In some embodiments, at least about 3% of the modified PBMCs are monocytes. In some embodiments, at least about 20 % of the modified PBMCs are T cells; at least about 2 % of the modified PBMCs are B cells; at least about 3 % of the modified PBMCs are NK cells; and at least about 3% of the modified PBMCs are
- the immune cell is a plurality of PBMCs
- not more than about any one of 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or 90% of the input PBMCs are T cells.
- not more than about 70% of the input PBMCs are T cells.
- the input PBMCs are B cells. In some embodiments, not more than about 14 % of the input PBMCs are B cells. In some embodiments, not more than about any one of 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% or 60% of the input PBMCs are NK cells. In some embodiments, not more than about 35% of the input PBMCs are NK cells. In some embodiments, not more than about any one of 5%, 10%, 12%, 14%, 16%, 18%, 20%,
- the input PBMCs are monocytes.
- not more than about 4% of the input PBMCs are monocytes.
- not more than about 25 % of the input PBMCs are T cells; not more than about 2.5 % of the input PBMCs are B cells; not more than about 3.5% of the input PBMCs are NK cells; and not more than about 4% of the input PBMCs are monocytes.
- the immune cell is a plurality of PBMCs
- not more than about any one of 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, or 70% of the modified PBMCs are T cells.
- not more than about 20% of the modified PBMCs are T cells.
- 20%, 25% or 30% of the modified PBMCs are B cells. In some embodiments, not more than about 2% of the modified PBMCs are B cells. In some embodiments, not more than about any one of 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 4%, 5%, 6%, 7%, 7.5%, 8%, 9%, 10%, 11%, 12%, 13%,
- NK cells 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, or 30% of the modified PBMCs are NK cells. In some embodiments, not more than about 3% of the modified PBMCs are NK cells. In some embodiments, not more than about any one of 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%,
- the modified PBMCs are monocytes. In some embodiments, not more than about 3% of the modified PBMCs are monocytes. In some embodiments, not more than about 20 % of the modified PBMCs are T cells; not more than about 2 % of the modified PBMCs are B cells; not more than about 3 % of the modified PBMCs are NK cells; and not more than about 3% of the modified PBMCs are monocytes.
- the immune cell is a plurality of PBMCs, about any one of 20% to 25%, 25% to
- 65%, 65% to 70%, or 70% to 75% of the modified PBMCs are T cells. In some embodiments, about 25% to about 70% of the modified PBMCs are T cells. In some embodiments, about any one of 1% to 2.5%, 2.5% to 4%, 4% to 6%, 6% to 8%, 8% to 10%, 10% to 12%, 12% to 14%, 14% to 16%, 16% to 20% or 20% to 25% of the modified PBMCs are B cells. In some embodiments, about 2.5% to about 14% of the modified PBMCs are B cells. In some embodiments, about any one of 1% to 2%, 2% to 3.5%, 3.5% to 5%, 5% to 8%, 8% to 10%,
- 10% to 12%, 12% to 14%, 14% to 16%, 16% to 20% or 20% to 25% of the modified PBMCs are B cells. In some embodiments, about 3.5% to about 35% of the modified PBMCs are NK cells. In some embodiments, about any one of 2% to 4%, 4% to 6%, 6% to 8%, 8% to 10%, 10% to 12%, 12% to 14%, 14% to 16%, 16% to 20%, 20% to 25%, 25% to 30%, 30% to 35%, or 35% to 40% of the modified PBMCs are monocytes. In some embodiments, about 4% to about 25% of the modified PBMCs are monocytes.
- PBMCs can also be generated after manipulating the composition of a mixed cell population of mononuclear blood cells (such as lymphocytes and monocytes).
- the input PBMCs are generated after reducing (such as depleting) certain subpopulations (such as B cells) within a mixed cell population of mononuclear blood cells.
- the composition in a mixed cell poplation of mononuclear blood cells in an individual can be manipulated to make the cell population more closely resemble a leukapheresis product from whole blood in the same individual.
- composition in a mixed cell poplation of mononuclear blood cells can also be manipulated to make the cell population more closely resemble human PBMCs isolated from a leukapheresis product from human whole blood.
- the construction-mediated delivery does not differentially modulate the viability of different subpopulations (such as B cells, T cells, NK cells or monocytes) within PBMCs in a significant manner.
- the conditioning process does not differentially modulate the viability of different subpopulations within PBMCs in a significant manner.
- the further addition of agents does not differentially modulate the viability of various subpopulations within PBMCs in a significant manner.
- the percentage of T cells within the plurality of modified PBMCs and the percentage of T cells within the plurality of input PBMCs differ by no more than about 10% by number. In some embodiments, the percentage of T cells within the plurality of modified PBMCs and the percentage of T cells within the plurality of input PBMCs differ by no more than about any one of 5%, 8%, 10%, 12%, 14%, 16%, 18% or 20% by number. In some embodiments, the percentage of B cells within the plurality of modified PBMCs and the percentage of B cells within the plurality of input PBMCs differ by no more than about 10% by number.
- the percentage of B cells within the plurality of modified PBMCs and the percentage of B cells within the plurality of input PBMCs differ by no more than about any one of 5%, 8%, 10%, 12%, 14%, 16%, 18% or 20% by number.
- the percentage of NK cells within the plurality of modified PBMCs and the percentage of NK cells within the plurality of input PBMCs differ by no more than about 10% by number.
- the percentage of NK cells within the plurality of modified PBMCs and the percentage of NK cells within the plurality of input PBMCs differ by no more than about any one of 5%, 8%, 10%, 12%, 14%, 16%, 18% or 20% by number.
- the percentage of monocytes within the plurality of modified PBMCs and the percentage of monocytes within the plurality of input PBMCs differ by no more than about 10% by number.
- the percentage of monocytes within the plurality of modified PBMCs and the percentage of monocytes within the plurality of input PBMCs differ by no more than about any one of 5%, 8%, 10%, 12%, 14%, 16%, 18% or 20% by number.
- the plurality of modified PBMCs is conditioned.
- the plurality of modified PBMCs is matured.
- the plurality of PBMCs is conditioned subsequent to constriction mediated delivery.
- the process of preparing the plurality of modified PBMCs further comprises incubating the plurality of modified PBMCs comprising the antigen and/or adjuvant with a second adjuvant for a sufficient time for the modified PBMCs comprising the antigen to condition, thereby generating the conditioned plurality of modified PBMCs comprising the antigen and/or the adjuvant.
- the process further comprises isolating the plurality of modified PBMCs comprising the antigen and/or the adjuvant from the cell suspension before incubation with the adjuvant to condition the modified PBMCs.
- the concentration of antigen incubated with the modified PBMCs is between about 0.01 mM and about 10 mM.
- the concentration of antigen incubated with the modified PBMCs is any of less than about 0.01 pM, about 0.1 mM, about 1 mM, about 10 mM, about 100 mM, about 1 mM or about 10 mM.
- the concentration of antigen incubated with the modified PBMCs is greater than about 10 mM.
- the concentration of antigen incubated with the modified PBMCs is any of between about 0.01 mM and about 0.1 mM, between about 0.1 mM and about 1 mM, between about 1 mM and about 10 mM, between about 10 mM and about 100 mM, between about 100 mM and about 1 mM, or between 1 mM and about 10 mM. In some embodiments, the concentration of antigen incubated with the modified PBMCs is between about 0.1 mM and about 1 mM. In some embodiments, the concentration of antigen incubated with the modified PBMCs is between about 0.1 mM and about 10 mM. In some embodiments, the concentration of antigen incubated with the modified PBMCs is 1 mM.
- the plurality of modified PBMCs is incubated with the adjuvant for about 1 to about 24 hours for the modified PBMCs to condition. In some embodiments, the plurality of modified PBMCs is incubated with the adjuvant for about 2 to about 10 hours for the modified PBMCs to condition. In some embodiments, the plurality of modified PBMCs is incubated with the adjuvant for about 3 to about 6 hours for the modified PBMCs to condition.
- the plurality of modified PBMCs is incubated with the adjuvant for any one of about 1 hour, 2 hours, 3 hours, 3.5 hours, 4 hours, 4.5 hours, 5 hours, 5.5 hours, 6 hours, 8 hours, 12 hours, 16 hours, 20 hours, or 24 hours for the modified PBMCs to condition. In some embodiments, the plurality of modified PBMCs is incubated with the adjuvant for about 4 hours for the modified PBMCs to condition.
- the process of preparing the plurality of modified PBMC further comprises incubating a plurality of input
- a conditioned plurality of modified PBMCs comprising an antigen, prepared by a process comprising the steps of: a) incubating a plurality of input PBMCs with an adjuvant for a sufficient time for the input PBMCs to condition, thereby generating a conditioned plurality of input PBMCs; b) passing a cell suspension comprising the conditioned plurality of input PBMCs through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input PBMCs in the suspension, thereby causing perturbations of the input PBMCs large enough for the antigen to pass through to form a conditioned plurality of perturbed input PBMCs; and c) incubating the conditioned plurality of perturbed input PBMCs with
- the concentration of antigen incubated with the input PBMCs is between about 0.01 mM and about 10 mM.
- the concentration of antigen incubated with the input PBMCs is between about 0.01 mM and about 10 mM.
- concentration of antigen incubated with the input PBMCs is any of less than about 0.01 mM, about 0.1 pM, about 1 pM, about 10 pM, about 100 pM, about 1 mM or about 10 mM. In some embodiments, the concentration of antigen incubated with the input PBMCs is greater than about 10 mM.
- the concentration of antigen incubated with the input PBMCs is any of between about 0.01 pM and about 0.1 pM, between about 0.1 pM and about 1 pM, between about 1 pM and about 10 pM, between about 10 pM and about 100 pM, between about 100 pM and about 1 mM, or between 1 mM and about 10 mM. In some embodiments, the concentration of antigen incubated with the input PBMCs is between about 0.1 pM and about 1 mM. In some embodiments, the concentration of antigen incubated with the input PBMCs is between about 0.1 pM and about 10 pM. In some embodiments, the concentration of antigen incubated with the input PBMCs is 1 pM.
- the plurality of input PBMCs is incubated with the adjuvant for about 1 to about 24 hours for the input PBMCs to condition. In some embodiments, the plurality of input PBMCs is incubated with the adjuvant for about 2 to about 10 hours for the input PBMCs to condition. In some embodiments, the plurality of input PBMCs is incubated with the adjuvant for about 3 to about 6 hours for the input PBMCs to condition.
- the plurality of input PBMCs is incubated with the adjuvant for any one of about 1 hour, 2 hours, 3 hours, 3.5 hours, 4 hours, 4.5 hours, 5 hours, 5.5 hours, 6 hours, 8 hours, 12 hours, 16 hours, 20 hours, or 24 hours for the input PBMCs to condition. In some embodiments, the plurality of input PBMCs is incubated with the adjuvant for about 4 hours for the input PBMCs to condition.
- a conditioned plurality of PBMCs comprising an antigen, prepared by incubating the plurality of PBMCs comprising the antigen with an adjuvant for a sufficient time for the PBMCs to condition, thereby generating the conditioned plurality of PBMCs comprising the antigen.
- a conditioned plurality of PBMCs comprising an antigen, prepared by incubating the plurality of PBMCs with an adjuvant for a sufficient time for the PBMCs to condition prior to introducing the antigen to the PBMCs, thereby generating the conditioned plurality of PBMCs comprising the antigen.
- the concentration of antigen incubated with the PBMCs is between about 0.01 mM and about 10 mM.
- concentration of antigen incubated with the PBMCs is between about 0.01 mM and about 10 mM.
- the concentration of antigen incubated with the PBMCs is any of less than about 0.01 pM, about 0.1 pM, about 1 pM, about 10 pM, about 100 pM, about 1 mM or about 10 mM. In some embodiments, the concentration of antigen incubated with the PBMCs is greater than about 10 mM.
- the concentration of antigen incubated with the PBMCs is any of between about 0.01 pM and about 0.1 pM, between about 0.1 pM and about 1 pM, between about 1 pM and about 10 pM, between about 10 pM and about 100 pM, between about 100 pM and about 1 mM, or between 1 mM and about 10 mM. In some embodiments, the concentration of antigen incubated with the PBMCs is between about 0.1 pM and about 1 mM. In some embodiments, the concentration of antigen incubated with the PBMCs is between about 0.1 pM and about 10 pM. In some embodiments, the concentration of antigen incubated with the PBMCs is 1 pM.
- the immune cell is a plurality of PBMCs
- the plurality of PBMCs is incubated with the adjuvant for about 1 to about 24 hours for the PBMCs to condition.
- the plurality of PBMCs is incubated with the adjuvant for about 2 to about 10 hours for the PBMCs to condition. In some embodiments, the plurality of PBMCs is incubated with the adjuvant for about 3 to about 6 hours for the PBMCs to condition. In some
- the plurality of PBMCs is incubated with the adjuvant for any one of about 1 hour, 2 hours, 3 hours, 3.5 hours, 4 hours, 4.5 hours, 5 hours, 5.5 hours, 6 hours, 8 hours, 12 hours, 16 hours, 20 hours, or 24 hours for the PBMCs to condition. In some embodiments, the plurality of PBMCs is incubated with the adjuvant for about 4 hours for the PBMCs to condition. [0254] In some embodiments, one or more co-stimulatory molecules are upregulated in the conditioned plurality of modified PBMCs compared to an unconditioned plurality of modified
- one or more co-stimulatory molecules are upregulated in a subpopulation of cells in the conditioned plurality of modified PBMCs compared to the subpopulation of cells in an unconditioned plurality of modified PBMCs. In some embodiments, one or more co-stimulatory molecules are upregulated in the B cells of the conditioned plurality of modified PBMCs compared to the B cells in an unconditioned plurality of modified PBMCs.
- the co-stimulatory molecule is CD80 and/or CD86. In some embodiments, the co-stimulatory molecule is CD80 and/or CD86. In some
- the co-stimulatory molecule is CD86.
- CD86 is upregulated in the B cells of the conditioned plurality of modified PBMCs by about 1.2- fold, 1.5-fold, 1.8-fold, 2-fold, 3-fold, 4-fold, 5-fold, 8-fold, or more than lO-fold compared to the B cells in an unconditioned plurality of modified PBMCs.
- the CD80 and/or CD86 is upregulated in the B cells of the conditioned plurality of modified PBMCs by any of about 1.2-fold to about 1.5-fold, about 1.5-fold to about 1.8-fold, about 1.8-fold to about
- the expression of one or more of IFN-g, IL-6, MCP-l, MPMb, PM0, or TNF-a is increased in the conditioned plurality of modified PBMCs compared to an unconditioned plurality of modified PBMCs.
- the expression of one or more of IFN-g, IL-6, MCP-l, MPMb, IP- 10, or TNF-a is increased a subpopulation of cells in the conditioned plurality compared to the subpopulation of cells in an unconditioned plurality of modified PBMCs. In some embodiments, the expression of one or more of IFN-g, IL-6, MCP-l, MPMb, PM0, or TNF-a is increased by about 1.2-fold,
- TNF-a is increased by any of about 1.2-fold to about 1.5-fold, about 1.5-fold to about 1.8-fold, about 1.8-fold to about 2-fold, about 2-fold to about 3-fold, about 3-fold to about 4-fold, about
- the present invention provides methods for treating and preventing an HPV-associated disease, and/or modulating the immune response in an individual with an HPV- associated disease comprising administering to the individual a composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly an HPV antigen and intracellularly an adjuvant.
- the cell is isolated from a patient, modified according to the methods disclosed, and introduced back into the patient. For example, a population of immune cells is isolated from a patient, passed through the constriction to achieve delivery of HPV antigen and adjuvant, and then re-infused into the patient to augment a therapeutic immune response to the HPV antigen.
- the cell is isolated from an individual with HPV-associated disease, modified according to the disclosed methods, and introduced back into the individual.
- a population of immune cells is isolated from an individual with HPV-associated disease, passed through the constriction to achieve delivery of HPV antigen and adjuvant, and then re-infused into the patient to induce or enhance immune response to the HPV antigen in the individual.
- the HPV antigen and/or adjuvant to deliver are purified.
- the compound is at least about 60% by weight (dry weight) the compound of interest.
- the purified compound is at least about 75%, 90%, or 99% the compound of interest.
- the purified compound is at least about 90%, 91%, 92%, 93%, 94%, 95%, 98%, 99%, or 100% (w/w) the compound of interest. Purity is determined by any known methods, including, without limitation, column chromatography, thin layer chromatography, HPLC analysis, NMR, mass spectrometry, or SDS-PAGE.
- Purified DNA or RNA is defined as DNA or RNA that is free of exogenous nucleic acids, carbohydrates, and lipids.
- the invention provides methods of treating an individual with an HPV-associated disease by introducing the cell, modified by passing through a constriction such that an HPV antigen and an adjuvant enters the cell, to the individual.
- the cell is an autologous cell.
- the immune cell is isolated from an individual (e.g, a patient), modified according to the methods disclosed, and introduced back into the individual.
- the immune cell is isolated from an individual, modified according to the disclosed methods, and introduced back into the same individual.
- the cell is an allogeneic cell.
- the cell is isolated from a different individual, modified according to the methods disclosed, and introduced into the first individual (e.g., the patient).
- the cell is isolated from an individual, modified according to the disclosed methods, and introduced into a different individual.
- the device may be implanted in a vascular lumen, e.g., an in-line stent in an artery or vein.
- the methods are used as part of a bedside system for ex vivo treatment of patient cells and immediate reintroduction of the cells into the patient.
- the method can be implemented in a typical hospital laboratory with a minimally trained technician.
- a patient operated treatment system can be used.
- the invention provides a system comprising one or more of the constriction, an immune cell suspension, HPV antigens or adjuvants for use in the methods disclosed herein.
- the system can include any embodiment described for the methods disclosed above, including microfluidic channels or a surface having pores to provide cell -deforming constrictions, cell suspensions, cell perturbations, delivery parameters, compounds, and/or applications etc.
- the cell -deforming constrictions are sized for delivery to immune cells.
- the delivery parameters such as operating flow speeds, cell and compound concentration, velocity of the cell in the constriction, and the composition of the cell suspension (e.g., osmolarity, salt concentration, serum content, cell concentration, pH, etc.) are optimized for maximum response of a compound for suppressing an immune response or inducing tolerance.
- kits or articles of manufacture for use in treating individuals with an HPV-associated disease.
- the kit comprises a modified immune cell comprising intracellularly an HPV antigen and intracellularly an adjuvant.
- the kit comprises one or more of the constriction, an immune cell suspension, HPV antigens or adjuvants for use in generating modified immune cells for use in treating an individual with an HPV-associated disease.
- the kits comprise the compositions described herein (e.g. a microfluidic channel or surface containing pores, cell suspensions, and/or compounds) in suitable packaging.
- suitable packaging materials are known in the art, and include, for example, vials (such as sealed vials), vessels, ampules, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags), and the like.
- manufacture may further be sterilized and/or sealed.
- kits comprising components of the methods described herein and may further comprise instructions for performing said methods treat an individual with an HPV-associated disease and/or instructions for introducing an HPV antigen and an adjuvant into an immune cell.
- the kits described herein may further include other materials, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for performing any methods described herein; e.g., instructions for treating an individual with an HPV-associated disease or instructions for modifying an immune cell to contain intracellularly an HPV antigen and intracellularly an adjuvant.
- Embodiment 1 A method for treating a human papilloma virus (HPV)-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly.
- HPV human papilloma virus
- Embodiment 2 A method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly.
- Embodiment 3 A method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly.
- Embodiment 4 A method for treating an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly;
- modified immune cells are prepared by
- Embodiment 5 A method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly;
- modified immune cells are prepared by
- Embodiment 6 A method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly;
- modified immune cells are prepared by
- Embodiment 7 The method of any one of embodiments 4 to 6, wherein the diameter of the constriction is less than the diameter of the cell.
- Embodiment 8 The method of any one of embodiments 4-7, wherein the diameter of the constriction is about 20% to 99% of the diameter of the cell.
- Embodiment 9 The method of any one of embodiments 4-8, wherein the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell.
- Embodiment 10 The method of any one of embodiments 4-9, wherein the constriction is in a channel.
- Embodiment 11 The method of any one of embodiments 4-10, wherein a deforming force is applied to the input cell as it passes through the constriction.
- Embodiment 12 The method of any of embodiments 1-11, wherein the HPV antigen and/or the adjuvant are present in the cytosol and/or endosomes.
- Embodiment 13 The method of any one of embodiments 1-12, wherein the antigen and/or adjuvant are present in multiple compartments of the cell.
- Embodiment 14 The method of any one of embodiments 1-13, wherein the modified immune cell further comprises an HPV antigen and/or an adjuvant on the outside of the cell.
- Embodiment 15 The method of any one of embodiments 1-14, wherein the concentration of adjuvant incubated with the perturbed input cell is between about 0.1 mM and about 1 mM.
- Embodiment 16 The method of any one of embodiments 1-15, wherein the concentration of HPV antigen incubated with the perturbed input cell is between aboutO.1 pM and about 1 mM.
- Embodiment 17 The method of any one of embodiments 4-16, wherein the ratio of HPV antigen to adjuvant incubated with the perturbed input cell is between about 10000: 1 and about 1 : 10000.
- Embodiment 18 The method of embodiment 3 or 6, wherein the immune response is enhanced.
- Embodiment 19 The method of embodiment 18, wherein the immune response to the HPV antigen is enhanced.
- Embodiment 20 The method of any one of embodiments 1-19, wherein the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists or poly I:C.
- Embodiment 21 The method of embodiment 20, wherein the adjuvant is CpG
- Embodiment 22 The method of embodiment 21, wherein the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006.
- Embodiment 23 The method of any one of embodiments 1-22, wherein the modified immune cell comprises more than one adjuvant.
- Embodiment 24 The method of any one embodiments 1-23, wherein the HPV antigen is a pool of multiple polypeptides that elicit a response against the same and or different HPV antigens.
- Embodiment 25 The method of embodiment 24, wherein an antigen in the pool of multiple antigens does not decrease the immune response directed toward other antigens in the pool of multiple antigens.
- Embodiment 26 The method of any one of embodiments 1-25, wherein the HPV antigen is a polypeptide comprising an antigenic HPV epitope and one or more heterologous peptide sequences.
- Embodiment 27 The method of any one of embodiments 1-26, wherein the HPV antigen complexes with itself, with other antigens, or with the adjuvant.
- Embodiment 28 The method of any one of embodiments 1-27, wherein the HPV is antigen is derived from a cell lysate.
- Embodiment 29 The method of any one of embodiments 1-28, wherein the HPV antigen is an HPV- 16 or an HPV- 18 antigen.
- Embodiment 30 The method of embodiment 29, wherein the HPV antigen is comprised of an HLA-A2-specific epitope.
- Embodiment 31 The method of any one of embodiments 1-30, wherein the HPV antigen is an HPV E6 antigen or an HPV E7 antigen.
- Embodiment 32 The method of any one of embodiments 1-31, wherein the modified immune cell comprises an HPV E6 antigen and an HPV E7 antigen.
- Embodiment 33 The method of any one of embodiments 1-32, wherein the HPV antigen is a polypeptide comprising an antigenic epitope that is flanked on the N-terminus and/or the C-terminus by one or more heterologous peptide sequences.
- Embodiment 34 The method of embodiment 33, wherein the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18- 26.
- Embodiment 35 The method of embodiment 34, wherein the HPV antigen comprises an amino acid sequence with at least 90% similarity to SEQ ID NO:23.
- Embodiment 36 The method of any one of embodiments 1-35, wherein the HPV antigen is capable of being processed into an MHC class I-restricted peptide.
- Embodiment 37 The method of any one of embodiments 1-36, wherein the HPV antigen is capable of being processed into an MHC class II-restricted peptide.
- Embodiment 38 The method of any one of embodiments 1-37, wherein the modified immune cell comprises the adjuvant at a concentration between about 0.1 mM and about 1 mM.
- Embodiment 39 The method of any one of embodiments 1-38, wherein the modified immune cell comprises the HPV antigen at a concentration between about about 0.1 mM and about 1 mM.
- Embodiment 40 The method of any one of embodiments 1-39, wherein the ratio of the HPV antigen to the adjuvant is between about 10000: 1 to about 1 : 10000.
- Embodiment 41 The method of any one of embodiments 1-40, wherein the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a corresponding modified immune cell that does not comprise the agent.
- Embodiment 42 The method of embodiment 41, wherein the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- Embodiment 43 The method of embodiment 41, wherein the agent is albumin.
- Embodiment 44 The method of embodiment 43, wherein the albumin is mouse, bovine, or human albumin.
- Embodiment 45 The method of embodiment 41, wherein the agent is a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L-arginine, L- glutamine, or EDTA.
- Embodiment 46 The method of embodiments 41, wherein the agent comprises mouse serum albumin (MSA).
- MSA mouse serum albumin
- Embodiment 47 The method of any one of embodiments 1-46, wherein the modified immune cells are further modified to increase expression of one or more of co stimulatory molecules.
- Embodiment 48 The method of embodiment 47, wherein the co- stimulatory molecule is B7-H2, B7-1, B7-2, CD70, LIGHT, HVEM, CD40, 4-1BBL, OX40L, TL1A,
- GITRL CD30L, TIM4, SLAM, CD48, CD58, CD155, or CD112.
- Embodiment 49 The method of embodiments 47 or 48, wherein the cell comprises a nucleic acid that results in increased expression of the one or more co-stimulatory molecules.
- Embodiment 50 The method of any one of embodiments 1-49, wherein the immune cell is a T cell, a dendritic cell, a monocyte, a macrophage, a myeloid cell, a granulocyte, a neutrophil, a mast cell, a natural killer cell, an innate lymphoid cell, a basophil, or a
- Embodiment 51 The method of any one of embodiments 1-50, wherein the immune cell is not a B cell.
- Embodiment 52 The method of any one of embodiments 1-50, wherein the immune cell is a B cell.
- Embodiment 53 The method of any one of embodiments 1-51, wherein the immune cell is a T cell.
- Embodiment 54 The method of any one of embodiments 1-49, wherein the immune cells are a mixed cell population.
- Embodiment 55 The method of embodiment 54, wherein the immune cells are a plurality of PBMCs.
- Embodiment 56 The method of embodiment 53, wherein the T cell comprises a further modification to modulate MHC class I expression.
- Embodiment 57 The method of embodiment 53, wherein the T cell comprises a further modification to modulate MHC class II expression.
- Embodiment 58 The method of embodiment 56 or 57, wherein the T cell comprises a further modification to reduce MHC class I and/or MHC class II expression.
- Embodiment 59 The method of embodiment 56 or 57, wherein the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease.
- Embodiment 60 The method of embodiment 56 or 57, wherein the T cell comprises a further modification to increase MHC class I and/or MHC class II expression.
- Embodiment 61 The method of embodiment 56 or 57, wherein the further modification comprises increasing MHC class I and/or MHC class II expression using RNA or plasmid DNA.
- Embodiment 62 The method of any one of embodiments 53 and 56-59, wherein an innate immune response mounted in an individual in response to administration, in an allogeneic context, of the further modified T cells is reduced compared to an innate immune response mounted in an individual in response to administration, in an allogeneic context, of
- Embodiment 63 The method of any one of embodiments 53 and 56-59, wherein the circulating half-life of the further modified T cells in an individual to which they were administered is modulated compared to the circulating half-life of corresponding modified T cells that do not comprise the further modification in an individual to which they were administered.
- Embodiment 64 The method of any one of embodiments 53 and 56-63, wherein the T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells and natural killer T cells.
- Embodiment 65 The method of any one of embodiments 53 and 56-63, wherein the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD45RA+ T cells, CD45RO+ T cells, and gd-T cells.
- Embodiment 66 The method of any one of embodiments 1-65, wherein the modified cell is allogeneic to the individual.
- Embodiment 67 The method of any one of embodiments 1-65, wherein the modified cell is autologous to the individual.
- Embodiment 68 The method of any one of embodiments 1-67, wherein the individual is pre-conditioned to have modulated inflammation and/or a modulated immune response.
- Embodiment 69 The method of any one of embodiments 1-68, further comprising administering to the individual an adjuvant.
- Embodiment 70 The method of embodiment 69, wherein the adjuvant is IFNa or CpG ODN.
- Embodiment 71 The method of embodiment 69 or 70, wherein the composition comprising the modified immune cells and the adjuvant are administered simultaneously.
- Embodiment 72 The method of embodiment 69 or 70, wherein the composition comprising the modified immune cells and the adjuvant are administered sequentially.
- Embodiment 73 The method of embodiment 72, wherein the composition comprising the modified immune cells is administered prior to administering the adjuvant.
- Embodiment 74 The method of embodiment 72, wherein the composition comprising the modified immune cells is administered following administration of the adjuvant.
- Embodiment 75 The method of any one of embodiments 1-74, wherein the composition comprising the modified immune cells is administered in combination with administration of an immune checkpoint inhibitor.
- Embodiment 76 The method of embodiment 75, wherein the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered simultaneously.
- Embodiment 77 The method of embodiment 75, wherein the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered sequentially.
- Embodiment 78 The method of embodiment 77, wherein the composition comprising the modified immune cells is administered prior to administering the immune checkpoint inhibitor.
- Embodiment 79 The method of embodiment 77, wherein the composition comprising the modified immune cells is administered following administration of the immune checkpoint inhibitor.
- Embodiment 80 The method of any one of embodiments 75-79, wherein the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3, TIM- 3, TIGIT, VISTA, TIM1, B7-H4 (VTCN1) or BTLA.
- Embodiment 81 The method of any one of embodiments 1-80, wherein the composition comprising the modified immune cells is administered in combination with administration of a chemotherapy.
- Embodiment 82 The method of embodiment 81, wherein the composition comprising the modified immune cells and the chemotherapy are administered simultaneously.
- Embodiment 83 The method of embodiment 81, wherein the composition comprising the modified immune cells and the chemotherapy are administered sequentially.
- Embodiment 84 The method of embodiment 83, wherein the composition comprising the modified immune cells is administered prior to administering the chemotherapy.
- Embodiment 85 The method of embodiment 83, wherein the composition comprising the modified immune cells is administered following administration of the chemotherapy.
- Embodiment 86 The method of any one of embodiments 81 to 85, wherein the chemotherapy comprises a platinum based agent.
- Embodiment 87 The method of any one of embodiments 81 to 86, wherein the chemotherapy comprises cisplatin.
- Embodiment 88 The method of any one of embodiments 1-87, wherein
- composition comprising the modified immune cells to the individual results in activation and/or expansion of cytotoxic T lymphocytes (CTLs) specific for the HPV antigen.
- CTLs cytotoxic T lymphocytes
- Embodiment 89 The method of any one of embodiments 1-87, wherein
- composition comprising the modified immune cells to the individual results in activation and/or expansion of helper T (Th) cells specific for the antigen.
- Th helper T
- Embodiment 90 The method of any one of embodiments 1-89, wherein the effective amount of the composition comprises between about 1 c 106 and about 1 c 1012 modified immune cells.
- Embodiment 91 The method of any one of embodiments 1-90, wherein the method comprises multiple administrations of the composition comprising the modified immune cells.
- Embodiment 92 The method of embodiment 91, wherein the method comprises a first administration of the composition comprising the modified immune cells followed by a second administration of the composition comprising the modified immune cells.
- Embodiment 93 The method of embodiment 92, wherein the second administration is about one month following the first administration.
- Embodiment 94 The method of any one of embodiments 1-93, wherein the HPV- associated disease is an HPV-associated cancer.
- Embodiment 95 The method of embodiment 94, wherein the HPV-associated cancer is cervical cancer, anal cancer, oropharyngeal cancer, vaginal cancer, vulvar cancer, penile cancer, skin cancer or head and neck cancer.
- Embodiment 96 The method of any one of embodiments 1-95, wherein the HPV- associated disease is an HPV-associated infectious disease.
- Embodiment 97 A method for treating a human papilloma virus (HPV)-related disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- HPV human papilloma virus
- Embodiment 98 A method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- Embodiment 99 A method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- Embodiment 100 A method for treating an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NO: 1
- modified immune cells are prepared by a) passing a cell suspension comprising an input cell through a cell -deforming constriction, wherein a diameter of the constriction is a function of a diameter of the input cell in the suspension, thereby causing perturbations of the input cell large enough for the antigen to pass through to form a perturbed input cell;
- Embodiment 101 A method for preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25;
- modified immune cells are prepared by
- Embodiment 102 A method for modulating an immune response in an individual with an HPV-associated disease, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen comprising an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25;
- modified immune cells are prepared by
- Embodiment 103 The method of any one of embodiments 100-102, wherein the diameter of the constriction is less than the diameter of the cell.
- Embodiment 104 The method of any one of embodiments 100-103, wherein the diameter of the constriction is about 20% to 99% of the diameter of the cell.
- Embodiment 105 The method of any one of embodiments 100-104, wherein the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell.
- Embodiment 106 The method of any one of embodiments 100-105, wherein the constriction is in a channel.
- Embodiment 107 The method of any one of embodiments 100-106, wherein a deforming force is applied to the input cell as it passes through the constriction,
- Embodiment 108 The method of any one of embodiments 86-107, further comprising administering to the individual an adjuvant.
- Embodiment 109 The method of embodiment 108, wherein the adjuvant is IFNa or CpG ODN.
- Embodiment 110 The method of embodiment 108 or 109, wherein the composition comprising the modified immune cells and the adjuvant are administered simultaneously.
- Embodiment 111 The method of embodiment 108 or 109, wherein the composition comprising the modified immune cells and the adjuvant are administered sequentially.
- Embodiment 112. The method of embodiment 111, wherein the composition comprising the modified immune cells is administered prior to administering the adjuvant.
- Embodiment 113 The method of embodiment 111, wherein the composition comprising the modified immune cells is administered following administration of the adjuvant.
- Embodiment 114 The method of any one of embodiments 97-113, wherein the modified immune cell further comprises an adjuvant.
- Embodiment 115 The method of any one of embodiments 100-113, wherein the perturbed immune cell of step b is incubated with the HPV antigen and an adjuvant.
- Embodiment 116 The method of embodiment 114 or 115, wherein the HPV antigen and/or the adjuvant are present in the cytosol and/or endosomes.
- Embodiment 117 The method of any one of embodiments 114-116, wherein the antigen and/or adjuvant are present in multiple compartments of the cell.
- Embodiment 118 The method of any one of embodiments 114-117, wherein the modified immune cell further comprises an HPV antigen and/or an adjuvant on the outside of the cell.
- Embodiment 119 The method of any one of embodiments 115-118, wherein the concentration of adjuvant incubated with the perturbed input cell is between about 0.1 mM and about lmM.
- Embodiment 120 The method of any one of embodiments 115-119, wherein the concentration of HPV antigen incubated with the perturbed input cell is between about 0.1 mM and about lmM.
- Embodiment 121 The method of any one of embodiments 115-120, wherein the ratio of HPV antigen to adjuvant incubated with the perturbed input cell is between about 10000: 1 to about 1 : 10000.
- Embodiment 122 The method of embodiment 99 or 102, wherein the immune response is enhanced.
- Embodiment 123 The method of embodiment 122, wherein the immune response to the HPV antigen is enhanced.
- Embodiment 124 The method of any one of embodiments 114-123, wherein the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists or poly I:C.
- Embodiment 125 The method of embodiment 124, wherein the adjuvant is CpG ODN.
- Embodiment 126 The method of embodiment 125, wherein the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006.
- Embodiment 127 The method of any one of embodiments 114-126, wherein the modified immune cell comprises more than one adjuvant.
- Embodiment 128 The method of any one embodiments 97-127, wherein the HPV antigen is a pool of multiple polypeptides that elicit a response against the same and or different HPV antigens.
- Embodiment 129 The method of embodiment 128, wherein an antigen in the pool of multiple antigens does not decrease the immune response directed toward other antigens in the pool of multiple antigens.
- Embodiment 130 The method of any one of embodiments 97-129, wherein the HPV antigen is a polypeptide comprising an antigenic HPV epitope and one or more heterologous peptide sequences.
- Embodiment 131 The method of any one of embodiments 97-130, wherein the HPV antigen complexes with itself, with other antigens, or with the adjuvant.
- Embodiment 132 The method of any one of embodiments 97-131, wherein the HPV antigen is comprised of an HLA-A2-specific epitope.
- Embodiment 133 The method of any one of embodiments 97-132, wherein the HPV antigen is capable of being processed into an MHC class I-restricted peptide.
- Embodiment 134 The method of any one of embodiments 97-133, wherein the HPV antigen is capable of being processed into an MHC class II-restricted peptide.
- Embodiment 135. The method of any one of embodiments 114-134, wherein the modified immune cell comprises the adjuvant at a concentration between about 0.1 mM and about lmM.
- Embodiment 136 The method of any one of embodiments 97-135, wherein the modified immune cell comprises the HPV antigen at a concentration between about 0.1 pM and about lmM.
- Embodiment 137 The method of any one of embodiments 114-136, wherein the ratio of the HPV antigen to the adjuvant is between about 10000: 1 and about 1 : 10000.
- Embodiment 138 The method of any one of embodiments 97-137, wherein the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a corresponding modified immune cell that does not comprise the agent.
- Embodiment 139 The method of embodiment 138, wherein the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- Embodiment 140 The method of embodiment 138, wherein the agent is albumin.
- Embodiment 141 The method of embodiment 140, wherein the albumin is mouse, bovine, or human albumin.
- Embodiment 142 The method of embodiment 138, wherein the agent is a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L- arginine, L-glutamine, or EDTA.
- Embodiment 143 The method of embodiment 138, wherein the agent comprises MSA.
- Embodiment 144 The modified T cell of any one of embodiments 97-143, wherein the cells are further modified to increase expression of one or more of co-stimulatory molecules.
- Embodiment 145 The modified T cell of embodiment 144, wherein the co- stimulatory molecule is B7-H2 (ICOSL), B7-1 (CD80), B7-2 (CD86), CD70, LIGHT, HVEM, CD40, 4-1BBL, OX40L, TL1A, GITRL, CD30L, TIM4, SLAM, CD48, CD58, CD155, or CD112.
- B7-H2 ICOSL
- B7-1 CD80
- B7-2 CD86
- Embodiment 146 The modified T cell of embodiments 144 or 145, wherein the cell comprises a nucleic acid that results in increased expression of the one or more co-stimulatory molecules.
- Embodiment The method of any one of embodiments 97-146, wherein the immune cell is a T cell, a dendritic cell, a monocyte, a macrophage, a myeloid cell, a
- granulocyte a neutrophil, a mast cell, a natural killer cell, an innate lymphoid cell, a basophil, or a hematopoetic precursor cell.
- Embodiment 148 The method of any one of embodiments 97-147, wherein the immune cell is not a B cell.
- Embodiment 149 The method of any one of embodiments 97-148, wherein the immune cell is a B cell.
- Embodiment 150 The method of any one of embodiments 97-148, wherein the immune cell is a T cell.
- Embodiment 151 The method of any one of embodiments 97-148, wherein the immune cell is a mixed cell population.
- Embodiment 152 The method of embodiment 151, wherein the immune cell is a plurality of PBMCs.
- Embodiment 153 The method of embodiment 150, wherein the T cell comprises a further modification to modulate MHC class I expression.
- Embodiment 154 The method of embodiment 150, wherein the T cell comprises a further modification to modulate MHC class II expression.
- Embodiment 155 The method of embodiment 153 or 154, wherein the T cell comprises a further modification to reduce MHC class I and/or MHC class II expresion.
- Embodiment 156 The method of embodimentl53 or 154, wherein the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease.
- Embodiment 157 The method of embodiment 153 or 154, wherein the T cell comprises a further modification to increase MHC class I and/or MHC class II expression.
- Embodiment 158 The method of embodiment 153 or 154, wherein the further modification comprises increasing MHC class I and/or MHC class II expression using RNA or plasmid DNA.
- Embodiment 159 The method of any one of embodiments 150 and 153-156, wherein an innate immune response mounted in an individual in response to administration, in an allogeneic context, of the further modified T cells is reduced compared to an innate immune response mounted in an individual in response to administration, in an allogeneic context, of corresponding modified T cells that do not comprise the further modification.
- Embodiment 160 The method of any one of embodiments 150 and 153-156, wherein the circulating half-life of the further modified T cells in an individual to which they were administered is modulated compared to the circulating half-life of corresponding modified T cells that do not comprise the further modification in an individual to which they were administered.
- Embodiment 161 The method of any one of embodiments 150 and 153-160, wherein the T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells and natural killer T cells.
- Embodiment 162 The method of any one of embodiments 150 and 153-160, wherein the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells,
- CD45RA+ T cells CD45RO+ T cells
- gd-T cells CD45RA+ T cells, CD45RO+ T cells, and gd-T cells.
- Embodiment 163 The method of any one of embodiments 97-162, wherein the modified cell is allogeneic to the individual.
- Embodiment 164 The method of any one of embodiments 97-162, wherein the modified cell is autologous to the individual.
- Embodiment 165 The method of any one of embodiments 97-164, wherein the individual is pre-conditioned to have modulated inflammation and/or a modulated immune response.
- Embodiment 166 The method of any one of embodiments 97-165, wherein the composition comprising the modified immune cells is administered in combination with administration of an immune checkpoint inhibitor.
- Embodiment 167 The method of embodiment 166, wherein the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered simultaneously.
- Embodiment 168 The method of embodiment 166, wherein the composition comprising the modified immune cells and the immune checkpoint inhibitor are administered sequentially.
- Embodiment 169 The method of embodiment 168, wherein the composition comprising the modified immune cells is administered prior to administering the immune checkpoint inhibitor.
- Embodiment 170 The method of embodiment 168, wherein the composition comprising the modified immune cells is administered following administration of the immune checkpoint inhibitor.
- Embodiment 171 The method of any one of embodiments 152-156, wherein the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3, TIM- 3, TIGIT, VISTA, TIM1, B7-H4 (VTCN1) or BTLA.
- Embodiment 172 The method of any one of embodiments 97-171, wherein the composition comprising the modified immune cells is administered in combination with administration of a chemotherapy.
- Embodiment 173 The method of embodiment 172, wherein the composition comprising the modified immune cells and the chemotherapy are administered simultaneously.
- Embodiment 174 The method of embodiment 172, wherein the composition comprising the modified immune cells and the chemotherapy are administered sequentially.
- Embodiment 175. The method of embodiment 174, wherein the composition comprising the modified immune cells is administered prior to administering the chemotherapy.
- Embodiment 176 The method of embodiment 174, wherein the composition comprising the modified immune cells is administered following administration of the chemotherapy.
- Embodiment 177 The method of any one of embodiments 172 to 176, wherein the chemotherapy comprises cisplatin.
- Embodiment 178 The method of any one of embodiments 97-177, wherein administration of the composition comprising the modified immune cells to the individual results in activation and/or expansion of cytotoxic T lymphocytes (CTLs) specific for the HPV antigen.
- CTLs cytotoxic T lymphocytes
- Embodiment 179 The method of any one of embodiments 97-177 wherein administration of the composition comprising the modified immune cells to the individual results in activation and/or expansion of helper T (Th) cells specific for the HPV antigen.
- Th helper T
- Embodiment 180 The method of any one of embodiments 97-179, wherein the effective amount of the composition comprises between about 1 c 106 and about 1 c 1012 modified immune cells.
- Embodiment 18 The method of any one of embodiments 97-180, wherein the method comprises multiple administrations of the composition comprising the modified immune cells.
- Embodiment 182 The method of embodiment 181, wherein the method comprises a first administration of the composition comprising the modified immune cells followed by a second administration of the composition comprising the modified immune cells.
- Embodiment 183 The method of embodiment 182, wherein the second
- administration is about one month following the first administration.
- Embodiment 184 The method of any one of embodiments 97-183, wherein the HPV- associated disease is an HPV-associated cancer.
- Embodiment 185 The method of embodiment 184, wherein the HPV-associated cancer is cervical cancer, anal cancer, oropharyngeal cancer, vaginal cancer, vulvar cancer, penile cancer, skin cancer or head and neck cancer.
- Embodiment 186 A composition comprising modified immune cells, wherein the modified immune cells comprise intracellularly a CpG ODN and an HPV antigen with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- Embodiment 187 The composition in embodiment 166, wherein the HPV antigen comprises the amino acid sequence with at least 90% similarity to SEQ ID NO:23.
- Embodiment 188 The composition in embodiment 186 or 187, wherein the modified immune cells are prepared by
- Embodiment 189 The composition in embodiment 188, wherein the diameter of the constriction is less than the diameter of the cell.
- Embodiment 190 The composition of embodiment 188 or 189, wherein the diameter of the constriction is about 20% to about 99% of the diameter of the cell.
- Embodiment 191 The composition of any one of embodiments 188-190, wherein the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell.
- Embodiment 192 The composition of any one of embodiments 188-191, wherein the constriction is in a channel.
- Embodiment 193 The composition of any one of embodiments 188-192, wherein a deforming force is applied to the input cell as it passes through the constriction,
- Embodiment 194 The composition any one of embodiments 186-193, wherein the composition further comprises an adjuvant.
- Embodiment 195 The composition of any of embodiments 186-194, wherein the HPV antigen and/or the CpG ODN are present in the cytosol and/or endosomes.
- Embodiment 196 The composition of any one of embodiments 186-195, wherein the antigen and/or the CpG ODN are present in multiple compartments of the cell.
- Embodiment 197 The composition of any one of embodiments 186-196, wherein the modified immune cell further comprises an HPV antigen and/or a CpG ODN on the surface of the cell.
- Embodiment 198 The composition of any one of embodiments 188-197, wherein the concentration of CpG ODN incubated with the perturbed input cell is between about 0.1 mM and about 1 mM.
- Embodiment 199 The composition of any one of embodiments 188-198, wherein the concentration of HPV antigen incubated with the perturbed input cell is between about 0.1 pM and about 1 mM.
- Embodiment 200 The composition of any one of embodiments 188-199, wherein the ratio of HPV antigen to CpG ODN incubated with the perturbed input cell is between about 10000: 1 to about 1 : 10000.
- Embodiment 201 The composition of any one of embodiments 186-200, wherein the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006.
- Embodiment 202 The composition of any one of embodiments 186-201, wherein the modified immune cell comprises more than one adjuvant.
- Embodiment The composition of embodiment 202, wherein the adjuvant comprises CpG ODN, IFN-a, STING agonists, RIG-I agonists, or poly I:C.
- Embodiment 204 The composition of any one embodiments 186-203, wherein the HPV antigen is a pool of multiple polypeptides that elicit a response against the same and or different HPV antigens.
- Embodiment 205 The composition of embodiment 204, wherein an antigen in the pool of multiple antigens does not decrease the immune response directed toward other antigens in the pool of multiple antigens.
- Embodiment 206 The composition of any one of embodiments 186-205, wherein the HPV antigen is a polypeptide comprising an antigenic HPV epitope and one or more
- heterologous peptide sequences are heterologous peptide sequences.
- Embodiment 207 The composition of any one of embodiments 186-206, wherein the HPV antigen complexes with itself, with other antigens, with an adjuvant or with the CpG ODN.
- Embodiment 208 The composition of embodiment 186-207, wherein the HPV antigen is comprised of an HLA-A2-specific epitope.
- Embodiment 209 The composition of any one of embodiments 186-208, wherein the HPV antigen is a polypeptide comprising an antigenic epitope that is flanked on the N-terminus and/or the C-terminus by one or more heterologous peptide sequences.
- Embodiment 210 The composition of any one of embodiments 186-209, wherein the modified immune cell comprises the CpG ODN at a concentration between about 0.1 mM and about 1 mM.
- Embodiment 212 The composition of any one of embodiments 186-211, wherein the ratio of the HPV antigen to the CpG ODN is between about 10000: 1 to about 1 : 10000.
- Embodiment 213. A composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen, wherein the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18-25.
- Embodiment 214 The composition in embodiment 213, wherein the HPV antigen comprises the amino acid sequence with at least 90% similarity to SEQ ID NO:23.
- Embodiment 215. The composition in embodiment 213 or 214, wherein the modified immune cells are prepared by
- Embodiment 216 The composition in embodiment 215, wherein the diameter of the constriction is less than the diameter of the cell.
- Embodiment 217 The composition of any one of embodiments 215-216, wherein the diameter of the constriction is about 20% to about 99% of the diameter of the cell.
- Embodiment 218 The composition of any one of embodiments 215-217, wherein the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell.
- Embodiment 219. The composition of any one of embodiments 215-218, wherein the constriction is in a channel.
- Embodiment 220 The composition of any one of embodiments 215-219, wherein a deforming force is applied to the input cell as it passes through the constriction.
- Embodiment 22 The composition any one of embodiments 213-220, wherein the composition further comprises an adjuvant.
- Embodiment 222 The composition of any of embodiments 213-221, wherein the HPV antigen and/or the adjuvant are present in the cytosol and/or endosomes.
- Embodiment 22 The composition of any one of embodiments 213-222, wherein the antigen and/or adjuvant are present in multiple compartments of the cell.
- Embodiment 224 The composition of any one of embodiments 213-223, wherein the modified immune cell further comprises an HPV antigen and/or an adjuvant on the surface of the cell.
- Embodiment 225 The composition of any one of embodiments 215-224, wherein the concentration of adjuvant incubated with the perturbed input cell is between about 0.1 mM and about 1 mM.
- Embodiment 226 The composition of any one of embodiments 215-225, wherein the concentration of HPV antigen incubated with the perturbed input cell is between about 0.1 mM and about 1 mM.
- Embodiment 227 The composition of any one of embodiments 215-226, wherein the ratio of HPV antigen to adjuvant incubated with the perturbed input cell is between about 10000: 1 to about 1 : 10000.
- Embodiment 228 The composition of any one of embodiments 213-227, wherein the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists, or poly I:C.
- Embodiment 229. The composition of embodiment 228, wherein the adjuvant is CpG ODN.
- Embodiment 230 The composition of embodiment 229, wherein the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006.
- Embodiment 23 The composition of any one of embodiments 213-230, wherein the modified immune cell comprises more than one adjuvant.
- Embodiment 232 The composition of any one embodiments 213-231, wherein the HPV antigen is a pool of multiple polypeptides that elicit a response against the same and or different HPV antigens.
- Embodiment 233 The composition of embodiment 232, wherein an antigen in the pool of multiple antigens does not decrease the immune response directed toward other antigens in the pool of multiple antigens.
- Embodiment 23 The composition of any one of embodiments 213-233, wherein the HPV antigen is a polypeptide comprising an antigenic HPV epitope and one or more
- heterologous peptide sequences are heterologous peptide sequences.
- Embodiment 235 The composition of any one of embodiments 213-234, wherein the HPV antigen complexes with itself, with other antigens, or with the adjuvant.
- Embodiment 236 The composition of embodiment 213-235, wherein the HPV antigen is comprised of an HLA-A2-specific epitope.
- Embodiment 237 The composition of any one of embodiments 213-236, wherein the modified immune cell comprises the adjuvant at a concentration between about 0.1 mM and about 1 mM.
- Embodiment 238 The composition of any one of embodiments 213-237, wherein the modified immune cell comprises the HPV antigen at a concentration between about 0.1 mM and about 1 mM.
- Embodiment 239. The composition of any one of embodiments 213-238, wherein the ratio of the HPV antigen to the adjuvant is between about 10000: 1 to about 1 : 10000.
- Embodiment 240 The composition of any one of embodiments 186-239, wherein the HPV antigen is capable of being processed into an MHC class I-restricted peptide.
- Embodiment 241 The composition of any one of embodiments 186-240, wherein the HPV antigen is capable of being processed into an MHC class II-restricted peptide.
- Embodiment 242 The composition of any one of embodiments 186-241, wherein the modified immune cell further comprises an agent that enhances the viability and/or function of the modified immune cell as compared to a corresponding modified immune cell that does not comprise the agent.
- Embodiment 243 The composition of embodiment 242, wherein the agent is a compound that enhances endocytosis, a stabilizing agent or a co-factor.
- Embodiment 244 The composition of embodiment 242, wherein the agent is albumin.
- Embodiment 245. The composition of embodiment 244, wherein the albumin is mouse, bovine, or human albumin.
- Embodiment 246 The composition of embodiment 242, wherein the agent is a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L- arginine, L-glutamine, or EDTA.
- the agent is a divalent metal cation, glucose, ATP, potassium, glycerol, trehalose, D-sucrose, PEG1500, L- arginine, L-glutamine, or EDTA.
- Embodiment 247 The composition of embodiment 242, wherein the agent comprises MSA.
- Embodiment 248 The composition of any one of embodiments 186-247, wherein the cells are further modified to increase expression of one or more of co-stimulatory molecules.
- Embodiment 249. The composition of embodiment 248, wherein the co-stimulatory molecule is B7-H2 (ICOSL), B7-1 (CD80), B7-2 (CD86), CD70, LIGHT, HVEM, CD40, 4- 1BBL, OX40L, TL1A, GITRL, CD30L, TIM4, SLAM, CD48, CD58, CD155, or CD112.
- Embodiment 250 The composition of embodiments 248 or 249, wherein the cell comprises a nucleic acid that results in increased expression of the one or more co-stimulatory molecules.
- Embodiment 251 The composition of any one of embodiments 186-250, wherein the immune cell is a T cell, a dendritic cell, a monocyte, a macrophage, a myeloid cell, a
- granulocyte a neutrophil, a mast cell, a natural killer cell, an innate lymphoid cell, a basophil, or a hematopoetic precursor cell.
- Embodiment 252 The composition of any one of embodiments 186-251, wherein the immune cell is not a B cell.
- Embodiment 253 The composition of any one of embodiments 186-252, wherein the immune cell is a T cell.
- Embodiment 254 The composition of embodiment 253, wherein the T cell comprises a further modification to modulate MHC class I expression.
- Embodiment 255 The composition of embodiment 253, wherein the T cell comprises a further modification to modulate MHC class II expression.
- Embodiment 256 The composition of embodiment 254 or 255, wherein the T cell comprises a further modification to reduce MHC class I and/or MHC class II expression.
- Embodiment 257 The composition of embodiment 254 or 255, wherein the further modification comprises reducing MHC class I and/or MHC class II expression using siRNA, shRNA, CRISPR/Cas9, ZFN, TALEN, Cre recombinase or a mega nuclease.
- Embodiment 258 The composition of embodiment 254 or 255, wherein the T cell comprises a further modification to increase MHC class I and/or MHC class II expression.
- Embodiment 259. The composition of embodiment 254 or 255, wherein the further modification comprises increasing MHC class I and/or MHC class II expression using RNA or plasmid DNA.
- Embodiment 260 The composition of any one of embodiments 253-257, wherein an innate immune response mounted in an individual in response to administration, in an allogeneic context, of the further modified T cells is reduced compared to an innate immune response mounted in an individual in response to administration, in an allogeneic context, of corresponding modified T cells that do not comprise the further modification.
- Embodiment 26 The composition of any one of embodiments 253-257, wherein the circulating half-life of the further modified T cells in an individual to which they were administered is modulated compared to the circulating half-life of corresponding modified T cells that do not comprise the further modification in an individual to which they were administered.
- Embodiment 262 The composition of any one of embodiments 253-261, wherein the T cell includes one or more of helper T cells, cytotoxic T cells, memory T cells, CIK cells and natural killer T cells.
- Embodiment 263. The composition of any one of embodiments 253-261, wherein the T cell includes one or more of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD45RA+ T cells, CD45RO+ T cells, and gd-T cells.
- Embodiment 264 The composition of any one of embodiments 186-263, wherein the modified cell is allogeneic to an individual.
- Embodiment 265. The composition of any one of embodiments 186-263, wherein the modified cell is autologous to an individual.
- Embodiment 266 The composition of any one of embodiments 186-265, wherein an individual is pre-conditioned to have modulated inflammation and/or a modulated immune response.
- Embodiment 267 The composition of any one of embodiments 186-266, wherein the composition further comprises an immune checkpoint inhibitor.
- Embodiment 268 The composition of embodiment 267, wherein the immune checkpoint inhibitor is targeted to one or more of PD-l, PD-L1, CTLA-4, LAG3, TIM-3, TIGIT, VISTA, TIM1, B7-H4 (VTCN1) or BTLA.
- Embodiment 269. The composition of any one of embodiments 186-268, wherein administration of the composition comprising the modified immune cells to an individual results in activation and/or expansion of cytotoxic T lymphocytes (CTLs) specific for the HPV antigen.
- CTLs cytotoxic T lymphocytes
- Embodiment 270 The composition of any one of embodiments 186-268, wherein administration of the composition comprising the modified immune cells to an individual results in activation and/or expansion of helper T (Th) cells specific for the antigen.
- Embodiment 271. The composition of any one of embodiments 186-270, wherein the effective amount of the composition comprises between about 1 c 106 and about 1 c 1012 modified immune cells.
- Embodiment 272 A composition comprising an antigen, wherein the antigen comprises an amino acid sequence with at least 90% similarity to SEQ ID NO:23.
- Embodiment 273 The composition of embodiment 272, wherein the antigen comprises the amino acid sequence of SEQ ID NO: 23.
- Embodiment 274 A method for treating or preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly;
- modified immune cells are prepared by
- Embodiment 275 A method for treating or preventing an HPV-associated disease in an individual, the method comprising administering to the individual an effective amount of a composition comprising modified immune cells, wherein the modified immune cells comprise an HPV antigen and an adjuvant, wherein the adjuvant is presented intracellularly;
- modified immune cells are prepared by
- Embodiment 276 The method of embodiment 274 or 275, wherein the diameter of the constriction is less than the diameter of the cell.
- Embodiment 277 The method of any one of embodiments 274-276, wherein the diameter of the constriction is about 20% to 99% of the diameter of the cell.
- Embodiment 278 The method of any one of embodiments 274-277, wherein the diameter of the constriction is about 20% to less than about 60% of the diameter of the cell.
- Embodiment 279. The method of any one of embodiments 274-278, wherein the constriction is in a channel.
- Embodiment 280 The method of any one of embodiments 274-279, wherein a deforming force is applied to the input cell as it passes through the constriction.
- Embodiment 28 The method of any of embodiments 274-280, wherein the HPV antigen and/or the adjuvant are present in the cytosol and/or endosomes.
- Embodiment 282 The method of any one of embodiments 274-281, wherein the antigen and/or adjuvant are present in multiple compartments of the cell.
- Embodiment 283. The method of embodiment 274, wherein the concentration of adjuvant incubated with the perturbed input cell is between about 0.1 mM and about 1 mM
- Embodiment 284 The method of embodiment 275, wherein the concentration of HPV antigen incubated with the perturbed input cell is between aboutO.l pM and about 1 mM.
- Embodiment 285. The method of any one of embodiments 274-285, wherein the adjuvant is CpG ODN, IFN-a, STING agonists, RIG-I agonists or poly I:C.
- Embodiment 286 The method of embodiment 285, wherein the adjuvant is CpG ODN.
- Embodiment 287 The method of embodiment 286, wherein the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006.
- Embodiment 288 The method of any one of embodiments 274-287, wherein the HPV antigen is derived from a cell lysate.
- Embodiment 289. The method of any one of embodiments 274-288, wherein the HPV antigen is an HPV-16 or an HPV-18 antigen.
- Embodiment 290 The method of any one of embodiments 274-289, wherein the HPV antigen is an HPV E6 antigen or an HPV E7 antigen.
- Embodiment 291. The method of embodiment 290, wherein the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18- 25.
- Embodiment 292 The method of embodiment 289, wherein the HPV antigen comprises an amino acid sequence of any one of SEQ ID NOs: 18-25.
- Embodiment 293. The method of embodiment 290, wherein the HPV antigen comprises an amino acid sequence with at least 90% similarity to SEQ ID NO:23.
- Embodiment 294. The method of embodiment 290, wherein the HPV antigen comprises an amino acid sequence of SEQ ID NO: 23.
- Embodiment 295. A method for treating or preventing an HPV-associated disease in an individual comprising administering to the individual a modified immune cell associated with an HPV antigen, wherein the modified immune cell is prepared by a process comprising the steps of:
- Embodiment 296 The method in embodiment 295, wherein the HPV antigen comprises an amino acid sequence with at least 90% similarity to any one of SEQ ID NOs: 18- 25.
- Embodiment 297 The method in embodiment 296, wherein the HPV antigen comprises the amino acid sequence of SEQ ID NO:23.
- Embodiment 298 The method in any one of embodiments 295-297, wherein the adjuvant is CpG ODN.
- Embodiment 299. The method of embodiment 298, wherein the CpG ODN is CpG ODN 1018, CpG ODN 1826 or CpG ODN 2006.
- Embodiment 300 A composition comprising the modified immune cells of any one of embodiments 186-273 for use as a medicament.
- Embodiment 301 A composition comprising the modified immune cells of any one of embodiments 186-273 for use in a method of treatment of the human or animal body by surgery, therapy or diagnosis.
- Embodiment 302. A composition comprising the modified immune cells of any one of embodiments 186-273 for use in the treatment of a cancer, an infectious disease or a viral- associated disease.
- Embodiment 303 A composition comprising the modified immune cells of any one of embodiments 186-273, wherein the cancer is head and neck cancer, cervical cancer, vulvar cancer, vaginal cancer, penile cancer, anal cancer, perianal cancer, anogenital cancer, oral cancer or salivary cancer.
- Embodiment 304 A composition comprising the modified immune cells of any one of embodiments 300-303, wherein the modified PBMCs is administered prior to, concurrently with, or following administration of an immune checkpoint inhibitor.
- Embodiment 305 The composition of embodiment 304, wherein the immune checkpoint inhibitor is targeted to any one of PD-l, PD-L1, CTLA-4, LAG3, VISTA, and TIM- 3.
- Embodiment 306 The composition of embodiment 305, wherein the immune checkpoint inhibitor is targeted to PD-l .
- Embodiment 307. The composition of embodiment 305, wherein the immune checkpoint inhibitor is targeted to PD-L1.
- Embodiment 308 The composition of any one of embodiments 300-307, wherein the modified PBMCs is administered prior to, concurrently with, or following administration of a therapeutic agent.
- Embodiment 309 The composition of embodiment 308, wherein the therapeutic agent is a chemotherapeutic agent.
- Embodiment 310 The composition of embodiment 309, wherein the infectious disease is associated with HIV, HPV, EBV, MCV, HBV or HCV.
- Example 1 In order to determine the minimum effective cell dose of T APCS needed to lead to tumor growth inhibition in a therapeutic setting, four different doses of prime/boost T APCS were tested in a TC1 tumor model, with the area of the tumors plotted against time.
- C57BL/6J female mice were injected in the right rear flank with TC1 tumor cells (50k cells/mouse) at Day 0. On Days 4 (prime) and 7 (boost), T cells from C57BL/6J female donor mice were isolated and loaded using SQZ with 200 pg/mL CpG ODN 1826 and pre-complexed 40 mM E7 SLP (GQ AEPDRAH YNIVTF S SK SD S TLRL S VQ S THVDIR; SEQ ID NO:25) + 40 pM mouse serum albumin (MSA).
- mice (10 mice/group) were injected intravenously with the relevant dose of E7+MSA+CpG loaded T cells (50M cells/mL) and TC-l tumor growth was measured beginning 1 week post-tumor implantation two times per week and compared to tumor growth in untreated mice.
- a representative schematic of the treatment groups and schedule is outlined in Fig. 1 A.
- Fig. 1B Tumor growth, as measured by the formula ((length x width 2 )/2), was compared between mice from the untreated group (no adoptive transfer of T cells) and the treatment groups B-E outlined in Fig. 1 A is shown in Fig. 1B. All treatment conditions led to complete tumor reduction, indicative that the lowest cell dose tested (2.5M cells prime, 1M cells boost) was still capable of achieving the same tumor reduction as higher cell doses, each reaching statistical significance relative to untreated at Day 18 ( #P ⁇ 0.0001 ).
- E7 SLP design two different E7 SLPs, the native E7 SLP and one in which the native sequence has all cysteines replaced with serine, were SQZ’d into T APCs along with CpG co-administration, and each condition was assessed for IFN-g production by ICS.
- T cells from C57BL/6J female donor mice were isolated and loaded using SQZ with varying doses (Left - 200 pg/mL, Right - 25 pg/mL) CpG ODN 1826 and pre-complexed 40 pM E7 native or classic SLP + 40 pM mouse serum albumin (MSA) or T cells were incubated with the same conditions in the absence of SQZ as a negative control (Endo - Groups B and D).
- mice/group Animals (5 mice/group) were injected intravenously with 5M loaded or incubated T cells in 100 pL volume (50M cells/mL). On Day 8, spleens were harvested and the % of IFN-y-producing CD8+ T cells was quantified by ICS. A representative schematic of the treatment groups and schedule is outlined in Fig. 2A. [0577] The % of IFN-y-producing CD8+ T cells was highest in the Endo control group using cE7, which was not significantly different from SQZ with cE7 or Endo with nE7. ETnexpectedly, there was no benefit to SQZ vs.
- E6 SLPs To determine the ability of E6 SLPs to induce an antigens-specific immune response in E6 responder T cells in an in vitro human model, primary human T cells were loaded with an E6 SLP and responder cell IFN-g secretion was measured by ELISA.
- Human T cells were isolated from the PBMCs of HLA-A02+ donors (10M cells/mL) and 50 mM E6 SLP containing the HLA-A02-restricted minimal E6 29.38 epitope
- E7 H-2O responder T cells as well as the impact of SLP sequence on SQZ T cell APC (T apc ) activation in an in vitro human model, primary human T cells from multiple donors were loaded with different E7 SLPs and responder cell IFN-g secretion was measured by ELISA.
- Human T cells were isolated from the PBMCs of HLA-A02+ donors (10M cells/mL) and 50 mM OL-E7 I-35 (MHGDTPTLHEYMLDLQPETTDL Y C YEQLND S SEEE; SEQ ID NO:22) or E7.6 (QLCTELQTYMLDLQPETTYCKQQLL; SEQ ID NO:23) SLPs were delivered intracellularly by SQZ and the level of IFN-g, as measured by ELISA, were compared between the SQZ conditions and a control wherein the E7 SLP were incubated with the T apc s in the absence of SQZing (Endo).
- TAPCS were then co-cultured with E7n -2 o-specific CD8+ responder cells in a ratio of 4: 1 stimulator: effector and cultured in the presence of IL-2 (100 U/mL). After 24h, supernatant is harvested from each condition and the level of IFN-g production was assessed by IFN-g ELISA (Biolegend).
- the native OL-E7 I-35 SLP elicited a minimal IFN-g response when delivered using SQZ compared to Endo (Fig. 4).
- the E7.6 which comprises the E7 minimal epitope (YMLDLQPETT; SEQ ID NO:3) inserted in between the flanking regions of another reactive SLP (E6 2I-45 - QLCTELQTXXXXXXXXXY CKQQLL), induced a greater IFN-g response relative to the matched Endo control in all three donors tested when compared to the Endo controls (*/ J ⁇ 0.05, ** ⁇ 0.0l; # ⁇ 0.000l).
- This finding highlights the importance of the flanking region sequence in the immunogenicity of the SLP and provides support that flanking regions of other SLPs, which are known to be reactive, can be used in conjunction with orthogonal minimal epitopes to achieve increased immune responses.
- E7 SLP QLCTELQTYMLDLQPETTYCKQQLL; SEQ ID NO:23
- T APCs were then co-cultured with E7ii -20 - specific CD8+ responder cells in a ratio of 4: 1 stimulator: effector and cultured in the presence of IL-2 (100 U/mL). After 24h, supernatant is harvested from each condition and the level of IFN-g production was assessed by IFN-g ELISA (Biolegend). Additionally, a peptide pulse positive control was employed wherein B-LCL cells were incubated in the presence of the minimal E7 epitope (YMLDLQPETT; SEQ ID NO:3) for lh prior to ELISA.
- YMLDLQPETT minimal E7 epitope
- Human T cells were isolated from the PBMCs of HLA-A02+ donors (10M cells/mL) and 25 or 50 mM E6 SLP (QLCTELQTTIHDIILEC VY CKQQLL) and E7.6 SLP
- TAPCS and the positive control were then co-cultured with E7n -2 o- specific CD8+ responder cells in a ratio of 4: 1 stimulator: effector and cultured in the presence of IL-2 (100 U/mL). After 24h, supernatant is harvested from each condition and the level of IFN-g production was assessed by IFN-g ELISA (Biolegend).
- T cells from C57BL/6J female donor mice were isolated and loaded using SQZ with 400 pg/mL Ova + various concentrations of high- and low-molecular weight poly I:C (10, 30, 100, 300, 1000 pg/mL) and compared to T cells incubated with the same conditions in the absence of SQZ as a negative control (Endo - Groups C & E).
- T cells SQZ’d with Ova+200 pg/mL CpG were used as a positive control (Group F).
- mice (5/group, 3 untreated) were injected with 5M loaded or incubated T cells in 100 pL volume (50M cells/mL).
- T cells from C57BL/6J female donor mice were isolated and loaded using SQZ with
- mice 400 pg/mL Ova + various concentrations of CpG 1826 (50, 100, 200 pg/mL) and compared to T cells incubated with the same conditions in the absence of SQZ as a negative control (Endo - Groups B, D & F).
- mice 5/group, 3 untreated
- mice were injected with 5M loaded or incubated T cells in 100 pL volume (50M cells/mL).
- spleens were harvested and Ova-specific T cells were quantified by tetramer staining using flow cytometry, while some splenocytes were permeabilized and fixed overnight.
- the levels of IFN-g was determined by ICS, with PMA/ionomycin acting as a positive control.
- a representative schematic of the treatment groups and schedule is outlined in Fig. 8A.
- the % of tetramer or IFN-y-producing CD8+ T cells was highest in the group with 200 pg/mL CpG and was significantly different from the related Endo control (*P ⁇ 0.05 for tetramer, / J ⁇ 0.0001 for IFN-g) for Class I peptide/MHC-I, while all other conditions did not elicit a significant response over untreated or their respective Endo controls (Fig. 8B).
- the activation of Ova-specific T cells was only observed with the Class I peptide, supporting the direct presentation of Ova antigens to effect a CD8+ T cell response.
- T cells from C57BL/6J female donor mice were isolated and loaded using SQZ with
- mice 400 pg/mL Ova and mice (5/group, 3 untreated) were injected with 5M loaded or incubated T cells in 100 pL volume (50M cells/mL).
- CpG 1826 (25 pg/mL) systemic co-administration of donor mice occurred either at the same time as the T APC prime (Day 0), or 1 or 2 days following prime (Day 1 or 2, respectively) and compared to T cells incubated with the same conditions in the absence of SQZ as a negative control (Groups B, D & F).
- mice/group C57BL/6J female recipient mice (10 mice/group) were injected intravenously with 100 pL of loaded T cells (5M cells/animal), while groups B and E animals also received intravenous CpG (25 pg) and groups C and F received IV IFN-a (lOk IU).
- T cells 5M cells/animal
- groups B and E animals also received intravenous CpG (25 pg)
- groups C and F received IV IFN-a (lOk IU).
- E7-specific T cell The percentage of E7-specific T cell were measured in mice by E7 tetramer staining after prime (Day -8) and boost (Day -3) with E7+MSA or E7+MSA+CpG SQZ’d T cells +/- co- administration of CpG or IFN-a (Fig. 10B). The highest relative proportion of E7-specific T cells were observed in the SQZ E7 + CpG co-administration and SQZ (E7+CpG) + IFN-a co- administration groups.
- E7-specific post-prime CD8+ T cells was surprisingly lower in the SQZ (E7+CpG) + co-administration of CpG relative to the SQZ E7 + co-administration of CpG (* ⁇ 0.05), whereas the co-administration of IFN-a with SQZ
- E7+CpG T cells led to a significantly higher number of E7-specific T cells than co- administration of CpG with SQZ (E7+CpG) T cells (* ⁇ 0.05).
- boost (Day -3) a similar trend was observed where SQZ E7 + CpG co-administration and SQZ (E7+CpG) + IFN-a co- administration groups led to the highest % E7-specific T cells.
- mice from Group D were rechallenged with 50k cells to the opposite (left) flank and compared to age-matched untreated animals (10 mice) (Fig. 10D). Mice from Group D had a significant reduction in tumor growth after re-challenge, compared to untreated mice that have received their first challenge
- E6 and E7 synthetic long peptides alone and in combination in with our E7-specific T APCs in a prophylactic TC-l murine tumor model.
- E7-specific T cell responses were measured by tetramer staining and flow cytometry, while antitumor effect was measured by tumor growth prevention.
- T cells from C57BL/6J female donor mice were isolated and loaded using SQZ with pre-complexed 20 mM mouse serum albumin (MSA) + 20 pM E6 ( VY SKQQLLRREVYDF AFRDLSIVYRDGNP Y AV SDK; SEQ ID NO:2l) and/or E7
- T cells incubated with the same conditions as Group B in the absence of SQZ were used as a negative control (Group C).
- C57BL/6J female recipient mice (5-10 mice/group) were injected intravenously with 100 pL of loaded T cells (5M cells/animal).
- 100 pL of murine blood was collected and the % of E7-specific CD8+ T cells was quantified by tetramer staining and flow cytometry.
- TC1 tumor cells lOOk cells/mouse
- TC-l tumor growth was measured two times per week beginning on Day 11 and compared to tumor growth in untreated mice.
- a representative schematic of the treatment groups and schedule is outlined in Fig. 11 A.
- E7+CpG as well as T cells that were incubated in the presence of E7+CpG in the absence of SQZ.
- Groups D-F showed some level of tumor growth inhibition relative to untreated (Group A) and E6+CpG SQZ’d T cells (Group G), but were all less effective than Groups B and C.
- an E7 SLP was delivered to T cells in combination with CpG, either delivered to the T cell or systemically co-administered to the recipient animal and the antitumor effect was measured by tumor growth inhibition.
- T cells from C57BL/6J female donor mice were isolated and loaded using SQZ with pre-complexed 20 pM mouse serum albumin
- T APCs that were SQZ’d with E7 SLP led to a significant reduction in tumor burden relative to untreated and CpG injection alone (Day 17: Group C - ⁇ 0.05; Day 20: Groups C & D - O.OOOl) (Fig. 12B).
- Fig. 12B show that in a therapeutic setting both systemic co-administration and intracellular delivery of CpG adjuvant leads to a significant reduction in tumor burden relative to untreated or adjuvant alone.
- CpG vs. IFN-a were compared in combination with our E7-specific T APC in a therapeutic TC-l murine tumor model.
- Antigen-specific T cell responses were measured in tumor infiltration lymphocytes by tetramer staining and flow cytometry.
- recipient mice were injected in the right rear flank with TC1 tumor cells (50k cells/mouse).
- T cells from C57BL/6J female donor mice were isolated and loaded using SQZ with pre-complexed 20 pM E7 SLP
- SQZ-loaded T cells (5M cells/animal) were administered alone (Group C), with CpG ODN 1826 (25 pg/mouse - Group D), or IFN-a (lOk IU /mouse- Group E) and were injected intravenously in 100 pL total volume. Mice were also injected with systemic CpG (25 pg - Group A) or IFN-a alone (lOk IU - Group B). On Day 17, tumors were harvested and CD8+ tumor infiltrating T cells were isolated and E7-specific reactivity was assessed by tetramer staining. A representative schematic of the treatment groups and schedule is outlined in Fig. 13.
- E7-specific CD8+ T cell The percentage of E7-specific CD8+ T cell were measured in mice by E7 tetramer staining 7 days after prime (Day 17) and a representative example of the percentage of E7- specific T cells out of the CD8+ cells is shown in the bottom panel of Fig. 13. While injection of adjuvants alone did not generate an appreciable amount of E7-specific T cells, SQZ delivery of an E7 SLP afforded a 40% increase in E7-specific T cells and E7 delivered T cells in
- mice were injected in the right rear flank with TC1 tumor cells (50k cells/mouse) and TC-l tumor growth was measured two times per week beginning on Day 11 and compared to tumor growth in untreated mice.
- T cells from C57BL/6J female donor mice were isolated and loaded using SQZ with pre-complexed 20 mM mouse serum albumin (MSA) + 20 pM E7 SLP
- Ova was delivered to or incubated in the absence of SQZ with wild-type T cells injected into a wild-type mouse or into MHC-I knockout mice. Spleens were harvested and the amount of Ova-specific T cell (OT-I) proliferation was quantified by CFSE staining.
- T cells from OT-I female donor mice were isolated and labeled with 2 mM CFSE and 2.5M cells were injected retro-orbitally (RO) in 100 pL PBS into either wild-type or MHC-I knockout mice. Also on Day 0, 400 pg/mL Ova was loaded into or incubated with T cells isolated from CD45.1 donor mice (4 mice/group), and 5M T cells were injected RO. On Day 3, spleens were harvested and the level of Ova-specific T cell proliferation was assessed by CFSE staining.
- RO retro-orbitally
- mice deficient in MHC-I were used as recipient mice. This would preclude presentation of Ova antigens by endogenous murine APCs due to indirect uptake of antigen by dying SQZ’d T cells and cross-presentation on MHC-I to adoptively transferred OT-I cells. It was found that when recipient mice lack MHC-I, Ova-specific OT-I cell proliferation still occurred, providing evidence that SQZ’d T APCs are presenting antigen directly (Fig. 15).
- T cells were SQZ delivered with CpG and assessed for the ability to alter T cell cytokine levels in an in vitro murine model. Cytokine levels in the supernatant were profiled using a multiplex cytokine kit.
- Example 17 In order to assess the propensity of SQZ to alter cytokine production, T cells SQZ delivered with either Ova or Ova+CpG were assessed for the ability to alter serum cytokine levels in an in vivo murine model. Serum cytokines were profiled using a multiplex cytokine kit.
- C57BL/6J female recipient mice were primed with T cells from C57BL/6J female donor mice were isolated and SQZ’d with either 400 pg/mL Ova or Ova + 200 pg/mL CpG and blood was drawn from the tail vein at 6h and via cardiac puncture at 24h post-priming. Serum was assessed for cytokine levels by Millipore Milliplex multiplex cytokine kit and expressed as a fold change vs. untreated T cells.
- MoDCs primary human monocyte-derived dendritic cells
- TCL tumor cell lysate
- a peptide pulsed control wherein MoDCs were incubated in the presence of known reactive E7 epitope (YMLDLQPETT; SEQ ID NO:3 - 0.1 mM - Positive Ctrl) was employed. All conditions were cultured for 1 h with LPS (60 EU/mL) and rhIFN-g (20000 IU/mL) to activate the MoDCs, followed by l6-24h incubation in 60 EU/mL LPS containing media (no IFN-g). MoDCs were then co-cultured for l6-24h with E7- reactive T cells (Astarte) at a 3: 1 stimulatonresponder ratio.
- YMLDLQPETT reactive E7 epitope
- Murine B cells from C56BL/6J mice were isolated and SQZ-loaded with 400 pg/mL Ova protein or with 20 mM HPV 16 E7 peptide, then injected into donor mice along with 1 pM CpGl826 (5 mice/group). On Day 7, splenocytes were harvested from untreated mice as well as mice treated with SQZ-loaded BAPC S , re-challenged with Ins B9-23 peptide, and subsequently intracellular cytokine staining (ICS) was conducted for IFN-g and measured by flow cytometry (Fig. 19A).
- BAPC Murine B cells
- mice were treated with BAPC SQZ-loaded with antigens, followed by injection with TC-l tumor cells. Tumor growth inhibition was measured to assess in vivo prophylactic vaccine efficacy.
- an E7 SLP was SQZ-delivered into B cells and injected into mice prior to tumor implantation.
- mice murine B cells (BAPC) from C56BL/6J mice were isolated and SQZ-loaded with HPV 16 E7 peptide, then injected into donor mice along with 1 mM CpGl826 (10 mice/group).
- TC-l tumor cells were implanted (1E6 cells/mL in 100 pL) subcutaneously in the rear flank of each mouse.
- TC-l is a tumor cell line known to express HPV antigens E6 & E7. Tumor volumes were measured over time and mice were sacrificed at Day 48 or when their tumors reach >1500 mm 3 , whichever came first.
- mice were implanted with TC-l tumor cells, followed by therapeutic immunization with BAPC S loaded with antigens. Tumor growth inhibition was measured to assess in vivo therapeutic vaccine efficacy.
- mice were either left untreated or primed with 1M cells/mouse of murine B cells (BAPC S ) SQZ- loaded with E7 SLP. Tumor volumes were measured over time and mice were sacrificed at Day 48 or when their tumors reach >1500 mm 3 , whichever came first.
- TIL tumor-infiltrating lymphocyte
- mice were primed with either (i) 150 pg/mouse of E7 SLP + 50 pg of CpGl826 injected subcutaneously (S.C. SLP), (ii) murine B cells pulsed with 1 pg/mL E7 minimal epitope + 1 pM CpG (Min. Epi.) injected retro-orbitally, or (iii) B cells loaded (SQZ) with E7 SLP (20 pM) + 1 pM CpG (5M cells/mouse) injected retro-orbitally.
- Tumor volumes were measured over time until reaching >1500 mm 3 or by Day 34, whichever came first. On Day 27, a subset of animals (5 mice/group) were sacrificed, where the tumors were resected and the T cells were isolated and analyzed by flow cytometry.
- SQZ-loaded B cell vaccine resultsed in significant increase in the percentage of infiltrating T cells in the tumor, as well as a higher number of cells normalized to 100 mg tumor weight.
- SQZ SQZ- loaded B cell vaccine
- both the CD8+ T cells, as well as the E7-specific CD8+ T cells in SQZ treatment were increased more significantly as a percentage of CD45 + cells, compared to S.C. SLP and Min. EP., and this trend was also observed when normalized to tumor weight as well (Fig. 22B). All comparisons between SQZ and every other treatment group were statistically significant (P ⁇ 0.00l).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cell Biology (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Virology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Communicable Diseases (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Claims
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862641988P | 2018-03-12 | 2018-03-12 | |
US201962794517P | 2019-01-18 | 2019-01-18 | |
US201962812225P | 2019-02-28 | 2019-02-28 | |
PCT/US2019/021703 WO2019178005A2 (en) | 2018-03-12 | 2019-03-11 | Methods for treating hpv-associated diseases |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3765073A2 true EP3765073A2 (en) | 2021-01-20 |
Family
ID=65904594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19713307.7A Pending EP3765073A2 (en) | 2018-03-12 | 2019-03-11 | Methods for treating hpv-associated diseases |
Country Status (18)
Country | Link |
---|---|
US (1) | US20210038709A1 (en) |
EP (1) | EP3765073A2 (en) |
JP (1) | JP2021517895A (en) |
KR (1) | KR20200130371A (en) |
CN (1) | CN112105383A (en) |
AU (1) | AU2019234549A1 (en) |
BR (1) | BR112020018609A2 (en) |
CA (1) | CA3093826A1 (en) |
CO (1) | CO2020012583A2 (en) |
CR (1) | CR20200461A (en) |
IL (1) | IL277190A (en) |
MA (1) | MA52003A (en) |
MX (1) | MX2020009441A (en) |
PE (1) | PE20201201A1 (en) |
PH (1) | PH12020551437A1 (en) |
SG (1) | SG11202008863XA (en) |
TW (1) | TW202003025A (en) |
WO (1) | WO2019178005A2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11613759B2 (en) | 2015-09-04 | 2023-03-28 | Sqz Biotechnologies Company | Intracellular delivery of biomolecules to cells comprising a cell wall |
SG11202109333SA (en) * | 2019-02-28 | 2021-09-29 | Sqz Biotechnologies Co | Delivery of biomolecules to pbmcs to modify an immune response |
CA3136296A1 (en) | 2019-04-08 | 2020-10-15 | Sqz Biotechnologies Company | Cartridge for use in a system for delivery of a payload into a cell |
WO2020232125A1 (en) | 2019-05-14 | 2020-11-19 | Prometheus Biosciences, Inc. | Tl1a patient selection methods, systems, and devices |
CN112007149A (en) * | 2019-05-29 | 2020-12-01 | 思格(苏州)生物科技有限公司 | Novel composite immunologic adjuvant and application thereof |
CN110846318A (en) * | 2019-11-29 | 2020-02-28 | 华中科技大学同济医学院附属同济医院 | Novel targeting sequence in nanoparticle preparation for treating HPV infection and preparation method of novel PBAE |
AU2021272340A1 (en) | 2020-05-11 | 2022-12-08 | F. Hoffmann-La Roche Ag | Combination therapy with modified pbmcs and an immunoconjugate |
WO2022017217A1 (en) * | 2020-07-24 | 2022-01-27 | 四川大学华西医院 | Ebv-targeted allogeneic b cell vaccine and preparation method therefor |
WO2022026620A1 (en) | 2020-07-29 | 2022-02-03 | Sqz Biotechnologies Company | Methods to stimulate immune responses to mutant ras using nucleated cells |
EP4188425A1 (en) | 2020-07-29 | 2023-06-07 | SQZ Biotechnologies Company | Methods to stimulate immune responses to mutant ras using anucleate cells |
EP4208192A2 (en) * | 2020-09-02 | 2023-07-12 | SQZ Biotechnologies Company | Methods to stimulate hla-agnostic immune responses to proteins using nucleated cells |
CA3203709A1 (en) | 2020-12-29 | 2022-07-07 | Sqz Biotechnologies Company | Formulations of activating antigen carriers |
CN116801719A (en) * | 2020-12-29 | 2023-09-22 | Sqz生物技术公司 | Formulations for cryopreservation of PBMC |
TW202241466A (en) | 2020-12-29 | 2022-11-01 | 美商Sqz生物科技公司 | Methods for treating cancers with modified pbmcs |
CA3203356A1 (en) | 2020-12-29 | 2022-07-07 | Oliver Rosen | Methods for treating cancers with activating antigen carriers |
EP4377447A1 (en) | 2021-07-29 | 2024-06-05 | SQZ Biotechnologies Company | Methods to generate enhanced tumor infiltrating lymphocytes through microfluidic delivery |
WO2023087009A1 (en) | 2021-11-11 | 2023-05-19 | Sqz Biotechnologies Company | Methods to generate enhanced tumor infiltrating lymphocytes through microfluidic delivery |
WO2023196884A1 (en) | 2022-04-06 | 2023-10-12 | Juno Therapeutics, Inc. | Detection assay for human papillomavirus (hpv) type 16 (hpv-16) |
WO2024026491A2 (en) | 2022-07-28 | 2024-02-01 | Sqz Biotechnologies Company | Enhanced antigen presenting cell formulations |
WO2024026492A1 (en) | 2022-07-28 | 2024-02-01 | Sqz Biotechnologies Company | Methods for treating cancer with enhanced antigen presenting cells |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008046251A1 (en) * | 2006-10-19 | 2008-04-24 | Sunbio Biotech Pharmaceuticals(Tianjin) Co., Ltd. | Fusion proteins containing n domain of human calreticulin and human papillomavirus type 16 e6 or e7 and uses thereof |
AU2008269721B2 (en) * | 2007-05-31 | 2013-01-10 | Academisch Ziekenhuis Leiden H.O.D.N. Lumc | Intradermal HPV peptide vaccination |
WO2010132867A1 (en) * | 2009-05-15 | 2010-11-18 | Irx Therapeutics, Inc. | Vaccine immunotherapy |
CA2852672C (en) | 2011-10-17 | 2021-07-20 | Massachusetts Institute Of Technology | A microfluidic system and method for delivering a payload into a cell by causing perturbations in a cell membrane of the cell |
CN110511960B (en) * | 2013-07-15 | 2023-05-23 | 美国卫生和人力服务部 | Anti-human papilloma virus 16 E6T cell receptor |
KR20170074235A (en) * | 2014-10-31 | 2017-06-29 | 메사추세츠 인스티튜트 오브 테크놀로지 | Delivery of biomolecules to immune cells |
RS58080B1 (en) * | 2014-11-04 | 2019-02-28 | Janssen Vaccines & Prevention Bv | Therapeutic hpv16 vaccines |
CN108138118B (en) | 2015-09-04 | 2023-01-06 | Sqz生物技术公司 | Intracellular delivery of biomolecules mediated by a porous surface |
US20190017072A1 (en) * | 2016-01-12 | 2019-01-17 | Sqz Biotechnologies Company | Intracellular delivery of complexes |
CN112574317B (en) * | 2017-01-24 | 2023-12-05 | 南京益康生物医药有限公司 | Recombinant protein, pharmaceutical composition and application |
-
2019
- 2019-03-11 CN CN201980030616.4A patent/CN112105383A/en active Pending
- 2019-03-11 WO PCT/US2019/021703 patent/WO2019178005A2/en active Application Filing
- 2019-03-11 MX MX2020009441A patent/MX2020009441A/en unknown
- 2019-03-11 MA MA052003A patent/MA52003A/en unknown
- 2019-03-11 KR KR1020207028582A patent/KR20200130371A/en unknown
- 2019-03-11 BR BR112020018609-0A patent/BR112020018609A2/en unknown
- 2019-03-11 EP EP19713307.7A patent/EP3765073A2/en active Pending
- 2019-03-11 US US16/980,341 patent/US20210038709A1/en active Pending
- 2019-03-11 PE PE2020001397A patent/PE20201201A1/en unknown
- 2019-03-11 SG SG11202008863XA patent/SG11202008863XA/en unknown
- 2019-03-11 AU AU2019234549A patent/AU2019234549A1/en active Pending
- 2019-03-11 CA CA3093826A patent/CA3093826A1/en active Pending
- 2019-03-11 TW TW108108097A patent/TW202003025A/en unknown
- 2019-03-11 JP JP2020548799A patent/JP2021517895A/en active Pending
- 2019-03-11 CR CR20200461A patent/CR20200461A/en unknown
-
2020
- 2020-09-07 IL IL277190A patent/IL277190A/en unknown
- 2020-09-11 PH PH12020551437A patent/PH12020551437A1/en unknown
- 2020-10-09 CO CONC2020/0012583A patent/CO2020012583A2/en unknown
Also Published As
Publication number | Publication date |
---|---|
IL277190A (en) | 2020-10-29 |
CO2020012583A2 (en) | 2020-10-30 |
PH12020551437A1 (en) | 2021-09-06 |
SG11202008863XA (en) | 2020-10-29 |
CR20200461A (en) | 2021-03-11 |
WO2019178005A2 (en) | 2019-09-19 |
TW202003025A (en) | 2020-01-16 |
US20210038709A1 (en) | 2021-02-11 |
CN112105383A (en) | 2020-12-18 |
JP2021517895A (en) | 2021-07-29 |
KR20200130371A (en) | 2020-11-18 |
RU2020132524A (en) | 2022-04-13 |
WO2019178005A3 (en) | 2019-10-17 |
BR112020018609A2 (en) | 2020-12-29 |
PE20201201A1 (en) | 2020-11-11 |
MA52003A (en) | 2021-01-20 |
CA3093826A1 (en) | 2019-09-19 |
AU2019234549A1 (en) | 2020-10-08 |
MX2020009441A (en) | 2021-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210038709A1 (en) | Methods for treating hpv-associated diseases | |
US11692168B2 (en) | Delivery of biomolecules to PBMCs to modify an immune response | |
EP3765068A2 (en) | Intracellular delivery of biomolecules to modify immune response | |
CA3127665A1 (en) | Anucleate cell-derived vaccines | |
Pordanjani et al. | Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases | |
US20230263879A1 (en) | Methods to stimulate hla-agnostic immune responses to proteins using nucleated cells | |
RU2799784C2 (en) | Methods of treatment of diseases associated with hpv | |
EP4188425A1 (en) | Methods to stimulate immune responses to mutant ras using anucleate cells | |
US11110124B2 (en) | Cell derived extracellular vesicles for the treatment of diseases | |
RU2819143C2 (en) | Intracellular delivery of biomolecules for immune response modulation | |
EP4188428A1 (en) | Methods to stimulate immune responses to mutant ras using nucleated cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200917 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAV | Requested validation state of the european patent: fee paid |
Extension state: MA Effective date: 20200917 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40045589 Country of ref document: HK |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20231124 |