EP3759356B1 - Electric coolant pump - Google Patents

Electric coolant pump Download PDF

Info

Publication number
EP3759356B1
EP3759356B1 EP18825616.8A EP18825616A EP3759356B1 EP 3759356 B1 EP3759356 B1 EP 3759356B1 EP 18825616 A EP18825616 A EP 18825616A EP 3759356 B1 EP3759356 B1 EP 3759356B1
Authority
EP
European Patent Office
Prior art keywords
coolant
pump
pump housing
electric
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18825616.8A
Other languages
German (de)
French (fr)
Other versions
EP3759356A1 (en
Inventor
Conrad Nickel
Franz Pawellek
Jens Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec GPM GmbH
Original Assignee
Nidec GPM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec GPM GmbH filed Critical Nidec GPM GmbH
Publication of EP3759356A1 publication Critical patent/EP3759356A1/en
Application granted granted Critical
Publication of EP3759356B1 publication Critical patent/EP3759356B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0653Units comprising pumps and their driving means the pump being electrically driven the motor being flooded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/708Suction grids; Strainers; Dust separation; Cleaning specially for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/232Heat transfer, e.g. cooling characterised by the cooling medium

Definitions

  • the invention relates to an electric coolant pump, in particular for pumping coolant to cool an internal combustion engine of a vehicle.
  • EP0967707A2 discloses a pump in which electronics are cooled using the funding. A portion of the conveyance is conveyed through a channel, the conveyance flowing along a surface forming part of a heat sink of the electronic control unit. In the process, heat is dissipated from the circuitry in the electronic control unit first to the electronic control unit and then to the surface. The conveying medium flowing past then absorbs part of the heat from the surface.
  • the electric coolant pump has a pump impeller for accelerating the coolant to be pumped, a rotor shaft on which the pump impeller is mounted, an electric motor with a stator and a rotor for driving the rotor shaft, a control circuit for controlling the electric motor and a pump housing which contains at least the control circuit and picks up the electric motor.
  • the pump housing can be flowed through by the coolant to be pumped.
  • the coolant to be conveyed flows around the stator, the rotor and the control circuit.
  • the coolant to be pumped flows through the pump housing.
  • the pump impeller In addition to conveying the coolant in the actual cooling circuit (e.g. cooling circuit for cooling an internal combustion engine of a motor vehicle), the pump impeller generates a volume flow of the coolant through the pump housing.
  • the coolant therefore flows around the components arranged inside the pump housing, in particular the stator, the rotor and the control circuit. The waste heat generated by the components mentioned can be efficiently dissipated in this way.
  • the coolant flows not only around the stator and the rotor of the electric motor, but also around the control circuit.
  • the electronic components e.g. electronic circuit elements, printed circuit boards, etc.
  • the control circuit are in direct contact with the coolant to be pumped.
  • This direct contact leads to a particularly effective cooling of the control circuit.
  • the power density can be increased in this way, the structural volume can be reduced, the reliability can be improved and/or the service life can be increased.
  • the control circuit can be designed as an electronic control unit (Electric Control Unit - ECU).
  • an inflow opening for the coolant to be pumped to flow into the pump housing can be formed in the pump housing.
  • Such an inflow opening enables the defined supply of coolant.
  • the direction of flow and the volume of flow can be determined by the Dimensioning and the position of the inflow opening can be adjusted accordingly.
  • the formation of the inflow opening in the housing wall facing the pump impeller is particularly advantageous. As a result, the flow movement of the coolant to be conveyed, generated by the pump impeller, can directly ensure a movement of the coolant within the pump housing.
  • the inflow opening is provided with a filter element for filtering the inflowing coolant.
  • a filter element for filtering the inflowing coolant. This protects the components arranged in the pump housing against dirt or damage caused by dirt that may be present in the cooling circuit. In this way, for example, the entry of particles that adversely affect the functioning of the rotor shaft bearing or the rotor can be prevented.
  • the pump housing is filled with a dielectric coolant as the coolant to be pumped.
  • Metal corrosion-inhibiting components are advantageously added to this cooling liquid. In this way, a largely maintenance-free, robust and long-lasting functionality of the coolant pump is guaranteed. At the same time, electrical malfunctions of the electric motor or the control circuit can be prevented.
  • the coolant pump can also have a plain bearing for mounting the rotor shaft in the pump housing.
  • the required installation space is also reduced.
  • the coolant pump can have a correspondingly compact design.
  • the pump housing can be made of a polymer material. Since the heat from the electric motor and the control circuit is dissipated via the coolant to be pumped, the heat dissipation capacity of the pump housing plays a subordinate role.
  • a metal housing can therefore be dispensed with and an inexpensive pump housing made of a polymer material can be used.
  • the pump housing in particular be made of a thermoplastic polymer material. This has the advantage that the material of the housing can easily be encapsulated around the stator. This simplifies the manufacture of the coolant pump.
  • electric coolant pump 1 is used to promote a coolant in a cooling circuit shown schematically.
  • This cooling circuit can be used, for example, to cool an internal combustion engine of a motor vehicle and essentially consist of cooling channels through which the coolant is fed to the components to be cooled and then to a heat sink (eg radiator). These cooling channels are not shown in detail in the drawings.
  • the coolant is a dielectric coolant with added metal corrosion inhibiting ingredients.
  • This coolant is circulated by a pump impeller 2 of the coolant pump 1 within the cooling circuit. The direction of movement of the coolant within the cooling circuit is indicated by arrows in the drawing figures.
  • the pump impeller 2 is mounted on a rotor shaft 3 .
  • This rotor shaft 3 in turn is mounted in a pump housing base body 5 via a slide bearing 4 .
  • a cylindrical inner wall is formed in the pump housing base body 5 , which serves as a support for the plain bearing 4 .
  • An electric motor 6 drives the rotor shaft 3 and thus the pump impeller 2 .
  • a rotor 7 of the electric motor 6 is flanged onto the rotor shaft 3 .
  • the rotor 7 is a pot-shaped or bell-shaped rotor 7, which is connected to the rotor shaft 3 with a first end area and surrounds the above-mentioned cylindrical inner wall radially on the outside with a second end area.
  • a stator 8 arranged in a torque-proof manner with the pump housing base body 5 encloses the rotor 7 radially on the outside. The stator 8 sets the rotor 7 in rotation and in this way drives the pump impeller 2.
  • the pump housing base body 5 is essentially pot-shaped and, together with a housing cover 9, forms the pump housing 10.
  • the face of the pump housing base body 5 opposite the housing cover 9 is perforated by the rotor shaft 3, so that the pump impeller 2 is outside of the pump housing 10, but in the immediate vicinity and parallel to the above-mentioned end face within the cooling circuit (ie in particular within a cooling channel).
  • an inflow opening 11 is formed, which is provided with a filter 12 for filtering the inflowing coolant.
  • the inflow opening 11 is arranged in such a way that it lies within the area of a projection of the pump impeller 2 perpendicular to the end face.
  • control circuit 13 of the electric motor 6 is arranged in the end area of the pump housing 10 opposite the pump impeller 2, i.e. in the area of the housing cover 9, a control circuit 13 of the electric motor 6 is arranged.
  • the control circuit 13 is formed as an ECU. In this case, the electronic components of the control circuit 13 are oriented in the direction of the interior of the pump housing 10 .
  • the pump housing 10 is designed to be fluid-tight with respect to the atmosphere, so that the coolant located within the pump housing 10 does not get into the environment can escape.
  • the pump housing body 5 and the housing cover 9 are made of a thermoplastic polymer material.
  • the coolant circulates in the cooling circuit through the impeller 2
  • part of the coolant is introduced through the inflow opening 11 into the pump housing 10
  • the coolant flow of the coolant within the pump housing 10 is also shown by arrows in the drawing figures.
  • the introduced coolant flows around the stator 8, the control circuit 13 and the rotor 7 in particular, in order to then leave the pump housing 10 in the region of the plain bearing 4 again.
  • the rotor 7, the stator 8 and the electronic components of the control circuit 13 are thus in direct contact with the coolant to be conveyed. This direct contact leads to a particularly effective cooling of the components.
  • electric coolant pump 101 differs from that in 1 shown coolant pump 1 only by the formation of the rotor shaft bearing and by dispensing with the filter 12 in the feed opening 11. Instead of the slide bearing 4 from 1 the rotor shaft 3 is supported in this embodiment by a roller bearing 104 in the pump housing base body 5 .
  • 3 represents another sectional view of the in 1 illustrated electric coolant pump 1.
  • the inflow of the coolant via the cooling circuit is shown only schematically, shows 3 a housing closure 14 on the impeller side designed as a cover, which together with the pump housing base body 5 and the pump impeller 2 forms a specific configuration for a flow space for the coolant in the area of the coolant pump 1 .
  • an extension 15 is formed on the impeller-side housing end 14 , which serves as an axial bearing for the rotor shaft 3 . Together with the slide bearing 4, this extension 15 ensures a stable Bearing of the rotor shaft 3 and the pump impeller 2 mounted on the rotor shaft 3.
  • the axial bearing of the rotor shaft 3 is formed in the housing closure 14 on the impeller side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine elektrische Kühlmittelpumpe, insbesondere zur Förderung von Kühlflüssigkeit zur Kühlung eines Verbrennungsmotors eines Fahrzeugs.The invention relates to an electric coolant pump, in particular for pumping coolant to cool an internal combustion engine of a vehicle.

Durch DE 698 18 392 T2 ist eine derartige elektrische Kühlmittelpumpe mit einem auf einer Rotorwelle angebrachten Pumpenlaufrad und einem die Rotorwelle antreibenden Elektromotor bekannt. Das Pumpengehäuse, in dem der Elektromotor untergebracht ist, wird hierbei durch das zu fördernde Kühlmittel durchflossen. Die beim Betrieb des Elektromotors im Rotor und Stator erzeugte Abwärme kann auf diese Weise auf das Kühlmittel übertragen und die Kühlmittelpumpe entsprechend gekühlt werden. Dies wiederum führt zu einer Wirkungsgradsteigerung des Elektromotors. Die Steuerschaltung des Elektromotors allerdings ist in einer separaten, vom eigentlichen Pumpengehäuse getrennten Aufnahmekammer angeordnet. Die elektronischen Komponenten der Steuerschaltung stehen damit nicht im unmittelbaren Kontakt zum Kühlmittel. Die Kühlwirkung des Kühlmittels auf die Steuerschaltung ist somit allenfalls gering.Through DE 698 18 392 T2 such an electric coolant pump is known with a pump impeller mounted on a rotor shaft and an electric motor driving the rotor shaft. The coolant to be pumped flows through the pump housing, in which the electric motor is housed. In this way, the waste heat generated in the rotor and stator during operation of the electric motor can be transferred to the coolant and the coolant pump can be cooled accordingly. This in turn leads to an increase in the efficiency of the electric motor. However, the control circuit of the electric motor is arranged in a separate receiving chamber that is separate from the actual pump housing. The electronic components of the control circuit are therefore not in direct contact with the coolant. The cooling effect of the coolant on the control circuit is therefore, at best, slight.

EP0967707A2 offenbart eine Pumpe, bei der eine Elektronik mithilfe des Fördermittels gekühlt wird. Ein Teil des Fördermittels wird durch einen Kanal gefordert, wobei das Fördermittel an einer Fläche entlangströmt, die einen Teil einer Wärmesenke der elektronischen Steuerungseinheit darstellt. Dabei wird Wärme von der bei der elektronischen Steuerungseinheit befindlichen Schaltung zunächst an die elektronische Steuerungseinheit und nachfolgend an die Fläche abgegeben. Das vorbeiströmende Fördermittel nimmt dann einen Teil der Wärme von der Fläche auf. EP0967707A2 discloses a pump in which electronics are cooled using the funding. A portion of the conveyance is conveyed through a channel, the conveyance flowing along a surface forming part of a heat sink of the electronic control unit. In the process, heat is dissipated from the circuitry in the electronic control unit first to the electronic control unit and then to the surface. The conveying medium flowing past then absorbs part of the heat from the surface.

Es ist daher Aufgabe der vorliegenden Erfindung, eine elektrische Kühlmittelpumpe mit hoher Wärmeabfuhr zu schaffen.It is therefore the object of the present invention to create an electric coolant pump with high heat dissipation.

Die Aufgabe wird erfindungsgemäß durch eine elektrische Kühlmittelpumpe mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved according to the invention by an electric coolant pump having the features of claim 1 .

Die elektrische Kühlmittelpumpe weist ein Pumpenlaufrad zur Beschleunigung des zu fördernden Kühlmittels, eine Rotorwelle, auf dem das Pumpenlaufrad angebracht ist, einen Elektromotor mit einem Stator und einem Rotor zum Antrieb der Rotorwelle, eine Steuerschaltung zur Steuerung des Elektromotors und ein Pumpengehäuse, welches zumindest die Steuerschaltung und den Elektromotor aufnimmt, auf. Das Pumpengehäuse ist vom zu fördernden Kühlmittel durchfließbar. Das zu fördernde Kühlmittel umfließt hierbei den Stator, den Rotor und die Steuerschaltung.The electric coolant pump has a pump impeller for accelerating the coolant to be pumped, a rotor shaft on which the pump impeller is mounted, an electric motor with a stator and a rotor for driving the rotor shaft, a control circuit for controlling the electric motor and a pump housing which contains at least the control circuit and picks up the electric motor. The pump housing can be flowed through by the coolant to be pumped. The coolant to be conveyed flows around the stator, the rotor and the control circuit.

Das Pumpengehäuse wird beim Betrieb der Kühlmittelpumpe durch das zu fördernde Kühlmittel durchflossen. Mit anderen Worten erzeugt das Pumpenlaufrad neben der Förderung des Kühlmittels im eigentlichen Kühlkreislauf (z.B. Kühlkreislauf zur Kühlung eines Verbrennungsmotors eines Kraftfahrzeuges) einen Volumenstrom des Kühlmittels durch das Pumpengehäuse. Die innerhalb des Pumpengehäuses angeordneten Komponenten, insbesondere der Stator, der Rotor und die Steuerschaltung werden somit vom Kühlmittel umflossen. Die von den genannten Komponenten erzeugte Abwärme kann auf diese Weise effizient abgeführt werden.When the coolant pump is operating, the coolant to be pumped flows through the pump housing. In other words, in addition to conveying the coolant in the actual cooling circuit (e.g. cooling circuit for cooling an internal combustion engine of a motor vehicle), the pump impeller generates a volume flow of the coolant through the pump housing. The coolant therefore flows around the components arranged inside the pump housing, in particular the stator, the rotor and the control circuit. The waste heat generated by the components mentioned can be efficiently dissipated in this way.

Hierbei ist hervorzuheben, dass nicht nur der Stator und der Rotor des Elektromotors vom Kühlmittel umflossen werden, sondern auch die Steuerschaltung. Dies bedeutet, dass die elektronischen Komponenten (z.B. elektronische Schaltkreiselemente, Leiterplatten,...) der Steuerschaltung im direkten Kontakt mit dem zu fördernden Kühlmittel stehen. Dieser direkte Kontakt führt zu einer besonders effektiven Kühlung der Steuerschaltung. Im Vergleich zu herkömmlichen elektrischen Kühlmittelpumpen, in denen ein derartiger Kontakt zwischen dem Kühlmittel und der Steuerschaltung fehlt, kann auf diese Weise die Leistungsdichte erhöht, das Bauvolumen verringert, die Zuverlässigkeit verbessert und/oder die Lebensdauer erhöht werden.It should be emphasized that the coolant flows not only around the stator and the rotor of the electric motor, but also around the control circuit. This means that the electronic components (e.g. electronic circuit elements, printed circuit boards,...) of the control circuit are in direct contact with the coolant to be pumped. This direct contact leads to a particularly effective cooling of the control circuit. Compared to conventional electric coolant pumps, in which there is no such contact between the coolant and the control circuit, the power density can be increased in this way, the structural volume can be reduced, the reliability can be improved and/or the service life can be increased.

Die Steuerschaltung kann hierbei als elektronische Steuereinheit (electric control unit - ECU) ausgebildet sein.The control circuit can be designed as an electronic control unit (Electric Control Unit - ECU).

Vorteilhafte Weiterbildungen der erfindungsgemäßen elektrischen Kühlmittelpumpe sind Gegenstand der abhängigen Ansprüche.Advantageous developments of the electric coolant pump according to the invention are the subject matter of the dependent claims.

In einer vorteilhaften Ausführungsform kann im Pumpengehäuse eine Zuflussöffnung zum Einfließen des zu fördernden Kühlmittels in das Pumpengehäuse ausgebildet sein. Eine derartige Zuflussöffnung ermöglicht die definierte Zufuhr von Kühlmittel. Die Durchflussrichtung und das Durchflussvolumen können durch die Dimensionierung und die Lage der Zuflussöffnung entsprechend eingestellt werden.In an advantageous embodiment, an inflow opening for the coolant to be pumped to flow into the pump housing can be formed in the pump housing. Such an inflow opening enables the defined supply of coolant. The direction of flow and the volume of flow can be determined by the Dimensioning and the position of the inflow opening can be adjusted accordingly.

Besonders vorteilhaft ist die Ausbildung der Zuflussöffnung in der dem Pumpenlaufrad zugewandten Gehäusewand. Dadurch kann die vom Pumpenlaufrad erzeugte Strömungsbewegung des zu fördernden Kühlmittels unmittelbar für eine Bewegung des Kühlmittels innerhalb des Pumpengehäuses sorgen.The formation of the inflow opening in the housing wall facing the pump impeller is particularly advantageous. As a result, the flow movement of the coolant to be conveyed, generated by the pump impeller, can directly ensure a movement of the coolant within the pump housing.

In einer bevorzugten Ausführungsform ist die Zuflussöffnung mit einem Filterelement zur Filterung des einfließenden Kühlmittels versehen. Dies führt zu einem Schutz der im Pumpengehäuse angeordneten Komponenten vor Verschmutzungen oder Schäden durch eventuell im Kühlkreislauf vorhandene Verunreinigungen. Beispielsweise kann auf diese Weise der Eintrag von Partikeln, der die Funktionsweise des Rotorwellenlagers oder des Rotors negativ beeinflussen, verhindert werden.In a preferred embodiment, the inflow opening is provided with a filter element for filtering the inflowing coolant. This protects the components arranged in the pump housing against dirt or damage caused by dirt that may be present in the cooling circuit. In this way, for example, the entry of particles that adversely affect the functioning of the rotor shaft bearing or the rotor can be prevented.

Erfindungsgemäß ist das Pumpengehäuse mit einer dielektrischen Kühlflüssigkeit als zu förderndes Kühlmittel befüllt. In vorteilhafter Weise sind dieser Kühlflüssigkeit Metallkorrosion hemmende Bestandteile beigemengt. Auf diese Weise wird eine weitgehend wartungsfreie, robuste und langlebige Funktionsfähigkeit der Kühlmittelpumpe gewährleistet. Zugleich können elektrische Fehlfunktionen des Elektromotors oder der Steuerschaltung verhindert werden.According to the invention, the pump housing is filled with a dielectric coolant as the coolant to be pumped. Metal corrosion-inhibiting components are advantageously added to this cooling liquid. In this way, a largely maintenance-free, robust and long-lasting functionality of the coolant pump is guaranteed. At the same time, electrical malfunctions of the electric motor or the control circuit can be prevented.

In einer bevorzugten Ausführungsform kann die Kühlmittelpumpe ferner ein Gleitlager zur Lagerung der Rotorwelle in dem Pumpengehäuse aufweisen. Neben der Kostenersparnis gegenüber dem auch möglichen Wälz- bzw. Kugellager vermindert sich auch der benötigte Bauraum. Einen entsprechend kompakten Aufbau kann die Kühlmittelpumpe besitzen.In a preferred embodiment, the coolant pump can also have a plain bearing for mounting the rotor shaft in the pump housing. In addition to the cost savings compared to the possible roller or ball bearings, the required installation space is also reduced. The coolant pump can have a correspondingly compact design.

In einer bevorzugten Ausführungsform kann das Pumpengehäuse aus einem Polymerwerkstoff gefertigt sein. Da die Wärmeabfuhr des Elektromotors und der Steuerschaltung über das zu fördernde Kühlmittel erfolgt, spielt das Wärmeabfuhrvermögen des Pumpengehäuses eine untergeordnete Rolle. Es kann daher auf ein Metallgehäuse verzichtet und auf ein kostengünstiges Pumpengehäuse aus einem Polymerwerkstoff zurückgegriffen werden. Hierbei kann das Pumpengehäuse insbesondere aus einem thermoplastischen Polymerwerkstoff gefertigt sein. Dies hat den Vorteil, dass auf einfache Weise ein Umspritzen des Stators durch den Werkstoff des Gehäuses erfolgen kann. Die Fertigung der Kühlmittelpumpe wird dadurch vereinfacht.In a preferred embodiment, the pump housing can be made of a polymer material. Since the heat from the electric motor and the control circuit is dissipated via the coolant to be pumped, the heat dissipation capacity of the pump housing plays a subordinate role. A metal housing can therefore be dispensed with and an inexpensive pump housing made of a polymer material can be used. Here, the pump housing in particular be made of a thermoplastic polymer material. This has the advantage that the material of the housing can easily be encapsulated around the stator. This simplifies the manufacture of the coolant pump.

Die Erfindung wird nachfolgend durch Ausführungsbeispiele anhand der begleitenden Figuren näher erläutert. Es zeigt:

Fig. 1
eine Schnittansicht eines ersten Ausführungsbeispiels der elektrischen Kühlmittelpumpe;
Fig. 2
eine Schnittansicht eines zweiten Ausführungsbeispiels der elektrischen Kühlmittelpumpe; und
Fig. 3
eine weitere Schnittansicht des ersten Ausführungsbeispiels der elektrischen Kühlmittelpumpe.
The invention is explained in more detail below by means of exemplary embodiments with reference to the accompanying figures. It shows:
1
a sectional view of a first embodiment of the electric coolant pump;
2
a sectional view of a second embodiment of the electric coolant pump; and
3
another sectional view of the first exemplary embodiment of the electric coolant pump.

Nachfolgend wird der Aufbau zweier beispielhafter Ausführungsformen der erfindungsgemäßen elektrischen Kühlmittelpumpe in Bezug auf die Zeichnungen beschrieben.The structure of two exemplary embodiments of the electric coolant pump according to the invention is described below with reference to the drawings.

Die in Fig. 1 dargestellt elektrische Kühlmittelpumpe 1 dient zur Förderung eines Kühlmittels in einem schematisch dargestellten Kühlkreislauf. Dieser Kühlkreislauf kann beispielsweise zur Kühlung eines Verbrennungsmotors eines Kraftfahrzeugs dienen und im Wesentlichen aus Kühlkanälen bestehen, durch die das Kühlmittel den zu kühlenden Bauteilen und anschließend einer Wärmesenke (z.B. Kühler) zugeführt wird. Diese Kühlkanäle sind in den Zeichnungsfiguren nicht näher dargestellt. Das Kühlmittel ist eine dielektrische Kühlflüssigkeit, dem Metallkorrosion hemmende Bestandteile beigesetzt sind. Dieses Kühlmittel wird durch ein Pumpenlaufrad 2 der Kühlmittelpumpe 1 innerhalb des Kühlkreislaufs zirkuliert. Die Bewegungsrichtung des Kühlmittels innerhalb des Kühlkreislaufs ist in den Zeichnungsfiguren durch Pfeile angedeutet.In the 1 shown electric coolant pump 1 is used to promote a coolant in a cooling circuit shown schematically. This cooling circuit can be used, for example, to cool an internal combustion engine of a motor vehicle and essentially consist of cooling channels through which the coolant is fed to the components to be cooled and then to a heat sink (eg radiator). These cooling channels are not shown in detail in the drawings. The coolant is a dielectric coolant with added metal corrosion inhibiting ingredients. This coolant is circulated by a pump impeller 2 of the coolant pump 1 within the cooling circuit. The direction of movement of the coolant within the cooling circuit is indicated by arrows in the drawing figures.

Das Pumpenlaufrad 2 ist auf einer Rotorwelle 3 angebracht. Diese Rotorwelle 3 wiederum ist über ein Gleitlager 4 in einem Pumpengehäusegrundkörper 5 gelagert. Zur Abstützung des Gleitlagers 4 ist im Pumpengehäusegrundkörper 5 eine zylinderförmige Innenwandung ausgebildet, die als Auflager für das Gleitlager 4 dient. Ein Elektromotor 6 treibt die Rotorwelle 3 und damit das Pumpenlaufrad 2 an. Hierzu ist ein Rotor 7 des Elektromotors 6 an die Rotorwelle 3 angeflanscht. Genauer handelt es sich bei dem Rotor 7 um einen topf- oder glockenförmigen Rotor 7, der mit einem ersten Endbereich mit der Rotorwelle 3 verbunden ist und mit einem zweiten Endbereich die oben genannte zylindrische Innenwandung radial außen umfasst. Ein drehfest mit dem Pumpengehäusegrundkörper 5 angeordneter Stator 8 umschließt den Rotor 7 radial außen. Der Stator 8 versetzt den Rotor 7 in Drehung und sorgt auf diese Weise für den Antrieb des Pumpenlaufrads 2.The pump impeller 2 is mounted on a rotor shaft 3 . This rotor shaft 3 in turn is mounted in a pump housing base body 5 via a slide bearing 4 . To support the plain bearing 4 , a cylindrical inner wall is formed in the pump housing base body 5 , which serves as a support for the plain bearing 4 . An electric motor 6 drives the rotor shaft 3 and thus the pump impeller 2 . For this purpose, a rotor 7 of the electric motor 6 is flanged onto the rotor shaft 3 . More precisely, the rotor 7 is a pot-shaped or bell-shaped rotor 7, which is connected to the rotor shaft 3 with a first end area and surrounds the above-mentioned cylindrical inner wall radially on the outside with a second end area. A stator 8 arranged in a torque-proof manner with the pump housing base body 5 encloses the rotor 7 radially on the outside. The stator 8 sets the rotor 7 in rotation and in this way drives the pump impeller 2.

Der Pumpengehäusegrundkörper 5 ist im Wesentlichen topfförmig ausgebildet und bildet zusammen mit einem Gehäusedeckel 9 das Pumpengehäuse 10. Die dem Gehäusedeckel 9 gegenüberliegende Stirnfläche des Pumpengehäusegrundkörpers 5 wird von der Rotorwelle 3 durchbrochen, sodass das Pumpenlaufrad 2 außerhalb des Pumpengehäuses 10, aber in unmittelbarer Nähe und parallel zu der oben genannten Stirnfläche innerhalb des Kühlkreislaufs (also insbesondere innerhalb eines Kühlkanals) liegt. In dieser Stirnfläche ist eine Zuflussöffnung 11 ausgebildet, die mit einem Filter 12 zur Filterung des einfließenden Kühlmittels versehen ist. Die Zuflussöffnung 11 ist hierbei derart angeordnet, dass diese innerhalb des Bereichs einer Projektion des Pumpenlaufrads 2 senkrecht auf die Stirnfläche liegt.The pump housing base body 5 is essentially pot-shaped and, together with a housing cover 9, forms the pump housing 10. The face of the pump housing base body 5 opposite the housing cover 9 is perforated by the rotor shaft 3, so that the pump impeller 2 is outside of the pump housing 10, but in the immediate vicinity and parallel to the above-mentioned end face within the cooling circuit (ie in particular within a cooling channel). In this end face an inflow opening 11 is formed, which is provided with a filter 12 for filtering the inflowing coolant. The inflow opening 11 is arranged in such a way that it lies within the area of a projection of the pump impeller 2 perpendicular to the end face.

Im dem Pumpenlaufrad 2 gegenüberliegenden Endbereich des Pumpengehäuses 10, d.h. im Bereich des Gehäusedeckels 9 ist eine Steuerschaltung 13 des Elektromotors 6 angeordnet. Die Steuerschaltung 13 ist als ECU ausgebildet. Die elektronischen Komponenten der Steuerschaltung 13 sind hierbei in Richtung des Inneren des Pumpengehäuses 10 orientiert.In the end area of the pump housing 10 opposite the pump impeller 2, i.e. in the area of the housing cover 9, a control circuit 13 of the electric motor 6 is arranged. The control circuit 13 is formed as an ECU. In this case, the electronic components of the control circuit 13 are oriented in the direction of the interior of the pump housing 10 .

Das Pumpengehäuse 10 ist gegenüber der Atmosphäre fluiddicht ausgebildet, sodass das sich innerhalb des Pumpengehäuses 10 befindende Kühlmittel nicht in die Umgebung entweichen kann. Der Pumpengehäusegrundkörper 5 und der Gehäusedeckel 9 sind aus einem thermoplastischen Polymerwerkstoff gefertigt.The pump housing 10 is designed to be fluid-tight with respect to the atmosphere, so that the coolant located within the pump housing 10 does not get into the environment can escape. The pump housing body 5 and the housing cover 9 are made of a thermoplastic polymer material.

Bei der Zirkulation des Kühlmittels im Kühlkreislauf durch das Pumpenrad 2 wird ein Teil des Kühlmittels durch die Zuflussöffnung 11 in das Pumpengehäuse 10 eingebracht, umfließt die innerhalb des Pumpengehäuses 10 angebrachten Komponenten und verlässt das Pumpengehäuse 10 im Bereich des Gleitlagers 4 und dem Durchbruch der Rotorwelle 3 durch die Stirnseite im Bereich des Pumpenrads 2 wieder. Der Kühlmittelfluss des Kühlmittels innerhalb des Pumpengehäuses 10 ist in den Zeichnungsfiguren ebenfalls durch Pfeile dargestellt. Hierbei umfließt das eingebrachte Kühlmittel insbesondere den Stator 8, die Steuerschaltung 13 und den Rotor 7, um anschließend das Pumpengehäuse 10 im Bereich des Gleitlagers 4 wieder zu verlassen. Der Rotor 7, der Stator 8 und die elektronischen Komponenten der Steuerschaltung 13 stehen damit im direkten Kontakt mit dem zu fördernden Kühlmittel. Dieser direkte Kontakt führt zu einer besonders effektiven Kühlung der Komponenten.When the coolant circulates in the cooling circuit through the impeller 2, part of the coolant is introduced through the inflow opening 11 into the pump housing 10, flows around the components mounted inside the pump housing 10 and leaves the pump housing 10 in the area of the plain bearing 4 and the opening of the rotor shaft 3 through the face in the area of the impeller 2 again. The coolant flow of the coolant within the pump housing 10 is also shown by arrows in the drawing figures. Here, the introduced coolant flows around the stator 8, the control circuit 13 and the rotor 7 in particular, in order to then leave the pump housing 10 in the region of the plain bearing 4 again. The rotor 7, the stator 8 and the electronic components of the control circuit 13 are thus in direct contact with the coolant to be conveyed. This direct contact leads to a particularly effective cooling of the components.

Die in Fig. 2 dargestellt elektrische Kühlmittelpumpe 101 unterscheidet sich von der in Fig. 1 dargestellten Kühlmittelpumpe 1 lediglich durch die Ausbildung der Rotorwellenlagerung und durch den Verzicht auf den Filter 12 in der Zuführöffnung 11. Anstelle des Gleitlagers 4 aus Fig. 1 wird die Rotorwelle 3 in diesem Ausführungsform durch eine Wälzlagerung 104 im Pumpengehäusegrundkörper 5 gelagert.In the 2 shown electric coolant pump 101 differs from that in 1 shown coolant pump 1 only by the formation of the rotor shaft bearing and by dispensing with the filter 12 in the feed opening 11. Instead of the slide bearing 4 from 1 the rotor shaft 3 is supported in this embodiment by a roller bearing 104 in the pump housing base body 5 .

Fig. 3 stellt eine weitere Schnittansicht der in Fig. 1 dargestellten elektrischen Kühlmittelpumpe 1 dar. Während in Fig. 1 der Zufluss des Kühlmittels über den Kühlkreislauf lediglich schematisch dargestellt ist, zeigt Fig. 3 einen als Deckel ausgebildeten flügelradseitigen Gehäuseabschluss 14, der zusammen mit dem Pumpengehäusegrundkörper 5 und dem Pumpenlaufrad 2 eine konkrete Ausgestaltung für einen Strömungsraum für das Kühlmittel im Bereich der Kühlmittelpumpe 1 bildet. 3 represents another sectional view of the in 1 illustrated electric coolant pump 1. During in 1 the inflow of the coolant via the cooling circuit is shown only schematically, shows 3 a housing closure 14 on the impeller side designed as a cover, which together with the pump housing base body 5 and the pump impeller 2 forms a specific configuration for a flow space for the coolant in the area of the coolant pump 1 .

Koaxial zur Mittelachse der Rotorwelle 3 ist am flügelradseitigen Gehäuseabschluss 14 ein Fortsatz 15 ausgebildet, der als Axiallager für die Rotorwelle 3 dient. Zusammen mit dem Gleitlager 4 sorgt dieser Fortsatz 15 damit für eine stabile Lagerung der Rotorwelle 3 und des auf der Rotorwelle 3 angebrachten Pumpenlaufrads 2.Coaxially to the central axis of the rotor shaft 3 , an extension 15 is formed on the impeller-side housing end 14 , which serves as an axial bearing for the rotor shaft 3 . Together with the slide bearing 4, this extension 15 ensures a stable Bearing of the rotor shaft 3 and the pump impeller 2 mounted on the rotor shaft 3.

In der in Fig. 3 dargestellten Ausführungsform der Kühlmittelpumpe 1 ist das Axiallager der Rotorwelle 3 im flügelradseitigen Gehäuseabschluss 14 ausgebildet. Es ist jedoch auch möglich, das Axiallager der Welle im Pumpengehäusegrundkörper 5 oder gegebenenfalls auch am Gehäusedeckel 9 auszubilden.in the in 3 illustrated embodiment of the coolant pump 1, the axial bearing of the rotor shaft 3 is formed in the housing closure 14 on the impeller side. However, it is also possible to form the axial bearing of the shaft in the pump housing base body 5 or possibly also on the housing cover 9 .

BEZUGSZEICHENLISTEREFERENCE LIST

11
Kühlmittelpumpecoolant pump
22
Pumpenlaufradpump impeller
33
Rotorwellerotor shaft
44
Gleitlagerbearings
55
PumpengehäusegrundkörperPump housing body
66
Elektromotorelectric motor
77
Rotorrotor
88th
Statorstator
99
Gehäusedeckelhousing cover
1010
Pumpengehäusepump housing
1111
Zuflussöffnunginflow opening
1212
Filterfilter
1313
Steuerschaltungcontrol circuit
1414
flügelradseitiger Gehäuseabschlusshousing closure on the impeller side
1515
Fortsatzextension
101101
Kühlmittelpumpecoolant pump
104104
Wälzlagerungroller bearing

Claims (7)

  1. An electric coolant pump (1) having:
    a pump impeller (2) for accelerating the coolant to be conveyed;
    a rotor shaft (3) on which the pump impeller (2) is fixed,
    an electric motor (6) for driving the rotor shaft (3), comprising a stator (8) and a rotor (7),
    a control circuit (13) for controlling the electric motor (6), and
    a pump housing (10) which accommodates at least the control circuit (13) and the electric motor (6),
    the coolant to be conveyed being able to flow through the pump housing (10),
    characterized in that
    the coolant to be conveyed thereby flowing around the stator (8), the rotor (6) and the control circuit (13), wherein
    the coolant to be conveyed is dielectric, and
    electronic components of the control circuit (13) are in direct contact with the coolant to be conveyed.
  2. The electric coolant pump according to claim 1, wherein an inlet opening (11) is formed in the pump housing so that the coolant to be conveyed may flow into the pump housing (10).
  3. The electric coolant pump according to claim 2, wherein the inlet opening (11) is formed in the housing wall of the pump housing (10) facing the pump impeller (2).
  4. The electric coolant pump according to any one of claims 2 or 3, wherein the inlet opening (11) is provided with a filter (12) for filtering the inflowing coolant.
  5. The electric coolant pump according to any one of the preceding claims with a sliding bearing (4) for mounting the rotor shaft (3) in the pump housing (10).
  6. The electric coolant pump according to any one of the preceding claims, wherein the pump housing (10) is made of a polymer material.
  7. The electric coolant pump according to claim 6, wherein the stator (8) is insertmolded with the polymer material.
EP18825616.8A 2018-03-02 2018-12-13 Electric coolant pump Active EP3759356B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018104770.3A DE102018104770A1 (en) 2018-03-02 2018-03-02 Electric coolant pump
PCT/EP2018/084743 WO2019166118A1 (en) 2018-03-02 2018-12-13 Electric coolant pump

Publications (2)

Publication Number Publication Date
EP3759356A1 EP3759356A1 (en) 2021-01-06
EP3759356B1 true EP3759356B1 (en) 2022-11-23

Family

ID=64755531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18825616.8A Active EP3759356B1 (en) 2018-03-02 2018-12-13 Electric coolant pump

Country Status (6)

Country Link
US (1) US11708843B2 (en)
EP (1) EP3759356B1 (en)
CN (1) CN111801501A (en)
BR (1) BR112020017549A2 (en)
DE (1) DE102018104770A1 (en)
WO (1) WO2019166118A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214755A1 (en) * 2021-12-21 2023-06-22 Vitesco Technologies GmbH Housing device for a fluid pump
WO2023150060A1 (en) * 2022-02-01 2023-08-10 Ticona Llc Polymer composition with a high degree of thermal shock resistance
CN114458608B (en) * 2022-02-10 2024-01-30 瑞希特(浙江)科技股份有限公司 Pipeline shielding electric pump with outstanding cooling effect

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198191A (en) * 1978-04-07 1980-04-15 General Electric Company Vaporization cooled dielectric fluid pump
US5053664A (en) * 1989-01-18 1991-10-01 Aisan Kogyo Kabushiki Kaisha Motor-driven fuel pump
WO1997008807A1 (en) * 1995-08-24 1997-03-06 Sulzer Electronics Ag Electric motor
US6011331A (en) * 1997-04-22 2000-01-04 Emerson Electric Co. Electric motor having an improved airflow cooling system
EP0913582B1 (en) 1997-10-31 2003-09-24 Siemens VDO Automotive Inc. Pump motor having sumbersible stator and rotor
US5997261A (en) * 1997-10-31 1999-12-07 Siemens Canada Limited Pump motor having fluid cooling system
US5949171A (en) * 1998-06-19 1999-09-07 Siemens Canada Limited Divisible lamination brushless pump-motor having fluid cooling system
US6447270B1 (en) * 1998-09-17 2002-09-10 Walbro Corporation Brushless coolant pump and cooling system
US6319116B1 (en) * 1999-04-12 2001-11-20 Inclose Design, Inc. Memory storage device docking adapter having hinged air filter
JP4060252B2 (en) * 2003-08-25 2008-03-12 山洋電気株式会社 Fan motor
US7210304B2 (en) * 2005-02-09 2007-05-01 General Motors Corporation Cooling arrangements for integrated electric motor-inverters
AT502566B1 (en) * 2005-10-13 2007-08-15 Tcg Unitech Systemtechnik Gmbh WATER PUMP
US20070140844A1 (en) * 2005-12-19 2007-06-21 Nidec Corporation Axial Flow Fan
DE102007055907A1 (en) * 2007-12-21 2009-06-25 Geräte- und Pumpenbau GmbH Merbelsrod Coolant pump
DE102009009898A1 (en) * 2009-02-20 2010-08-26 Bayerische Motoren Werke Aktiengesellschaft Coolant pump for vehicles
US8080909B2 (en) * 2009-05-19 2011-12-20 Ford Global Technologies, Llc Cooling system and method for an electric motor
US9562534B2 (en) * 2012-05-04 2017-02-07 Ghsp, Inc. In-line dual pump and motor with control device
TW201346141A (en) 2012-05-10 2013-11-16 Ji Ee Industry Co Ltd Electric water pump
DE102013211181B3 (en) * 2013-06-14 2014-08-21 E.G.O. Elektro-Gerätebau GmbH Pump for conveying fluid, particularly impeller pump or radial pump, has additional chamber provided adjacent to pump chamber and partly in pump housing for fluid volume, where rotor shaft partially runs through fluid volume
CN105186725A (en) * 2014-05-28 2015-12-23 德昌电机(深圳)有限公司 Electric fluid pump and motor stator structure therefor
DE102015214788A1 (en) * 2015-08-03 2017-02-09 Magna Powertrain Bad Homburg GmbH Electric compressor and method of making an electric compressor
CN206175322U (en) * 2016-11-08 2017-05-17 常州市凯程精密汽车部件有限公司 Electronic pump with interior circulative cooling return circuit
CN107228074B (en) * 2017-07-31 2019-12-17 广东威灵汽车部件有限公司 Electronic water pump

Also Published As

Publication number Publication date
US11708843B2 (en) 2023-07-25
WO2019166118A1 (en) 2019-09-06
CN111801501A (en) 2020-10-20
BR112020017549A2 (en) 2020-12-22
DE102018104770A1 (en) 2019-09-05
EP3759356A1 (en) 2021-01-06
US20210003147A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
EP3759356B1 (en) Electric coolant pump
DE102014113412B3 (en) Flow-cooled coolant pump with wet rotor
EP3899284B1 (en) Side-channel compressor for a fuel cell system for conveying and/or compressing a gaseous medium
EP2440788B1 (en) Vacuum pump
EP1716338B1 (en) Arrangement for conveying fluids
WO1997049162A1 (en) Electric motor
EP3472470B1 (en) Electric fluid pump for a motor vehicle
DE102011001041A1 (en) Magnetically driven pump arrangement with a micropump with forced flushing and working method
DE102016115291A1 (en) Electric coolant pump
EP3994344A1 (en) Integrated screw-spindle coolant pump
DE102018125031A1 (en) Pump, in particular for a liquid circuit in a vehicle
WO2020164776A1 (en) Electrical screw spindle coolant pump
DE102019111038B4 (en) ENGINE
EP1945955B1 (en) Fluid pump
WO2022078816A1 (en) Centrifugal pump comprising a drive
DE102018104784A1 (en) Electric coolant pump
EP2321536A1 (en) Pump
DE102015000637A1 (en) Fan with fan housing
EP3640479B1 (en) Pumping device, fluid pumping arrangement and method for cooling an electric drive motor of the pumping device
WO2023131409A1 (en) Coolant pump for the cooling circuit of a vehicle
DE102017127851A1 (en) Circulation pump with wet-rotor motor
DE102021208474A1 (en) Fluid pump for conveying a fluid
DE102020106796A1 (en) Pump insert and pump arrangement with such a pump insert
DE102020211726A1 (en) Electromotive pump drive
DE102022210097A1 (en) Electronic unit for a fluid pump

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018011112

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04D0029580000

Ipc: F04D0013060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/58 20060101ALI20220513BHEP

Ipc: F04D 13/06 20060101AFI20220513BHEP

INTG Intention to grant announced

Effective date: 20220608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1533288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011112

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230224

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011112

Country of ref document: DE

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221213

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221213

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

26N No opposition filed

Effective date: 20230824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230123

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231206

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221123