EP3753035B1 - Switching kinematics for vacuum interrupters and method for adapting a keep-open torque transmitted to a switch shaft - Google Patents

Switching kinematics for vacuum interrupters and method for adapting a keep-open torque transmitted to a switch shaft Download PDF

Info

Publication number
EP3753035B1
EP3753035B1 EP18716988.3A EP18716988A EP3753035B1 EP 3753035 B1 EP3753035 B1 EP 3753035B1 EP 18716988 A EP18716988 A EP 18716988A EP 3753035 B1 EP3753035 B1 EP 3753035B1
Authority
EP
European Patent Office
Prior art keywords
switching
keep
open
switch shaft
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18716988.3A
Other languages
German (de)
French (fr)
Other versions
EP3753035A1 (en
Inventor
Dhananjay AWATE
Thomas Knabe
Philipp Last
Philipp Meyer
Namitkumar SHELAR
Saurabh Shrivastava
Claudia Sigusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3753035A1 publication Critical patent/EP3753035A1/en
Application granted granted Critical
Publication of EP3753035B1 publication Critical patent/EP3753035B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/46Driving mechanisms, i.e. for transmitting driving force to the contacts using rod or lever linkage, e.g. toggle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/40Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H2033/6667Details concerning lever type driving rod arrangements

Definitions

  • the invention relates to a switching kinematics for vacuum interrupters of a switch, in particular for low-voltage, medium-voltage and high-voltage systems, and a method for adjusting a holding open torque transmitted to a switch shaft in a switching kinematics, in particular for low-voltage, medium-voltage and high-voltage systems.
  • circuit breakers that use vacuum interrupters are known.
  • the switching contacts of all phases usually three, are arranged in a vacuum tube.
  • the atmospheric pressure surrounding the tube permanently exerts a closing force F VI on the tube, so that the switch closes automatically without any further precautions.
  • a compensating counterforce must be applied that is greater than the closing forces F VI of all tubes in the switch generated by the atmospheric pressure.
  • a single spring the so-called hold-open spring, is used in a switching device. This one hold-open spring causes a moment, in particular a torque, T OHF on the switch shaft of the respective switching device.
  • this switch shaft simultaneously serves all poles, i.e. phases and vacuum interrupters.
  • the opening torque on the switch shaft must be greater than or at least equal to the torque on the switch shaft, which is caused by the Closing forces F VI of all vacuum interrupters are generated so that the poles, usually three, of the switching device are kept open.
  • the switch shaft is rotated from the off position by an angle ⁇ ON .
  • the hold-open spring acting on the switching shaft is further tensioned.
  • An amount of energy E OHF is therefore stored in the hold-open spring during the switch-on movement.
  • the drive of the vacuum switch must therefore also provide the energy E OHF in addition to other energies (e.g. the energy for compressing the contact pressure springs).
  • the DE2717958A1 describes a drive device for an electrical switching device with switching kinematics.
  • the JP H06 231656A shows switching kinematics for switching contacts.
  • the object of the invention is now to eliminate the known disadvantages from the prior art.
  • An exemplary embodiment relates to a switching kinematics for vacuum interrupters of a switch, in particular for low-voltage, medium-voltage and high-voltage systems, with a drive, a switching spring, a first switching gate, which is rotatably arranged about a first axis, a first switching lever on which the first A switching gate acts, a switch shaft which is firmly connected to the first switching lever and a hold-open spring which acts on the switch shaft, the vacuum interrupter having at least two switching contacts, of which at least one is a moving contact, and the vacuum interrupter between a first position in which the switching contacts of the vacuum interrupter are separated from one another, and can be transferred to a second position in which the switching contacts are in contact with one another, the hold-open spring being connected to the switch shaft via a crank element and a transmission member, and the hold-open spring via the transmission member and the switch shaft acts on the first shift lever and so does not attack the shift lever directly.
  • the hold-open spring is attached to the crank element, and the crank element is movably arranged between the transmission member and a fastening element.
  • the crank element also has a movably arranged deflection element, the transmission member is movably connected to a translation crank, the translation crank is in turn movably connected to the fastening element, and the hold-open spring acts on the translation crank via the deflection element and thus transmits the hold-open torque T OHF to the transmission member.
  • Such switching kinematics enables the switching kinematics to be easily and cost-effectively adapted to the different requirements of vacuum interrupters and the drive.
  • the switching kinematics here refers to the mechanical components of the switch, which transmit the switching movement to the vacuum interrupter and the drive of the switch, i.e. also for tensioning the springs.
  • the transmission member is designed in such a way that the transmission member's hold-open torque T OHF of the hold-open spring on the switch shaft decreases the further the switching contacts of the vacuum interrupter approach the second position.
  • the hold-open torque T OHF of the hold-open spring which acts on the switch shaft, is greater than zero in the first position of the vacuum interrupter and is not less than zero in the second position and more preferably is less in the second position than in the first Position.
  • the hold-open torque T OHF of the hold-open spring which acts on the switch shaft, is greater than zero in the first position of the vacuum interrupter and is less than zero in the second position.
  • This arrangement requires a switch shaft lever to pass through an extended position, i.e. the point of application at which the transmission member acts on the switch shaft via a lever, and transmission member, which is possible in particular, but not necessarily, by exploiting dynamic effects such as inertia.
  • a change in the shape of the transmission crank causes a change in the hold-open torque transmitted via the transmission member to the switch shaft.
  • One exemplary embodiment relates to a method for adapting a hold-open torque T OHF transmitted to a switch shaft, wherein in a switching kinematics according to one of the above embodiments, the transmission element and/or the transmission crank are adapted to the requirements of the respective switch
  • the Figure 1 shows schematically a switching kinematics from the prior art for a switching device with vacuum interrupters 5.
  • the drive for tensioning the switching spring 20 is not shown.
  • the switching spring 20 acts on a first switching gate 30, which is rotatably mounted about a first axis 40.
  • This first shift gate 30 acts on a first shift lever 50 via a roller 60.
  • the first shift lever 50 is rotatably mounted on a switch shaft 70.
  • the hold-open spring 90 acts on the switching shaft 70 via the first switching lever 50.
  • the branch with the contact pressure spring 80 is arranged, which in turn is connected to the switching rocker 105 at point 100.
  • the rocker switch 105 is rotatably mounted on the axis 110. At point 120 of the rocker switch 105, the movement in the link 130 is redirected to the moving contact of the vacuum interrupter 5.
  • Arrow 6 shows the direction of the closing force F VI .
  • the arrow 91 shows the direction of the torque T OHF of the hold-open spring.
  • the arrow 92 indicates the direction in which the hold-open spring 90 acts on the first shift lever 50.
  • the Figure 2 shows an example of a switch 1 for three phases with three vacuum interrupters 5.
  • the Figure 3 shows schematically a switching gate 10.
  • the hold-open spring 190 is attached to one side 195 in the switch 1.
  • the other side of the hold-open spring 190 acts on the crank element 490 and via this on a transmission member 480, which is connected to the switching shaft 470.
  • the crank element 490 is attached to the switch 1 with a fastening element 400.
  • the connection to the switch shaft 470 can be made via a lever element, not shown, which is firmly connected to the switch shaft 470 and to which the transmission member 480 is connected in an articulated and / or movable manner.
  • the Figure 4 shows an exemplary embodiment of a switching kinematics 10 according to the invention.
  • the hold-open spring 190 is attached to the switch with one side 195.
  • the other end of the hold-open spring 190 engages the crank element 490.
  • the crank element 490 in turn is rotatably connected to the fastening element 400.
  • the crank element 490 has a deflection element 510, here preferably a roller, which in turn acts on a translation crank 610, which is also rotatably attached to the fastening element 400.
  • the transmission member 480 is attached to the transmission crank 610, the other side of which is attached to the switch shaft 470 and thus transmits the spring force of the hold-open spring 190 as torque to the switch shaft 470, the torque being essentially determined by the shape of the transmission crank 610.
  • the connection to the switch shaft 470 can take place via a lever element, not shown, which is firmly connected to the switch shaft 470 and to which the transmission member 480 is connected in an articulated and/or movable manner.
  • the Figure 5 shows a graphical representation in which the hold-open torque T OHF is plotted against the angle of rotation ⁇ of the switch shaft 470.
  • Curve 5010 shows the required holding open torque T OFF at the angle ⁇ OFF , as is required for switching kinematics from the prior art.
  • the hatched area 5020 under the curve 5010 corresponds to the energy E OHF that is necessary to tension the hold-open spring during the closing process of the switch.
  • the sections ⁇ OFF and ⁇ ON mark the rotation angles of the switch shaft once in the switched off state, i.e. the position in which the switching contacts of the vacuum interrupter 5 are separated, and the switched on state in which the switching contacts of the vacuum interrupter 5 are closed.
  • Curve 5000 shows a curve for the hold-open torque T OFF,* for a vacuum interrupter with a larger closing force F VI,* .
  • the area under curve 5000 is greater than the area under curve 5010, labeled 5020. It follows that a vacuum interrupter with an increased closing force F VI,* also requires more energy to tension the spring, i.e. the energy E OHF,* and thus places greater demands on the drive of the switch 1.
  • the Figure 6 shows different hold-open torque curves 6010, 6100, 6200 and 6300 for different couplings of the respective hold-open springs 90, 190 from the Figures 1 . 3 and 4 .
  • Curve 6010 shows the hold-open torque from prior art switching kinematics, as in Figure 1 and 5 shown.
  • Curve 6100 exemplifies the hold-open torque for the exemplary embodiment Figure 3 in which the hold-open torque T OHF acting on the switch shaft decreases the further the switch moves towards the ON position, i.e. in which the switching contacts of the vacuum interrupter 5 are off Figure 1 are closed.
  • the hold-open torque T OHF always remains greater than 0.
  • the curve 6200 for the hold-open torque T OHF is also for the exemplary embodiment Figure 3 .
  • the hold-open torque T OHF drops to negative values from a certain switch shaft angle ⁇ and the hold-open spring 190 thereby supports the closing process of the vacuum interrupter 5, which is in Figure 3 is not shown.
  • Such behavior is achieved by the mechanism from the Figure 3 is designed so that an extended position between the transmission member 480 and crank element 490 is passed through or exceeded. This is particular possible using dynamic effects due to the inertia of the entire system.
  • the hold-open torque characteristic T OHF goes through zero.
  • this configuration is even cheaper than the configuration of curve 6100 and, in extreme cases, even means that tensioning the hold-open spring does not require any drive energy E OHF , but can actually provide energy.
  • Curve 6300 shows an example curve for the configuration from Figure 4 . This approach provides the greatest possible flexibility with regard to the hold-open torque curve T OHF .
  • the hold-open torque T OHF can be set to zero at any angle ⁇ of the switch shaft 470. From this angle of rotation, no further energy is stored in the hold-open spring 190, which means that the spring is no longer tensioned.

Description

Die Erfindung betrifft eine Schaltkinematik für Vakuumschaltröhren eines Schalters, insbesondere für Niederspannungs-, Mittelspannungs- und Hochspannungsanlagen, und ein Verfahren zum Anpassen eines auf eine Schalterwelle übertragenen Offenhaltemomentes bei einer Schaltkinematik, insbesondere für Niederspannungs-, Mittelspannungs- und Hochspannungsanlagen.The invention relates to a switching kinematics for vacuum interrupters of a switch, in particular for low-voltage, medium-voltage and high-voltage systems, and a method for adjusting a holding open torque transmitted to a switch shaft in a switching kinematics, in particular for low-voltage, medium-voltage and high-voltage systems.

Im Bereich der Mittelspannungen und der Hochspannungen, aber auch der Niederspannungen, sind Leistungsschalter bekannt, die Vakuumschaltröhren verwenden. Bei diesen Leistungsschaltern sind die Schaltkontakte aller, zumeist drei Phasen in jeweils einer Vakuumröhre angeordnet. Durch den die Röhre umgebenden Atmosphärendruck wird dauerhaft eine Schließkraft FVI auf die Röhre ausgeübt, so dass der Schalter ohne weitere Vorkehrungen automatisch schließt. Um solche Vakuumschalter sicher in der geöffneten Position halten zu können, muss eine kompensierende Gegenkraft aufgebracht werden, die größer ist als die durch den Atmosphärendruck erzeugte Schließkräfte FVI aller Röhren im Schalter. Typischerweise wird dazu in einem Schaltgerät eine einzelne Feder, die sogenannten Offenhaltefeder, eingesetzt. Diese eine Offenhaltefeder bewirkt ein Moment, insbesondere ein Drehmoment, TOHF auf die Schalterwelle des jeweiligen Schaltgerätes. Diese Schalterwelle bedient als Zentralwelle gleichzeitig alle Pole, sprich Phasen und Vakuumschaltröhren.In the area of medium voltages and high voltages, but also low voltages, circuit breakers that use vacuum interrupters are known. In these circuit breakers, the switching contacts of all phases, usually three, are arranged in a vacuum tube. The atmospheric pressure surrounding the tube permanently exerts a closing force F VI on the tube, so that the switch closes automatically without any further precautions. In order to be able to hold such vacuum switches safely in the open position, a compensating counterforce must be applied that is greater than the closing forces F VI of all tubes in the switch generated by the atmospheric pressure. Typically, a single spring, the so-called hold-open spring, is used in a switching device. This one hold-open spring causes a moment, in particular a torque, T OHF on the switch shaft of the respective switching device. As a central shaft, this switch shaft simultaneously serves all poles, i.e. phases and vacuum interrupters.

In der ausgeschalteten Position der Vakuumschaltröhre, also der Position, in der die Schaltkontakte der Vakuumschaltröhre voneinander getrennt sind, gilt, dass das öffnende Drehmoment auf die Schalterwelle größer oder mindestens gleich dem Drehmoment auf die Schalterwelle sein muss, die durch die Schließkräfte FVI aller Vakuumschaltröhren erzeugt wird, so dass die Pole, zumeist drei, des Schaltgerätes offen gehalten werden. Beim Schließen der Schaltkontakte der Vakuumschaltröhren des Schalters wird die Schalterwelle aus der ausgeschalteten Stellung um einen Winkel ϕEIN gedreht. Während dieser Einschaltbewegung der Vakuumschaltröhre wird die auf die Schaltwelle wirkende Offenhaltefeder weiter gespannt. Es wird also während der Einschaltbewegung eine Energiemenge EOHF in die Offenhaltefeder gespeichert. Der Antrieb des Vakuumschalters muss also zusätzlich zu sonstigen Energien (z.B.: die Energie zum Komprimieren der Kontaktdruckfedern) auch die Energie EOHF bereitstellen.In the switched off position of the vacuum interrupter, i.e. the position in which the switching contacts of the vacuum interrupter are separated from one another, the opening torque on the switch shaft must be greater than or at least equal to the torque on the switch shaft, which is caused by the Closing forces F VI of all vacuum interrupters are generated so that the poles, usually three, of the switching device are kept open. When the switching contacts of the vacuum interrupters of the switch are closed, the switch shaft is rotated from the off position by an angle ϕ ON . During this switching-on movement of the vacuum interrupter, the hold-open spring acting on the switching shaft is further tensioned. An amount of energy E OHF is therefore stored in the hold-open spring during the switch-on movement. The drive of the vacuum switch must therefore also provide the energy E OHF in addition to other energies (e.g. the energy for compressing the contact pressure springs).

Im Stand der Technik werden daher für unterschiedliche Vakuumschaltröhren mit unterschiedlich großen Schließkräften unterschiedliche Schaltkinematiken mit unterschiedlichen Offenhaltefedern verwendet. Dies führt in der Praxis dazu, dass es eine große Vielfalt an Kombinationen von Vakuumschaltröhren, Schaltkinematiken und/oder Antrieben für die Schalter gibt. Dies wiederum führt zu einer großen Varianz, schlechten Kostenposition und zu längeren Entwicklungszeiten für neue oder geänderte Schaltgeräte.In the prior art, different switching kinematics with different hold-open springs are therefore used for different vacuum interrupters with different closing forces. In practice, this means that there is a wide variety of combinations of vacuum interrupters, switching kinematics and/or drives for the switches. This in turn leads to a large variance, poor cost position and longer development times for new or modified switching devices.

Aus der US1938408A ist eine Schaltmechanik für Leistungsschalter bekannt.From the US1938408A a switching mechanism for circuit breakers is known.

Die DE2717958A1 beschreibt eine Antriebsvorrichtung für ein elektrisches Schaltgerät mit einer Schaltkinematik.The DE2717958A1 describes a drive device for an electrical switching device with switching kinematics.

Aus der US5286936A ist eine Schaltkinematik für ein Vakuumschaltröhren bekannt.From the US5286936A Switching kinematics for a vacuum interrupter are known.

Die JP H06 231656A zeigt eine Schaltkinematik für Schaltkontakte.The JP H06 231656A shows switching kinematics for switching contacts.

Aufgabe der Erfindung ist es nun, die bekannten Nachteile aus dem Stand der Technik zu beheben.The object of the invention is now to eliminate the known disadvantages from the prior art.

Gelöst wird diese Aufgabe durch den unabhängigen Anspruch 1 und die von diesem abhängigen Ansprüche.This task is solved by the independent claim 1 and the claims dependent on it.

Ein Ausführungsbeispiel bezieht sich auf eine Schaltkinematik für Vakuumschaltröhren eines Schalters, insbesondere für Niederspannungs-, Mittelspannungs- und Hochspannungsanlagen, mit einem Antrieb, einer Einschaltfeder , einer ersten Schaltkulisse, die um eine erste Achse drehbar angeordnet ist, einem ersten Schalthebel, auf den die erste Schaltkulisse wirkt, einer Schalterwelle, die mit dem ersten Schalthebel fest verbunden ist und einer Offenhaltefeder, die auf die Schalterwelle wirkt, wobei die Vakuumschaltröhre mindestens zwei Schaltkontakte aufweist, von denen mindestens einer ein Bewegkontakt ist, und die Vakuumschaltröhre zwischen einer ersten Position, in der die Schaltkontakte der Vakuumschaltröhre voneinander getrennt sind, und einer zweiten Position, in der die Schaltkontakte miteinander in Kontakt sind, überführbar ist, wobei die Offenhaltefeder über ein Kurbelelement und ein Übertragungsglied mit der Schalterwelle verbunden ist, und die Offenhaltefeder über das Übertragungsglied und die Schalterwelle auf den ersten Schalthebel wirkt und so an dem Schalthebel nicht direkt angreift. Dabei ist die Offenhaltefeder an dem Kurbelelement befestigt, und das Kurbelelement ist zwischen dem Übertragungsglied und einem Befestigungselement beweglich angeordnet ist. Auch weist das Kurbelelement ein beweglich angeordnetes Ablenkelement auf, das Übertragungsglied ist beweglich mit einer Übersetzungskurbel verbunden, die Übersetzungskurbel ist wiederum beweglich mit dem Befestigungselement verbunden, und die Offenhaltefeder wirkt über das Ablenkelement auf die Übersetzungskurbel und überträgt so das Offenhaltemoment TOHF auf das Übertragungsglied.An exemplary embodiment relates to a switching kinematics for vacuum interrupters of a switch, in particular for low-voltage, medium-voltage and high-voltage systems, with a drive, a switching spring, a first switching gate, which is rotatably arranged about a first axis, a first switching lever on which the first A switching gate acts, a switch shaft which is firmly connected to the first switching lever and a hold-open spring which acts on the switch shaft, the vacuum interrupter having at least two switching contacts, of which at least one is a moving contact, and the vacuum interrupter between a first position in which the switching contacts of the vacuum interrupter are separated from one another, and can be transferred to a second position in which the switching contacts are in contact with one another, the hold-open spring being connected to the switch shaft via a crank element and a transmission member, and the hold-open spring via the transmission member and the switch shaft acts on the first shift lever and so does not attack the shift lever directly. The hold-open spring is attached to the crank element, and the crank element is movably arranged between the transmission member and a fastening element. The crank element also has a movably arranged deflection element, the transmission member is movably connected to a translation crank, the translation crank is in turn movably connected to the fastening element, and the hold-open spring acts on the translation crank via the deflection element and thus transmits the hold-open torque T OHF to the transmission member.

Eine derartige Schaltkinematik ermöglicht eine einfache und kostengünstige Anpassung der Schaltkinematik an unterschiedliche Anforderungen von Vakuumschaltröhren und Antrieb.Such switching kinematics enables the switching kinematics to be easily and cost-effectively adapted to the different requirements of vacuum interrupters and the drive.

Durch die Verlagerung der Offenhaltefeder und deren Ankopplung über ein Übertragungsglied an die Schaltwelle ist eine Optimierung der Offenhaltefeder bei gleichzeitiger Vereinfachung der Anpassung an unterschiedliche Vakuumschaltröhren und Verringerung des notwendigen Energieaufwandes beim Spannen der Feder erreichbar. Die Ankoppelung über das Übertragungsglied stellt einen zusätzlichen Übertragungsmechanismus dar, der auf den ersten Blick aufwendiger erscheint. Die Schaltkinematik bezieht sich hier auf die mechanischen Bestandteile des Schalters, die die Schaltbewegung auf die Vakuumschaltröhre übertragen und den Antrieb des Schalters, also auch zum Spannen der Federn.By relocating the hold-open spring and coupling it to the switching shaft via a transmission member, an optimization of the hold-open spring can be achieved while at the same time simplifying the adaptation to different vacuum interrupters and reducing the energy required when tensioning the spring. Coupling via the transmission link represents an additional transmission mechanism that appears more complex at first glance. The switching kinematics here refers to the mechanical components of the switch, which transmit the switching movement to the vacuum interrupter and the drive of the switch, i.e. also for tensioning the springs.

Bevorzugt wird, dass das Übertragungsglied derart ausgelegt ist, dass das Übertragungsglied ein Offenhaltemoment TOHF der Offenhaltefeder auf die Schalterwelle umso weiter sinkt, je weiter sich die Schaltkontakte der Vakuumschaltröhre der zweiten Position annähern.It is preferred that the transmission member is designed in such a way that the transmission member's hold-open torque T OHF of the hold-open spring on the switch shaft decreases the further the switching contacts of the vacuum interrupter approach the second position.

Auch wird bevorzugt, dass das Offenhaltemoment TOHF der Offenhaltefeder, das auf die Schalterwelle wirkt, in der ersten Position der Vakuumschaltröhre größer null ist und in der zweiten Position nicht kleiner als null ist und weiter bevorzugt in der zweiten Position kleiner ist als in der ersten Position.It is also preferred that the hold-open torque T OHF of the hold-open spring, which acts on the switch shaft, is greater than zero in the first position of the vacuum interrupter and is not less than zero in the second position and more preferably is less in the second position than in the first Position.

Weiter wird bevorzugt, dass das Offenhaltemoment TOHF der Offenhaltefeder, das auf die Schalterwelle wirkt, in der ersten Position der Vakuumschaltröhre größer null ist und in der zweiten Position kleiner als null ist. Diese Anordnung erfordert das Durchfahren durch eine Streckposition von einem Schalterwellenhebel, also dem Angriffspunkt an dem das Übertragungsglied über einen Hebel auf die Schalterwelle wirkt, und Übertragungsglied, was insbesondere, aber nicht notwendigerweise, durch Ausnutzung von Dynamischen Effekten, wie der Trägheit, möglich ist.It is further preferred that the hold-open torque T OHF of the hold-open spring, which acts on the switch shaft, is greater than zero in the first position of the vacuum interrupter and is less than zero in the second position. This arrangement requires a switch shaft lever to pass through an extended position, i.e. the point of application at which the transmission member acts on the switch shaft via a lever, and transmission member, which is possible in particular, but not necessarily, by exploiting dynamic effects such as inertia.

Weiter wird bevorzugt, dass eine Änderung der Form der Übersetzungskurbel eine Änderung des über das Übertragungsglied übertragenden Offenhaltemomentes auf die Schalterwelle bewirkt.It is further preferred that a change in the shape of the transmission crank causes a change in the hold-open torque transmitted via the transmission member to the switch shaft.

Bevorzugt wird weiter ein Schalter mit einer oder mehr Schaltkinematiken nach einer der vorstehenden Ausführungen, insbesondere mit einer oder mehr Vakuumschaltröhren.A switch with one or more switching kinematics according to one of the above embodiments, in particular with one or more vacuum interrupters, is also preferred.

Ein Ausführungsbeispiel bezieht sich auf ein Verfahren zum Anpassen eines auf eine Schalterwelle übertragenen Offenhaltemomentes TOHF, wobei bei einer Schaltkinematik gemäß einer der vorstehenden Ausführungen das Übertragungsglied und/oder die Übersetzungskurbel an die Anforderungen des jeweiligen Schalters angepasst werdenOne exemplary embodiment relates to a method for adapting a hold-open torque T OHF transmitted to a switch shaft, wherein in a switching kinematics according to one of the above embodiments, the transmission element and/or the transmission crank are adapted to the requirements of the respective switch

Im Folgenden wird der Erfindungsgegenstand anhand von Figuren näher erläutert:

Figur 1:
Schematische Darstellung der kinematischen Kette eines Schalters mit Vakuumröhren;
Figur 2:
Beispielhafte Darstellung eines Schalters mit drei Vakuumschaltröhren zum Schalten von drei Phasen;
Figur 3:
Schematische Darstellung einer Schaltkinematik mit einem Übertragungsglied, welche nicht Teil der Erfindung ist;
Figur 4:
Erfindungsgemäße Schaltkinematik mit einem Übertragungsglied und einer Übersetzungskurbel;
Figur 5:
Graphische Darstellung des Drehmomentes TOHF in Abhängigkeit des Drehwinkels ϕ der Schaltwelle;
Figur 6:
Exemplarische Darstellung des Drehmomentes TOHF verschiedener Übertragungsmechanismen in Abhängigkeit des Drehwinkels ϕ der Schaltwelle;.
The subject matter of the invention is explained in more detail below using figures:
Figure 1:
Schematic representation of the kinematic chain of a switch with vacuum tubes;
Figure 2:
Exemplary representation of a switch with three vacuum interrupters for switching three phases;
Figure 3:
Schematic representation of a switching kinematics with a transmission element, which is not part of the invention;
Figure 4:
Switching kinematics according to the invention with a transmission element and a transmission crank;
Figure 5:
Graphical representation of the torque T OHF depending on the angle of rotation ϕ of the switching shaft;
Figure 6:
Exemplary representation of the torque T OHF of various transmission mechanisms depending on the angle of rotation ϕ of the switching shaft.

Die Figur 1 zeigt schematisch eine Schaltkinematik aus dem Stand der Technik für ein Schaltgerät mit Vakuumschaltröhren 5. Nicht dargestellt ist der Antrieb zum Spannen der Einschaltfeder 20. Die Einschaltfeder 20 wirkt bei dieser Schaltkinematik auf eine erste Schaltkulisse 30, die um eine erste Achse 40 drehbar gelagert ist. Diese erste Schaltkulisse 30 wirkt über eine Rolle 60 auf einen ersten Schalthebel 50. Der erste Schalthebel 50 ist an einer Schalterwelle 70 drehbar gelagert. Desweiteren wirkt am Punkt 52 des ersten Schalthebels 50 die Offenhaltefeder 90 über den ersten Schalthebel 50 auf die Schaltwelle 70. Am Punkt 54 des ersten Schalthebels 50 ist der Abzweig mit der Kontaktdruckfeder 80 angeordnet, der wiederum am Punkt 100 mit der Schaltwippe 105 verbunden ist. Die Schaltwippe 105 ist an der Achse 110 drehbar gelagert. Am Punkt 120 der Schaltwippe 105 wird in der Kulisse 130 die Bewegung auf den Bewegkontakt der Vakuumschaltröhre 5 umgeleitet. Der Pfeil 6 zeigt die Richtung der Schließkraft FVI an. Der Pfeil 91 zeigt die Richtung des Drehmomentes TOHF der Offenhaltefeder an. Der Pfeil 92 zeigt die Richtung an, in die die Offenhaltefeder 90 auf den ersten Schalthebel 50 wirkt.The Figure 1 shows schematically a switching kinematics from the prior art for a switching device with vacuum interrupters 5. The drive for tensioning the switching spring 20 is not shown. In this switching kinematics, the switching spring 20 acts on a first switching gate 30, which is rotatably mounted about a first axis 40. This first shift gate 30 acts on a first shift lever 50 via a roller 60. The first shift lever 50 is rotatably mounted on a switch shaft 70. Furthermore, at point 52 of the first switching lever 50, the hold-open spring 90 acts on the switching shaft 70 via the first switching lever 50. At point 54 of the first switching lever 50, the branch with the contact pressure spring 80 is arranged, which in turn is connected to the switching rocker 105 at point 100. The rocker switch 105 is rotatably mounted on the axis 110. At point 120 of the rocker switch 105, the movement in the link 130 is redirected to the moving contact of the vacuum interrupter 5. Arrow 6 shows the direction of the closing force F VI . The arrow 91 shows the direction of the torque T OHF of the hold-open spring. The arrow 92 indicates the direction in which the hold-open spring 90 acts on the first shift lever 50.

Die Figur 2 zeigt ein Beispiel für einen Schalter 1 für drei Phasen mit drei Vakuumschaltröhren 5.The Figure 2 shows an example of a switch 1 for three phases with three vacuum interrupters 5.

Die Figur 3 zeigt schematisch eine Schaltkulisse 10. Der Übersichtlichkeit halber zeigt die Darstellung nur die Schalterwelle 470 und diejenigen Komponenten der Schaltkinematik 10, die die Federkraft der Offenhaltefeder 190 auf die Schalterwelle 470 übertragen. Die Offenhaltefeder 190 wird an einer Seite 195 im Schalter 1 befestigt. Die Offenhaltefeder 190 wirkt mit ihrer anderen Seite auf Kurbelelement 490 und über dieses auf ein Übertragungsglied 480, das mit der Schaltwelle 470 verbunden ist. Das Kurbelelement 490 ist mit einem Befestigungselement 400 am Schalter 1 befestigt. Die Verbindung mit der Schalterwelle 470 kann über ein nicht gezeigtes, fest mit der Schalterwelle 470 verbundenes Hebelelement erfolgen, mit dem das Übertragungsglied 480 gelenkig und/oder beweglich verbunden ist.The Figure 3 shows schematically a switching gate 10. For the sake of clarity, the illustration only shows the switch shaft 470 and those components of the switching kinematics 10 that transmit the spring force of the open holding spring 190 to the switch shaft 470. The hold-open spring 190 is attached to one side 195 in the switch 1. The other side of the hold-open spring 190 acts on the crank element 490 and via this on a transmission member 480, which is connected to the switching shaft 470. The crank element 490 is attached to the switch 1 with a fastening element 400. The connection to the switch shaft 470 can be made via a lever element, not shown, which is firmly connected to the switch shaft 470 and to which the transmission member 480 is connected in an articulated and / or movable manner.

Die Figur 4 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Schaltkinematik 10. Auch bei diesem Ausführungsbeispiel ist die Offenhaltefeder 190 mit einer Seite 195 an dem Schalter befestigt. Das andere Ende der Offenhaltefeder 190 greift am Kurbelelement 490 an. Das Kurbelelement 490 wiederum ist drehbar mit dem Befestigungselement 400 verbunden. Außerdem verfügt das Kurbelelement 490 über ein Ablenkelement 510, hier bevorzugt eine Rolle, die wiederum auf eine Übersetzungskurbel 610 wirkt, die ebenfalls am Befestigungselement 400 drehbar befestigt ist. An der Übersetzungskurbel 610 ist das Übertragungsglied 480 befestigt, dessen andere Seite an der Schalterwelle 470 befestigt ist und so die Federkrafft der Offenhaltefeder 190 als Drehmoment auf die Schalterwelle 470 überträgt, wobei das Drehmoment wesentlich durch die Form der Übersetzungskurbel 610 bestimmt wird. Die Verbindung mit der Schalterwelle 470 kann über ein nicht gezeigtes, fest mit der Schalterwelle 470 verbundenes Hebelelement erfolgen, mit dem das Übertragungsglied 480 gelenkig und/oder beweglich verbunden ist.The Figure 4 shows an exemplary embodiment of a switching kinematics 10 according to the invention. In this exemplary embodiment, too, the hold-open spring 190 is attached to the switch with one side 195. The other end of the hold-open spring 190 engages the crank element 490. The crank element 490 in turn is rotatably connected to the fastening element 400. In addition, the crank element 490 has a deflection element 510, here preferably a roller, which in turn acts on a translation crank 610, which is also rotatably attached to the fastening element 400. The transmission member 480 is attached to the transmission crank 610, the other side of which is attached to the switch shaft 470 and thus transmits the spring force of the hold-open spring 190 as torque to the switch shaft 470, the torque being essentially determined by the shape of the transmission crank 610. The connection to the switch shaft 470 can take place via a lever element, not shown, which is firmly connected to the switch shaft 470 and to which the transmission member 480 is connected in an articulated and/or movable manner.

Die Figur 5 zeigt eine graphische Darstellung bei der das Offenhaltemoment TOHF gegen den Drehwinkel ϕ der Schalterwelle 470 aufgetragen ist. Die Kurve 5010 zeigt am Winkel ϕAUS das benötigte Offenhaltemoment TAUS, wie es bei Schaltkinematiken aus dem Stand der Techniken benötigt wird. Die schraffierte Fläche 5020 unter der Kurve 5010 entspricht der Energie EOHF, die notwendig ist, um die Offenhaltefeder während des Schließvorgangs des Schalters zu spannen. Die Abschnitte ϕAUS und ϕEIN markieren die Drehwinkel der Schalterwelle einmal im ausgeschalteten Zustand, also der Position, in der die Schaltkontakte der Vakuumschaltröhre 5 getrennt sind und den eingeschalteten Zustand, in dem die Schaltkontakte der Vakuumschaltröhre 5 geschlossen sind.The Figure 5 shows a graphical representation in which the hold-open torque T OHF is plotted against the angle of rotation φ of the switch shaft 470. Curve 5010 shows the required holding open torque T OFF at the angle ϕ OFF , as is required for switching kinematics from the prior art. The hatched area 5020 under the curve 5010 corresponds to the energy E OHF that is necessary to tension the hold-open spring during the closing process of the switch. The sections ϕ OFF and ϕ ON mark the rotation angles of the switch shaft once in the switched off state, i.e. the position in which the switching contacts of the vacuum interrupter 5 are separated, and the switched on state in which the switching contacts of the vacuum interrupter 5 are closed.

Die Kurve 5000 zeigt eine Kurve für das Offenhaltemoment TAUS,* für eine Vakuumschaltröhre mit einer größeren Schließkraft FVI,*. Wie ohne Weiteres zu erkennen ist, ist die Fläche unter der Kurve 5000 größer als die Fläche unter der Kurve 5010, die mit 5020 bezeichnet ist. Daraus folgt, dass eine Vakuumschaltröhre mit einer erhöhten Schließkraft FVI,* auch mehr Energie zum Spannen der Feder, also die Energie EOHF,* benötigt und somit größere Anforderungen an den Antrieb des Schalters 1 stellt.Curve 5000 shows a curve for the hold-open torque T OFF,* for a vacuum interrupter with a larger closing force F VI,* . As can be readily seen, the area under curve 5000 is greater than the area under curve 5010, labeled 5020. It follows that a vacuum interrupter with an increased closing force F VI,* also requires more energy to tension the spring, i.e. the energy E OHF,* and thus places greater demands on the drive of the switch 1.

Die Figur 6 zeigt verschiedene Offenhaltemomentkurven 6010, 6100, 6200 und 6300 für unterschiedliche Ankopplungen der jeweiligen Offenhaltefeder 90, 190 aus den Figuren 1. 3 und 4. Die Kurve 6010 zeigt das Offenhaltemoment aus einer Schaltkinematik aus dem Stand der Technik, wie in Figur 1 und 5 dargestellt. Die Kurve 6100 stellt beispielhaft das Offenhaltemoment für das Ausführungsbeispiel aus Figur 3 dar, bei der das auf die Schalterwelle wirkende Offenhaltemoment TOHF um so weiter sinkt, je weiter sich der Schalter in Richtung der EIN-Position bewegt, also in der die Schaltkontakte der Vakuumschaltröhre 5 aus Figur 1 geschlossen sind. In diesem Ausführungsbeispiel bleibt das Offenhaltemoment TOHF stets größer 0. Es wird umso weniger Energie erforderlich, je stärker sich der Mechanismus einer Strecklage von Übertragungsglied 480 und Kurbelelement 490 nähert, wobei die Strecklage nicht erreicht wird, solange das Offenhaltemoment TOHF positiv bleiben soll. Die Kurve 6200 für das Offenhaltemoment TOHF ist ebenfalls für das Ausführungsbeispiel gemäß Figur 3. Allerdings sinkt das Offenhaltemoment TOHF in diesem Fall ab einem bestimmten Schalterwellenwinkel ϕ auf negative Werte und dadurch unterstützt die Offenhaltefeder 190 den Schließvorgang der Vakuumschaltröhre 5, die in Figur 3 nicht dargestellt ist. Ein solches Verhalten wird erreicht, indem der Mechanismus aus der Figur 3 so ausgelegt wird, dass eine Strecklage zwischen dem Übertragungsglied 480 und Kurbelelement 490 durchfahren oder überschritten wird. Dies ist insbesondere unter Ausnutzung von dynamischen Effekten aufgrund der Trägheit des Gesamtsystems möglich. In dem Punkt, in dem die Strecklage durch fahren wird, geht die Offenhaltemomentkennlinie TOHF durch Null. Diese Konfiguration ist, was die Schließenergie angeht, nochmals günstiger als die Konfiguration der Kurve 6100 und führt im Extremfall sogar dazu, dass das Spannen der Offenhaltefeder in Summe keine Antriebsenergie EOHF fordert, sondern sogar Energie bereitstellen kann. Die Kurve 6300 zeigt eine beispielhafte Kurve für die Konfiguration aus der Figur 4. Dieser Ansatz liefert eine größtmögliche Flexibilität hinsichtlich der Offenhaltemomentenkurve TOHF. Durch gezielte Gestaltung der Geometrie der in Figur 4 dargestellten Übersetzungskurbel 610 lässt sich das Offenhaltemoment TOHF bei einem beliebigen Winkel ϕ der Schalterwelle 470 auf den Wert Null setzen. Ab diesem Drehwinkel wird dann keine weitere Energie in die Offenhaltefeder 190 gespeichert, was heißt, dass die Feder nicht weiter gespannt wird.The Figure 6 shows different hold-open torque curves 6010, 6100, 6200 and 6300 for different couplings of the respective hold-open springs 90, 190 from the Figures 1 . 3 and 4 . Curve 6010 shows the hold-open torque from prior art switching kinematics, as in Figure 1 and 5 shown. Curve 6100 exemplifies the hold-open torque for the exemplary embodiment Figure 3 in which the hold-open torque T OHF acting on the switch shaft decreases the further the switch moves towards the ON position, i.e. in which the switching contacts of the vacuum interrupter 5 are off Figure 1 are closed. In this exemplary embodiment, the hold-open torque T OHF always remains greater than 0. The closer the mechanism approaches an extended position of the transmission member 480 and crank element 490, the less energy is required, with the extended position not being reached as long as the hold-open torque T OHF should remain positive. The curve 6200 for the hold-open torque T OHF is also for the exemplary embodiment Figure 3 . However, in this case, the hold-open torque T OHF drops to negative values from a certain switch shaft angle ϕ and the hold-open spring 190 thereby supports the closing process of the vacuum interrupter 5, which is in Figure 3 is not shown. Such behavior is achieved by the mechanism from the Figure 3 is designed so that an extended position between the transmission member 480 and crank element 490 is passed through or exceeded. This is particular possible using dynamic effects due to the inertia of the entire system. At the point at which the extended position is reached, the hold-open torque characteristic T OHF goes through zero. As far as the closing energy is concerned, this configuration is even cheaper than the configuration of curve 6100 and, in extreme cases, even means that tensioning the hold-open spring does not require any drive energy E OHF , but can actually provide energy. Curve 6300 shows an example curve for the configuration from Figure 4 . This approach provides the greatest possible flexibility with regard to the hold-open torque curve T OHF . Through targeted design of the geometry of the in Figure 4 With the transmission crank 610 shown, the hold-open torque T OHF can be set to zero at any angle ϕ of the switch shaft 470. From this angle of rotation, no further energy is stored in the hold-open spring 190, which means that the spring is no longer tensioned.

BezugszeichenlisteReference symbol list

11
Schalter;Switch;
55
Vakuumschaltröhre;vacuum interrupter;
66
Pfeil in Richtung der Schließkraft FVI der Vakuumschaltröhre 5;Arrow in the direction of the closing force F VI of the vacuum interrupter 5;
77
Bewegkontakt der Vakuumschaltröhre 5;Moving contact of the vacuum interrupter 5;
1010
Schaltkinematik;switching kinematics;
2020
Einschaltfeder;closing spring;
3030
ersten Schaltkulisse;first shift gate;
4040
erste Achse der ersten Schaltkulisse 30;first axis of the first switching gate 30;
5050
erster Schalthebel;first gear lever;
5252
Punkt am ersten Schalthebel 50;point on the first shift lever 50;
5454
Punkt am ersten Schalthebel 50;;Point on the first shift lever 50;;
6060
Rolle;Role;
7070
Schalterwelle;switch shaft;
8080
Kontaktdruckfeder;contact compression spring;
9090
Offenhaltefeder;hold-open spring;
9292
Pfeil in die Richtung, in die die Offenhaltefeder 90 auf den ersten Schalthebel 50 wirkt;Arrow in the direction in which the hold-open spring 90 acts on the first shift lever 50;
100100
Punkt an der Schaltwippe 105;point on the rocker switch 105;
105105
Schaltwippe;rocker switch;
110110
Achse der Schaltwippe 105;Axis of the rocker switch 105;
120120
Punkt an der Schaltwippe 105;point on the rocker switch 105;
130130
Kulisse 130 zur Übertragung des Schaltvorganges auf die Vakuumschaltröhre 5;Link 130 for transferring the switching process to the vacuum interrupter 5;
190190
Offenhaltefeder;hold-open spring;
195195
Seite an dem die Offenhaltefeder 190 im Schalter 1 befestigt ist;Side on which the hold-open spring 190 is attached in switch 1;
400400
Befestigungselement;fastener;
470470
Schalterwelle;switch shaft;
480480
Übertragungsglied;transmission link;
490490
Kurbelelement;crank element;
510510
Ablenkelement;deflection element;
610610
Übersetzungskurbel;translation crank;
50005000
Kurve für das Offenhaltemoment TAUS,*;Curve for the holding open torque T OFF,* ;
50105010
Kurve für das Offenhaltemoment TAUS;Curve for the holding open torque T OFF ;
50205020
schraffierte Fläche unter der Kurve 5010 = Energie EOHF;hatched area under curve 5010 = energy E OHF ;
60106010
Kurve für das Offenhaltemoment TAUS aus Figur 5;Curve for the holding open torque T OFF Figure 5 ;
61006100
Offenhaltemoment für das Ausführungsbeispiel aus Figur 3;Holding open torque for the exemplary embodiment Figure 3 ;
62006200
Offenhaltemoment für ein weiteres Ausführungsbeispiel aus Figur 3;Holding open torque for another exemplary embodiment Figure 3 ;
63006300
Offenhaltemoment für das Ausführungsbeispiel aus Figur 4;Holding open torque for the exemplary embodiment Figure 4 ;

Claims (6)

  1. Switching kinematics (10) for a vacuum interrupter (5) of a switch (1), having a drive, a closing spring (20), a first switching gate (30) which is arranged rotatably about a first axis (40), a first switching lever (50) on which the first switching gate (30) acts, a switch shaft (470) which is fixedly connected to the first switching lever (50), and a keep-open spring (190) which acts on the switch shaft (470), wherein the vacuum interrupter (5) has at least two switching contacts, at least one of which is a moving contact, and the vacuum interrupter (5) can be moved between a first position, in which the switching contacts of the vacuum interrupter (5) are separated from each other, and a second position, in which the switching contacts are in contact with each another, wherein the keep-open spring (190) is connected to the switch shaft (470) by means of a crank element (490) and a transmission member (480), and
    the keep-open spring (190) acts on the first switching lever (50) by means of the transmission member (480) and the switch shaft (470) and thus does not directly act on the switching lever (50), wherein
    the keep-open spring (190) is fastened to the crank element (490), and
    the crank element (490) is movably arranged between the transmission element (480) and a fastening element (400),
    characterized in that
    the crank element (490) has a movably arranged deflection element (510),
    the transmission element (480) is movably connected to a transmission crank (610), the transmission crank (610) is, in turn, movably connected to the fastening element (400), and
    in that the keep-open spring (190) acts on the transmission crank (610) by means of the deflection element (510) and thus transfers the keep-open torque TOHF to the transmission member (480) .
  2. Switching kinematics (10) according to Claim 1,
    characterized in that the transmission member (480) is designed in such a way that the transmission member (480) further lowers a keep-open torque TOHF of the keep-open spring (190) on the switch shaft (470) as the switching contacts of the vacuum interrupter (5) get closer to the second position.
  3. Switching kinematics (10) according to Claim 2,
    characterized in that the keep-open torque TOHF of the keep-open spring (190), which keep-open torque acts on the switch shaft (470), is greater than zero in the first position of the vacuum interrupter (5) and is not less than zero in the second position.
  4. Switching kinematics (10) according to Claim 2,
    characterized in that the keep-open torque TOHF of the keep-open spring (190), which keep-open torque acts on the switch shaft (470), is greater than zero in the first position of the vacuum interrupter (5) and is less than zero in the second position.
  5. Switching kinematics (10) according to Claim 1,
    characterized in that a change in the shape of the transmission crank (610) causes a change in the keep-open torque, transmitted via the transmission member (480), on the switch shaft (470).
  6. Method for adjusting a keep-open torque TOHF transmitted to a switch shaft (470),
    characterized in that, in the case of a switching kinematics (10) according to any of Claims 1 to 5, the transmission member (480) and/or the transmission crank (610) are adapted to the requirements of the respective switch (1).
EP18716988.3A 2018-04-04 2018-04-04 Switching kinematics for vacuum interrupters and method for adapting a keep-open torque transmitted to a switch shaft Active EP3753035B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/058596 WO2019192687A1 (en) 2018-04-04 2018-04-04 Switching kinematics for vacuum interrupters and method for adapting a keep-open torque transmitted to a switch shaft

Publications (2)

Publication Number Publication Date
EP3753035A1 EP3753035A1 (en) 2020-12-23
EP3753035B1 true EP3753035B1 (en) 2024-03-20

Family

ID=61952688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18716988.3A Active EP3753035B1 (en) 2018-04-04 2018-04-04 Switching kinematics for vacuum interrupters and method for adapting a keep-open torque transmitted to a switch shaft

Country Status (3)

Country Link
EP (1) EP3753035B1 (en)
DE (1) DE102019202931A1 (en)
WO (1) WO2019192687A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1938408A (en) * 1931-09-04 1933-12-05 Gen Electric Switch operating mechanism
DE2717958B2 (en) * 1977-04-20 1979-06-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Drive device for electrical switching devices with pressure contacts
JPH04162321A (en) * 1990-10-25 1992-06-05 Fuji Electric Co Ltd Driving device for circuit breaker
JPH06231656A (en) * 1993-02-02 1994-08-19 Toshiba Corp Operating mechanism of circuit breaker

Also Published As

Publication number Publication date
EP3753035A1 (en) 2020-12-23
WO2019192687A1 (en) 2019-10-10
DE102019202931A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
EP0115739B1 (en) Vacuum switch with two switch tubes in series per pole
EP3433867B1 (en) Coupling element for an electrical switching device
DE102015200135A1 (en) Coupling member for an electrical switching device, in particular a vacuum interrupter
WO2010149483A1 (en) Viewing window and ground contact connection for a high-voltage arrangement
EP2174330B1 (en) Microswitch
DE102014102875B4 (en) Actuating device for actuating a vacuum interrupter, switching device with such an actuator and on-load tap changer with such a switching device
EP1933348B1 (en) High voltage circuit breaker with a gear with dead-center position
EP3753035B1 (en) Switching kinematics for vacuum interrupters and method for adapting a keep-open torque transmitted to a switch shaft
WO1993007635A1 (en) Multi-pole vacuum switch with a pole operating unit for each vacuum switching tube
EP2601662B1 (en) Drive for a switch disconnector with c o switching capacity
DE102009020397B4 (en) Arrangement for testing a contact system of a protective switching device and test method
DE102009020396B4 (en) Residual Current Device
EP2586049B1 (en) Tap changer
DE102016124663B4 (en) Arrangement comprising a plug-in module for a switchgear with an electrical contact element and a drive
EP4091186A1 (en) Drive unit for driving switching contacts of a high-voltage circuit breaker
DE102021124271A1 (en) circuit breaker
DE632302C (en) Drive for electrical switch with free release
DE202021103333U1 (en) Switching device
DE102012215482B3 (en) Device for actuating electrical switch has housing having external auxiliary switches which are actuated when output shaft and drive shaft are simultaneously actuated with actuation of internal auxiliary switches
WO2020201000A1 (en) Coupling, spring system, drive system having a coupling and spring system, and switchgear comprising said drive system
EP1553611A1 (en) Vacuum switch gear
DE102012216974A1 (en) Device for transmitting forces to movement contact terminal studs of switching device e.g. vacuum switching tube, has contact terminal stud into which electromagnetic force is introduced to support opening operation of switching device
DE102013207772A1 (en) Camshaft drive and switching device
DE102010052979A1 (en) OLTC
DE1041572B (en) Drive device for electric circuit breakers

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014279

Country of ref document: DE