EP3755476B1 - Flatness roller, system for measuring flatness and associated rolling operations line - Google Patents
Flatness roller, system for measuring flatness and associated rolling operations line Download PDFInfo
- Publication number
- EP3755476B1 EP3755476B1 EP19710758.4A EP19710758A EP3755476B1 EP 3755476 B1 EP3755476 B1 EP 3755476B1 EP 19710758 A EP19710758 A EP 19710758A EP 3755476 B1 EP3755476 B1 EP 3755476B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flatness
- axis
- angle
- roller
- lamella
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005096 rolling process Methods 0.000 title claims description 33
- 239000013307 optical fiber Substances 0.000 claims description 63
- 238000005259 measurement Methods 0.000 claims description 57
- 241000446313 Lamella Species 0.000 claims description 54
- 230000003287 optical effect Effects 0.000 claims description 48
- 238000001514 detection method Methods 0.000 claims description 26
- 230000004044 response Effects 0.000 claims description 14
- 239000000835 fiber Substances 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 229920001971 elastomer Polymers 0.000 claims description 6
- 239000000806 elastomer Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims 1
- 238000010183 spectrum analysis Methods 0.000 description 22
- 238000004458 analytical method Methods 0.000 description 14
- 230000035945 sensitivity Effects 0.000 description 12
- 235000021183 entrée Nutrition 0.000 description 7
- 208000031968 Cadaver Diseases 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005489 elastic deformation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000000418 atomic force spectrum Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
- B21B38/02—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
- G01B11/18—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
- G01B11/306—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
- G01L1/246—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2263/00—Shape of product
- B21B2263/04—Flatness
Definitions
- the present invention relates to a flatness roller comprising a body of cylindrical shape extending along an axis of revolution and delimited radially by an outer surface.
- EP 3 009 206 A1 discloses a scroll according to the preamble of the rev. 1.
- the invention also relates to a flatness measuring system comprising such a flatness roller, and to a line of rolling operations comprising such a flatness measuring system.
- the invention applies to the field of rolling, in particular to the rolling of metal sheets such as thin metal sheets, in particular to the cold rolling of thin metal sheets.
- the invention also applies to the lamination of strips of paper or plastic.
- the use of such thin sheets is intended to reduce the volume of waste to be recycled.
- the use of thin sheets is motivated by a desire to reduce manufacturing costs, but also to reduce the weight of vehicles, which results in a reduction in the consumption and pollution of said vehicles.
- a conventional line of rolling operations 1 is schematically illustrated by the figure 1 .
- a material 2 is conveyed, in the direction of the arrow, in the direction of a rolling stand 4.
- the material is, for example, a metal, paper pulp or plastic.
- the material 2 is compressed between two working rolls 6 in rotation and separated by a distance called “rolling grip”.
- the work rolls 6 are themselves caught between two support rolls 8.
- the sheet 10 leaving the rolling stand 4, also called “strip”, is then wound under the effect of a winder 12.
- the flatness measuring system comprises, for example, a flatness roller 18.
- Such a flatness roller 18 is a roller extending parallel to the work rolls 6, arranged at the outlet of the rolling mill stand 4, and against which the sheet 10 is deliberately brought into contact and in bending at an angle a, called " wrap angle, in order to generate on the flatness roller 18, by means of a tensile force on the sheet, an average force of controlled value.
- Sensors fitted to the flatness roller 18 then measure a force profile applied by the strip 10 on the surface of the flatness roller 18, and more specifically along a "generatrix", which is a portion of the surface of the roller flatness roller 18 elongated along an axis parallel to the axis of the flatness roller 18.
- the distribution of the differential forces on the generator, with respect to an average force, is representative of the flatness of the sheet 10.
- Such a distribution constitutes the data implemented in the regulation loop previously described .
- the flatness rollers of the state of the art generally have a spatial resolution along each generatrix, a sensitivity, that is to say a resolution in force, a dynamic and an insufficient bandwidth to provide a sufficiently precise flatness vector to guarantee effective control by regulation of the line of rolling operations 1.
- An object of the invention is therefore to provide a flatness roller which does not have at least some of these drawbacks.
- the subject of the invention is a flatness roller of the aforementioned type, in which the body comprises at least one cavity extending parallel to the axis of revolution, each cavity emerging radially on the outer surface through a plurality of slots each extending in a respective plane orthogonal to the axis of revolution, including two successive slots along an axis parallel to the axis of revolution defining between them a slat, each slat being connected to the body by two opposite circumferential ends of the slat, each circumferential end forming a recess, the slats aligned in a direction parallel to the axis of revolution forming a generatrix, the flatness roller further comprising at least one optical fiber comprising at least one deformation sensor, each deformation sensor having a measurement axis, each deformation sensor being associated with a plate, each deformation sensor being housed in a corresponding cavity and fixed to the corresponding lamella at the level of an embedding of the lamella, each deformation
- the arrangement of each deformation sensor at the level of an embedding of the lamella is the arrangement which confers the greatest sensitivity for the measurement of orthoradial deformation.
- the use of a plurality of sensors arranged on the same optical fiber allows simultaneous reading of deformation for each lamella along a generatrix of the flatness roller.
- each deformation sensor is arranged so that the angle between the corresponding measurement axis and a plane orthogonal to the axis of revolution XX is less than or equal to 20°, preferably less than or equal to 10, results in a plus large deformation of the strain sensor than in cases where the strain sensor is arranged at a higher angle, which improves the sensitivity.
- Such characteristics confer sufficient sensitivity to achieve the performance required in terms of detection of gradient of deformation in the strip, typically 50 microdeformations for very thin thicknesses of strip (of the order of 0.1 mm).
- the subject of the invention is a system for measuring flatness
- a system for measuring flatness comprising a flatness roller as defined above and a detection unit, the detection unit being configured to emit the interrogation signal intended for each optical fiber and to receive, coming from each optical fiber, a measurement signal formed by the optical response waves generated by the optical fiber deformation sensors, the detection unit also being configured to measure an angle of rotation of the body with respect to a reference position, each generatrix being associated with a contact angle, the detection unit being configured to acquire the measurement signal coming from each optical fiber when the angle of rotation of the body is equal to l contact angle, the detection unit being further configured to calculate a flatness vector as a function of each measurement signal acquired.
- the subject of the invention is a line of rolling operations comprising a system for measuring flatness as defined above.
- a flatness measurement system 19 according to the invention is illustrated by the figure 2 .
- the flatness measuring system 19 comprises a flatness roller 18 and a detection unit 21.
- the flatness roller 18 is intended to receive the metal sheet 10 (or the strip of paper or plastic) whose flatness is to be measured, and to deliver at least one measurement signal representative of the flatness of the sheet 10.
- the detection unit 21 is configured to receive each measurement signal and to determine, from the measurement signal, at least one quantity relating to the flatness of the sheet 10.
- the flatness roller 18 comprises a body 20, sensors 22 and two end devices 23.
- the body 20 is intended to come into contact with the sheet 10 to undergo a force exerted by the sheet 10 on the body 20, when the flatness roller 18 operates within the line of rolling operations 1.
- the sensors 22 are configured to measure a quantity representative of the force exerted by the sheet 10 on the body 20. As will be described later, the sensors 22 are strain sensors (also called “strain sensors ”).
- the end devices 23 are, among other things, intended to support the body 20.
- the body 20 will now be described with reference to the figures 2 to 5 .
- the body 20 has the shape of a cylinder of revolution extending along an axis of revolution XX. As will be described later, the axis of revolution XX is also an axis of rotation of the flatness roller 18.
- the body 20 is delimited radially by an outer surface 24.
- the body 20 is made in one piece, or even formed of a plurality of sections integral with each other and arranged axially end-to-end.
- the cylinder 20 is formed by a first cylindrical section 26A integral with a second cylindrical section 26B, each having the axis of revolution XX as its own axis of revolution.
- the body 20 comprises at least one cavity 28 and, for each cavity 28, a plurality of corresponding slots 30 and a plurality of corresponding slats 32.
- the body 20 comprises solid parts 29 arranged radially towards the inside with respect to the cavities 28 and/or circumferentially between the cavities 28.
- Each cavity 28 is formed in the body 20 and opens onto the outer surface 24 through the plurality of corresponding slots 30.
- each strip 32 is defined between, that is to say delimited by, two slots 30 which are successive along a direction parallel to the axis of revolution X-X.
- Each cavity 28 extends along a respective axis parallel to the axis of revolution X-X.
- the body 20 comprises four cavities 28 offset from each other in the circumferential direction of the body 20 and each extending along a respective axis parallel to the axis of revolution X-X.
- the cavities 28 are arranged so that the center of gravity of the body 20 is on the axis of revolution XX, so that the flatness roller 18 does not present any imbalance during its rotation around the axis of XX revolution.
- the body 20 is invariant by a rotation of a predetermined angle around the axis of revolution X-X.
- the cavities 28 are also invariant by said predetermined angle rotation around the axis of revolution X-X.
- the body 20 is invariant by a rotation of 90° (degrees) around the axis of revolution XX.
- each cavity 28 is such that, in at least one transverse plane III-III which is a plane orthogonal to the axis of revolution XX, the cavity 28 has an angular extent ⁇ , with reference to the axis of revolution XX, which is less than 180°, preferably less than 120°, for example less than 90°.
- angular extent of the cavity 28 it is understood, within the meaning of the present invention, the angle of the smallest angular sector formed from the axis of revolution XX and encompassing the entirety of the cavity 28. It it is, in other words, the angular sector whose two segments are tangent to the cavity 28.
- each cavity 28 has an angular extent ⁇ equal to approximately 40°.
- Each cavity 28 emerges radially on the external surface 24 through the plurality of corresponding slots 30 .
- Each slot 30 extends in a respective plane orthogonal to the axis of revolution X-X.
- Each slot 30 has two circumferential slot ends 31.
- two successive slots 30 along an axis parallel to the axis of revolution X-X are separated by a distance less than or equal to 50 mm, advantageously less than or equal to 25 mm, for example less than or equal to 5 mm.
- the slots 30 are identical.
- Each strip 32 is axially defined between two successive slots 30 along an axis parallel to the axis of revolution X-X.
- each blade 32 is radially defined between the outer surface 24 and the corresponding cavity 28.
- Each blade 32 comprises an outer face 34, an inner face 36 and two circumferential ends 38 opposite.
- Outer face 34 is defined as a portion of outer surface 24 of body 20. Outer face 34 is convex.
- the internal face 36 is oriented opposite the external face 34.
- the internal face 36 thus contributes to delimiting the cavity 28 corresponding to the blade 32.
- the internal face 36 is concave.
- each blade 32 is connected to the body 20 by its two circumferential ends 38, which are defined in the axial alignment, that is to say the alignment along an axis parallel to the axis of revolution.
- XX circumferential slot ends 31 of the two slots delimiting said lamella 32.
- the circumferential ends 38 are also called “recesses”.
- each lamella 32 is made in one piece with the body 20.
- each lamella 32 is attached and is fixed to the body 20 by means of its circumferential ends 38.
- each strip 32 has a constant thickness.
- thickness of a lamella 32, it is understood, within the meaning of the present invention, the radial distance between the inner face 36 and the outer face 34 of the lamella 32 with respect to the axis of revolution X-X.
- the thickness of the strips 32 is less than or equal to a predetermined thickness.
- the predetermined thickness is, in particular, chosen as a function of the mechanical properties of the sheet 10, the flatness defects of which are to be measured, as well as a desired sensitivity to stress.
- the predetermined thickness is preferably less than or equal to 10 mm, advantageously less than 5 mm, for example less than or equal to 2 mm.
- the strip 32 has a constant thickness.
- a cavity 28 such that the intersection of a transverse plane with the cavity 28 defines a biconvex periphery, in this case convex both when the cavity is seen from an outer radial side, i.e. farther from the axis XX than the cavity, and when the cavity is seen from an inner radial side, i.e. less distant from the XX axis as the cavity.
- the cavity 28 is of circular section, as illustrated by the figure 9 .
- the recesses 38 correspond to the two parts of the slat 32 which are located in two angular positions located on either side of a middle part of the slat 32, with reference to the axis of revolution XX and for which the blade 32 has a maximum orthoradial deformation for a given radial force applied to the lamella 32.
- each of the deformation sensors 22 is placed in one of the parts of the lamellae 32 likely to present a circumferential deformation at least equal to a quarter of a maximum circumferential deformation undergone by the lamella 32 during the application of a given radial force on the lamella 32, for example at least equal to half of a maximum circumferential deformation undergone by the lamella 32 during the application of a given radial force on the lamella 32.
- all the lamellae 32 of the flatness roller 18 have the same thickness.
- the generatrix 40 comprises several zones which follow one another in the direction of the axis of revolution XX and which are distinguished from each other by a density of slots 30, that is to say a number of slots 30 per unit of length along the generatrix 40.
- the generatrix 40 thus comprises, for example, two peripheral zones 42 separated by an intermediate zone 44.
- the distance between successive slots 30 is greater than the distance between successive slots 30 of the intermediate zone 44. This gives greater measurement resolution at the level of the peripheral zones of the sheet 10, it that is to say at the edges of the sheet 10, which are areas where the internal stress gradients in the sheet 10 are the highest, and where deformations of the sheet 10 are likely to have smaller spatial extents only in an intermediate part of the sheet 10.
- the distance between successive slots of the intermediate zone 44 is between 10 mm and 40 mm, preferably between 15 mm and 30 mm.
- the distance between successive slots within each of the peripheral zones 42 is, for example, between 1 mm and 15 mm, preferably between 3 mm and 10 mm.
- the slots of the peripheral zones 42 are preferably regularly spaced. Furthermore, the slots of the intermediate zone 44 are preferably regularly spaced.
- the body 20 further comprises a central recess 46 ( figure 2 and 3 ).
- the central recess 46 preferably extends along the axis of revolution X-X.
- the body 20 advantageously comprises through-openings 48 placing the central recess 46 in communication with each of the cavities 28.
- the sections 26 comprise, at their ends in mutual contact, reciprocal centering means, for example a male part 50 and a female part 52 intended to cooperate with one another. other.
- the body 20 comprises locking means, for example a key, intended to prevent relative rotation of the sections around the axis of revolution X-X.
- Sensors 22 are configured to measure a quantity representative of a force exerted on the body 20.
- each sensor 22 is associated with a strip 32 and configured to measure a quantity representative of a force exerted on the corresponding strip 32.
- Each sensor 22 is an optical sensor. More specifically, each sensor 22 is a segment of an optical fiber 54 in which is inscribed a Bragg grating, so that the sensor 22 is a photo-inscribed Bragg grating on fiber (also called “ fiber Bragg grating " in English ).
- a single optical fiber 54 is capable of comprising a plurality of sensors 22, typically several tens of sensors 22.
- Each sensor 22 is configured to receive, coming from an input-output end 55 of the corresponding optical fiber 54, an optical wave forming an interrogation signal.
- each sensor 22 is configured to emit, in the direction of the input-output end 55 of the corresponding optical fiber 54, an optical response wave. All of the response optical waves provided by the sensors 22 form the measurement signal of the optical fiber 54.
- Each sensor 22 has a respective reflection wavelength ⁇ .
- Such reflection wavelength ⁇ also called “resonance wavelength” or “Bragg wavelength” is defined as the wavelength for which the reflection coefficient of the Bragg grating is maximal.
- the measurement signal has a spectrum comparable to a comb, each peak of the spectrum being associated with a sensor 22 of the optical fiber 54.
- the reflection wavelength of sensor 22 is called “reflection wavelength at rest” and denoted ⁇ 0 .
- the reflection wavelengths at rest ⁇ 0 of the sensors 22 belonging to the same optical fiber 54 are two by two distinct.
- Each sensor 22 has a measurement axis, taken as being an axis tangent to the middle of the optical fiber segment forming said sensor 22.
- Each sensor 22 is such that a deformation along the corresponding measurement axis, that is to say a relative elongation (of mechanical and/or thermal origin) or a relative shortening (of mechanical and/or or thermal), results in a variation ⁇ of the reflection wavelength ⁇ of the sensor 22 with respect to the reflection wavelength at rest ⁇ 0 .
- each sensor 22 is a deformation sensor.
- the smallest difference between the reflection wavelengths at rest ⁇ 0 of the sensors 22 is strictly greater than twice the maximum variation ⁇ max of reflection wavelength likely to be felt by each sensor 22.
- each peak is associated with a sensor 22 and is located at a wavelength equal to the sum of the corresponding resting wavelength ⁇ 0 and of the variation ⁇ resulting from the deformation of the sensor 22 along the corresponding measurement axis.
- Each optical fiber 54 is housed in a corresponding cavity 28, so that each sensor 22 is fixed, for example glued, to the corresponding blade 32.
- the senor 22 is fixed to the internal face 36 of the corresponding slat 32, at the level of one of the recesses 38 of the slat 32.
- the senor 22 is fixed to the inner face 36 of the corresponding lamella 32, in a part of the lamella 32 likely to present a circumferential deformation at least equal to a quarter of a maximum circumferential deformation undergone by the lamella 32 during the application of a given radial force on the lamella 32, for example at least equal to half of a maximum circumferential deformation undergone by the lamella 32 during the application of a given radial force on the lamella 32.
- each point of the lamella 32 undergoes a given circumferential deformation (that is to say a circumferential displacement with respect to a situation in which no force is exerted on said slat 32).
- the value of this circumferential deformation is maximum for one or more particular points of the lamella 32, and is called “maximum circumferential deformation of the lamella”.
- the sensor 22 is fixed in a portion of strip 32 whose points, under the same conditions, undergo a deformation at least equal to half of the aforementioned maximum deformation.
- Each lamella 32 is configured to present an orthoradial, that is to say circumferential, deformation of between 1 and 50 microdeformations per newton of radial force applied to the lamella 32.
- microdeformation it is understood, within the meaning of the present invention, a deformation corresponds to a relative elongation, that is to say a displacement relative to a base length, equal to 1.10 -6 .
- each lamella 32 is configured to undergo an elastic deformation for any radial force whose value is between 0.1 N and 100 N.
- each lamella 32 is configured to present an orthoradial deformation of between approximately one microdeformation and approximately one thousand microdeformations, or even between one microdeformation and three thousand microdeformations in the case of a lamella 32 made of a high elastic limit steel.
- the senor 22 is fixed to the lamella 32, away from a plane of symmetry of the lamella 32 containing the axis of revolution XX.
- each sensor 22 is arranged so that the angle between the corresponding measurement axis and a plane orthogonal to the axis of revolution X-X is less than or equal to 20°, for example less than or equal to 10°.
- angle between the measurement axis and the plane orthogonal to the axis of revolution XX it is understood, within the meaning of the present invention, the smallest angle between a direction vector of the measurement axis and a vector director of a straight line belonging to said plane orthogonal to the axis of revolution XX.
- each optical fiber 54 is wound in a circular helix around an axis parallel to the axis of revolution X-X.
- each optical fiber 54 is engaged in an associated through opening 48 so that the corresponding input-output end 55 is located in the central recess 46.
- each cavity 28 is filled with an elastomer intended to seal the cavity 28, in particular to prevent any liquids (water, oils) from entering the cavity 28.
- the elastomer is chosen so as to have an elasticity such that, for neighboring strips 32, the effect on the deformation of the strips 32 which would be due to a lateral coupling via the elastomer is negligible with regard to the sensor sensitivity 22.
- Such an elastomer is, for example, a silicone elastomer.
- Each side device 23 comprises a flange 56 and a bearing 58.
- At least one of the two end devices 23 comprises an optical rotary joint 60.
- one of the two end devices 23 comprises an angular encoder 62.
- Each flange 56 is arranged at a respective end of the body 20 and fixed to said end to close, preferably hermetically, the body 20.
- Each bearing 58 comprises a rotor 58A, fixed to the flange 56, and a stator 58B, intended to be fixed to a frame of the rolling operations line 1, movable in rotation with respect to each other around a corresponding axis of rotation.
- the axis of rotation of each bearing 58 coincides with the axis of revolution XX of the body 20.
- Each optical rotary joint 60 also called “ fiber optic rotary joint " in English, is configured to allow uninterrupted circulation of optical waves between the flatness roller 18 and the detection unit 21, that the flatness roller 18 is in rotating (rolling operations line running) or not (rolling operations line stopped).
- the optical rotary joint 60 comprises an integer number M of channels, M being equal to the number of optical fibers to which the optical rotary joint 60 is connected.
- M being equal to the number of optical fibers to which the optical rotary joint 60 is connected.
- each optical rotary joint 60 has two channels.
- Each path of optical rotary joint 60 includes a first end 60A and a second end 60B.
- Each first end 60A of the optical rotary joint 60 is connected to the detection unit 21. More precisely, each first end of the optical rotary joint 60 is connected to an input-output port of a corresponding circulator.
- each second end 60B of the optical rotary joint 60 is connected to the input-output end 55 of a corresponding optical fiber 54.
- the optical rotary joint 60 is configured to receive the interrogation signal coming from the detection unit 21, and to route the interrogation signal to each optical fiber 54.
- optical rotary joint 60 is configured to receive the measurement signal from each optical fiber 54, and to route the measurement signal to the detection unit 21.
- the optical rotary joint 60 has an IP64 or IP65 qualification, that is to say conferring total protection against dust, and protection against liquid splashes whatever their angle of incidence.
- the angular encoder 62 is configured to measure an angular position of the flatness roller 18 with respect to a predetermined reference angular position.
- the angular encoder 62 is connected to the detection unit 21 to transmit, to the detection unit 21, the measured angular position of the flatness roller 18.
- the angular encoder 62 is advantageously of the absolute, single-turn type.
- the detection unit 21 comprises an optical source 64, routing means 65, a spectral analysis module 66 and a computer 68.
- the optical source 64 is configured to generate the optical wave forming the interrogation signal of the sensors 22 of each optical fiber 54.
- the optical source 64 has K outputs, K being equal to the sum of the number M of channels of the optical rotary joints 60.
- Each output of the optical source 64 is connected to a corresponding first end of the optical rotary joint 60. More precisely, each output of the optical source 64 is connected to an input port of the circulator associated with the corresponding first end of the optical rotary joint. 60.
- the interrogation signal has a spectral range strictly greater than the greatest difference between the reflection wavelengths at rest ⁇ 0 of the sensors 22.
- the optical source 64 is configured to emit an interrogation signal centered around 820 nm and having, for example, a spectral range of 30 nm.
- the usual sensitivity of the sensors 22 is of the order of 0.65 ⁇ m/microdeformation.
- the smallest difference between the reflection wavelengths at rest ⁇ 0 of the sensors 22 is, for example, equal to 1.6 nm.
- the optical source 64 is configured to emit an interrogation signal whose spectrum is between 1525 nm and 1565 nm, even between 1525 nm and 1625 nm, or even between 1460 nm and 1625 nm.
- the usual sensitivity of the sensors 22 is of the order of 1.2 ⁇ m/microdeformation.
- the smallest difference between the reflection wavelengths at rest ⁇ 0 of the sensors 22 is, for example, equal to 3 nm.
- optical source 64 is a tunable laser source.
- the routing means 65 are connected to the angular encoder 62.
- the routing means 65 are also optically connected to the optical rotary joint 60.
- the routing means 65 are connected to an output port of each circulator to receive the measurement signal coming from each optical fiber 54.
- the routing means 65 are also optically connected to the spectral analysis module 66 to selectively route, to the spectral analysis module 66, the measurement signals coming from the optical fibers 54 of the same generator 40, i.e. i.e. the optical fiber or fibers 54 whose sensors 22 are fixed to the slats 32 of the generator. More specifically, the routing means 65 are configured to selectively route, to the spectral analysis module 66, the measurement signals coming from the optical fibers 54 of the same generator 40 only when the angle measured by the angular encoder 62 belongs to a predetermined range associated with said generator 40.
- the predetermined ranges are two by two disjoint.
- the spectral analysis module 66 is configured to analyze, over time, the measurement signal received from each optical fiber 54.
- the analysis by the spectral analysis module 66, at a given instant, of a measurement signal delivered by an optical fiber 54 amounts to a simultaneous analysis of the optical response waves of the set of sensors 22 belonging to the optical fiber 54.
- routing means 65 is such that the spectral analysis module 66 is able to analyze simultaneously, at a given instant, the optical response waves of all the sensors 22 of a generator 40.
- the spectral analysis module 66 is configured to deliver an analysis signal representative of the wavelength of each peak in the response signal received from each optical fiber 54.
- the analysis signal is representative of the spectrum of the optical wave response of each of the sensors 22 of the generator 40.
- the spectral analysis module 66 is, for example, a concave grating spectrometer, associated with a matrix of photodetectors. In this case, the relative intensity between the electrical signals delivered by the photodetectors is representative of the spectrum of the measurement signal.
- the computer 68 is connected to the angular encoder 62 to receive the measured angular position of the flatness roller 18.
- the computer 68 is connected to the spectral analysis module 66 to acquire the analysis signal generated as a function of each measurement signal.
- the computer 68 is configured to store, for each generatrix 40, an angle ⁇ 0 , called "contact angle", corresponding to a position in which the generatrix 40 is supposed to be in contact with the sheet 10, during the rotation of the roller flatness 18.
- the computer 68 is configured to acquire the analysis signal when the angle measured by the angular encoder 62 is equal to the contact angle ⁇ 0 .
- Such a contact angle ⁇ 0 is, for example, represented on the figure 6B .
- the contact angle ⁇ 0 belongs to the predetermined range associated with the generatrix.
- the computer 68 is configured to store, for each optical fiber 54, the reflection wavelength at rest ⁇ 0 of the corresponding sensors 22.
- the computer 68 is also configured to determine, from the analysis signal, the reflection wavelength associated with each peak in the measurement spectrum.
- the computer 68 is also configured to associate each reflection wavelength determined with the corresponding sensor 22.
- the computer 68 is configured to associate a measured wavelength with the sensor 22 which has the reflection wavelength at rest ⁇ 0 closest to said measured wavelength.
- Such an association method has a low error rate in the case where the smallest difference between the reflection wavelengths at rest ⁇ 0 of the sensors 22 is strictly greater than twice the maximum variation ⁇ max of length d reflection wave likely to be felt by each sensor 22.
- the determination of the detection threshold will be described later.
- the computer 68 is also configured to store, for each generatrix 40, an angle ⁇ ⁇ , called “contact entry angle”, corresponding to a position in which the generatrix 40 is supposed not yet to have come into contact with the sheet 10, during the rotation of the flatness roller 18, as illustrated by the Figure 6A .
- the arcuate arrow represents the direction of rotation of the flatness roller.
- the computer 68 is also configured to store, for each generatrix 40, an angle ⁇ + , called “contact output angle", corresponding to a position in which the generatrix 40 is supposed to no longer be in contact with the sheet. 10, upon rotation of the flatness roller 18, as illustrated by the Fig. 6C .
- the contact entry angle ⁇ - and the contact exit angle ⁇ + are such that the contact angle ⁇ 0 is between the contact entry angle ⁇ - and the contact exit angle ⁇ + . This appears, for example, on the figures 6A to 6C .
- the contact input angle ⁇ ⁇ and the contact output angle ⁇ + belong to the predetermined range associated with the generatrix.
- the computer 68 is also configured to acquire the analysis signal when the angle measured by the angle encoder 62 is equal to the contact input angle ⁇ - and to the contact output angle ⁇ + , and to associate each wavelength measured by the spectral analysis module 66 with the corresponding sensor 22 .
- the calculated force profile constitutes the flatness vector.
- Computer 68 is also configured to compare each flatness vector to a target profile.
- the computer 68 is also configured to generate, depending on the difference between the flatness vector and the target profile, command instructions for the nozzles 14 and/or the actuators 16.
- the value of the reflection wavelength at rest ⁇ 0 of each sensor 22 of the optical fiber 54 is recorded in the processing unit 21.
- the value of the contact angle ⁇ 0 and, advantageously, the value of the contact input angle ⁇ - and of the contact output angle ⁇ + are recorded in the processing unit 21.
- a predetermined force is applied to the outer face 34 of each blade 32.
- the variation of the reflection wavelength of each sensor 22 as a function of the force is measured, and a model linking said variation of the reflection wavelength to the force applied to the slat is determined. Then, the determined model is recorded in the processing unit 21.
- the values of the model determined for each sensor 22 are recorded in the processing unit 21 in relation to the corresponding sensor 22.
- the sheet 10 drives the flatness roller 18 in rotation.
- the angular encoder 62 measures the angular position of the flatness roller 18.
- the optical source 64 generates the interrogation signal, and the optical rotary joint 60 routes the interrogation signal to each optical fiber 54.
- Each optical fiber 54 returns, to the spectral analysis module 66, the corresponding measurement signal.
- the routing means 65 transmit, to the spectral analysis module 66, the measurement signals from the optical fibers 54 of said generator 40.
- the spectral analysis module 66 analyzes, over time, the measurement signal received from each optical fiber 54 corresponding. In addition, the spectral analysis module 66 delivers, over time, the analysis signal representative of the wavelength of each peak in the response signal received from each optical fiber 54.
- computer 68 acquires the analysis signal.
- the computer 68 also acquires the analysis signal for the contact input angle ⁇ ⁇ and for the contact output angle ⁇ + associated with the generatrix 40.
- the computer 68 determines the current reflection wavelength for each sensor 22.
- the computer 68 calculates, for each sensor 22, the variation in reflection wavelength ⁇ associated with the current reflection wavelength ⁇ determined, that is to say the difference between the wavelength reflection current ⁇ determined and the reflection wavelength at rest ⁇ 0 .
- the computer 68 determines, from the reflection wavelength variation ⁇ calculated, the force applied to the lamella 32 associated with the sensor 22.
- the vector formed by the force applied to each strips 32 of generatrix 40 form the flatness vector associated with generatrix 40.
- the computer 68 compares the flatness vector to the target profile.
- the computer 68 generates, depending on the differences between the flatness vector and the target profile, command instructions for the nozzles 14 and/or the actuators 16.
- a second embodiment of the flatness measuring system 19 according to the invention is illustrated by the figure 7 .
- the flatness measuring system 19 of the figure 7 differs from the flatness measuring system 19 of the figure 2 only in that it has no optical rotary joint.
- the optical source 64, the routing means 65 and the spectral analysis module 66 are arranged in the central recess 46 of the flatness roller 18 to form a Bragg interrogation assembly 70.
- the flatness roll 18 also includes a feed rotary joint 72, configured to provide electrical power to the Bragg interrogation assembly 70 from a source of electrical power external to the flatness roll 18.
- the flatness roller 18 further comprises a rotary communication joint 74, configured to ensure communication between the Bragg interrogation assembly 70 and the computer 68, in particular to ensure the transport of the analysis signal from the module of spectral analysis 66 to computer 68.
- the communication rotary joint 74 is an Ethernet rotary joint.
- a third embodiment of the flatness measuring system 19 according to the invention is illustrated by the figure 8 .
- the flatness measuring system 19 of the figure 8 differs from the flatness measuring system 19 of the figure 7 only in that the flatness roll 18 has no feed rotary joint.
- a battery 76 represented schematically on the figure 8 , is arranged in the central recess 46 to supply the Bragg interrogation assembly 70 with electrical energy.
- one of the end devices 23 of the flatness roller 18 comprises an alternator 78, electrically connected to the battery 76.
- Alternator 78 is configured to convert some of the mechanical energy from the rotation of flatness roller 18 into electrical energy to recharge battery 76.
- the alternator 78 comprises an armature 80, integral with the body 20, and an inductor 82, intended to be fixed to the frame receiving the flatness roller 18.
- the armature is configured to rotate, relative to the inductor, around of the axis of revolution XX.
- the inductor 82 comprises, for example, a plurality of permanent magnets. Furthermore, the armature 80 comprises, for example, a plurality of turns arranged in the magnetic field generated by the magnets of the inductor.
- the spectral analysis module 66 is external to the flatness roller 18.
- the flatness roller 18 includes an optical rotary joint which is only intended to route the response signals from the optical fibers 54 to the external 66 spectral analysis.
- the flatness roller 18 does not have a rotary communication joint.
- the flatness roller 18 has no rotary communication joint.
- the flatness roller 18 comprises an electromagnetic wave transmitter, configured to transmit, to the computer 68, electromagnetic waves coded by the analysis signal delivered by the spectral analysis module 66.
- the computer 68 is configured to receive the electromagnetic waves emitted by the electromagnetic wave transmitter and to decode said electromagnetic waves in order to determine the reflection wavelength of each sensor 22.
- the flatness roller 18 comprises at least one transparent portion in the transmission frequency range of the electromagnetic wave transmitter to allow the propagation of electromagnetic waves from the electromagnetic wave transmitter to the computer 68.
- the electromagnetic wave transmitter is a Wi-Fi transmitter module (IEEE 802.11 standard).
- the transparent portion is a window formed in one of the flanges 56 of the flatness roller 18.
- the window is made of polymethyl methacrylate (PMMA), polycarbonate (PC) or glass-epoxy composite material (also called “ glass fiber reinforced plastics ” in English).
- the flatness roller 18 comprises at least one transparent portion, the transparent portion being capable of transmitting at least partially an electromagnetic wave belonging to a predetermined frequency range, for example belonging to microwaves, optical waves, near ultraviolet or near infrared.
- the computer 68 is likely to be arranged in the central recess 46, so that the electromagnetic wave transmitter is used to directly transmit the command instructions for the nozzles 14 and/or the actuators 16 generated by the calculator 68.
- slots 30 prevents the appearance of lateral couplings along each generatrix 40.
- lateral coupling (" cross-talk " in English), it is understood, within the meaning of the present application, the appearance of axial stresses along a generatrix when a radial stress is applied to the flatness roller 18.
- a stress applied at a given point of the generatrix 40 results in the appearance of a stress at neighboring points, in particular neighboring points belonging to the generator, even in the absence of radial force exerted on said points.
- each sensor 22 forms, with any plane orthogonal to the axis of revolution XX, an angle less than or equal to 10°, leads to each sensor 22 measuring only or essentially a circumferential component, that is to say orthoradial, of the deformation of the corresponding lamella 32.
- the circumferential component of the deformation of the lamella 32 is the deformation exhibiting, in absolute value, the greatest amplitude. It follows that a such an arrangement of the measurement axes of the sensors 22 maximizes the amplitude of the elongation of the sensors 22, and therefore maximizes the sensitivity of the flatness roller 18.
- fiber Bragg grating sensors 22 is advantageous, insofar as their sensitivity, that is to say the amplitude of their response, for an interrogation signal of constant amplitude, is independent temperature in the usual temperature ranges in the field of rolling, in particular cold rolling.
- optical sensors 22 are advantageous, in particular in a metallurgical environment, for example the steel industry, the site of electromagnetic disturbances generated by the presence of induction furnaces and rotating machines, insofar as such sensors are insensitive to such electromagnetic disturbances.
- sensors 22 in association with the strips 32 gives the flatness roller 18 great sensitivity, great dynamics and great robustness. Indeed, in operation, the body 20 supports the majority of the force exerted by the sheet 10 on the flatness roller 18. In addition, such sensors 22 are likely to undergo a wide range of forces, of the order of three orders of magnitude, without risk of destruction. Furthermore, such sensors, even when they are subjected to a high average force (for example 2000 N) are capable of detecting minute variations in force (for example 2 N).
- optical sensors 22 are also advantageous, insofar as the wavelength multiplexing on the same optical fiber 54 allows simultaneous analysis of the optical response waves of each sensor 22. The measurement is then synchronous on a generator, eliminating measurement bias due to unbalance phenomena, winder eccentricities, etc. This results in a substantial gain in measurement precision compared to the devices of the state of the art with electromechanical sensors, which generally require sequential acquisition and therefore do not provide a true synchronous measurement.
- Such simultaneous acquisition is also advantageous insofar as a sequential acquisition of the sensors, during the rotation of the roller of flatness 18, is likely to mask potential biases linked to possible periodic force fluctuations at the level of the rolling mill stand 4.
- optical sensors 22 are also advantageous insofar as their small dimensions allow the production of strips 32 of small axial extent, which increases the spatial resolution of the flatness measurement system 19 along each generatrix 40.
- This is particularly advantageous in the field of rolling thin sheets, where the axial resolution (that is to say the resolution along the axis of revolution of the flatness roller 18) required is of the order of a few millimeters, in particular at level of the side edges of the sheet 10, that is to say the edges intended to exert a force on the peripheral zones 42 of each generatrix 40.
- the use of a body 20 formed of several sections 26A, 26B allows a simpler installation of the optical fibers 54, insofar as each section 26A, 26B is capable of being equipped with the corresponding optical fibers 54, before the assembly of the body 20. Indeed, due to the dimensions of the body 20, the installation of the optical fibers 54 in a one-piece body 20 is likely to pose difficulties.
- a body 20 formed of several sections 26A, 26B also facilitates repairs of the flatness roller 18, insofar as only the section corresponding to a defective zone of the flatness roller 18 is replaced, and not the flatness roller in its entirety.
- the arrangement of all or part of the organs of the processing unit 21 (among which the optical source 64, the spectral analysis module 66 or the computer 68) in the body 20 confers to the body 20 a function of protection against electromagnetic disturbances, called “shielding" electromagnetic”.
- shielding electromagnetic
- Such protection is particularly advantageous in a metallurgical environment, for example the steel industry, where electromagnetic interference is generated by the presence of induction furnaces and rotating machines.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Description
La présente invention concerne un rouleau de planéité comportant un corps de forme cylindrique s'étendant le long d'un axe de révolution et délimité radialement par une surface externe.
L'invention concerne également un système de mesure de planéité comprenant un tel rouleau de planéité, et une ligne d'opérations de laminage comportant un tel système de mesure de planéité.The invention also relates to a flatness measuring system comprising such a flatness roller, and to a line of rolling operations comprising such a flatness measuring system.
L'invention s'applique au domaine du laminage, notamment au laminage de tôles métalliques telles que des tôles métalliques fines, en particulier au laminage à froid de tôles métalliques fines. L'invention s'applique également au laminage de bandes de papier ou de plastique.The invention applies to the field of rolling, in particular to the rolling of metal sheets such as thin metal sheets, in particular to the cold rolling of thin metal sheets. The invention also applies to the lamination of strips of paper or plastic.
Il est connu de recourir au laminage pour réaliser des tôles métalliques de faible épaisseur (typiquement de l'ordre de 0,1 mm à 1 mm), dites « tôles fines ».It is known to use rolling to produce thin metal sheets (typically of the order of 0.1 mm to 1 mm), called “thin sheets”.
Par exemple, dans le domaine de l'emballage, le recours à de telles tôles fines est destiné à réduire le volume de déchets à recycler. Dans le domaine des transports, l'utilisation de tôles fines est motivée par une volonté de réduction des coûts de fabrication, mais également de réduction du poids des véhicules, qui se traduit par une réduction de la consommation et de la pollution desdits véhicules.For example, in the field of packaging, the use of such thin sheets is intended to reduce the volume of waste to be recycled. In the field of transport, the use of thin sheets is motivated by a desire to reduce manufacturing costs, but also to reduce the weight of vehicles, which results in a reduction in the consumption and pollution of said vehicles.
Une ligne d'opérations de laminage 1 classique est schématiquement illustrée par la
Sur une telle ligne d'opérations de laminage 1, un matériau 2 est acheminé, suivant le sens de la flèche, en direction d'une cage de laminoir 4. Le matériau est, par exemple, un métal, de la pâte de papier ou du plastique. Dans la cage de laminoir 4, le matériau 2 est comprimé entre deux cylindres de travail 6 en rotation et séparés d'une distance appelée « emprise de laminage ». Les cylindres de travail 6 sont eux-mêmes pris entre deux cylindres de soutien 8. La tôle 10 en sortie de la cage de laminoir 4, également appelée « bande », est ensuite enroulée sous l'effet d'une bobineuse 12.On such a line of rolling
Il est connu que le laminage, en particulier le laminage de tôles fines, favorise généralement l'apparition de défauts de planéité de la tôle 10 en sortie de la cage de laminoir 4. De tels défauts naissent principalement d'une relaxation de contraintes internes dues à une inhomogénéité des efforts appliqués par les cylindres de travail 6, résultant d'une irrégularité de l'emprise dans une direction axiale des cylindres de travail 6, causée par des déformations élastiques d'aplatissement et de flexion des cylindres de travail 6. De tels défauts résultent généralement de déformations élastiques d'aplatissement et de flexion des cylindres de la cage de laminoir. De telles déformations des cylindres de la cage de laminoir sont d'autant plus critiques que le produit est mince et dur. La planéité d'une tôle laminée constitue un critère de qualité fondamental de la géométrie d'une tôle laminée.It is known that rolling, in particular the rolling of thin sheets, generally favors the appearance of defects in the flatness of the
Il est connu de mettre en œuvre un procédé de contrôle en ligne des opérations de laminage, au cours duquel des données issues d'un système de mesure de planéité en sortie de cage de laminoir 4 sont mises en œuvre, dans une boucle de régulation, pour commander des buses 14 destinées à arroser localement les cylindres 6, 8 de la cage de laminoir 4 pour en modifier localement l'état de déformation, ou encore pour commander des actionneurs 16 destinés à agir sur les cylindres 6, 8 de la cage de laminoir 4 pour en modifier la flexion, et donc modifier la distribution d'effort dans le matériau 2 en cours de laminage.It is known to implement a process for on-line monitoring of rolling operations, during which data from a system for measuring flatness at the outlet of the rolling mill stand 4 are implemented, in a regulation loop, to control
Le système de mesure de planéité comporte, par exemple, un rouleau de planéité 18.The flatness measuring system comprises, for example, a
Un tel rouleau de planéité 18 est un rouleau s'étendant parallèlement aux cylindres de travail 6, agencé en sortie de la cage de laminoir 4, et contre lequel la tôle 10 est délibérément mise en contact et en flexion selon un angle a, dit « angle d'embarrage », afin de générer sur le rouleau de planéité 18, par le biais d'un effort de traction sur la tôle, un effort moyen de valeur contrôlée.Such a
Des capteurs équipant le rouleau de planéité 18 mesurent alors un profil d'effort appliqué par la bande 10 sur la surface du rouleau de planéité 18, et plus spécifiquement le long d'une « génératrice », qui est une portion de la surface du rouleau de planéité 18 allongée le long d'un axe parallèle à l'axe du rouleau de planéité 18.Sensors fitted to the
La distribution des efforts différentiels sur la génératrice, par rapport à un effort moyen, est représentative de la planéité de la tôle 10. Une telle distribution, appelée « vecteur de planéité », constitue la donnée mise en œuvre dans la boucle de régulation précédemment décrite.The distribution of the differential forces on the generator, with respect to an average force, is representative of the flatness of the
Néanmoins, les rouleaux de planéité de l'état de la technique ne donnent pas entière satisfaction.Nevertheless, the flatness rollers of the state of the art are not entirely satisfactory.
En effet, dans le cas des tôles minces, les rouleaux de planéité de l'état de la technique présentent généralement une résolution spatiale le long de chaque génératrice, une sensibilité, c'est-à-dire une résolution en effort, une dynamique et une bande passante insuffisantes pour fournir un vecteur de planéité suffisamment précis pour garantir une commande efficace par régulation de la ligne d'opérations de laminage 1.Indeed, in the case of thin sheets, the flatness rollers of the state of the art generally have a spatial resolution along each generatrix, a sensitivity, that is to say a resolution in force, a dynamic and an insufficient bandwidth to provide a sufficiently precise flatness vector to guarantee effective control by regulation of the line of rolling
En outre, la fabrication et l'entretien de tels rouleaux de planéité sont généralement onéreux.In addition, the manufacture and maintenance of such flatness rollers are generally expensive.
Un but de l'invention est donc de proposer un rouleau de planéité qui ne présente pas certains au moins de ces inconvénients.An object of the invention is therefore to provide a flatness roller which does not have at least some of these drawbacks.
A cet effet, l'invention a pour objet un rouleau de planéité du type précité, dans lequel le corps comporte au moins une cavité s'étendant parallèlement à l'axe de révolution,
chaque cavité débouchant radialement sur la surface externe au travers d'une pluralité de fentes s'étendant chacune dans un plan respectif orthogonal à l'axe de révolution, parmi lesquelles deux fentes successives le long d'un axe parallèle à l'axe de révolution définissant entre elles une lamelle, chaque lamelle étant reliée au corps par deux extrémités circonférentielles opposées de la lamelle, chaque extrémité circonférentielle formant un encastrement, les lamelles alignées suivant une direction parallèle à l'axe de révolution formant une génératrice, le rouleau de planéité comportant, en outre, au moins une fibre optique comprenant au moins un capteur de déformation, chaque capteur de déformation présentant un axe de mesure, chaque capteur de déformation étant associé à une lamelle, chaque capteur de déformation étant logé dans une cavité correspondante et fixé à la lamelle correspondante au niveau d'un encastrement de la lamelle, chaque capteur de déformation étant agencé de sorte que l'angle entre l'axe de mesure correspondant et un plan orthogonal à l'axe de révolution X-X soit inférieur ou égal à 20°, de préférence inférieur ou égal à 10°, chaque fibre optique étant configurée pour recevoir un signal d'interrogation, chaque capteur de déformation de chaque fibre optique étant configuré pour émettre, en fonction du signal d'interrogation reçu par la fibre optique correspondante, une onde optique de réponse représentative d'une déformation du capteur de déformation le long de l'axe de mesure correspondant.To this end, the subject of the invention is a flatness roller of the aforementioned type, in which the body comprises at least one cavity extending parallel to the axis of revolution,
each cavity emerging radially on the outer surface through a plurality of slots each extending in a respective plane orthogonal to the axis of revolution, including two successive slots along an axis parallel to the axis of revolution defining between them a slat, each slat being connected to the body by two opposite circumferential ends of the slat, each circumferential end forming a recess, the slats aligned in a direction parallel to the axis of revolution forming a generatrix, the flatness roller further comprising at least one optical fiber comprising at least one deformation sensor, each deformation sensor having a measurement axis, each deformation sensor being associated with a plate, each deformation sensor being housed in a corresponding cavity and fixed to the corresponding lamella at the level of an embedding of the lamella, each deformation sensor being arranged so that the angle between the corresponding measurement axis and a plane orthogonal to the axis of revolution XX is less than or equal to 20 °, preferably less than or equal to 10°, each optical fiber being configured to receive an interrogation signal, each c deformation adaptor of each optical fiber being configured to emit, as a function of the interrogation signal received by the corresponding optical fiber, an optical response wave representative of a deformation of the deformation sensor along the corresponding measurement axis.
En effet, les lamelles étant séparées par des fentes, les effets des couplages latéraux entre lamelles sont grandement réduits par rapport au cas où de telles lamelles ne seraient pas séparées dans la direction longitudinale.Indeed, the lamellae being separated by slots, the effects of the lateral couplings between lamellae are greatly reduced compared to the case where such lamellae would not be separated in the longitudinal direction.
En outre, pour une lamelle donnée, les encastrements constituant les zones de la lamelle qui présentent les plus grandes valeurs de déformation orthoradiale pour un effort radial donné appliqué sur la lamelle, l'agencement de chaque capteur de déformation au niveau d'un encastrement de la lamelle est l'agencement qui confère la plus grande sensibilité pour la mesure de déformation orthoradiale.In addition, for a given lamella, the recesses constituting the areas of the lamella which exhibit the greatest values of orthoradial deformation for a given radial force applied to the lamella, the arrangement of each deformation sensor at the level of an embedding of the lamella is the arrangement which confers the greatest sensitivity for the measurement of orthoradial deformation.
En outre, le recours à une pluralité de capteurs agencés sur une même fibre optique autorise un relevé simultané de déformation pour chaque lamelle le long d'une génératrice du rouleau de planéité.In addition, the use of a plurality of sensors arranged on the same optical fiber allows simultaneous reading of deformation for each lamella along a generatrix of the flatness roller.
En outre, le fait que chaque capteur de déformation soit agencé de sorte que l'angle entre l'axe de mesure correspondant et un plan orthogonal à l'axe de révolution X-X soit inférieur ou égal à 20°, de préférence inférieur ou égal à 10, se traduit par une plus grande déformation du capteur de déformation que dans les cas où le capteur de déformation serait agencé à un angle supérieur, ce qui améliore la sensibilité.Furthermore, the fact that each deformation sensor is arranged so that the angle between the corresponding measurement axis and a plane orthogonal to the axis of revolution XX is less than or equal to 20°, preferably less than or equal to 10, results in a plus large deformation of the strain sensor than in cases where the strain sensor is arranged at a higher angle, which improves the sensitivity.
De telles caractéristiques confèrent une sensibilité suffisante pour atteindre les performances requises en matière de détection de gradient de déformation dans la bande, typiquement 50 microdéformations pour de très fines épaisseurs de bande (de l'ordre de 0,1 mm).Such characteristics confer sufficient sensitivity to achieve the performance required in terms of detection of gradient of deformation in the strip, typically 50 microdeformations for very thin thicknesses of strip (of the order of 0.1 mm).
Suivant d'autres aspects avantageux de l'invention, le rouleau de planéité comporte une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toutes les combinaisons techniquement possibles :
- au moins une lamelle présente une épaisseur constante ;
- au moins une cavité présente, dans un plan orthogonal à l'axe de révolution, une section circulaire ;
- chaque lamelle est configurée pour présenter une déformation circonférentielle comprise entre 1 et 50 microdéformations par newton d'effort radial appliqué à la lamelle ;
- chaque génératrice présente une densité de fentes variable, la densité de fentes dans au moins une zone périphérique de la génératrice étant, de préférence, supérieure à la densité de fentes dans une zone intermédiaire de la génératrice ;
- le corps est formé d'une pluralité de tronçons agencés bout-à-bout axialement, chaque tronçon étant associé à au moins une fibre optique propre dont l'ensemble des capteurs de déformation sont fixés aux lamelles dudit tronçon ;
- le corps comporte au moins une partie pleine agencée radialement vers l'intérieur par rapport à au moins une cavité et/ou circonférentiellement entre deux cavité ;
- chaque cavité est remplie d'un élastomère agencé pour assurer une étanchéité de la cavité ;
- le rouleau de planéité comporte au moins une portion transparente, la portion transparente étant propre à transmettre au moins partiellement une onde électromagnétique appartenant à une gamme de fréquences prédéterminée ;
- chaque capteur de déformation est un réseau de Bragg photo-inscrit sur fibre.
- at least one lamella has a constant thickness;
- at least one cavity has, in a plane orthogonal to the axis of revolution, a circular section;
- each lamella is configured to have a circumferential deformation of between 1 and 50 microdeformations per newton of radial force applied to the lamella;
- each generatrix has a variable slot density, the density of slots in at least one peripheral zone of the generatrix preferably being greater than the density of slots in an intermediate zone of the generatrix;
- the body is formed of a plurality of sections arranged axially end-to-end, each section being associated with at least one specific optical fiber of which all the deformation sensors are fixed to the slats of said section;
- the body comprises at least one solid part arranged radially towards the inside with respect to at least one cavity and/or circumferentially between two cavities;
- each cavity is filled with an elastomer designed to seal the cavity;
- the flatness roller comprises at least one transparent portion, the transparent portion being capable of at least partially transmitting an electromagnetic wave belonging to a predetermined frequency range;
- each deformation sensor is a fiber photo-inscribed Bragg grating.
En outre, l'invention a pour objet un système de mesure de planéité comportant un rouleau de planéité tel que défini ci-dessus et une unité de détection, l'unité de détection étant configurée pour émettre le signal d'interrogation à destination de chaque fibre optique et pour recevoir, en provenance de chaque fibre optique, un signal de mesure formé par les ondes optiques de réponse générées par les capteurs de déformation de la fibre optique, l'unité de détection étant également configurée pour mesurer un angle de rotation du corps par rapport à une position de référence, chaque génératrice étant associée à un angle de contact, l'unité de détection étant configurée pour acquérir le signal de mesure en provenance de chaque fibre optique lorsque l'angle de rotation du corps est égal à l'angle de contact, l'unité de détection étant, en outre, configurée pour calculer un vecteur de planéité en fonction de chaque signal de mesure acquis.Furthermore, the subject of the invention is a system for measuring flatness comprising a flatness roller as defined above and a detection unit, the detection unit being configured to emit the interrogation signal intended for each optical fiber and to receive, coming from each optical fiber, a measurement signal formed by the optical response waves generated by the optical fiber deformation sensors, the detection unit also being configured to measure an angle of rotation of the body with respect to a reference position, each generatrix being associated with a contact angle, the detection unit being configured to acquire the measurement signal coming from each optical fiber when the angle of rotation of the body is equal to l contact angle, the detection unit being further configured to calculate a flatness vector as a function of each measurement signal acquired.
Suivant d'autres aspects avantageux de l'invention, le système de mesure de planéité comporte une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toutes les combinaisons techniquement possibles :
- chaque génératrice est également associée à un angle en entrée de contact et un angle en sortie de contact, l'angle de contact étant compris entre l'angle en entrée de contact et l'angle en sortie de contact, l'unité de détection étant configurée pour acquérir le signal de mesure en provenance de chaque fibre optique lorsque l'angle de rotation du corps est égal à chacun parmi l'angle en entrée de contact et l'angle en sortie de contact, l'unité de détection étant, en outre, configurée pour mettre en œuvre le signal de mesure acquis pour chacun parmi l'angle en entrée de contact, l'angle de contact et l'angle en sortie de contact pour calculer un vecteur de planéité corrigé d'effets de la température sur les lamelles de la génératrice lors de la rotation du corps entre l'angle en entrée de contact et l'angle en sortie de contact correspondants ;
- le corps du rouleau de planéité est métallique et comporte un évidement central, l'unité de traitement étant au moins en partie logée dans l'évidement central.
- each generatrix is also associated with a contact entry angle and a contact exit angle, the contact angle being between the contact entry angle and the contact exit angle, the detection unit being configured to acquire the measurement signal from each optical fiber when the angle of rotation of the body is equal to each of the contact input angle and the contact output angle, the detection unit being, in further configured to implement the measurement signal acquired for each of the contact input angle, the contact angle, and the contact output angle to calculate a flatness vector corrected for temperature effects on the slats of the generatrix during the rotation of the body between the contact entry angle and the corresponding contact exit angle;
- the body of the flatness roller is metallic and has a central recess, the processing unit being at least partly housed in the central recess.
En outre, l'invention a pour objet une ligne d'opérations de laminage comportant un système de mesure de planéité tel que défini ci-dessus.Furthermore, the subject of the invention is a line of rolling operations comprising a system for measuring flatness as defined above.
L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en se référant aux dessins annexés sur lesquels :
- la
figure 1 , déjà décrite, est une vue schématique de côté d'une ligne d'opérations de laminage ; - la
figure 2 est une représentation schématique d'un premier mode de réalisation d'un système de mesure de planéité selon l'invention, un rouleau de planéité du système de mesure de planéité étant représenté en section selon un plan contenant un axe de révolution du rouleau de planéité ; - la
figure 3 est une vue en section du rouleau de planéité de lafigure 2 , dans un plan orthogonal à l'axe de révolution ; - la
figure 4 est une vue de dessus d'un corps du rouleau de planéité de lafigure 2 , montrant une génératrice du rouleau de planéité ; - la
figure 5 est un détail de la vue en section de lafigure 3 ; - les
figures 6A, 6B et6C correspondent à la vue en section de lafigure 3 lorsqu'une génératrice du rouleau de planéité se trouve respectivement à une position angulaire égale à un angle en entrée de contact prédéterminé, un angle de contact prédéterminé et un angle en sortie de contact prédéterminé ; - la
figure 7 est une représentation schématique d'un deuxième mode de réalisation d'un système de mesure de planéité selon l'invention, un rouleau de planéité du système de mesure de planéité étant représenté en section selon un plan contenant un axe de révolution du rouleau de planéité ; - la
figure 8 est une représentation schématique d'un troisième mode de réalisation d'un système de mesure de planéité selon l'invention, un rouleau de planéité du système de mesure de planéité étant représenté en section selon un plan contenant un axe de révolution du rouleau de planéité ; et - la
figure 9 est une vue en section d'une variante du rouleau de planéité de lafigure 2 , dans un plan orthogonal à l'axe de révolution.
- the
figure 1 , already described, is a schematic side view of a line of rolling operations; - the
figure 2 is a schematic representation of a first embodiment of a flatness measuring system according to the invention, a flatness roller of the flatness measuring system being represented in section along a plane containing an axis of revolution of the flatness roller ; - the
picture 3 is a cross-sectional view of the flatness roller of thefigure 2 , in a plane orthogonal to the axis of revolution; - the
figure 4 is a top view of a flatness roller body of thefigure 2 , showing a generatrix of the flatness roller; - the
figure 5 is a detail of the sectional view of thepicture 3 ; - the
Figures 6A, 6B and6C correspond to the sectional view of thepicture 3 when a generatrix of the flatness roller is respectively at an angular position equal to a predetermined contact entry angle, a predetermined contact angle and a predetermined contact exit angle; - the
figure 7 is a schematic representation of a second embodiment of a flatness measuring system according to the invention, a flatness roller of the flatness measuring system being represented in section along a plane containing an axis of revolution of the flatness roller ; - the
figure 8 is a schematic representation of a third embodiment of a flatness measuring system according to the invention, a flatness roller of the flatness measuring system being represented in section along a plane containing an axis of revolution of the flatness roller ; and - the
figure 9 is a cross-sectional view of a variation of the flatness roller of thefigure 2 , in a plane orthogonal to the axis of revolution.
Un système de mesure de planéité 19 selon l'invention est illustré par la
Le système de mesure de planéité 19 comporte un rouleau de planéité 18 et une unité de détection 21.The
Le rouleau de planéité 18 est destiné à recevoir la tôle 10 métallique (ou la bande de papier ou de plastique) dont la planéité doit être mesurée, et à délivrer au moins un signal de mesure représentatif de la planéité de la tôle 10.The
L'unité de détection 21 est configurée pour recevoir chaque signal de mesure et pour déterminer, à partir du signal de mesure, au moins une grandeur relative à la planéité de la tôle 10.The
Le rouleau de planéité 18 comprend un corps 20, des capteurs 22 et deux dispositifs d'extrémité 23.The
Le corps 20 est destiné à entrer en contact avec la tôle 10 pour subir un effort exercé par la tôle 10 sur le corps 20, lorsque le rouleau de planéité 18 opère au sein de la ligne d'opérations de laminage 1.The
Les capteurs 22 sont configurés pour mesurer une grandeur représentative de l'effort exercé par la tôle 10 sur le corps 20. Comme cela sera décrit ultérieurement, les capteurs 22 sont des capteurs de déformation (également appelés « strain sensors » en anglais).The
Les dispositifs d'extrémité 23 sont, entre autres, destinés à supporter le corps 20.The
Le corps 20 va maintenant être décrit en référence aux
Le corps 20 présente la forme d'un cylindre de révolution s'étendant le long d'un axe de révolution X-X. Comme cela sera décrit ultérieurement, l'axe de révolution X-X est également un axe de rotation du rouleau de planéité 18.The
Le corps 20 est délimité radialement par une surface externe 24.The
Le corps 20 est réalisé d'un seul tenant, ou encore formé d'une pluralité de tronçons solidaires entre eux et agencés bout-à-bout axialement.The
Sur l'exemple de la
Le corps 20 comprend au moins une cavité 28 et, pour chaque cavité 28, une pluralité de fentes 30 correspondantes et une pluralité de lamelles 32 correspondantes. En outre, le corps 20 comporte des parties pleines 29 agencées radialement vers l'intérieur par rapport aux cavités 28 et/ou circonférentiellement entre les cavités 28.The
Chaque cavité 28 est ménagée dans le corps 20 et débouche sur la surface externe 24 par la pluralité de fentes 30 correspondantes. En outre, chaque lamelle 32 est définie entre, c'est-à-dire délimitée par, deux fentes 30 qui sont successives le long d'une direction parallèle à l'axe de révolution X-X.Each
Chaque cavité 28 s'étend selon un axe respectif parallèle à l'axe de révolution X-X.Each
Par exemple, le corps 20 comporte quatre cavités 28 décalées les unes des autres dans la direction circonférentielle du corps 20 et s'étendant chacune selon un axe respectif parallèle à l'axe de révolution X-X.For example, the
Avantageusement, les cavités 28 sont agencées de sorte que le centre de gravité du corps 20 se trouve sur l'axe de révolution X-X, de sorte que le rouleau de planéité 18 ne présente pas de balourd lors de sa rotation autour de l'axe de révolution X-X. Par exemple, le corps 20 est invariant par une rotation d'angle prédéterminé autour de l'axe de révolution X-X. Dans ce cas, les cavités 28 sont également invariantes par ladite rotation d'angle prédéterminé autour de l'axe de révolution X-X.Advantageously, the
Sur l'exemple de la
De préférence, chaque cavité 28 est telle que, dans au moins un plan transversal III-III qui est un plan orthogonal à l'axe de révolution X-X, la cavité 28 présente une étendue angulaire β, par référence à l'axe de révolution X-X, qui est inférieure à 180°, de préférence inférieure à 120°, par exemple inférieure à 90°.Preferably, each
Par « étendue angulaire de la cavité 28 », il est entendu, au sens de la présente invention, l'angle du plus petit secteur angulaire formé à partir de l'axe de révolution X-X et englobant l'intégralité de la cavité 28. Il s'agit, autrement dit, du secteur angulaire dont les deux segments sont tangents à la cavité 28.By “angular extent of the
Par exemple, chaque cavité 28 présente une étendue angulaire β valant environ 40°.For example, each
Chaque cavité 28 débouche radialement sur la surface externe 24 au travers de la pluralité de fentes 30 correspondantes.Each
Chaque fente 30 s'étend dans un plan respectif orthogonal à l'axe de révolution X-X. Chaque fente 30 présente deux extrémités circonférentielles de fente 31.Each
De préférence, deux fentes 30 successives le long d'un axe parallèle à l'axe de révolution X-X sont séparées par une distance inférieure ou égale à 50 mm, avantageusement inférieure ou égale à 25 mm, par exemple inférieure ou égale à 5 mm.Preferably, two
De préférence, les fentes 30 sont identiques.Preferably, the
Chaque lamelle 32 est axialement définie entre deux fentes 30 successives le long d'un axe parallèle à l'axe de révolution X-X. En outre, chaque lamelle 32 est radialement définie entre la surface externe 24 et la cavité 28 correspondante.Each
Chaque lamelle 32 comprend une face externe 34, une face interne 36 et deux extrémités circonférentielles 38 opposées.Each
La face externe 34 est définie comme une partie de la surface externe 24 du corps 20. La face externe 34 est convexe.
La face interne 36 est orientée à l'opposé de la face externe 34. La face interne 36 contribue ainsi à délimiter la cavité 28 correspondant à la lamelle 32.The
De préférence, la face interne 36 est concave.Preferably, the
En outre, chaque lamelle 32 est raccordée au corps 20 par ses deux extrémités circonférentielles 38, qui sont définies dans l'alignement axial, c'est-à-dire l'alignement le long d'un axe parallèle à l'axe de révolution X-X, des extrémités circonférentielles de fente 31 des deux fentes délimitant ladite lamelle 32.Furthermore, each
Les extrémités circonférentielles 38 sont également appelées « encastrements ».The circumferential ends 38 are also called "recesses".
Par exemple, chaque lamelle 32 est venue de matière avec le corps 20. En variante, chaque lamelle 32 est rapportée et est fixée au corps 20 au moyen de ses extrémités circonférentielles 38.For example, each
Avantageusement, chaque lamelle 32 présente une épaisseur constante.Advantageously, each
Par « épaisseur » d'une lamelle 32, il est entendu, au sens de la présente invention, la distance radiale entre la face interne 36 et la face externe 34 de la lamelle 32 par rapport à l'axe de révolution X-X.By "thickness" of a
L'épaisseur des lamelles 32 est inférieure ou égale à une épaisseur prédéterminée. L'épaisseur prédéterminée est, notamment, choisie en fonction de propriété mécaniques de la tôle 10 dont les défauts de planéité sont à mesurer, ainsi que d'une sensibilité en effort recherchée.The thickness of the
L'épaisseur prédéterminée est, de préférence, inférieure ou égale à 10 mm, avantageusement inférieure à 5 mm, par exemple inférieure ou égale à 2 mm.The predetermined thickness is preferably less than or equal to 10 mm, advantageously less than 5 mm, for example less than or equal to 2 mm.
Par exemple, dans le cas d'une cavité 28 à section biconvexe, notamment une section en écusson comme sur la
Par « cavité à section biconvexe », il est entendu, au sens de la présente invention, une cavité 28 telle que l'intersection d'un plan transversal avec la cavité 28 définit un pourtour biconvexe, en l'occurrence convexe à la fois lorsque la cavité est vue depuis un côté radial extérieur, c'est-à-dire plus éloigné de l'axe X-X que la cavité, et lorsque la cavité est vue depuis un côté radial intérieur, c'est-à-dire moins éloigné de l'axe X-X que la cavité.By "biconvex section cavity", it is understood, within the meaning of the present invention, a
Selon un autre exemple, la cavité 28 est à section circulaire, comme illustré par la
Dans ce cas, pour chaque lamelle 32, les encastrements 38 correspondent aux deux parties de la lamelle 32 qui sont localisées en deux positions angulaires situées de part et d'autre d'une partie médiane de la lamelle 32, par référence à l'axe de révolution X-X et pour lesquelles la lamelle 32 présente une déformation orthoradiale maximale pour un effort radial donné appliqué sur la lamelle 32. Dans ce cas, et comme cela sera décrit par la suite, chacun parmi les capteurs 22 de déformation est placé en une parmi des parties des lamelles 32 susceptibles de présenter une déformation circonférentielle au moins égale à un quart d'une déformation circonférentielle maximale subie par la lamelle 32 lors de l'application d'un effort radial donné sur la lamelle 32, par exemple au moins égale à la moitié d'une déformation circonférentielle maximale subie par la lamelle 32 lors de l'application d'un effort radial donné sur la lamelle 32.In this case, for each
De préférence, toutes les lamelles 32 du rouleau de planéité 18 présentent la même épaisseur.Preferably, all the
L'ensemble des lamelles 32 disposées le long d'un même axe parallèle à l'axe de révolution X-X forme une génératrice 40 du rouleau de planéité 18 (
Par exemple, la génératrice 40 comporte plusieurs zones qui se succèdent selon la direction de l'axe de révolution X-X et qui se distinguent les unes des autres par une densité de fentes 30, c'est-à-dire un nombre de fentes 30 par unité de longueur le long de la génératrice 40. La génératrice 40 comporte ainsi, par exemple, deux zones périphériques 42 séparées par une zone intermédiaire 44.For example, the
De préférence, dans les zones périphériques 42, la distance entre fentes 30 successives est supérieure à la distance entre fentes 30 successives de la zone intermédiaire 44. Ceci confère une plus grande résolution de mesure au niveau des zones périphériques de la tôle 10, c'est-à-dire au niveau des bords de la tôle 10, qui sont des zones où les gradients de contraintes internes dans la tôle 10 sont les plus élevés, et où des déformations de la tôle 10 sont susceptibles de présenter des étendues spatiales plus faibles que dans une partie intermédiaire de la tôle 10.Preferably, in the
Par exemple, la distance entre fentes successives de la zone intermédiaire 44 est comprise entre 10 mm et 40 mm, de préférence entre 15 mm et 30 mm. En outre, la distance entre fentes successives au sein de chacune des zones périphériques 42 est, par exemple, comprise entre 1 mm et 15 mm, de préférence entre 3 mm et 10 mm.For example, the distance between successive slots of the
Les fentes des zones périphériques 42 sont, de préférence, régulièrement espacées. En outre, les fentes de la zone intermédiaire 44 sont, de préférence, régulièrement espacées.The slots of the
Avantageusement, le corps 20 comporte, en outre, un évidement central 46 (
L'évidement central 46 s'étend, de préférence, le long de l'axe de révolution X-X. Dans ce cas, le corps 20 comporte, avantageusement, des ouvertures traversantes 48 mettant en communication l'évidement central 46 avec chacune des cavités 28.The
Dans le cas où le corps 20 est formé de tronçons, les tronçons 26 comportent, à leurs extrémités en contact mutuel, des moyens de centrage réciproque, par exemple une partie mâle 50 et une partie femelle 52 destinées à coopérer l'une avec l'autre. En outre, le corps 20 comporte des moyens de blocage, par exemple une clavette, destinés à empêcher une rotation relative des tronçons autour de l'axe de révolution X-X.In the case where the
Les capteurs 22 (
Chaque capteur 22 est un capteur optique. Plus précisément, chaque capteur 22 est un segment d'une fibre optique 54 dans lequel est inscrit un réseau de Bragg, de sorte que le capteur 22 est un réseau de Bragg photo-inscrit sur fibre (également appelé « fiber Bragg grating » en anglais). Une même fibre optique 54 est susceptible de comporter une pluralité de capteurs 22, typiquement plusieurs dizaines de capteurs 22.Each
Chaque capteur 22 est configuré pour recevoir, en provenance d'une extrémité d'entrée-sortie 55 de la fibre optique 54 correspondante, une onde optique formant un signal d'interrogation.Each
En outre, chaque capteur 22 est configuré pour émettre, en direction de l'extrémité d'entrée-sortie 55 de la fibre optique 54 correspondante, une onde optique de réponse. L'ensemble des ondes optiques de réponse fournies par les capteurs 22 forme le signal de mesure de la fibre optique 54.In addition, each
Chaque capteur 22 présente une longueur d'onde de réflexion λ respective. Une telle longueur d'onde de réflexion λ, également appelée « longueur d'onde de résonance » ou « longueur d'onde de Bragg », est définie comme la longueur d'onde pour laquelle le coefficient de réflexion du réseau de Bragg est maximal. Il en résulte que, pour chaque fibre optique 54, le signal de mesure présente un spectre assimilable à un peigne, chaque pic du spectre étant associé à un capteur 22 de la fibre optique 54.Each
A une température de référence donnée, lorsqu'aucune déformation n'est subie par le capteur 22, la longueur d'onde de réflexion du capteur 22 est appelée « longueur d'onde de réflexion au repos » et notée λ0.At a given reference temperature, when no deformation is undergone by
Les longueurs d'onde de réflexion au repos λ0 des capteurs 22 appartenant à une même fibre optique 54 sont deux à deux distinctes.The reflection wavelengths at rest λ 0 of the
Chaque capteur 22 présente un axe de mesure, pris comme étant un axe tangent au milieu du segment de fibre optique formant ledit capteur 22.Each
Chaque capteur 22 est tel qu'une déformation le long de l'axe de mesure correspondant, c'est-à-dire un allongement relatif (d'origine mécanique et/ou thermique) ou un raccourcissement relatif (d'origine mécanique et/ou thermique), se traduit par une variation δλ de la longueur d'onde de réflexion λ du capteur 22 par rapport à la longueur d'onde de réflexion au repos λ0. Dans ce cas, chaque capteur 22 est un capteur de déformation.Each
Avantageusement, pour chaque fibre optique 54, le plus petit écart entre les longueurs d'onde de réflexion au repos λ0 des capteurs 22 est strictement supérieur au double de la variation maximale δλmax de longueur d'onde de réflexion susceptible d'être ressentie par chaque capteur 22.Advantageously, for each
En fonctionnement, dans le signal de mesure issu d'une fibre optique 54 donnée, chaque pic est associé à un capteur 22 et est localisé à une longueur d'onde égale à la somme de la longueur d'onde au repos λ0 correspondante et de la variation δλ résultant de la déformation du capteur 22 le long de l'axe de mesure correspondant.In operation, in the measurement signal from a given
Chaque fibre optique 54 est logée dans une cavité 28 correspondante, de sorte que chaque capteur 22 soit fixé, par exemple collé, à la lamelle correspondante 32.Each
Plus précisément, le capteur 22 est fixé à la face interne 36 de la lamelle 32 correspondante, au niveau de l'un des encastrements 38 de la lamelle 32.More precisely, the
Plus précisément, le capteur 22 est fixé à la face interne 36 de la lamelle 32 correspondante, en une partie de la lamelle 32 susceptible de présenter une déformation circonférentielle au moins égale à un quart d'une déformation circonférentielle maximale subie par la lamelle 32 lors de l'application d'un effort radial donné sur la lamelle 32, par exemple au moins égale à la moitié d'une déformation circonférentielle maximale subie par la lamelle 32 lors de l'application d'un effort radial donné sur la lamelle 32.More precisely, the
En d'autres termes, pour un effort radial donné sur la lamelle 32, chaque point de la lamelle 32 subit une déformation circonférentielle donnée (c'est-à-dire un déplacement circonférentiel par rapport à une situation dans laquelle aucun effort n'est exercé sur ladite lamelle 32). La valeur de cette déformation circonférentielle est maximale pour un ou plusieurs points particuliers de la lamelle 32, et est appelée « déformation circonférentielle maximale de la lamelle ». Le capteur 22 est fixé en une partie de lamelle 32 dont les points, dans les mêmes conditions, subissent une déformation au moins égale à la moitié de la déformation maximale précitée.In other words, for a given radial force on the
Chaque lamelle 32 est configurée pour présenter une déformation orthoradiale, c'est-à-dire circonférentielle, comprise entre 1 et 50 microdéformations par newton d'effort radial appliqué à la lamelle 32.Each
Par « microdéformation », il est entendu, au sens de la présente invention, une déformation correspond à un allongement relatif, c'est-à-dire un déplacement rapporté à une longueur de base, égal à 1.10-6.By "microdeformation", it is understood, within the meaning of the present invention, a deformation corresponds to a relative elongation, that is to say a displacement relative to a base length, equal to 1.10 -6 .
En outre, chaque lamelle 32 est configurée pour subir une déformation élastique pour tout effort radial dont la valeur est comprise entre 0,1 N et 100 N. Dans ce cas, chaque lamelle 32 est configurée pour présenter une déformation orthoradiale comprise entre environ une microdéformation et environ mille microdéformations, voire comprise entre une microdéformation et trois mille microdéformations dans le cas d'une lamelle 32 réalisée dans un acier à haute limite élastique.In addition, each
Par exemple, dans le cas d'une cavité 28 à section en écusson, le capteur 22 est fixé à la lamelle 32, à l'écart d'un plan de symétrie de la lamelle 32 contenant l'axe de révolution X-X.For example, in the case of a
En outre, chaque capteur 22 est agencé de sorte que l'angle entre l'axe de mesure correspondant et un plan orthogonal à l'axe de révolution X-X soit inférieur ou égal à 20°, par exemple inférieur ou égal à 10°.Furthermore, each
Par « angle entre l'axe de mesure et le plan orthogonal à l'axe de révolution X-X », il est entendu, au sens de la présente invention, le plus petit angle entre un vecteur directeur de l'axe de mesure et un vecteur directeur d'une droite appartenant audit plan orthogonal à l'axe de révolution X-X.By "angle between the measurement axis and the plane orthogonal to the axis of revolution XX", it is understood, within the meaning of the present invention, the smallest angle between a direction vector of the measurement axis and a vector director of a straight line belonging to said plane orthogonal to the axis of revolution XX.
De préférence, chaque fibre optique 54 est enroulée en hélice circulaire autour d'un axe parallèle à l'axe de révolution X-X.Preferably, each
Avantageusement, chaque fibre optique 54 est engagée dans une ouverture traversante 48 associée de sorte que l'extrémité d'entrée-sortie 55 correspondante se trouve dans l'évidement central 46.Advantageously, each
Avantageusement, chaque cavité 28 est remplie d'un élastomère destiné à assurer l'étanchéité de la cavité 28, notamment à empêcher d'éventuels liquides (eau, huiles) de pénétrer dans la cavité 28.Advantageously, each
L'élastomère est choisi de façon à présenter une élasticité telle que, pour des lamelles 32 voisines, l'effet sur la déformation des lamelles 32 qui serait dû à un couplage latéral par l'intermédiaire de l'élastomère soit négligeable au regard de la sensibilité des capteurs 22.The elastomer is chosen so as to have an elasticity such that, for neighboring
Un tel élastomère est, par exemple, un élastomère silicone.Such an elastomer is, for example, a silicone elastomer.
Chaque dispositif latéral 23 comprend une joue 56 et un palier 58.Each
L'un au moins des deux dispositifs d'extrémité 23 comporte un joint tournant optique 60. En outre, l'un des deux dispositifs d'extrémité 23 comporte un codeur angulaire 62.At least one of the two
Chaque joue 56 est agencée à une extrémité respective du corps 20 et fixée à ladite extrémité pour fermer, de préférence hermétiquement, le corps 20.Each
Chaque palier 58 comporte un rotor 58A, fixé à la joue 56, et un stator 58B, destiné à être fixé à un bâti de la ligne d'opérations de laminage 1, mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation correspondant. L'axe de rotation de chaque palier 58 est confondu avec l'axe de révolution X-X du corps 20.Each bearing 58 comprises a
Chaque joint tournant optique 60, également appelé « fiber optic rotary joint » en anglais, est configuré pour permettre une circulation ininterrompue d'ondes optiques entre le rouleau de planéité 18 et l'unité de détection 21, que le rouleau de planéité 18 soit en rotation (ligne d'opérations de laminage en fonctionnement) ou non (ligne d'opérations de laminage à l'arrêt).Each optical rotary joint 60, also called " fiber optic rotary joint " in English, is configured to allow uninterrupted circulation of optical waves between the
Le joint tournant optique 60 comporte un nombre entier M de voies, M étant égal au nombre de fibres optiques auxquelles est raccordé le joint tournant optique 60. Par exemple, sur la
Chaque voie du joint tournant optique 60 comprend une première extrémité 60A et une deuxième extrémité 60B.Each path of optical rotary joint 60 includes a
Chaque première extrémité 60A du joint tournant optique 60 est connectée à l'unité de détection 21. Plus précisément, chaque première extrémité du joint tournant optique 60 est connectée à un port d'entrée-sortie d'un circulateur correspondant.Each
En outre, chaque deuxième extrémité 60B du joint tournant optique 60 est connectée à l'extrémité d'entrée-sortie 55 d'une fibre optique 54 correspondante.Furthermore, each
Le joint tournant optique 60 est configuré pour recevoir le signal d'interrogation en provenance de l'unité de détection 21, et pour acheminer le signal d'interrogation à destination de chaque fibre optique 54.The optical rotary joint 60 is configured to receive the interrogation signal coming from the
En outre, le joint tournant optique 60 est configuré pour recevoir le signal de mesure en provenance de chaque fibre optique 54, et pour acheminer le signal de mesure à destination de l'unité de détection 21.In addition, the optical rotary joint 60 is configured to receive the measurement signal from each
Avantageusement, le joint tournant optique 60 présente une qualification IP64 ou IP65, c'est-à-dire conférant une protection totale contre les poussières, et une protection contre les projections liquides quel que soit leur angle d'incidence.Advantageously, the optical rotary joint 60 has an IP64 or IP65 qualification, that is to say conferring total protection against dust, and protection against liquid splashes whatever their angle of incidence.
Le codeur angulaire 62 est configuré pour mesurer une position angulaire du rouleau de planéité 18 par rapport à une position angulaire de référence prédéterminée.The
Le codeur angulaire 62 est connecté à l'unité de détection 21 pour transmettre, à destination de l'unité de détection 21, la position angulaire mesurée du rouleau de planéité 18.The
Le codeur angulaire 62 est, avantageusement, de type absolu, monotour.The
L'unité de détection 21 comporte une source optique 64, des moyens de routage 65, un module d'analyse spectrale 66 et un calculateur 68.The
La source optique 64 est configurée pour générer l'onde optique formant le signal d'interrogation des capteurs 22 de chaque fibre optique 54.The
La source optique 64 comporte K sorties, K étant égal à la somme du nombre M de voies des joints tournants optiques 60.The
Chaque sortie de la source optique 64 est connectée à une première extrémité correspondante du joint tournant optique 60. Plus précisément, chaque sortie de la source optique 64 est connectée à un port d'entrée du circulateur associé à la première extrémité correspondante du joint tournant optique 60.Each output of the
Avantageusement, le signal d'interrogation présente une étendue spectrale strictement supérieure au plus grand écart entre les longueurs d'onde de réflexion au repos λ0 des capteurs 22.Advantageously, the interrogation signal has a spectral range strictly greater than the greatest difference between the reflection wavelengths at rest λ 0 of the
Par exemple, la source optique 64 est configurée pour émettre un signal d'interrogation centré autour de 820 nm et présentant, par exemple, une étendue spectrale de 30 nm. Dans cette gamme de longueurs d'onde, la sensibilité usuelle des capteurs 22 est de l'ordre de 0,65 pm/microdéformation. Dans ce cas, le plus petit écart entre les longueurs d'onde de réflexion au repos λ0 des capteurs 22 est, par exemple, égal à 1,6 nm.For example, the
Selon un autre exemple, la source optique 64 est configurée pour émettre un signal d'interrogation dont le spectre est compris entre 1525 nm et 1565 nm, voire entre 1525 nm et 1625 nm, ou encore entre 1460 nm et 1625 nm. Dans cette gamme de longueurs d'onde, la sensibilité usuelle des capteurs 22 est de l'ordre de 1,2 pm/microdéformation. Dans ce cas, le plus petit écart entre les longueurs d'onde de réflexion au repos λ0 des capteurs 22 est, par exemple, égal à 3 nm.According to another example, the
En variante, la source optique 64 est une source laser accordable.Alternatively,
Les moyens de routage 65 sont reliés au codeur angulaire 62.The routing means 65 are connected to the
Les moyens de routage 65 sont également optiquement connectés au joint tournant optique 60. En particulier, les moyens de routage 65 sont connectés à un port de sortie de chaque circulateur pour recevoir le signal de mesure en provenance de chaque fibre optique 54.The routing means 65 are also optically connected to the optical rotary joint 60. In particular, the routing means 65 are connected to an output port of each circulator to receive the measurement signal coming from each
Les moyens de routage 65 sont également optiquement connectés au module d'analyse spectrale 66 pour acheminer sélectivement, vers le module d'analyse spectrale 66, les signaux de mesure provenant des fibres optiques 54 d'une même génératrice 40, c'est-à-dire la ou les fibres optiques 54 dont les capteurs 22 sont fixés aux lamelles 32 de la génératrice. Plus précisément, les moyens de routage 65 sont configurés pour acheminer sélectivement, vers le module d'analyse spectrale 66, les signaux de mesures provenant des fibres optiques 54 d'une même génératrice 40 uniquement lorsque l'angle mesuré par le codeur angulaire 62 appartient à une plage prédéterminée associée à ladite génératrice 40.The routing means 65 are also optically connected to the
De préférence, les plages prédéterminées sont deux à deux disjointes.Preferably, the predetermined ranges are two by two disjoint.
Le module d'analyse spectrale 66 est configuré pour analyser, au cours du temps, le signal de mesure reçu en provenance de chaque fibre optique 54.The
Du fait de la nature des capteurs 22, l'analyse par le module d'analyse spectrale 66, à un instant donné, d'un signal de mesure délivré par une fibre optique 54 revient à une analyse simultanée des ondes optiques de réponse de l'ensemble des capteurs 22 appartenant à la fibre optique 54.Due to the nature of the
En outre, le recours aux moyens de routage 65 est tel que le module d'analyse spectrale 66 est apte à analyser simultanément, à un instant donné, les ondes optiques de réponse de l'ensemble des capteurs 22 d'une génératrice 40.In addition, the use of the routing means 65 is such that the
En outre, le module d'analyse spectrale 66 est configuré pour délivrer un signal d'analyse représentatif de la longueur d'onde de chaque pic dans le signal de réponse reçu en provenance de chaque fibre optique 54. En d'autres termes, le signal d'analyse est représentatif du spectre de l'onde optique de réponse de chacun des capteurs 22 de la génératrice 40.Furthermore, the
Le module d'analyse spectrale 66 est, par exemple, un spectromètre à réseau concave, associé à une matrice de photodétecteurs. Dans ce cas, l'intensité relative entre les signaux électriques délivrés par les photodétecteurs est représentative du spectre du signal de mesure.The
Le calculateur 68 est connecté au codeur angulaire 62 pour recevoir la position angulaire mesurée du rouleau de planéité 18.The
En outre, le calculateur 68 est connecté au module d'analyse spectrale 66 pour acquérir le signal d'analyse généré en fonction de chaque signal de mesure.Furthermore, the
Le calculateur 68 est configuré pour stocker, pour chaque génératrice 40, un angle θ0, dit « angle de contact », correspondant à une position dans laquelle la génératrice 40 est censée être en contact avec la tôle 10, lors de la rotation du rouleau de planéité 18. Dans ce cas, le calculateur 68 est configuré pour acquérir le signal d'analyse lorsque l'angle mesuré par le codeur angulaire 62 est égal à l'angle de contact θ0. Un tel angle de contact θ0 est, par exemple, représenté sur la
Pour une génératrice 40 donnée, l'angle de contact θ0 appartient à la plage prédéterminée associée à la génératrice.For a given
En outre, le calculateur 68 est configuré pour stocker, pour chaque fibre optique 54, la longueur d'onde de réflexion au repos λ0 des capteurs 22 correspondants.In addition, the
Le calculateur 68 est également configuré pour déterminer, à partir du signal d'analyse, la longueur d'onde de réflexion associée à chaque pic dans le spectre de mesure.The
Le calculateur 68 est également configuré pour associer chaque longueur d'onde de réflexion déterminée au capteur 22 correspondant.The
Par exemple, pour chaque fibre optique 54, le calculateur 68 est configuré pour associer une longueur d'onde mesurée au capteur 22 qui présente la longueur d'onde de réflexion au repos λ0 la plus proche de ladite longueur d'onde mesurée. Un tel procédé d'association présente un faible taux d'erreur dans le cas où le plus petit écart entre les longueurs d'onde de réflexion au repos λ0 des capteurs 22 est strictement supérieur au double de la variation maximale δλmax de longueur d'onde de réflexion susceptible d'être ressentie par chaque capteur 22.For example, for each
En outre, le calculateur 68 est configuré pour calculer, pour chaque capteur 22, la variation de longueur d'onde δλ résultant de la déformation du capteur 22 le long de l'axe de mesure correspondant, comme la différence entre la longueur d'onde mesurée et la longueur d'onde de référence :
En outre, le calculateur 68 est configuré pour calculer l'effort appliqué à la lamelle 32 associée à un capteur 22 donné selon la formule :
- où δσ est l'effort appliqué sur la lamelle 32 (en newton N) ;
- δλ est la variation de longueur d'onde du capteur 22 (en pm) ;
- S est la sensibilité du capteur 22 (en pm/N), déterminée au cours d'une étape d'étalonnage décrite ultérieurement ; et
- C est un seuil de détection du capteur 22 (en N).
- where δσ is the force applied to the lamella 32 (in newton N);
- δλ is the variation in wavelength of sensor 22 (in pm);
- S is the sensitivity of sensor 22 (in pm/N), determined during a calibration step described later; and
- C is a detection threshold of sensor 22 (in N).
La détermination du seuil de détection sera décrite ultérieurement.The determination of the detection threshold will be described later.
De préférence, le calculateur 68 est également configuré pour stocker, pour chaque génératrice 40, un angle θ-, dit « angle en entrée de contact », correspondant à une position dans laquelle la génératrice 40 est censée ne pas encore être entrée en contact avec la tôle 10, lors de la rotation du rouleau de planéité 18, comme illustré par la
De préférence, le calculateur 68 est également configuré pour stocker, pour chaque génératrice 40, un angle θ+, dit « angle en sortie de contact », correspondant à une position dans laquelle la génératrice 40 est censée ne plus être en contact avec la tôle 10, lors de la rotation du rouleau de planéité 18, comme illustré par la
L'angle en entrée de contact θ- et l'angle en sortie de contact θ+ sont tels que l'angle de contact θ0 est compris entre l'angle en entrée de contact θ- et l'angle en sortie de contact θ+. Ceci apparaît, par exemple, sur les
En outre, pour une génératrice 40 donnée, l'angle en entrée de contact θ- et l'angle en sortie de contact θ+ appartiennent à la plage prédéterminée associée à la génératrice.In addition, for a given
Dans ce cas, le calculateur 68 est également configuré pour acquérir le signal d'analyse lorsque l'angle mesuré par le codeur angulaire 62 est égal à l'angle en entrée de contact θ- et à l'angle en sortie de contact θ+, et pour associer chaque longueur d'onde mesurée par le module d'analyse spectrale 66 au capteur 22 correspondant.In this case, the
En outre, le calculateur 68 est configuré pour calculer, pour chaque capteur 22, la variation de longueur δλ résultant de la déformation du capteur 22 le long de l'axe de mesure correspondant et corrigée des effets de la température, selon la formule suivante :
- où λm,θ- est la longueur d'onde mesurée lorsque l'angle mesuré par le codeur angulaire 62 est égal à l'angle en entrée de contact θ-; et
- λm,θ+ est la longueur d'onde mesurée lorsque l'angle mesuré par le codeur angulaire 62 est égal à l'angle en sortie de contact θ+.
- where λ m,θ- is the wavelength measured when the angle measured by the
angle encoder 62 is equal to the contact input angle θ - ; and - λ m,θ+ is the wavelength measured when the angle measured by the
angle encoder 62 is equal to the angle at the contact output θ + .
Pour une génératrice 40 donnée, le profil d'effort calculé constitue le vecteur de planéité.For a given
Le calculateur 68 est également configuré pour comparer chaque vecteur de planéité à un profil cible.
Avantageusement, le calculateur 68 est également configuré pour générer, en fonction de la différence entre le vecteur de planéité et le profil cible, des instructions de commande des buses 14 et/ou des actionneurs 16.Advantageously, the
Le fonctionnement du système de mesure de planéité 19 va maintenant être décrit.The operation of the
Au cours d'une étape d'initialisation, pour chaque fibre optique 54, la valeur de la longueur d'onde de réflexion au repos λ0 de chaque capteur 22 de la fibre optique 54 est enregistrée dans l'unité de traitement 21.During an initialization step, for each
En outre, pour chaque génératrice 40, la valeur de l'angle de contact θ0 et, avantageusement, la valeur de l'angle en entrée de contact θ- et de l'angle en sortie de contact θ+ sont enregistrées dans l'unité de traitement 21.In addition, for each
Au cours d'une étape d'étalonnage, un effort prédéterminé est appliqué sur la face externe 34 de chaque lamelle 32.During a calibration step, a predetermined force is applied to the
La variation de la longueur d'onde de réflexion de chaque capteur 22 en fonction de l'effort est mesurée, et un modèle reliant ladite variation de la longueur d'onde de réflexion à l'effort appliqué à la lamelle est déterminé. Puis, le modèle déterminé est enregistré dans l'unité de traitement 21. Un tel modèle est, par exemple, le modèle affine précédemment décrit :
Dans le cas où les valeurs des paramètres du modèle varient avec le capteur 22, les valeurs du modèle déterminé pour chaque capteur 22 sont enregistrées dans l'unité de traitement 21 en relation avec le capteur 22 correspondant.In the case where the values of the parameters of the model vary with the
Puis le rouleau de planéité 18 est inséré dans la ligne d'opérations de laminage 1.Then the
La tôle 10 entraîne le rouleau de planéité 18 en rotation.The
Le codeur angulaire 62 mesure la position angulaire du rouleau de planéité 18.The
La source optique 64 génère le signal d'interrogation, et le joint tournant optique 60 achemine le signal d'interrogation à destination de chaque fibre optique 54.The
Chaque fibre optique 54 renvoie, à destination du module d'analyse spectrale 66, le signal de mesure correspondant.Each
Lorsque l'angle mesuré par le codeur angulaire 62 appartient à une plage prédéterminée associée à une génératrice 40 donnée, les moyens de routage 65 transmettent, à destination du module d'analyse spectrale 66, les signaux de mesure issus des fibres optiques 54 de ladite génératrice 40.When the angle measured by the
Pour ladite génératrice 40, le module d'analyse spectrale 66 analyse, au cours du temps, le signal de mesure reçu en provenance de chaque fibre optique 54 correspondante. En outre, le module d'analyse spectrale 66 délivre, au cours du temps, le signal d'analyse représentatif de la longueur d'onde de chaque pic dans le signal de réponse reçu en provenance de chaque fibre optique 54.For said
Pour l'angle de contact θ0 associé à la génératrice 40, le calculateur 68 acquiert le signal d'analyse. Avantageusement, le calculateur 68 acquiert également le signal d'analyse pour l'angle en entrée de contact θ- et pour l'angle en sortie de contact θ+ associés à la génératrice 40.For the contact angle θ 0 associated with
Puis, le calculateur 68 détermine la longueur d'onde de réflexion courante pour chaque capteur 22.Then, the
Puis, le calculateur 68 calcule, pour chaque capteur 22, la variation de longueur d'onde de réflexion δλ associée à la longueur d'onde de réflexion λ courante déterminée, c'est-à-dire la différence entre la longueur d'onde de réflexion λ courante déterminée et la longueur d'onde de réflexion au repos λ0.Then, the
Puis, pour chaque capteur 22, le calculateur 68 détermine, à partir de la variation de longueur d'onde de réflexion δλ calculée, l'effort appliqué à la lamelle 32 associée au capteur 22. Le vecteur formé par l'effort appliqué à chacune des lamelles 32 de la génératrice 40 forme le vecteur de planéité associé à la génératrice 40.Then, for each
Puis, le calculateur 68 compare le vecteur de planéité au profil cible.Then, the
Puis, le calculateur 68 génère, en fonction des différences entre le vecteur de planéité et le profil cible, des instructions de commande des buses 14 et/ou des actionneurs 16.Then, the
Les opérations mises en œuvre par le module d'analyse spectrale 66 et le calculateur 68, décrites précédemment, sont répétées à chaque fois que l'angle mesuré par le codeur angulaire 62 appartient à la plage prédéterminée associée à une nouvelle génératrice 40.The operations implemented by the
Un deuxième mode de réalisation du système de mesure de planéité 19 selon l'invention est illustré par la
Le système de mesure de planéité 19 de la
Dans ce cas, la source optique 64, les moyens de routage 65 et le module d'analyse spectrale 66 sont agencés dans l'évidement central 46 du rouleau de planéité 18 pour former un ensemble d'interrogation Bragg 70.In this case, the
Le rouleau de planéité 18 comporte également un joint tournant d'alimentation 72, configuré pour assurer le transport d'énergie électrique à l'ensemble d'interrogation Bragg 70 depuis une source d'énergie électrique externe au rouleau de planéité 18.The
Le rouleau de planéité 18 comporte, en outre, un joint tournant de communication 74, configuré pour assurer une communication entre l'ensemble d'interrogation Bragg 70 et le calculateur 68, notamment pour assurer le transport du signal d'analyse depuis le module d'analyse spectrale 66 vers le calculateur 68.The
Par exemple, le joint tournant de communication 74 est un joint tournant Ethernet.For example, the communication rotary joint 74 is an Ethernet rotary joint.
Un troisième mode de réalisation du système de mesure de planéité 19 selon l'invention est illustré par la
Le système de mesure de planéité 19 de la
Avantageusement, l'un des dispositifs d'extrémité 23 du rouleau de planéité 18 comporte un alternateur 78, électriquement relié à la batterie 76.Advantageously, one of the
L'alternateur 78 est configuré pour convertir une partie de l'énergie mécanique provenant de la rotation du rouleau de planéité 18 en énergie électrique pour recharger la batterie 76.
Par exemple, l'alternateur 78 comprend un induit 80, solidaire du corps 20, et un inducteur 82, destiné à être fixé au bâti recevant le rouleau de planéité 18. L'induit est configuré pour tourner, relativement à l'inducteur, autour de l'axe de révolution X-X.For example, the
L'inducteur 82 comprend, par exemple, une pluralité d'aimants permanents. En outre, l'induit 80 comporte, par exemple, une pluralité de spires disposées dans le champ magnétique généré par les aimants de l'inducteur.The
Selon une variante des systèmes de mesure de planéité 19 des
Selon une variante des systèmes de mesure de planéité 19 des
Le calculateur 68 est configuré pour recevoir les ondes électromagnétiques émises par l'émetteur d'ondes électromagnétiques et pour décoder lesdites ondes électromagnétiques afin de déterminer la longueur d'onde de réflexion de chaque capteur 22.The
En outre, le rouleau de planéité 18 comporte au moins une portion transparente dans la gamme de fréquence d'émission de l'émetteur d'ondes électromagnétiques pour permettre la propagation des ondes électromagnétiques depuis l'émetteur d'ondes électromagnétiques vers le calculateur 68.In addition, the
Par exemple, l'émetteur d'ondes électromagnétiques est un module transmetteur Wi-Fi (norme IEEE 802.11). Par exemple, la portion transparente est une fenêtre ménagée dans une des joues 56 du rouleau de planéité 18. Par exemple, la fenêtre est réalisée en polyméthacrylate de méthyle (PMMA), en polycarbonate (PC) ou en matériau composite verre-époxy (également appelé « glass fiber reinforced plastics » en anglais).For example, the electromagnetic wave transmitter is a Wi-Fi transmitter module (IEEE 802.11 standard). For example, the transparent portion is a window formed in one of the
De façon plus générale, le rouleau de planéité 18 comporte au moins une portion transparente, la portion transparente étant propre à transmettre au moins partiellement une onde électromagnétique appartenant à une gamme de fréquences prédéterminée, par exemple appartenant aux micro-ondes, aux ondes optiques, au proche ultraviolet ou au proche infrarouge.More generally, the
Dans ce cas, le calculateur 68 est susceptible d'être agencé dans l'évidement central 46, de sorte que l'émetteur d'ondes électromagnétiques soit utilisé pour transmettre directement les instructions de commande des buses 14 et/ou des actionneurs 16 générées par le calculateur 68.In this case, the
La présence des fentes 30 empêche l'apparition de couplages latéraux le long de chaque génératrice 40.The presence of
Par « couplage latéral » (« cross-talk » en anglais), il est entendu, au sens de la présente demande, l'apparition de contraintes axiales le long d'une génératrice lorsqu'une contrainte radiale est appliquée sur le rouleau de planéité 18. En d'autres termes, dans le cas d'un couplage latéral, une contrainte appliquée en un point donné de la génératrice 40 se traduit par l'apparition d'une contrainte en des points voisins, notamment des points voisins appartenant à la génératrice, même en l'absence d'effort radial exercé sur lesdits points.By "lateral coupling"(" cross-talk " in English), it is understood, within the meaning of the present application, the appearance of axial stresses along a generatrix when a radial stress is applied to the
De tels couplages latéraux requièrent généralement de lourds calculs pour être compensés. En outre, les résultats obtenus à l'issue de tels calculs ne présentent généralement pas une précision suffisante. Ceci se traduit par une dégradation des performances de la boucle de régulation.Such lateral couplings generally require heavy calculations to be compensated. In addition, the results obtained at the end of such calculations generally do not have sufficient accuracy. This results in a degradation of the performance of the regulation loop.
La présence des fentes 30 réduit substantiellement la propagation d'efforts axiaux le long de la génératrice 40. De tels calculs ne sont plus nécessaires, et les performances de la boucle de régulation sont améliorées.The presence of the
Le fait que l'axe de mesure de chaque capteur 22 forme, avec tout plan orthogonal à l'axe de révolution X-X, un angle inférieur ou égal à 10°, conduit à ce que chaque capteur 22 mesure uniquement ou essentiellement une composante circonférentielle, c'est-à-dire orthoradiale, de la déformation de la lamelle 32 correspondante. Or, la demanderesse a constaté que, lors de l'application d'un effort radial sur une lamelle 32, la composante circonférentielle de la déformation de la lamelle 32 est la déformation présentant, en valeur absolue, la plus grande amplitude. Il en résulte qu'un tel agencement des axes de mesure des capteurs 22 maximise l'amplitude de l'élongation des capteurs 22, et donc maximise la sensibilité du rouleau de planéité 18.The fact that the measurement axis of each
Le recours à de tels capteurs 22 à réseau de Bragg sur fibre est avantageux, dans la mesure où leur sensibilité, c'est-à-dire l'amplitude de leur réponse, pour un signal d'interrogation d'amplitude constante, est indépendante de la température dans les plages de températures usuelles dans le domaine du laminage, en particulier du laminage à froid.The use of such fiber
Le recours à de tels capteurs 22 optiques est avantageux, en particulier dans un environnement métallurgique, par exemple sidérurgique, siège de perturbations électromagnétiques générées par la présence de fours à induction et de machines tournantes, dans la mesure où de tels capteurs sont insensibles à de telles perturbations électromagnétiques.The use of such
En outre, le recours à de tels capteurs 22 en association aux lamelles 32 confère au rouleau de planéité 18 une grande sensibilité, une grande dynamique et une grande robustesse. En effet, en fonctionnement, le corps 20 supporte la majorité de l'effort exercé par la tôle 10 sur le rouleau de planéité 18. En outre, de tels capteurs 22 sont susceptibles de subir une grande plage d'efforts, de l'ordre de trois ordres de grandeur, sans risque de destruction. En outre, de tels capteurs, même lorsqu'ils sont soumis à un effort moyen important (par exemple 2000 N) sont susceptibles de détecter des variations infimes d'effort (par exemple 2 N).In addition, the use of
Le recours à de tels capteurs 22 optiques est également avantageux, dans la mesure où le multiplexage en longueur d'onde sur une même fibre optique 54 autorise une analyse simultanée des ondes optiques de réponse de chaque capteur 22. La mesure est alors synchrone sur une génératrice, éliminant les biais de mesure liés à des phénomènes de balourds, excentricités de bobineuse, etc. Il en résulte un gain conséquent en précision de mesure comparativement aux dispositifs de l'état de la technique à capteurs électromécaniques, qui requièrent généralement une acquisition séquentielle et ne fournissent donc pas une mesure synchrone vraie.The use of such
Une telle acquisition simultanée est également avantageuse dans la mesure où une acquisition séquentielle des capteurs, pendant la rotation du rouleau de planéité 18, est susceptible de masquer des biais potentiels liés à d'éventuelles fluctuations périodiques d'effort au niveau de la cage de laminoir 4.Such simultaneous acquisition is also advantageous insofar as a sequential acquisition of the sensors, during the rotation of the roller of
Le recours à de tels capteurs 22 est également avantageux dans la mesure où leur coût est généralement plus faible que le coût des capteurs électromécaniques usuels.The use of
Le recours à de tels capteurs 22 optiques est également avantageux dans la mesure où leurs faibles dimensions autorisent la réalisation de lamelles 32 de faible étendue axiale, ce qui accroît la résolution spatiale du système de mesure de planéité 19 le long de chaque génératrice 40. Ceci est particulièrement avantageux dans le domaine du laminage de tôles fines, où la résolution axiale (c'est-à-dire la résolution suivant l'axe de révolution du rouleau de planéité 18) requise est de l'ordre de quelques millimètres, notamment au niveau des bords latéraux de la tôle 10, c'est-à-dire les bords destinés à exercer un effort sur les zones périphériques 42 de chaque génératrice 40.The use of such
Par ailleurs, le recours à un corps 20 formé de plusieurs tronçons 26A, 26B autorise une installation plus simple des fibres optiques 54, dans la mesure où chaque tronçon 26A, 26B est susceptible d'être équipé des fibres optiques 54 correspondantes, avant l'assemblage du corps 20. En effet, en raison des dimensions du corps 20, l'installation des fibres optiques 54 dans un corps 20 monobloc est susceptible de poser des difficultés.Moreover, the use of a
Le recours à un corps 20 formé de plusieurs tronçons 26A, 26B facilite également les réparations du rouleau de planéité 18, dans la mesure où seul le tronçon correspondant à une zone défectueuse du rouleau de planéité 18 est remplacé, et non pas le rouleau de planéité dans son intégralité.The use of a
La présence des parties pleines 29 dans le corps 20 assure une reprise des efforts exercés par la tôle 10, ce qui confère au corps 20 une plus grande rigidité que les dispositifs de l'état de la technique.The presence of the
En outre, le corps 20 étant métallique, l'agencement de tout ou partie des organes de l'unité de traitement 21 (parmi lesquels la source optique 64, le module d'analyse spectrale 66 ou le calculateur 68) dans le corps 20 confère au corps 20 une fonction de protection contre les perturbations électromagnétiques, dite de « blindage électromagnétique ». Une telle protection est particulièrement avantageuse dans un environnement métallurgique, par exemple sidérurgique, siège de perturbations électromagnétiques générées par la présence de fours à induction et de machines tournantes.In addition, the
Claims (14)
- Flatness roller (18) including a cylindrical body (20) extending along an axis of revolution (X-X) and radially delimited by an outer surface (24),
the body (20) including at least one cavity (28) extending parallel to the axis of revolution (X-X), characterized in that:each cavity (28) opens radially onto the outer surface (24) through a plurality of slots (30) each extending in a respective plane orthogonal to the axis of revolution (X-X), of which two successive slots (30) along an axis parallel to the axis of revolution (X-X) defining a lamella (32) between them,each lamella (32) being connected to the body (20) by two opposite circumferential ends (38) of the lamella (32), each circumferential end (38) forming a connection portion,the lamellas (32) aligned in a direction parallel to the axis of revolution (X-X) forming a generatrix (40),the flatness roller (18) further including at least one optical fibre (54) comprising at least one strain sensor (22), each strain sensor (22) having a measurement axis, each strain sensor (22) being associated with a lamella (32),each strain sensor (22) being housed in a corresponding cavity (28) and attached to the corresponding lamella (32) at a connection portion of the lamella (32),each strain sensor (22) being arranged so that the angle between the corresponding measurement axis and a plane orthogonal to the axis of revolution (X-X) is less than or equal to 20°, preferably less than or equal to 10°,each optical fibre (54) being configured to receive an interrogation signal, each strain sensor (22) of each optical fibre (54) being configured to send, depending on the interrogation signal received by the corresponding optical fibre (54), an optical response wave representative of a strain of the strain sensor (22) along the corresponding measurement axis. - Flatness roller (18) according to claim 1, wherein at least one lamella (32) has a constant thickness.
- Flatness roller (18) according to claim 1 or 2, wherein at least one cavity (28) has, in a plane orthogonal to the axis of revolution (X-X), a circular section.
- Flatness roller (18) according to any one of claims 1 to 3, wherein each lamella (32) is configured to have a circumferential strain between 1 and 50 microstrains per newton of radial force applied to the lamella (32).
- Flatness roller (18) according to any one of claims 1 to 4, wherein each generatrix (40) has a variable density of slots (30), the density of slots (30) in at least one peripheral area (42) of the generatrix (40) being, preferably, greater than the density of slots (30) in the intermediate area (44) of the generatrix (40).
- Flatness roller (18) according to any one of claims 1 to 5, wherein the body (20) consists of a plurality of sections (26A, 26B) arranged axially end to end, each section being associated to at least one specific optical fibre (54) whereof all of the strain sensors (22) are attached to the lamellas (32) of said section (26A, 26B).
- Flatness roller (18) according to any one of claims 1 to 6, wherein the body (20) includes at least one solid portion (29) arranged radially inwardly in relation to at least one cavity (28) and/or circumferentially between two cavities (28).
- Flatness roller (18) according to any one of claims 1 to 7, wherein each cavity (28) is filled with an elastomer arranged to provide a sealing of the cavity (28).
- Flatness roller (18) according to any one of claims 1 to 8, including at least one transparent portion, the transparent portion being suitable for transmitting at least partially one electromagnetic wave belonging to a predetermined range of frequencies.
- Flatness roller (18) according to any one of claims 1 to 9, wherein each strain sensor (22) is a fibre Bragg grating.
- System for measuring flatness (19) including a flatness roller (18) according to any one of claims 1 to 10 and a detection unit (21),the detection unit (21) being configured to send the interrogation signal to each optical fibre (54) and to receive, from each optical fibre (54), a measurement signal formed by the optical response waves generated by the strain sensors (22) of the optical fibre (54),the detection unit (21) being further configured to measure an angle of rotation of the body (20) in relation to a reference position, each generatrix (40) being associated with a contact angle (θ0),the detection unit (21) being configured to acquire the measurement signal coming from each optical fibre (54) when the angle of rotation of the body (20) is equal to the contact angle (θ0),the detection unit (21) being further configured to calculate a flatness vector depending on each acquired measurement signal.
- System for measuring flatness (19) according to claim 11, wherein each generatrix (40) is also associated with an entry contact angle (θ-) and an exit contact angle (θ+), the contact angle (θ0) being between the entry contact angle (θ-) and the exit contact angle (θ+),the detection unit (21) being configured to acquire the measurement signal coming from each optical fibre (54) when the angle of rotation of the body (20) is equal to each of the entry contact angle (θ-) and the exit contact angle (θ+),the detection unit (21) being, furthermore, configured to implement the measurement signal acquired for each of the entry contact angle (θ-), the contact angle (θ0) and the exit contact angle (θ+) in order to calculate a flatness vector corrected with effects of the temperature on the lamellas (32) of the generatrix (40) during the rotation of the body (20) between the corresponding entry contact angle (θ-) and the exit contact angle (θ+).
- System for measuring flatness (19) according to claim 11 or 12, wherein the body (20) of the flatness roller (18) is metal and includes a central recess (46), the processing unit (21) being at least partially housed in the central recess (46).
- Rolling operation line (1) including a system for measuring flatness (19) according to any one of claims 11 to 13.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1851553A FR3077999B1 (en) | 2018-02-22 | 2018-02-22 | PLANEITY ROLL, PLANEITY MEASURING SYSTEM AND LINE OF ROLLING OPERATIONS THEREOF |
PCT/FR2019/050368 WO2019162606A1 (en) | 2018-02-22 | 2019-02-19 | Flatness roller, system for measuring flatness and line of associated laminating operations |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3755476A1 EP3755476A1 (en) | 2020-12-30 |
EP3755476B1 true EP3755476B1 (en) | 2022-03-16 |
Family
ID=62222914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19710758.4A Active EP3755476B1 (en) | 2018-02-22 | 2019-02-19 | Flatness roller, system for measuring flatness and associated rolling operations line |
Country Status (12)
Country | Link |
---|---|
US (1) | US12076769B2 (en) |
EP (1) | EP3755476B1 (en) |
JP (1) | JP7300458B2 (en) |
KR (1) | KR102654901B1 (en) |
CN (1) | CN112041097B (en) |
CA (1) | CA3091303A1 (en) |
ES (1) | ES2916387T3 (en) |
FR (1) | FR3077999B1 (en) |
MX (1) | MX2020008543A (en) |
PL (1) | PL3755476T3 (en) |
WO (1) | WO2019162606A1 (en) |
ZA (1) | ZA202005101B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111232557B (en) * | 2020-01-09 | 2020-11-24 | 中国矿业大学 | Distributed scraper conveyor working surface straightness detection device and method based on optical fiber sensing |
CN111804737B (en) * | 2020-07-07 | 2022-09-16 | 杭州传感器有限公司 | Strain type plate shape gauge |
JP2024025314A (en) * | 2022-08-12 | 2024-02-26 | 株式会社神戸製鋼所 | sensor roller unit |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5533227Y2 (en) * | 1974-08-26 | 1980-08-07 | ||
FR2468878A1 (en) * | 1979-10-26 | 1981-05-08 | Secim | DEVICE FOR DETECTING PLANAR FAULTS OF A TENDERED BAND IN DISPLACEMENT |
EP0241280A3 (en) * | 1986-04-10 | 1990-04-11 | DAVY McKEE (SHEFFIELD) LIMITED | A roll for use in determining the shape of metal strip |
JPS6469902A (en) * | 1987-09-11 | 1989-03-15 | Nippon Steel Corp | Method for detecting shape of thin metal strip like plate |
JPH0748057B2 (en) * | 1989-07-28 | 1995-05-24 | 株式会社神戸製鋼所 | Shape detection roll |
DE4236657C2 (en) * | 1992-10-30 | 2002-04-04 | Betr Forsch Inst Angew Forsch | Deflecting |
FR2775781B1 (en) * | 1998-03-06 | 2000-04-14 | Schneider Electric Ind Sa | FIBER OPTIC PROBE |
FR2812082B1 (en) * | 2000-07-20 | 2002-11-29 | Vai Clecim | PLANEITY MEASUREMENT ROLLER |
SE0100699D0 (en) * | 2001-03-01 | 2001-03-01 | Abb Ab | A method and a device for determining the wrap angle |
FR2823300B1 (en) * | 2001-04-10 | 2003-09-05 | Vai Clecim | PLANEITY DEFECT DETECTION METHOD |
DE102004008303A1 (en) * | 2004-02-20 | 2005-09-01 | Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh | Method for determining flatness defects in strips, in particular steel and metal strips, and flatness measuring roll |
US20050285059A1 (en) * | 2004-06-24 | 2005-12-29 | Gerber Terry L | Apparatus and a method for detecting flatness defects of a web moving over a roller assembly |
DE202005012465U1 (en) * | 2005-08-09 | 2005-10-27 | ACHENBACH BUSCHHüTTEN GMBH | Hot strip material tension or temperature measurement roller has channels cut in outer surface covered by shrunk on tube |
JP2007155678A (en) * | 2005-12-08 | 2007-06-21 | Kobe Steel Ltd | Shape detection device |
DE102008030282B3 (en) * | 2008-06-30 | 2009-10-22 | Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh | Flatness measuring roll and method for determining flatness errors of a strip |
EP2447198B1 (en) * | 2010-10-27 | 2015-12-23 | Abb Ab | Roll arrangement |
CH704255A1 (en) * | 2010-12-22 | 2012-06-29 | Kistler Holding Ag | FUEL SENSOR SYSTEM AND METHOD FOR PLANNING MEASUREMENTS OF FILM OR PANEL STRIPS FOR ROLLING. |
DE102014115023A1 (en) * | 2014-10-16 | 2016-04-21 | Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh | Flatness measuring roll with measuring bar in strip running direction |
DE102018009611A1 (en) * | 2018-12-11 | 2020-06-18 | Vdeh-Betriebsforschungsinstitut Gmbh | Measuring roller for determining a property of a strip-shaped good guided over the measuring roller |
-
2018
- 2018-02-22 FR FR1851553A patent/FR3077999B1/en active Active
-
2019
- 2019-02-19 ES ES19710758T patent/ES2916387T3/en active Active
- 2019-02-19 PL PL19710758.4T patent/PL3755476T3/en unknown
- 2019-02-19 JP JP2020544038A patent/JP7300458B2/en active Active
- 2019-02-19 EP EP19710758.4A patent/EP3755476B1/en active Active
- 2019-02-19 MX MX2020008543A patent/MX2020008543A/en unknown
- 2019-02-19 US US16/971,597 patent/US12076769B2/en active Active
- 2019-02-19 KR KR1020207027081A patent/KR102654901B1/en active IP Right Grant
- 2019-02-19 CA CA3091303A patent/CA3091303A1/en active Pending
- 2019-02-19 CN CN201980025623.5A patent/CN112041097B/en active Active
- 2019-02-19 WO PCT/FR2019/050368 patent/WO2019162606A1/en unknown
-
2020
- 2020-08-18 ZA ZA2020/05101A patent/ZA202005101B/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP3755476A1 (en) | 2020-12-30 |
US20210078060A1 (en) | 2021-03-18 |
CN112041097A (en) | 2020-12-04 |
CN112041097B (en) | 2022-08-12 |
WO2019162606A1 (en) | 2019-08-29 |
BR112020017137A2 (en) | 2021-02-02 |
ZA202005101B (en) | 2021-09-29 |
ES2916387T3 (en) | 2022-06-30 |
PL3755476T3 (en) | 2022-07-18 |
JP2021514844A (en) | 2021-06-17 |
FR3077999B1 (en) | 2020-03-20 |
US12076769B2 (en) | 2024-09-03 |
FR3077999A1 (en) | 2019-08-23 |
MX2020008543A (en) | 2020-11-25 |
KR102654901B1 (en) | 2024-04-04 |
JP7300458B2 (en) | 2023-06-29 |
CA3091303A1 (en) | 2019-08-29 |
KR20200122372A (en) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3755476B1 (en) | Flatness roller, system for measuring flatness and associated rolling operations line | |
EP0033048B1 (en) | Interferometer with tunable optical cavity comprising a monomodal optical fibre, and its application to filtration and spectrography | |
FR2812082A1 (en) | PLANEITY MEASUREMENT ROLLER | |
FR2632404A1 (en) | INTERFEROMETRIC SENSOR AND ITS USE IN AN INTERFEROMETRIC DEVICE | |
EP1249683B1 (en) | Method for detecting defects in evenness | |
CA1296545C (en) | Continuous surface condition control device for a moving web of corrugated paper | |
EP3374735B1 (en) | Method and device for measuring the planarity of a metal product | |
EP0028191A1 (en) | Device for detecting flatness faults in a band moving under tension | |
FR2924234A1 (en) | VERY HIGH QUALITY CHANNEL FOR MULTIVOY OPTICAL ROTATING JOINTS. | |
FR2826448A1 (en) | DIFFERENTIAL MEASUREMENT SYSTEM BASED ON THE USE OF BRAGG NETWORK PAIRS | |
EP0615608B1 (en) | Roller for measuring the surface flatness of a strip produced in a continuous process | |
EP3071938B1 (en) | Sensor with high-sensitivity optical fibre | |
EP0637147B1 (en) | Tunable optical filter tuning device in particular for use at reception in an optical transmission system | |
FR3052923A1 (en) | OPTICAL REFLECTOR RESONANT TO MULTIPLE THIN LAYERS OF DIELECTRIC MATERIALS, OPTICAL SENSOR AND LASER AMPLIFICATION DEVICE COMPRISING SUCH A REFLECTOR | |
FR2771809A1 (en) | APPARATUS FOR MEASURING THE PLANEITY OF A RUNNING WEB | |
WO2023006746A1 (en) | Method for measuring the variation in pressure applied to a pipe, associated measurement device and apparatus | |
EP0270442B1 (en) | Roller for checking the profile of a moving strip | |
EP3948168B1 (en) | Device for distributing a signal with a view to measuring wavelength shifts | |
WO2023006750A1 (en) | Method for non-intrusive measurement of the internal pressure variation and/or temperature variation of a pipe, associated measurement device and apparatus | |
FR2985041A1 (en) | OPTICAL CABLE FOR MEASURING DEFORMATION OR TEMPERATURE | |
WO2024121508A1 (en) | Device and method for detecting a defect in an object containing wire ropes | |
BR112020017137B1 (en) | FLATNESS ROLL, FLATNESS MEASURING SYSTEM AND LINE FOR ASSOCIATED ROLLING OPERATIONS | |
FR3126153A1 (en) | Improved optical sensor to measure part displacement | |
EP3645986A1 (en) | High-fineness fabry-perot cavity and method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200824 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211005 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: DE Ref legal event code: R096 Ref document number: 602019012610 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1475516 Country of ref document: AT Kind code of ref document: T Effective date: 20220415 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2916387 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220630 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220616 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220617 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220718 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220716 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019012610 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 |
|
26N | No opposition filed |
Effective date: 20221219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1475516 Country of ref document: AT Kind code of ref document: T Effective date: 20220316 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220316 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230219 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230219 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240226 Year of fee payment: 6 Ref country code: ES Payment date: 20240326 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240227 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240201 Year of fee payment: 6 Ref country code: DE Payment date: 20240216 Year of fee payment: 6 Ref country code: CZ Payment date: 20240207 Year of fee payment: 6 Ref country code: SK Payment date: 20240201 Year of fee payment: 6 Ref country code: GB Payment date: 20240222 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240212 Year of fee payment: 6 Ref country code: SE Payment date: 20240228 Year of fee payment: 6 Ref country code: PL Payment date: 20240129 Year of fee payment: 6 Ref country code: IT Payment date: 20240226 Year of fee payment: 6 Ref country code: FR Payment date: 20240219 Year of fee payment: 6 Ref country code: BE Payment date: 20240226 Year of fee payment: 6 |