EP3750010B1 - Micromechanical part of timepiece - Google Patents

Micromechanical part of timepiece Download PDF

Info

Publication number
EP3750010B1
EP3750010B1 EP19707492.5A EP19707492A EP3750010B1 EP 3750010 B1 EP3750010 B1 EP 3750010B1 EP 19707492 A EP19707492 A EP 19707492A EP 3750010 B1 EP3750010 B1 EP 3750010B1
Authority
EP
European Patent Office
Prior art keywords
distance
micro
substrate
etching
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19707492.5A
Other languages
German (de)
French (fr)
Other versions
EP3750010A1 (en
Inventor
Julien PERRET
Rémy FOURNIER
Sylvain Jeanneret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Publication of EP3750010A1 publication Critical patent/EP3750010A1/en
Application granted granted Critical
Publication of EP3750010B1 publication Critical patent/EP3750010B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • G04B15/08Lever escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/08Lubrication
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0069Watchmakers' or watch-repairers' machines or tools for working materials for working with non-mechanical means, e.g. chemical, electrochemical, metallising, vapourising; with electron beams, laser beams
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0074Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
    • G04D3/0087Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for components of the escapement mechanism, e.g. lever escapement, escape wheel

Definitions

  • the present invention relates, in a first aspect, to a watchmaking micromechanical part cut from a silicon substrate in the form of a plate and the cut edges of which comprise portions intended to serve as contact surfaces arranged to slide against corresponding contact zones of another micromechanical part in a timepiece, the cut edges of the part having a ribbed surface comprising alternating ribs and grooves, these ribs and these grooves being rectilinear.
  • This first aspect of the invention relates in particular to a watchmaking micromechanical part which conforms to the above definition and which forms part of a lever escapement.
  • the patent US 5,501,893 in the name of Robert Bosch GmbH proposes to etch profiles with almost vertical edges in a silicon substrate by applying a procedure that alternates the steps of depositing an inert passivation layer and plasma etching.
  • the steps of deposition of the passivation layer and those of etching all make use of fluorinated compounds, so that they take place in the same chemical context.
  • Each step lasts a few seconds, the passivation layer is formed over the entire surface of the substrate, so that the latter is protected against any subsequent etching.
  • the bombardment by ions which are accelerated vertically disintegrates the part of the passivation layer which is at the bottom of the profiles (but not that which covers the sides thereof). The bottom of the profiles is thus very quickly exposed to reactive etching.
  • the patent US 5,501,893 is incorporated by reference.
  • the sequence formed by an etching step followed by a step of depositing a passivation layer is repeated a large number of times. For example, between 100 and 1000 times to etch a groove which crosses vertically right through a substrate whose thickness is 500 microns.
  • the sidewalls produced by the alternating succession of deposition steps and etching steps do not produce perfectly straight sidewalls, but finely wavy sidewalls which present a alternating regularly spaced reliefs and hollows.
  • the amplitude of the ripple is a function of the frequency with which the deposition and etching steps alternate.
  • An object of the present invention is to remedy the drawbacks of the prior art which have just been explained.
  • the present invention achieves this object as well as others by providing a watchmaking micromechanical part in accordance with appended claim 1 and two manufacturing methods in accordance with appended claims 13 and 14 respectively.
  • the ribs and the furrows form a staggered pattern, with first intervals in which the spacing separating the ribs from each other is equal to a first distance, and at least a second interval in which the spacing between the ribs is equal to a second distance different from the first distance.
  • Tests carried out by the applicant have shown that the presence of a staggered pattern having the above characteristics improves tribology by reducing friction in the contact.
  • the ribs and the grooves are each contained in a plane parallel to the plate.
  • the ribs and the grooves are perpendicular to the main faces of the plate.
  • the grooves belonging to the first intervals preferably all have the same first depth. This depth is between 10 nm and 2 ⁇ m.
  • the second distance is preferably greater than the first distance.
  • the stepped pattern comprises a plurality of second intervals, and the second distance is between 200 nm and 50 ⁇ m, and preferably between 800 nm and 10 ⁇ m.
  • the grooves belonging to the second intervals all have the same depth. This depth is between 10 nm and 10 ⁇ m.
  • the staggered pattern comprises a single second interval comprising a single groove
  • the second distance is between 200 nm and 2/3 of the total height of the part, and preferably between between 1/3 and 1/2 of the total height of the room.
  • the depth of the single groove of the second interval is preferably between 10 nm and 50 ⁇ m.
  • the figure 1 is a schematic plan view showing a prior art Swiss lever escapement.
  • the mechanism shown comprises in particular an escape wheel 3, an anchor 5 and a large plate 7 through the center of which passes the axis of the balance wheel 9.
  • the two arms of the anchor each terminate in a pallet 11, 13.
  • the pallets are arranged to cooperate with the teeth 15 of the escapement wheel 3.
  • the escapement wheel is connected to the barrel (not shown) via a cog (not shown) which engages with the pinion of exhaust (referenced 17).
  • the escape wheel is thus permanently biased forwards (in other words, clockwise as shown in figure 1 ). It will be noted that at the moment represented, one of the teeth 15 of the escape wheel 3 is immobilized against the rest face of the entry pallet 11 of the anchor 5.
  • the anchor 5 begins a pivoting movement around the axis 19 in the clockwise direction. Pivoting the anchor clockwise causes the entry pallet to slide upwards (in the drawing) against the front flank of tooth 15. This release phase will end the instant the rest of the pallet will have ceased to obstruct the advance of the front flank of tooth 15. Then, it will be the flattened top of this same tooth (called the impulse plane of the tooth) which will be caused to slide against the face bottom of vane 11 (the vane impulse plane). The angled contact between the two impulse planes will also have the effect of pushing the vane back input 11 upwards, so that the pivoting movement of the anchor 5 in the clockwise direction will be accentuated.
  • the impulse plane of the tooth the flattened top of this same tooth
  • the angled contact between the two impulse planes will also have the effect of pushing the vane back input 11 upwards, so that the pivoting movement of the anchor 5 in the clockwise direction will be accentuated.
  • This impulse phase will end when the input paddle 11 has been pushed back far enough to provide a completely clear passage for the tooth 15.
  • the two successive phases which have just been described during which a tooth 15 of the wheel escapement 3 slides against the surfaces of one of the pallets 11, 13 of the anchor 5, each generating considerable friction.
  • the figures 2A, 2B and 2C are schematic sectional views showing the ribbed surfaces presented by the cut edges of three watchmaking micromechanical parts 1, 10 and 20 which respectively correspond to three variants of a first particular embodiment of the invention.
  • the ribs 21a and the grooves 23a presented by the cut edges of the part 1 form a staggered or stepped pattern, with first intervals 25a in which the ribs are separated from each other. others by narrow furrows whose width is equal to a first distance, and second intervals 27a in which the ribs are separated from each other by a wide furrow whose width is equal to a second distance greater than the first distance.
  • the first intervals 25a and the second intervals 27a alternate cyclically so that a second interval is always inserted between two first intervals and vice versa.
  • the ribbed surface of the cut edge of the part 1 has a pattern which is repeated periodically over the entire height of the part.
  • this pattern is formed of two narrow grooves followed by a single wide groove.
  • the narrow grooves may for example have a width of 2 ⁇ m and a depth comprised between 10 nm and 2 ⁇ m.
  • the wide grooves can have a width of 8 ⁇ m and a depth comprised between 10 nm and 10 ⁇ m.
  • the pattern on the ribbed surface of the cut edge of the part shown in the figure 2B is quite similar to the pattern of the figure 2A . It can in fact be observed that the ribs 21b and the grooves 23b which the cut edges of the piece 10 present form a stepped pattern, or in other words staggered, with first intervals 25b in which the grooves 23b are narrow, and second intervals 27b in which the grooves 23b are wide. Moreover, as was already the case with the example of the figure 2A , the ribbed surface of the cut edge of the part 10 has a pattern which is repeated periodically over the entire height of the part. We can see that in the variant of the figure 2B , this pattern is formed of a single narrow furrow followed by a wide furrow.
  • the narrow grooves may for example have a width of 1 ⁇ m and a depth comprised between 10 nm and 2 ⁇ m.
  • the wide grooves can have a width of 9 ⁇ m and a depth comprised between 10 nm and 10 ⁇ m.
  • the pattern on the ribbed surface of the cut edge of the part shown in the Fig. 2C is quite similar to the patterns of figures 2A and 2B . It can in fact be observed that the ribbed surface of the cut edge of the part 20 has a pattern which is repeated periodically over the entire height of the part.
  • this pattern is made up of five narrow furrows followed by a single wide furrow.
  • the narrow grooves may for example have a width of 1 ⁇ m and a depth comprised between 10 nm and 2 ⁇ m.
  • the wide grooves can have a width of 9 ⁇ m and a depth comprised between 10 nm and 10 ⁇ m.
  • the picture 3 is a schematic sectional view showing the ribbed surface presented by the cut edges of a watchmaking micromechanical part 100 in accordance with a second particular embodiment of the invention.
  • the single second interval 127 is itself formed of a single groove 123 whose width is equal to said second distance.
  • this second distance is greater than a quarter of the total thickness of part 100.
  • part 100 could have a thickness of between 80 ⁇ m and 500 ⁇ m, and said second distance could be between 20 ⁇ m and 150 ⁇ m.
  • the first intervals 125 are two in number. The two intervals 125 each extend between one of the two main surfaces of the part 100 and the second interval 127. It can also be seen that in the example illustrated the two intervals 125 comprise the same number of grooves 123, and that they therefore have the same width. It will however be understood that according to other variants of this embodiment, the two intervals 125 could not comprise the same number of grooves.
  • the grooves which form the first intervals 125 are narrow grooves which can have, for example, a width of 1 ⁇ m and a depth comprised between 10 nm and 2 ⁇ m.
  • the present invention also relates to a method making it possible to manufacture watchmaking micromechanical parts such as those which are the subject of the appended figures 2A, 2B, 2C and 3. A particular mode of implementation of the method of the invention will now be described. .
  • the method of the invention comprises a first step consisting in providing a silicon substrate in the form of a plate.
  • the substrate could not be made entirely of silicon or even be made of doped silicon.
  • the substrate could be formed of silicon on insulator (SOI according to its English abbreviation).
  • SOI silicon on insulator
  • such a substrate with a sandwich structure comprises two layers of silicon connected by a layer silicon oxide intermediate.
  • the substrate could alternatively consist of a layer of silicon added to another type of base, such as metal for example.
  • the next step of the process consists in depositing and structuring an openwork etching mask on a horizontal surface of the substrate.
  • the etching mask is formed on one of the two main faces of the wafer-shaped substrate. If we refer to Figures 2A, 2B, 2C and 3 , it will be understood that in the examples illustrated the etching mask is formed on the upper horizontal face of the substrate.
  • the mask is formed from a material capable of withstanding subsequent etching steps. In accordance with the present example, the etching mask is made of silicon oxide.
  • the method continues with a step consisting of etching the exposed surface of the substrate by reactive ion etching through the apertures of the mask, so as to dig into the substrate to a depth equal to a first distance.
  • Reactive ion etching is known to those skilled in the art as such.
  • the gas most used for the etching step is SF6, and the main parameters making it possible to optimize the etching are the flow of SF6 which is advantageously between 200 and 780 sccm, and preferably between 350 and 600 sccm; the power of the radiofrequency used to excite the plasma which is advantageously between 1000 and 3000 Watts at 2.45 GHz, and preferably between 1500 and 2600 Watts at 2.45 GHz; and the duration of an etching step which is advantageously between 0.8 seconds and 35 seconds and preferably between 1.5 and 7 seconds.
  • the parameters are chosen so that, at the end of the step, the ion etching has dug the silicon substrate to a depth equal to a first predefined distance (for example 2 microns with regard to the example of the figure 2A ).
  • the next step in the process consists in depositing a chemically inert passivation layer on the surfaces exposed by the etching during the previous step.
  • the most commonly used gas for the passivation step is C4F8, and the main parameters making it possible to optimize the deposition of the passivation layer are the flow of C4F8 which is advantageously between 10 and 780 sccm, and preferably between 50 and 400 sccm; the power of the radiofrequency used to excite the plasma which is advantageously between 1000 and 3000 Watts at 2.45 GHz, and preferably between 1500 and 2600 Watts at 2.45 GHz; and the duration of a passivation step which is advantageously between 0.8 seconds and 20 seconds and preferably between 1 and 4 seconds.
  • the process sequence comprising the etching step and the passivation step which have just been described is then repeated.
  • This first iterative sequence is executed consecutively a first predetermined number (n) of times, or equivalently, the first iterative sequence is executed as many times as there are grooves in a first interval (in other words 2 times in the example which is the subject of figure 2A , 1 times according to figure 2B and 5 times according to Fig. 2C ).
  • the parameters of the engraving process it is possible to adapt the parameters of the engraving process. It is for example possible to vary simultaneously the flow of the reactive gas and the duration of an etching step. Indeed, by increasing the flow of active gas, the etching is accelerated. However, this also increases the density of the reactive gas molecules, which makes the etching more isotropic, and therefore makes the grooves deeper. To play on the depth of the grooves, the gas flow factor is therefore greater than the duration of the etching step.
  • the next step in the process is to etch the exposed surface of the substrate by reactive ion etching through the openings in the mask, so as to dig into the substrate on a depth equal to a second distance different from the first distance.
  • the etching parameters are chosen so that, at the end of the step, the ion etching has dug the substrate in silicon over a depth equal to the second predefined distance (for example 8 microns with regard to the example of the figure 2A ).
  • the next step in the process consists in depositing a chemically inert passivation layer on the surfaces exposed by the etching during the previous step.
  • the process sequence comprising the etching step and the passivation step which have just been described is then repeated.
  • This second iterative sequence is performed consecutively a second predetermined number (m) of times, or equivalently, the second iterative sequence is performed as many times as there are grooves in a second interval (in other words, 1 time in each examples illustrated by Figures 2A, 2B, 2C and 3 ).
  • m second predetermined number
  • the flow of the method returns to the start of the first iterative sequence so as to begin etching a new first interval.
  • the process sequence of first etching a first interval and then a second interval can itself be repeated.
  • This third iterative sequence is performed a third determined number (v) of times, or equivalently, the third iterative sequence is performed once for every second interval that the ribbed surface of the cut edge of the part has.
  • the watchmaking micromechanical part is then stripped of its mask before being preferably covered with a layer of silicon oxide before it is finally released from the substrate.
  • the figure 4 is a double graph showing the evolution of the flow of the reactive gas and of the flow of the passivation gas during six consecutive steps of a particular implementation of the method of the invention used to produce the watch micromechanical parts which are the subject from Figures 2A, 2B, 2C and 3 .
  • the way of implementing the figure 4 allows more specifically to produce the micromechanical part of the example of the figure 2A .
  • the graph shows a first iterative sequence comprising a G1 etching step followed by a passivation P1.
  • the flow of SF6 is 400 sccm for 5 seconds.
  • the flux of C4F8 is 200 sccm for 2 seconds.
  • the first iterative sequence is then repeated once so as to complete a first interval formed by two grooves.
  • the method passes to a second sequence consisting of an etching step G2 followed by a passivation step P2.
  • the flow of SF6 is 400 sccm for 35 seconds.
  • the flux of C4F8 is 200 sccm for 15 seconds.
  • the surface of the cut edges of the watch micromechanical part is ribbed and comprises alternating ribs and rectilinear grooves.
  • these ribs and these grooves were horizontal, or in other words, each contained in a plane parallel to the plate.
  • the schematic partial plan view of the figure 5 illustrates a third exemplary embodiment of the invention, the micromechanical part being constituted by an escape wheel.
  • the ribs and the grooves are oriented perpendicular to the main plane of the escape wheel.
  • the partial view of the figure 5 only shows one of the teeth (reference 200) of the escape wheel.
  • the impulse plane of tooth 200 has alternating ridges 221 and grooves 223 which are straight and vertical. It can be seen that the ribs 221 and furrows 223 form a staggered pattern, with first intervals 225 in which the furrows 223 are narrow, and second intervals 227 in which the furrows are wide. Additionally, ribs 221 and grooves 223 exhibit a pattern that repeats periodically across the width of the pulse plane of tooth 200.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Micromachines (AREA)

Description

La présente invention concerne, par un premier aspect, une pièce de micromécanique horlogère découpée dans un substrat en silicium en forme de plaque et dont les bords découpés comprennent des portions prévues pour servir de surfaces de contact agencées pour glisser contre des zones de contact correspondantes d'une autre pièce de micromécanique dans un pièce d'horlogerie, les bords découpés de la pièce présentant une surface côtelée comprenant une alternance de côtes et de sillons, ces côtes et ces sillons étant rectilignes. Ce premier aspect de l'invention concerne notamment une pièce de micromécanique horlogère qui est conforme à la définition ci-dessus et qui fait partie d'un échappement à ancre.The present invention relates, in a first aspect, to a watchmaking micromechanical part cut from a silicon substrate in the form of a plate and the cut edges of which comprise portions intended to serve as contact surfaces arranged to slide against corresponding contact zones of another micromechanical part in a timepiece, the cut edges of the part having a ribbed surface comprising alternating ribs and grooves, these ribs and these grooves being rectilinear. This first aspect of the invention relates in particular to a watchmaking micromechanical part which conforms to the above definition and which forms part of a lever escapement.

Par un second aspect, la présente invention concerne un procédé de fabrication d'une pièce de micromécanique horlogère qui est conforme au premier aspect de l'invention, le procédé comportant les étapes de :

  • se munir d'un substrat en silicium en forme de plaque ;
  • déposer et structurer un masque de gravure ajouré sur une surface horizontale du substrat ;
  • attaquer par gravure ionique réactive la surface du substrat à travers les ajours du masque, de manière à creuser dans le substrat ;
  • déposer un couche de passivation chimiquement inerte sur les surfaces exposées par la gravure durant l'étape précédente ;
  • répéter l'exécution d'une séquence d'étapes formée par les deux étapes précédentes jusqu'à ce que la séquence ait été effectuée un premier nombre prédéterminé de fois, ou que la gravure ionique réactive ait creusé à travers toute l'épaisseur du substrat ;
  • libérer la pièce de micromécanique du masque et du substrat.
Through a second aspect, the present invention relates to a method for manufacturing a watchmaking micromechanical part which is in accordance with the first aspect of the invention, the method comprising the steps of:
  • provide a silicon substrate in the form of a plate;
  • depositing and structuring an openwork etching mask on a horizontal surface of the substrate;
  • attacking by reactive ion etching the surface of the substrate through the openings of the mask, so as to dig into the substrate;
  • depositing a chemically inert passivation layer on the surfaces exposed by the etching during the previous step;
  • repeating the execution of a sequence of steps formed by the previous two steps until the sequence has been carried out a first predetermined number of times, or the reactive ion etching has hollowed through the entire thickness of the substrate ;
  • release the micromechanical part from the mask and the substrate.

ART ANTERIEURPRIOR ART

Il est connu de réaliser des pièces de micromécanique horlogère, et notamment de telles pièces faisant partie d'un échappement à ancre, par micro-usinage d'une plaquette de silicium mono- ou poly-cristallin. Le document de brevet EP 0 732 635 , en particulier, décrit la réalisation d'une ancre d'échappement en silicium. Le micro-usinage du silicium consiste en grande partie en des opérations de gravures. Pour donner aux pièces la forme désirée, on se sert généralement de masques de gravure qu'on a préalablement déposés et structurés sur la surface horizontale du substrat en silicium. La technique de gravage la plus répandue est appelée « gravage ionique réactif profond » (ou alternativement « DRIE », ce qui correspond à son acronyme en anglais). Le brevet US 5,501,893 au nom de Robert Bosch GmbH , en particulier, propose de graver des profils à flancs quasiment verticaux dans un substrat en silicium en appliquant une procédure faisant alterner les étapes de dépôt d'une couche de passivation inerte et de gravure par plasma. Les étapes de dépôt de la couche de passivation et celles de gravure font toutes appel à des composés fluorés, de sorte qu'elles se déroulent dans un même contexte chimique. Chaque étape dure quelques secondes, la couche de passivation est formée sur toute la surface du substrat, de sorte que ce dernier est protégé contre toute gravure subséquente. Toutefois, durant l'étape de gravure qui suit, le bombardent par des ions qui sont accélérés verticalement désintègre la partie de la couche de passivation qui se trouve au fond des profils (mais pas celle qui recouvre les flancs de ceux-ci). Le fond des profils est ainsi très vite exposé à la gravure réactive. Le brevet US 5,501,893 est incorporé par référence.It is known to produce watchmaking micromechanical parts, and in particular such parts forming part of a lever escapement, by micromachining a mono- or poly-crystalline silicon wafer. The patent document EP 0 732 635 , in particular, describes the production of a silicon escape lever. The micromachining of silicon largely consists of etching operations. To give the parts the desired shape, use is generally made of etching masks which have been previously deposited and structured on the horizontal surface of the silicon substrate. The most common etching technique is called "deep reactive ion etching" (or alternatively "DRIE", which is its acronym in English). The patent US 5,501,893 in the name of Robert Bosch GmbH , in particular, proposes to etch profiles with almost vertical edges in a silicon substrate by applying a procedure that alternates the steps of depositing an inert passivation layer and plasma etching. The steps of deposition of the passivation layer and those of etching all make use of fluorinated compounds, so that they take place in the same chemical context. Each step lasts a few seconds, the passivation layer is formed over the entire surface of the substrate, so that the latter is protected against any subsequent etching. However, during the etching step which follows, the bombardment by ions which are accelerated vertically disintegrates the part of the passivation layer which is at the bottom of the profiles (but not that which covers the sides thereof). The bottom of the profiles is thus very quickly exposed to reactive etching. The patent US 5,501,893 is incorporated by reference.

La séquence formée d'une étape de gravure suivie d'une étape de dépôt d'une couche de passivation est répétée un grand nombre de fois. Par exemple, entre 100 et 1000 fois pour graver une rainure qui traverse verticalement de part en part un substrat dont l'épaisseur est de 500 microns. Les flancs produits par la succession alternée d'étapes de dépôt et d'étapes de gravure ne produit pas des flancs parfaitement droits, mais des flancs finement ondulés qui présentent une alternance de reliefs et de creux régulièrement espacés. L'amplitude de l'ondulation est fonction de la fréquence avec laquelle alternent les étapes de dépôt et de gravure.The sequence formed by an etching step followed by a step of depositing a passivation layer is repeated a large number of times. For example, between 100 and 1000 times to etch a groove which crosses vertically right through a substrate whose thickness is 500 microns. The sidewalls produced by the alternating succession of deposition steps and etching steps do not produce perfectly straight sidewalls, but finely wavy sidewalls which present a alternating regularly spaced reliefs and hollows. The amplitude of the ripple is a function of the frequency with which the deposition and etching steps alternate.

La fabrication de pièces de micromécanique horlogère par micro-usinage d'une plaquette de silicium à l'aide de la technologie DRIE donne de bons résultats. Toutefois, il n'est pas rare que les flancs verticaux d'une pièce de micromécanique soient destinés à servir de surfaces de contact prévues pour glisser contre au moins une zone de contact d'une autre pièce de micromécanique. Il s'avère que ces surfaces de contact verticales ne sont pas entièrement satisfaisantes d'un point de vue tribologique.The manufacture of watchmaking micromechanical parts by micromachining a silicon wafer using DRIE technology is giving good results. However, it is not uncommon for the vertical sides of a micromechanical part to be intended to serve as contact surfaces provided to slide against at least one contact zone of another micromechanical part. It turns out that these vertical contact surfaces are not entirely satisfactory from a tribological point of view.

Un certain nombre d'idées ont été avancées pour essayer de remédier à ce problème. Tout d'abord, on a cherché à rendre les flancs des pièces de micromécanique le plus droit possible en raccourcissant la durée des étapes individuelles de gravure. Cette manière de procéder permet d'obtenir des flancs presque parfaitement lisses. Toutefois, cela ne va pas sans une réduction importante de la vitesse d'exécution du procédé de gravure. Une autre solution est décrite dans le document de brevet EP 3 109 200 . Ce document propose en effet de réaliser des pièces de micromécanique dont les parois périphériques se subdivisent en deux niveaux. Un niveau supérieur présentant une surface qui est sensiblement verticale et un niveau inférieur dont la surface est orientée obliquement à la manière d'un chanfrein. La paroi périphérique du deuxième niveau étant inclinée relativement à la verticale, elle n'entre pas en contact avec la zone de contact de l'autre pièce de micromécanique. L'aire de contact effective est donc réduite par rapport à une pièce à flancs verticaux. Dans un but d'amélioration de la tribologie entre deux pièces en contact dans leur mouvement respectif, on connaît encore les documents EP3141520A1 et CH710846A2 .A number of ideas have been put forward to try to remedy this problem. First of all, we sought to make the sides of the micromechanical parts as straight as possible by shortening the duration of the individual etching steps. This way of proceeding makes it possible to obtain almost perfectly smooth sides. However, this is not without a significant reduction in the execution speed of the etching process. Another solution is described in the patent document EP 3 109 200 . This document indeed proposes to produce micromechanical parts whose peripheral walls are subdivided into two levels. An upper level having a surface which is substantially vertical and a lower level whose surface is oriented obliquely in the manner of a chamfer. Since the peripheral wall of the second level is inclined relatively to the vertical, it does not come into contact with the contact zone of the other micromechanical part. The effective contact area is therefore reduced compared to a part with vertical sides. With the aim of improving the tribology between two parts in contact in their respective movements, we still know the documents EP3141520A1 and CH710846A2 .

BREF EXPOSE DE L'INVENTIONBRIEF DESCRIPTION OF THE INVENTION

Un but de la présente invention est de remédier aux inconvénients de l'art antérieur qui viennent d'être expliqués. La présente invention atteint ce but ainsi que d'autres en fournissant une pièce de micromécanique horlogère conforme à la revendication 1 annexée et deux procédés de fabrication conformes respectivement aux revendications 13 et 14 annexées.An object of the present invention is to remedy the drawbacks of the prior art which have just been explained. The present invention achieves this object as well as others by providing a watchmaking micromechanical part in accordance with appended claim 1 and two manufacturing methods in accordance with appended claims 13 and 14 respectively.

Conformément à l'invention, les côtes et les sillons forment un motif échelonné, avec des premiers intervalles dans lesquels l'espacement séparant les côtes les unes des autres est égal à une première distance, et au moins un deuxième intervalle dans lequel l'espacement entre les côtes est égal à une deuxième distance différente de la première distance. Des essais effectués par la demanderesse ont montré que la présence d'un motif échelonné possédant les caractéristiques ci-dessus améliore la tribologie en diminuant les frottements dans le contact.According to the invention, the ribs and the furrows form a staggered pattern, with first intervals in which the spacing separating the ribs from each other is equal to a first distance, and at least a second interval in which the spacing between the ribs is equal to a second distance different from the first distance. Tests carried out by the applicant have shown that the presence of a staggered pattern having the above characteristics improves tribology by reducing friction in the contact.

Conformément à certains modes de réalisation de l'invention, les côtes et les sillons sont contenus chacun dans un plan parallèle à la plaque.According to certain embodiments of the invention, the ribs and the grooves are each contained in a plane parallel to the plate.

Conformément à d'autres modes de réalisation de l'invention, les côtes et les sillons sont perpendiculaires aux faces principales de la plaque.According to other embodiments of the invention, the ribs and the grooves are perpendicular to the main faces of the plate.

Conformément à un premier mode de réalisation de l'invention, les sillons appartenant aux premiers intervalles ont de préférence tous la même première profondeur. Cette profondeur est comprise entre 10 nm et 2 µm.According to a first embodiment of the invention, the grooves belonging to the first intervals preferably all have the same first depth. This depth is between 10 nm and 2 μm.

Conformément à un deuxième mode de réalisation de l'invention, la deuxième distance est de préférence plus grande que la première distance.According to a second embodiment of the invention, the second distance is preferably greater than the first distance.

Conformément à un troisième mode de réalisation de l'invention, le motif échelonné comprend une pluralité de deuxièmes intervalles, et la deuxième distance est comprise entre 200 nm et 50 µm, et de préférence comprise entre 800 nm et 10 µm.According to a third embodiment of the invention, the stepped pattern comprises a plurality of second intervals, and the second distance is between 200 nm and 50 μm, and preferably between 800 nm and 10 μm.

Conformément à une variante avantageuse du troisième mode de réalisation, les sillons appartenant aux deuxièmes intervalles ont tous la même profondeur. Cette profondeur est comprise entre 10 nm et 10 µm.According to an advantageous variant of the third embodiment, the grooves belonging to the second intervals all have the same depth. This depth is between 10 nm and 10 μm.

Conformément à une variante avantageuse du deuxième mode de réalisation, le motif échelonné comprend un unique deuxième intervalle comprenant un unique sillon, et la deuxième distance est comprise entre 200 nm et les 2/3 de la hauteur totale de la pièce, et de préférence comprise entre 1/3 et 1/2 de la hauteur totale de la pièce. De plus, la profondeur de l'unique sillon du deuxième intervalle est de préférence comprise entre10 nm et 50 µm.In accordance with an advantageous variant of the second embodiment, the staggered pattern comprises a single second interval comprising a single groove, and the second distance is between 200 nm and 2/3 of the total height of the part, and preferably between between 1/3 and 1/2 of the total height of the room. In addition, the depth of the single groove of the second interval is preferably between 10 nm and 50 μm.

BRÈVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF FIGURES

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés dans lesquels :

  • la figure 1 est une vue schématique en plan représentant un échappement à ancre suisse de l'art antérieur ;
  • les figures 2A, 2B 2C sont des vues schématiques en coupe montrant les surfaces côtelées que présentent les bords découpés de trois pièces de micromécanique horlogère qui correspondent respectivement à trois variantes d'un premier mode de réalisation particulier de l'invention ;
  • la figure 3 est une vue schématique en coupe montrant la surface côtelée que présente les bords découpés d'une pièce de micromécanique horlogère conforme à un deuxième mode de réalisation particulier de l'invention ;
  • la figure 4 est un double graphique montrant l'évolution du flux du gaz réactif et du flux du gaz de passivation durant six étapes consécutives d'une mise en œuvre particulière d'un des deux procédés de l'invention ;
  • la figure 5 est une vue schématique en plan d'une dent d'une roue d'échappement qui est conforme à un troisième mode de réalisation de l'invention, les côtes et les sillons formés que présente le plan d'impulsion de la dent étant perpendiculaires au plan principal de la roue d'échappement.
Other characteristics and advantages of the present invention will appear on reading the following description, given solely by way of non-limiting example, and made with reference to the appended drawings in which:
  • the figure 1 is a schematic plan view showing a prior art Swiss lever escapement;
  • the figures 2A, 2B 2C are schematic sectional views showing the ribbed surfaces presented by the cut edges of three watchmaking micromechanical parts which correspond respectively to three variants of a first particular embodiment of the invention;
  • the picture 3 is a schematic sectional view showing the ribbed surface presented by the cut edges of a watchmaking micromechanical part according to a second particular embodiment of the invention;
  • the figure 4 is a double graph showing the evolution of the flow of the reactive gas and of the flow of the passivation gas during six consecutive steps of a particular implementation of one of the two methods of the invention;
  • the figure 5 is a schematic plan view of a tooth of an escape wheel which is in accordance with a third embodiment of the invention, the ribs and the formed furrows presented by the impulse plane of the tooth being perpendicular to the main plane of the escape wheel.

DESCRIPTION DETAILLEE DE MODES DE REALISATIONDETAILED DESCRIPTION OF EMBODIMENTS

L'invention sera décrite ci-après dans le contexte d'un échappement à ancre suisse. On comprendra toutefois que l'invention ne se limite pas à ce domaine d'application restreint, mais qu'elle concerne au contraire tous les dispositifs de micromécanique horlogère dans lesquels deux composants sont amenés à glisser et donc à frotter l'un contre l'autre.The invention will be described below in the context of a Swiss lever escapement. It will however be understood that the invention is not limited to this restricted field of application, but that it relates on the contrary to all watchmaking micromechanical devices in which two components are caused to slide and therefore to rub against each other. other.

La figure 1 est une vue schématique en plan représentant un échappement à ancre suisse de l'art antérieur. Le mécanisme représenté comporte notamment une roue d'échappement 3, une ancre 5 et un grand plateau 7 par le centre duquel passe l'axe du balancier 9. Les deux bras de l'ancre se terminent chacun par une palette 11, 13. Les palettes sont agencées pour coopérer avec les dents 15 de la roue d'échappement 3. La roue d'échappement est reliée au barillet (non représenté) par l'intermédiaire d'un rouage (non représenté) qui vient en prise avec le pignon d'échappement (référencé 17). La roue d'échappement est ainsi sollicitée en permanence vers l'avant (autrement dit, dans le sens horaire tel que représenté à la figure 1). On remarquera qu'à l'instant représenté, une des dents 15 de la roue d'échappement 3 est immobilisée contre la face de repos de la palette d'entrée 11 de l'ancre 5. Entraînée par le balancier, l'ancre 5 entame un mouvement de pivotement autour de l'axe 19 dans le sens horaire. Le pivotement de l'ancre dans le sens horaire conduit la palette d'entrée à glisser en direction du haut (sur le dessin) contre le flanc avant de la dent 15. Cette phase de dégagement se terminera à l'instant où le plan de repos de la palette aura cessé de faire obstacle à l'avancée du flanc avant de la dent 15. Ensuite, ce sera le sommet aplati de cette même dent (appelé plan d'impulsion de la dent) qui sera amené à glisser contre la face inférieure de la palette 11 (le plan d'impulsion de la palette). Le contact en biais entre les deux plans d'impulsion aura également pour effet de repousser la palette d'entrée 11 vers le haut, de sorte que le mouvement de pivotement de l'ancre 5 dans le sens horaire sera accentué. Cette phase d'impulsion se terminera lorsque la palette d'entrée 11 aura été repoussée suffisamment loin pour offrir un passage complètement dégagé à la dent 15. Les deux phases successives qui viennent d'être décrites durant lesquelles une dent 15 de la roue d'échappement 3 glisse contre les surfaces d'une des palettes 11, 13 de l'ancre 5, sont chacune génératrices de frottements considérables.The figure 1 is a schematic plan view showing a prior art Swiss lever escapement. The mechanism shown comprises in particular an escape wheel 3, an anchor 5 and a large plate 7 through the center of which passes the axis of the balance wheel 9. The two arms of the anchor each terminate in a pallet 11, 13. The pallets are arranged to cooperate with the teeth 15 of the escapement wheel 3. The escapement wheel is connected to the barrel (not shown) via a cog (not shown) which engages with the pinion of exhaust (referenced 17). The escape wheel is thus permanently biased forwards (in other words, clockwise as shown in figure 1 ). It will be noted that at the moment represented, one of the teeth 15 of the escape wheel 3 is immobilized against the rest face of the entry pallet 11 of the anchor 5. Driven by the balance wheel, the anchor 5 begins a pivoting movement around the axis 19 in the clockwise direction. Pivoting the anchor clockwise causes the entry pallet to slide upwards (in the drawing) against the front flank of tooth 15. This release phase will end the instant the rest of the pallet will have ceased to obstruct the advance of the front flank of tooth 15. Then, it will be the flattened top of this same tooth (called the impulse plane of the tooth) which will be caused to slide against the face bottom of vane 11 (the vane impulse plane). The angled contact between the two impulse planes will also have the effect of pushing the vane back input 11 upwards, so that the pivoting movement of the anchor 5 in the clockwise direction will be accentuated. This impulse phase will end when the input paddle 11 has been pushed back far enough to provide a completely clear passage for the tooth 15. The two successive phases which have just been described during which a tooth 15 of the wheel escapement 3 slides against the surfaces of one of the pallets 11, 13 of the anchor 5, each generating considerable friction.

Les figures 2A, 2B et 2C sont des vues schématiques en coupe montrant les surfaces côtelées que présentent les bords découpés de trois pièces de micromécanique horlogère 1, 10 et 20 qui correspondent respectivement à trois variantes d'un premier mode de réalisation particulier de l'invention. En se référant maintenant plus particulièrement à la figure 2A, on peut observer que, conformément à l'invention, les côtes 21 a et les sillons 23a que présentent les bords découpés de la pièce 1 forment un motif échelonné ou étagé, avec des premiers intervalles 25a dans lesquels les côtes sont séparées les unes des autres par des sillons étroits dont la largeur est égale à une première distance, et des deuxièmes intervalles 27a dans lesquels les côtes sont séparées l'une de l'autre par un sillon large dont la largeur est égale à une deuxième distance plus grande que la première distance. On peut observer de plus que, dans le mode de réalisation illustré, les premiers intervalles 25a et les deuxièmes intervalles 27a alternent cycliquement de sorte qu'un deuxième intervalle est toujours intercalé entre deux premiers intervalles et inversement. On comprendra donc que conformément à ce que montre la figure 2A, la surface côtelée du bord découpé de la pièce 1 présente un motif qui se répète de manière périodique sur toute la hauteur de la pièce. Dans la variante représentée, ce motif est formé de deux sillons étroits suivis d'un unique sillon large. On peut encore préciser que, dans cette variante, les sillons étroits peuvent avoir par exemple une largeur de 2 µm et une profondeur comprise entre 10 nm et 2 µm. De plus, les sillons larges peuvent avoir une largeur de 8 µm et une profondeur comprise entre 10 nm et 10 µm.The figures 2A, 2B and 2C are schematic sectional views showing the ribbed surfaces presented by the cut edges of three watchmaking micromechanical parts 1, 10 and 20 which respectively correspond to three variants of a first particular embodiment of the invention. Referring now more particularly to the figure 2A , it can be observed that, in accordance with the invention, the ribs 21a and the grooves 23a presented by the cut edges of the part 1 form a staggered or stepped pattern, with first intervals 25a in which the ribs are separated from each other. others by narrow furrows whose width is equal to a first distance, and second intervals 27a in which the ribs are separated from each other by a wide furrow whose width is equal to a second distance greater than the first distance. It can further be observed that, in the illustrated embodiment, the first intervals 25a and the second intervals 27a alternate cyclically so that a second interval is always inserted between two first intervals and vice versa. It will therefore be understood that, in accordance with what is shown by the figure 2A , the ribbed surface of the cut edge of the part 1 has a pattern which is repeated periodically over the entire height of the part. In the variant shown, this pattern is formed of two narrow grooves followed by a single wide groove. It may also be specified that, in this variant, the narrow grooves may for example have a width of 2 μm and a depth comprised between 10 nm and 2 μm. In addition, the wide grooves can have a width of 8 μm and a depth comprised between 10 nm and 10 μm.

Le motif que présente la surface côtelée du bord découpé de la pièce représentée dans la figure 2B est assez similaire au motif de la figure 2A. On peut observer en effet que les côtes 21b et les sillons 23b que présentent les bords découpés de la pièce 10 forment un motif étagé, ou autrement dit échelonné, avec des premiers intervalles 25b dans lesquels les sillons 23b sont étroits, et des deuxièmes intervalles 27b dans lequel les sillons 23b sont larges. De plus, comme c'était déjà le cas avec l'exemple de la figure 2A, la surface côtelée du bord découpé de la pièce 10 présente un motif qui se répète de manière périodique sur toute la hauteur de la pièce. On peut voir que dans la variante de la figure 2B, ce motif est formé d'un unique sillon étroit suivi d'un sillon large. On peut encore préciser que, dans cette variante, les sillons étroits peuvent avoir par exemple une largeur de 1 µm et une profondeur comprise entre 10 nm et 2 µm. De plus, les sillons larges peuvent avoir une largeur de 9 µm et une profondeur comprise entre 10 nm et 10 µm.The pattern on the ribbed surface of the cut edge of the part shown in the figure 2B is quite similar to the pattern of the figure 2A . It can in fact be observed that the ribs 21b and the grooves 23b which the cut edges of the piece 10 present form a stepped pattern, or in other words staggered, with first intervals 25b in which the grooves 23b are narrow, and second intervals 27b in which the grooves 23b are wide. Moreover, as was already the case with the example of the figure 2A , the ribbed surface of the cut edge of the part 10 has a pattern which is repeated periodically over the entire height of the part. We can see that in the variant of the figure 2B , this pattern is formed of a single narrow furrow followed by a wide furrow. It may also be specified that, in this variant, the narrow grooves may for example have a width of 1 μm and a depth comprised between 10 nm and 2 μm. In addition, the wide grooves can have a width of 9 μm and a depth comprised between 10 nm and 10 μm.

Le motif que présente la surface côtelée du bord découpé de la pièce représentée dans la figure 2C est assez similaire aux motifs des figures 2A et 2B. On peut observer en effet que la surface côtelée du bord découpé de la pièce 20 présente un motif qui se répète de manière périodique sur toute la hauteur de la pièce. On peut voir que dans la variante de la figure 2C, ce motif est formé de cinq sillons étroits suivi d'un unique sillon large. On peut encore préciser que, dans cette variante, les sillons étroits peuvent avoir par exemple une largeur de 1 µm et une profondeur comprise entre 10 nm et 2 µm. De plus, les sillons larges peuvent avoir une largeur de 9 µm et une profondeur comprise entre 10 nm et 10 µm.The pattern on the ribbed surface of the cut edge of the part shown in the Fig. 2C is quite similar to the patterns of figures 2A and 2B . It can in fact be observed that the ribbed surface of the cut edge of the part 20 has a pattern which is repeated periodically over the entire height of the part. We can see that in the variant of the Fig. 2C , this pattern is made up of five narrow furrows followed by a single wide furrow. It may also be specified that, in this variant, the narrow grooves may for example have a width of 1 μm and a depth comprised between 10 nm and 2 μm. In addition, the wide grooves can have a width of 9 μm and a depth comprised between 10 nm and 10 μm.

La figure 3 est une vue schématique en coupe montrant la surface côtelée que présente les bords découpés d'une pièce de micromécanique horlogère 100 conforme à un deuxième mode de réalisation particulier de l'invention. On peut observer dans la figure 3 que les côtes 121 et les sillons 123 que présente le bord découpé de la pièce 100 forment un motif étagé ou échelonné, avec des premiers intervalles 125 dans lesquels l'espacement séparant les côtes 121 les unes des autres est égal à une première distance, et un deuxième intervalle 127 dans lequel l'espacement entre les côtes est égal à une deuxième distance différente de la première distance. Dans le mode de réalisation illustré, l'unique deuxième intervalle 127 est formé lui-même d'un unique sillon 123 dont la largeur est égale à ladite deuxième distance. On peut voir que dans le mode de réalisation illustré, cette deuxième distance est supérieure au quart de l'épaisseur totale de la pièce 100. A titre d'exemple, la pièce 100 pourrait avoir une épaisseur comprise entre 80 µm et 500 µm, et ladite deuxième distance pourrait être comprise entre 20 µm et 150 µm. En se référant toujours à la figure 3, on peut voir encore que, dans le mode de réalisation illustré, les premiers intervalles 125 sont au nombre de deux. Les deux intervalles 125 s'étendent chacun entre une des deux surfaces principales de la pièce 100 et le deuxième intervalle 127. On peut voir encore que dans l'exemple illustré les deux intervalles 125 comprennent le même nombre de sillons 123, et qu'ils ont donc la même largeur. On comprendra toutefois que selon d'autres variantes du présent mode de réalisation, les deux intervalles 125 pourraient ne pas comprendre le même nombre de sillons. On peut encore préciser que, dans le mode de réalisation illustré, les sillons qui forment les premiers intervalles 125 sont des sillons étroits qui peuvent avoir par exemple une largeur de 1 µm et une profondeur comprise entre 10 nm et 2 µm.The picture 3 is a schematic sectional view showing the ribbed surface presented by the cut edges of a watchmaking micromechanical part 100 in accordance with a second particular embodiment of the invention. You can observe in the picture 3 that the ribs 121 and the grooves 123 that the cut edge of the piece 100 presents form a stepped or staggered pattern, with first intervals 125 in which the spacing separating the ribs 121 from one another others is equal to a first distance, and a second interval 127 in which the spacing between the ribs is equal to a second distance different from the first distance. In the illustrated embodiment, the single second interval 127 is itself formed of a single groove 123 whose width is equal to said second distance. It can be seen that in the illustrated embodiment, this second distance is greater than a quarter of the total thickness of part 100. By way of example, part 100 could have a thickness of between 80 μm and 500 μm, and said second distance could be between 20 μm and 150 μm. Always referring to the picture 3 , it can also be seen that, in the illustrated embodiment, the first intervals 125 are two in number. The two intervals 125 each extend between one of the two main surfaces of the part 100 and the second interval 127. It can also be seen that in the example illustrated the two intervals 125 comprise the same number of grooves 123, and that they therefore have the same width. It will however be understood that according to other variants of this embodiment, the two intervals 125 could not comprise the same number of grooves. It can also be specified that, in the illustrated embodiment, the grooves which form the first intervals 125 are narrow grooves which can have, for example, a width of 1 μm and a depth comprised between 10 nm and 2 μm.

La présente invention concerne également un procédé permettant de fabriquer des pièces de micromécanique horlogère comme celles qui font l'objet des figures annexées 2A, 2B, 2C et 3. Un mode particulier de mise en œuvre de procédé de l'invention va maintenant être décrit.The present invention also relates to a method making it possible to manufacture watchmaking micromechanical parts such as those which are the subject of the appended figures 2A, 2B, 2C and 3. A particular mode of implementation of the method of the invention will now be described. .

Le procédé de l'invention comporte une première étape consistant à se munir d'un substrat en silicium en forme de plaque. Bien entendu, le substrat pourrait ne pas être entièrement constitué de silicium ou encore être constitué par du silicium dopé. Le substrat pourrait être formé de silicium sur isolant (du SOI selon son abréviation anglaise). Comme le sait l'homme du métier, un tel substrat à structure sandwich comporte deux couches de silicium reliées par une couche intermédiaire en oxyde de silicium. Le substrat pourrait alternativement être constitué d'une couche de silicium rapportée sur un autre type de base comme par exemple du métal.The method of the invention comprises a first step consisting in providing a silicon substrate in the form of a plate. Of course, the substrate could not be made entirely of silicon or even be made of doped silicon. The substrate could be formed of silicon on insulator (SOI according to its English abbreviation). As the person skilled in the art knows, such a substrate with a sandwich structure comprises two layers of silicon connected by a layer silicon oxide intermediate. The substrate could alternatively consist of a layer of silicon added to another type of base, such as metal for example.

L'étape suivante du procédé consiste à déposer et à structurer un masque de gravure ajouré sur une surface horizontale du substrat. Le masque de gravure est formé sur une des deux faces principales du substrat en forme de plaque. Si on se réfère aux figures 2A, 2B, 2C et 3, on comprendra que dans les exemples illustrés le masque de gravure est formé sur la face horizontale supérieure du substrat. Le masque est formé à partir d'un matériau capable de résister aux étapes de gravure subséquentes. Conformément au présent exemple, le masque de gravure est réalisé en oxyde de silicium.The next step of the process consists in depositing and structuring an openwork etching mask on a horizontal surface of the substrate. The etching mask is formed on one of the two main faces of the wafer-shaped substrate. If we refer to Figures 2A, 2B, 2C and 3 , it will be understood that in the examples illustrated the etching mask is formed on the upper horizontal face of the substrate. The mask is formed from a material capable of withstanding subsequent etching steps. In accordance with the present example, the etching mask is made of silicon oxide.

Le procédé se poursuit par une étape consistant à attaquer par gravure ionique réactive la surface exposée du substrat à travers les ajours du masque, de manière à creuser dans le substrat sur une profondeur égale à une première distance. La gravure ionique réactive est connue de l'homme du métier en tant que telle. Le gaz le plus utilisé pour l'étape de gravure est le SF6, et les principaux paramètres permettant d'optimiser la gravure sont le flux de SF6 qui est avantageusement compris entre 200 et 780 sccm, et de préférence compris entre 350 et 600 sccm ; la puissance de la radiofréquence servant à exciter le plasma qui est avantageusement comprise entre 1000 et 3000 Watts à 2.45 GHz, et de préférence entre 1500 et 2600 Watts à 2.45 GHz ; et la durée d'une étape de gravure qui est avantageusement comprise entre 0.8 secondes et 35 secondes et de préférence comprise entre 1.5 et 7 secondes. Les paramètres sont choisis de manière à ce que, à la fin de l'étape, la gravure ionique ait creusé le substrat en silicium sur une profondeur égale à une première distance prédéfinie (par exemple 2 microns en ce qui concerne l'exemple de la figure 2A).The method continues with a step consisting of etching the exposed surface of the substrate by reactive ion etching through the apertures of the mask, so as to dig into the substrate to a depth equal to a first distance. Reactive ion etching is known to those skilled in the art as such. The gas most used for the etching step is SF6, and the main parameters making it possible to optimize the etching are the flow of SF6 which is advantageously between 200 and 780 sccm, and preferably between 350 and 600 sccm; the power of the radiofrequency used to excite the plasma which is advantageously between 1000 and 3000 Watts at 2.45 GHz, and preferably between 1500 and 2600 Watts at 2.45 GHz; and the duration of an etching step which is advantageously between 0.8 seconds and 35 seconds and preferably between 1.5 and 7 seconds. The parameters are chosen so that, at the end of the step, the ion etching has dug the silicon substrate to a depth equal to a first predefined distance (for example 2 microns with regard to the example of the figure 2A ).

L'étape suivante du procédé consiste à déposer une couche de passivation chimiquement inerte sur les surfaces exposées par la gravure durant l'étape précédente. Le gaz le plus utilisé pour l'étape de passivation est le C4F8, et les principaux paramètres permettant d'optimiser le dépôt de la couche de passivation sont le flux de C4F8 qui est avantageusement compris entre 10 et 780 sccm, et de préférence compris entre 50 et 400 sccm ; la puissance de la radiofréquence servant à exciter le plasma qui est avantageusement comprise entre 1000 et 3000 Watts à 2.45 GHz, et de préférence entre 1500 et 2600 Watts à 2.45 GHz ; et la durée d'une étape de passivation qui est avantageusement comprise entre 0.8 secondes et 20 secondes et de préférence comprise entre 1 et 4 secondes.The next step in the process consists in depositing a chemically inert passivation layer on the surfaces exposed by the etching during the previous step. The most commonly used gas for the passivation step is C4F8, and the main parameters making it possible to optimize the deposition of the passivation layer are the flow of C4F8 which is advantageously between 10 and 780 sccm, and preferably between 50 and 400 sccm; the power of the radiofrequency used to excite the plasma which is advantageously between 1000 and 3000 Watts at 2.45 GHz, and preferably between 1500 and 2600 Watts at 2.45 GHz; and the duration of a passivation step which is advantageously between 0.8 seconds and 20 seconds and preferably between 1 and 4 seconds.

La séquence de procédé comprenant l'étape de gravure et l'étape de passivation qui viennent d'être décrites est ensuite répétée. Cette première séquence itérative est exécutée consécutivement un premier nombre (n) prédéterminé de fois, ou de manière équivalente, la première séquence itérative est effectuée autant de fois qu'il y a de sillons dans un premier intervalle (autrement dit 2 fois dans l'exemple qui fait l'objet de la figure 2A, 1 fois selon la figure 2B et 5 fois selon la figure 2C).The process sequence comprising the etching step and the passivation step which have just been described is then repeated. This first iterative sequence is executed consecutively a first predetermined number (n) of times, or equivalently, the first iterative sequence is executed as many times as there are grooves in a first interval (in other words 2 times in the example which is the subject of figure 2A , 1 times according to figure 2B and 5 times according to Fig. 2C ).

Pour graver des sillons plus profonds en conservant la même largeur de sillon, il est possible d'adapter les paramètres du procédé de gravure. On peut par exemple faire varier simultanément le flux du gaz réactif et la durée d'une étape de gravure. En effet, en augmentant le flux de gaz actif, on accélère la gravure. Toutefois, on augmente ainsi aussi la densité des molécules de gaz réactif, ce qui rend la gravure plus isotrope, et rend donc les sillons plus profonds. Pour jouer sur la profondeur des sillons, le facteur flux de gaz est donc plus important que la durée de l'étape de gravure.To engrave deeper grooves while maintaining the same groove width, it is possible to adapt the parameters of the engraving process. It is for example possible to vary simultaneously the flow of the reactive gas and the duration of an etching step. Indeed, by increasing the flow of active gas, the etching is accelerated. However, this also increases the density of the reactive gas molecules, which makes the etching more isotropic, and therefore makes the grooves deeper. To play on the depth of the grooves, the gas flow factor is therefore greater than the duration of the etching step.

Lorsque le procédé a terminé la gravure d'un premier intervalle comme ci-dessus, l'étape suivante du procédé consiste à attaquer par gravure ionique réactive la surface exposée du substrat à travers les ajours du masque, de manière à creuser dans le substrat sur une profondeur égale à une deuxième distance différente de la première distance. Les paramètres de gravures sont choisis de manière à ce que, à la fin de l'étape, la gravure ionique ait creusé le substrat en silicium sur une profondeur égale à la deuxième distance prédéfinie (par exemple 8 microns en ce qui concerne l'exemple de la figure 2A). L'étape suivante du procédé consiste à déposer une couche de passivation chimiquement inerte sur les surfaces exposées par la gravure durant l'étape précédente.When the process has finished etching a first interval as above, the next step in the process is to etch the exposed surface of the substrate by reactive ion etching through the openings in the mask, so as to dig into the substrate on a depth equal to a second distance different from the first distance. The etching parameters are chosen so that, at the end of the step, the ion etching has dug the substrate in silicon over a depth equal to the second predefined distance (for example 8 microns with regard to the example of the figure 2A ). The next step in the process consists in depositing a chemically inert passivation layer on the surfaces exposed by the etching during the previous step.

La séquence de procédé comprenant l'étape de gravure et l'étape de passivation qui viennent d'être décrites est ensuite répétée. Cette deuxième séquence itérative est exécutée consécutivement un deuxième nombre (m) prédéterminé de fois, ou de manière équivalente, la deuxième séquence itérative est effectuée autant de fois qu'il y a de sillons dans un deuxième intervalle (autrement dit, 1 fois dans chacun des exemples illustrés par les figures 2A, 2B, 2C et 3). Lorsque le procédé a terminé la gravure d'un deuxième intervalle comme ci-dessus, le déroulement du procédé retourne au début de la première séquence itérative de manière à commencer à graver un nouveau premier intervalle.The process sequence comprising the etching step and the passivation step which have just been described is then repeated. This second iterative sequence is performed consecutively a second predetermined number (m) of times, or equivalently, the second iterative sequence is performed as many times as there are grooves in a second interval (in other words, 1 time in each examples illustrated by Figures 2A, 2B, 2C and 3 ). When the method has finished etching a second interval as above, the flow of the method returns to the start of the first iterative sequence so as to begin etching a new first interval.

La séquence de procédé consistant à graver d'abord un premier intervalle et ensuite un deuxième intervalle peut elle-même être répétée. Cette troisième séquence itérative est exécutée un troisième nombre (v) déterminé de fois, ou de manière équivalente, la troisième séquence itérative est effectuée une fois pour chaque deuxième intervalle que présente la surface côtelée du bord découpé de la pièce.The process sequence of first etching a first interval and then a second interval can itself be repeated. This third iterative sequence is performed a third determined number (v) of times, or equivalently, the third iterative sequence is performed once for every second interval that the ribbed surface of the cut edge of the part has.

La pièce de micromécanique horlogère est ensuite débarrassée de son masque avant d'être, de préférence, recouverte d'une couche d'oxyde de silicium avant qu'elle ne soit finalement libérée du substrat.The watchmaking micromechanical part is then stripped of its mask before being preferably covered with a layer of silicon oxide before it is finally released from the substrate.

La figure 4 est un double graphique montrant l'évolution du flux du gaz réactif et du flux du gaz de passivation durant six étapes consécutives d'une mise en œuvre particulière du procédé de l'invention utilisé pour réaliser les pièces de micromécanique horlogère qui font l'objet des figures 2A, 2B, 2C et 3. Le mode de mise en œuvre de la figure 4 permet plus spécifiquement de réaliser la pièce de micromécanique de l'exemple de la figure 2A. Le graphique montre une première séquence itérative comprenant une étape de gravure G1 suivie d'une étape de passivation P1. Durant l'étape de gravure, le flux de SF6 est de 400 sccm pendant 5 secondes. Durant l'étape de passivation, le flux de C4F8 est de 200 sccm pendant 2 secondes. Comme on peut le voir, la première séquence itérative est ensuite répétée une fois de manière à achever un premier intervalle formé de deux sillons. Une fois achevé le premier intervalle, le procédé passe à une deuxième séquence constituée par une étape de gravure G2 suivie d'une étape de passivation P2. Durant l'étape de gravure G2, le flux de SF6 est de 400 sccm pendant 35 secondes. Durant l'étape de passivation P2, le flux de C4F8 est de 200 sccm pendant 15 secondes.The figure 4 is a double graph showing the evolution of the flow of the reactive gas and of the flow of the passivation gas during six consecutive steps of a particular implementation of the method of the invention used to produce the watch micromechanical parts which are the subject from Figures 2A, 2B, 2C and 3 . The way of implementing the figure 4 allows more specifically to produce the micromechanical part of the example of the figure 2A . The graph shows a first iterative sequence comprising a G1 etching step followed by a passivation P1. During the etching step, the flow of SF6 is 400 sccm for 5 seconds. During the passivation step, the flux of C4F8 is 200 sccm for 2 seconds. As can be seen, the first iterative sequence is then repeated once so as to complete a first interval formed by two grooves. Once the first interval has been completed, the method passes to a second sequence consisting of an etching step G2 followed by a passivation step P2. During the etching step G2, the flow of SF6 is 400 sccm for 35 seconds. During the P2 passivation step, the flux of C4F8 is 200 sccm for 15 seconds.

On a vu que, conformément à l'invention, la surface des bords découpés de la pièce de micromécanique horlogère est côtelée et comprend une alternance de côtes et de sillons rectilignes. Conformément aux deux modes de réalisation décrits jusqu'ici, ces côtes et ces sillons étaient horizontaux, ou autrement dit, contenus chacun dans un plan parallèle à la plaque. La vue partielle schématique en plan de la figure 5 illustre un troisième mode exemplaire de réalisation de l'invention, la pièce de micromécanique étant constituée par une roue d'échappement. Conformément à ce mode de réalisation, les côtes et les sillons sont orientés perpendiculairement au plan principal de la roue d'échappement. La vue partielle de la figure 5 ne montre qu'une seule des dents (référencée 200) de la roue d'échappement. Comme le montre la figure, le plan d'impulsion de la dent 200 présente une alternance de côtes 221 et de sillons 223 qui sont rectilignes et verticaux. On peut observer que les côtes 221 et les sillons 223 forment un motif échelonné, avec des premiers intervalles 225 dans lesquels les sillons 223 sont étroits, et des deuxièmes intervalles 227 dans lequel les sillons sont larges. De plus, les côtes 221 et les sillons 223 présentent un motif qui se répète de manière périodique sur toute la largeur du plan d'impulsion de la dent 200.We have seen that, in accordance with the invention, the surface of the cut edges of the watch micromechanical part is ribbed and comprises alternating ribs and rectilinear grooves. In accordance with the two embodiments described so far, these ribs and these grooves were horizontal, or in other words, each contained in a plane parallel to the plate. The schematic partial plan view of the figure 5 illustrates a third exemplary embodiment of the invention, the micromechanical part being constituted by an escape wheel. In accordance with this embodiment, the ribs and the grooves are oriented perpendicular to the main plane of the escape wheel. The partial view of the figure 5 only shows one of the teeth (reference 200) of the escape wheel. As shown in the figure, the impulse plane of tooth 200 has alternating ridges 221 and grooves 223 which are straight and vertical. It can be seen that the ribs 221 and furrows 223 form a staggered pattern, with first intervals 225 in which the furrows 223 are narrow, and second intervals 227 in which the furrows are wide. Additionally, ribs 221 and grooves 223 exhibit a pattern that repeats periodically across the width of the pulse plane of tooth 200.

Pour réaliser un lot de pièces de micromécanique horlogère qui sont conformes à l'invention et qui comportent des surfaces texturées verticalement, on peut avoir recours à un procédé de fabrication d'une pièce de micromécanique en silicium mono- ou poly-cristallin comportant les étapes suivantes :

  1. a) se munir d'un substrat en silicium ;
  2. b) déposer et structurer un masque de gravure ajouré sur une surface horizontale du substrat ;
  3. c) attaquer par gravure ionique réactive la surface du substrat à travers les ajours du masque, de manière à creuser dans le substrat jusqu'à atteindre une première distance ;
  4. d) déposer un couche de passivation chimiquement inerte sur les surfaces exposées par la gravure durant l'étape précédente ;
  5. e) répéter l'exécution d'une séquence d'étapes comprenant l'étape (c) suivie de l'étape (d) jusqu'à ce que la séquence ait été effectuée un nombre déterminé de fois, ou que la gravure ionique réactive ait creusé à travers toute l'épaisseur du substrat ;
  6. f) libérer la pièce de micromécanique du masque et du substrat ; caractérisé en ce que, durant l'étape (b), on structure le masque de gravure de manière à ce que les bords des ouvertures du masque ajouré ne soient pas lisses, mais présentent au contraire un profil festonné constitué d'une alternance de proéminences et de creux qui forment un motif échelonné avec une pluralité de premiers intervalles dans lesquels l'espacement séparant les proéminences les unes des autres est égal à une première distance, et des deuxièmes intervalles dans lequel l'espacement entre les proéminences est égal à une deuxième distance différente de la première distance, la première distance étant comprise entre 200 nm et 5 µm, et de préférence comprise entre 200 nm et 2 µm.
To produce a batch of watchmaking micromechanical parts which are in accordance with the invention and which comprise vertically textured surfaces, can use a process for manufacturing a micromechanical part in mono- or poly-crystalline silicon comprising the following steps:
  1. a) obtain a silicon substrate;
  2. b) depositing and structuring an openwork etching mask on a horizontal surface of the substrate;
  3. c) etching by reactive ion etching the surface of the substrate through the apertures of the mask, so as to dig into the substrate until a first distance is reached;
  4. d) depositing a chemically inert passivation layer on the surfaces exposed by the etching during the previous step;
  5. e) repeating the execution of a sequence of steps comprising step (c) followed by step (d) until the sequence has been carried out a determined number of times, or the ion etching reactivates dug through the entire thickness of the substrate;
  6. f) releasing the micromechanical part from the mask and from the substrate; characterized in that, during step (b), the etching mask is structured so that the edges of the openings of the perforated mask are not smooth, but on the contrary have a scalloped profile consisting of alternating prominences and depressions which form a stepped pattern with a plurality of first intervals in which the spacing separating the prominences from each other is equal to a first distance, and second intervals in which the spacing between the prominences is equal to a second distance different from the first distance, the first distance being between 200 nm and 5 μm, and preferably between 200 nm and 2 μm.

On comprendra en outre que diverses modifications et/ou améliorations évidentes pour un homme du métier peuvent être apportées aux modes de réalisation qui font l'objet de la présente description sans sortir du cadre de la présente invention définie par les revendications annexées. En particulier, bien que l'invention ait été décrite en relation avec une roue d'échappement et une ancre, il est clair que l'invention ne concerne pas uniquement les composants des échappements, mais qu'elle concerne de manière tout à fait générale l'ensemble des pièces de micromécanique horlogère.It will also be understood that various modifications and/or improvements obvious to a person skilled in the art can be made to the embodiments which are the subject of the present description without departing from the scope of the present invention defined by the appended claims. In particular, well that the invention has been described in relation to an escapement wheel and an pallet, it is clear that the invention does not relate only to the components of escapements, but that it relates quite generally to all of the watchmaking micromechanical parts.

Claims (15)

  1. Micro-mechanical timepiece part (1; 10; 20; 100; 200) cut out in a silicon substrate in the form of a plate and the cut edges of which comprise portions provided to serve as contact surfaces arranged to slide against corresponding contact zones of another micro-mechanical part in a timepiece, and wherein the cut edges have a ribbed surface comprising an alternation of ribs (21a; 21b; 21c; 121; 221) and furrows (23a; 23b; 23c; 123; 223), the ribs and the furrows being straight; characterised in that the ribs and the furrows form a staggered pattern, comprising a plurality of first intervals (25a; 25b; 25c; 125; 225) in which the spacing separating the ribs from each other is equal to a first distance, and at least one second interval (27a; 27b; 27c; 127; 227) in which the spacing between the ribs is equal to a second distance different from the first distance, the first distance being between 200 nm and 5 µm.
  2. Micro-mechanical timepiece part (1; 10; 20; 100; 200) as claimed in claim 1, characterised in that the first distance is between 200 nm and 2 µm.
  3. Micro-mechanical timepiece part (1; 10; 20; 100) as claimed in claim 1 or 2, characterised in that the ribs and the furrows are each contained within a plane parallel to the plate.
  4. Micro-mechanical timepiece part (200) as claimed in claim 1 or 2, characterised in that the ribs and the furrows are perpendicular to the main faces of the plate.
  5. Micro-mechanical timepiece part (1; 10; 20; 100; 200) as claimed in any one of the preceding claims, characterised in that the second distance is greater than the first distance.
  6. Micro-mechanical timepiece part (1; 10; 20; 100; 200) as claimed in any one of the preceding claims, characterised in that the furrows belonging to the first intervals (25a, 25b, 25c; 125; 225) are all of the same depth.
  7. Micro-mechanical timepiece part (1; 10; 20; 200) as claimed in claim 5 or as claimed in claims 5 and 6, characterised in that the staggered pattern comprises a plurality of second intervals (27a; 27b; 27c; 227), and in that the second distance is between 200 nm and 50 µm.
  8. Micro-mechanical timepiece part (1; 10; 20; 200) as claimed in claim 7, characterised in that the furrows belonging to the second intervals (27a; 27b; 27c; 227) are all of the same depth, and in that the second depth is between 10 nm and 10 µm.
  9. Micro-mechanical timepiece part (100) as claimed in claim 5 or as claimed in claims 5 and 6, characterised in that the staggered pattern comprises a single second interval (127) comprising a single furrow (123), and in that the second distance is between 200 nm and 2/3 of the total height of the part.
  10. Micro-mechanical timepiece part (100) as claimed in claim 9, characterised in that the depth of the single furrow (123) of the second interval (127) is between 10 nm and 50 µm.
  11. Micro-mechanical timepiece part (1; 10; 20; 100) as claimed in claims 3 and 6, characterised in that the first depth is between 10 nm and 2 µm.
  12. Micro-mechanical timepiece part (200) as claimed in claims 4 and 6, characterised in that the first depth is between 500 nm and 4 µm.
  13. Method of manufacturing a micro-mechanical part of monocrystalline or polycrystalline silicon and which is as claimed in claims 1 and 3, the method comprising the following steps:
    a) obtaining a silicon substrate;
    b) depositing and structuring an openwork etching resist on a horizontal surface of the substrate;
    c) etching by reactive-ion etching the surface of the substrate through the openings in the resist so as to hollow out the substrate down to a first distance;
    d) depositing a chemically inert passivation layer on the surfaces exposed by the etching during the preceding step;
    e) repeating the execution of a first sequence of steps comprising step (c) followed by step (d) until the first sequence has been effected a predetermined first number (n) of times, in as far as the reactive-ion etching has not hollowed through the entire thickness of the substrate;
    f) releasing the micro-mechanical part from the resist and from the substrate;
    characterised in that between step e) and step f), the method comprises a second sequence of steps to be effected only if step e) has not yet been effected a specific third number (v) of times during the execution of the method, the second sequence comprising the following steps:
    x) etching by reactive-ion etching the surface of the substrate through the openings in the resist so as to hollow out the substrate down to a second distance different from the first distance;
    y) depositing a chemically inert passivation layer on the surfaces exposed by the etching during the preceding step;
    z) repeating the execution of a second sequence of steps comprising step x) followed by step y) until the second sequence has been effected a predetermined second number (m) of times; then returning to step c).
  14. Method of manufacturing a micro-mechanical part of monocrystalline or polycrystalline silicon and which is as claimed in claims 1 and 4, the method comprising the following steps:
    a) obtaining a silicon substrate;
    b) depositing and structuring an openwork etching resist on a horizontal surface of the substrate;
    c) etching by reactive-ion etching the surface of the substrate through the openings in the resist so as to hollow out the substrate down to a first distance;
    d) depositing a chemically inert passivation layer on the surfaces exposed by the etching during the preceding step;
    e) repeating the execution of a sequence of steps comprising step (c) followed by step (d) until the sequence has been effected a specific number of times or the reactive-ion etching has hollowed through the entire thickness of the substrate;
    f) releasing the micro-mechanical part from the resist and from the substrate;
    characterised in that, during step (b), the etching resist is structured so that the edges of the openings in the openwork resist are not smooth but, on the contrary, have a scalloped profile formed by an alternation of projections and hollows which form a staggered pattern with a plurality of first intervals in which the spacing separating the projections from each other is equal to a first distance, and at least one second interval in which the spacing between the projections is equal to a second distance different from the first distance, the first distance being between 500 nm and 4 µm.
  15. Method of manufacturing a micro-mechanical part as claimed in claim 14, characterised in that the first distance is between 200 nm and 2 µm.
EP19707492.5A 2018-02-07 2019-02-04 Micromechanical part of timepiece Active EP3750010B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18155609 2018-02-07
PCT/IB2019/050875 WO2019155347A1 (en) 2018-02-07 2019-02-04 Micromechanical clockwork part

Publications (2)

Publication Number Publication Date
EP3750010A1 EP3750010A1 (en) 2020-12-16
EP3750010B1 true EP3750010B1 (en) 2022-01-19

Family

ID=61187217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19707492.5A Active EP3750010B1 (en) 2018-02-07 2019-02-04 Micromechanical part of timepiece

Country Status (5)

Country Link
US (1) US11829107B2 (en)
EP (1) EP3750010B1 (en)
JP (1) JP7204761B2 (en)
CN (1) CN111684364B (en)
WO (1) WO2019155347A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2484628A1 (en) * 2011-02-03 2012-08-08 Nivarox-FAR S.A. Micromechanical item having low surface roughness
CH710846A2 (en) * 2015-03-13 2016-09-15 Swatch Group Res & Dev Ltd Micromechanical part with a micro-structured tribological reservoir for a lubricating substance.
EP3141520A1 (en) * 2015-09-08 2017-03-15 Nivarox-FAR S.A. Method for manufacturing a micromechanical timepiece part and said micromechanical timepiece part

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241045C1 (en) 1992-12-05 1994-05-26 Bosch Gmbh Robert Process for anisotropic etching of silicon
FR2731715B1 (en) 1995-03-17 1997-05-16 Suisse Electronique Microtech MICRO-MECHANICAL PART AND METHOD FOR PRODUCING THE SAME
JP4530262B2 (en) * 2004-03-31 2010-08-25 セイコーインスツル株式会社 Manufacturing method of electroformed parts using low melting point metal
JP5389455B2 (en) * 2008-02-21 2014-01-15 セイコーインスツル株式会社 Sliding parts and watches
CH699109A1 (en) * 2008-07-10 2010-01-15 Swatch Group Res & Dev Ltd Mechanical piece i.e. escape wheel, fabricating method for timepiece, involves depositing coating on exterior surface of mechanical piece for providing high tribological quality of piece, and releasing piece from substrate
WO2010133607A2 (en) * 2009-05-18 2010-11-25 The Swatch Group Research And Development Ltd Method for coating micromechanical parts with high tribological performances for application in mechanical systems
JP5596991B2 (en) * 2010-02-02 2014-10-01 セイコーインスツル株式会社 Machine part, method for manufacturing machine part and watch
DE102014102081A1 (en) * 2014-02-19 2015-08-20 Damasko Gmbh Micromechanical component and method for producing a micromechanical component
EP3109200B1 (en) 2015-06-25 2023-06-28 Nivarox-FAR S.A. Micromechanical part with reduced contact surface and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2484628A1 (en) * 2011-02-03 2012-08-08 Nivarox-FAR S.A. Micromechanical item having low surface roughness
CH710846A2 (en) * 2015-03-13 2016-09-15 Swatch Group Res & Dev Ltd Micromechanical part with a micro-structured tribological reservoir for a lubricating substance.
EP3141520A1 (en) * 2015-09-08 2017-03-15 Nivarox-FAR S.A. Method for manufacturing a micromechanical timepiece part and said micromechanical timepiece part

Also Published As

Publication number Publication date
CN111684364A (en) 2020-09-18
EP3750010A1 (en) 2020-12-16
CN111684364B (en) 2021-10-19
JP7204761B2 (en) 2023-01-16
US20210034015A1 (en) 2021-02-04
US11829107B2 (en) 2023-11-28
WO2019155347A1 (en) 2019-08-15
JP2021513069A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
EP3083487B1 (en) Method for manufacturing a timepiece component
EP2132770B1 (en) Method of depositing localized coatings
EP3109199A1 (en) Silicon-based part with at least one chamfer and method for manufacturing same
WO2003060975A1 (en) Method and device for anisotropic etching of high aspect ratio
WO2013057152A1 (en) Method for producing a refractive or diffractive optical device
EP3750010B1 (en) Micromechanical part of timepiece
EP0273792B1 (en) Process for making spaced elements
CH714630A2 (en) Silicon micromechanical watch part and methods of manufacture.
EP2840059A1 (en) Manufacturing process for a micro-mechanical component and component manufactured with this process
EP3168697A1 (en) Method for manufacturing a silicon-based part with at least one optical illusion pattern
EP2881808B1 (en) Method for manufacturing a clock component
EP3252830B1 (en) Method for forming patterns by ions implantations
EP3172357B1 (en) Method for removing a metal deposit placed on a surface in a chamber
EP3742237B1 (en) Component, in particular for a timepiece, with a surface topology and manufacturing method thereof
CH711248A2 (en) A silicon-based part with at least one chamfer and its method of manufacture.
EP4052098B1 (en) Method for manufacturing a silicon clock component
CH716211A2 (en) Particularly horological component with a surface topology and its manufacturing process.
CH715191A2 (en) Method of decorating a covering component in watchmaking.
EP4383011A1 (en) Micromechanical timepiece part and method for manufacturing same
CH711740A2 (en) A method of manufacturing a silicon-based part with at least one optical illusion pattern.
EP4299506A1 (en) Method of making concave microcavity
EP3822709A1 (en) Method for manufacturing a timepiece component
CH713854A2 (en) Method of manufacturing a micromechanical part
WO2002091556A1 (en) Electrostatic actuator

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602019011044

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G04D0003000000

Ipc: G04B0031080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 15/14 20060101ALI20210809BHEP

Ipc: G04D 3/00 20060101ALI20210809BHEP

Ipc: G04B 31/08 20060101AFI20210809BHEP

INTG Intention to grant announced

Effective date: 20210906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019011044

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1464148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220119

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1464148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220519

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019011044

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220204

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

26N No opposition filed

Effective date: 20221020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220204

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231214

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231212

Year of fee payment: 6

Ref country code: CH

Payment date: 20240301

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119