EP3742702B1 - Procédé de planification de radiothérapie en nuage standardisée et support de stockage - Google Patents

Procédé de planification de radiothérapie en nuage standardisée et support de stockage Download PDF

Info

Publication number
EP3742702B1
EP3742702B1 EP18900998.8A EP18900998A EP3742702B1 EP 3742702 B1 EP3742702 B1 EP 3742702B1 EP 18900998 A EP18900998 A EP 18900998A EP 3742702 B1 EP3742702 B1 EP 3742702B1
Authority
EP
European Patent Office
Prior art keywords
radiotherapy
plan
standard
specific
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18900998.8A
Other languages
German (de)
English (en)
Other versions
EP3742702A4 (fr
EP3742702A1 (fr
Inventor
Gui LI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Linking Medical Technology Co Ltd
Original Assignee
Beijing Linking Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Linking Medical Technology Co Ltd filed Critical Beijing Linking Medical Technology Co Ltd
Publication of EP3742702A1 publication Critical patent/EP3742702A1/fr
Publication of EP3742702A4 publication Critical patent/EP3742702A4/fr
Application granted granted Critical
Publication of EP3742702B1 publication Critical patent/EP3742702B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/20ICT specially adapted for the handling or processing of medical references relating to practices or guidelines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • A61N2005/1032Genetic optimization methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • A61N2005/1034Monte Carlo type methods; particle tracking

Definitions

  • the invention pertains to the technical field of radiotherapy and cloud computing, relating to a standardized cloud radiotherapy planning method and storage medium.
  • the brand effect of the top three hospitals has attracted a large number of patients to flock to the top three hospitals for treatment, especially the large top three hospitals are overcrowded, and the bed utilization rate has been saturated for a long time.
  • the bed utilization rate of primary-level medical institutions is only about 60%, and some medical resources are wasted, and the expected benefits have not been exerted.
  • a large number of patients are concentrated in tertiary hospitals for diagnosis and treatment, which will inevitably cause overburden of medical staff and tight radiotherapy equipment and treatment beds, which cannot meet the needs of all patients.
  • the excessive concentration of high-quality medical resources in tertiary hospitals has also led to a decline in medical service coverage and remote It is difficult for people in the area to get medical treatment from experienced experts nearby.
  • a patient has a treatment plan determined by an experienced doctor or physicist in a superior hospital, and then returns to the primary hospital for radiation treatment, not only the quality of diagnosis and treatment is guaranteed, but also there is no need to wait in line or wait long for beds and radiotherapy equipment.
  • the types of radiotherapy equipment in some hospitals are different, and may include several brands of radiotherapy equipment of multiple models. If a radiotherapy plan is prepared based on a radiotherapy equipment in advance and the equipment fails unexpectedly without the same model When replacing equipment, it will inevitably cause the shelving of previously prepared radiotherapy plans to delay the treatment time of the patient; or the radiotherapy equipment of the currently established radiotherapy plan has been occupied and needs to be queued for a long time, while other radiotherapy equipment is idle or waiting in line Shorter.
  • Document WO 2017/133654 discloses a cloud-based radiotherapy planning method wherein a standard radiotherapy plan,is converted into a specific radiotherapy plan that matches specific radiotherapy equipment.
  • the purpose of the present invention is to provide a standardized cloud radiotherapy planning method, storage medium and system in order to overcome the above shortcomings of the prior art.
  • a standardized cloud radiotherapy planning method suitable for execution in a standardized cloud radiotherapy planning system comprises the following steps:(1) patient data is uploaded to a master cloud server, wherein the patient data comprises a patient image and medical order data;(2) a target area is delineated on the basis of the patient image;(3) the master cloud server decomposes a computation task and assigns it to a controlled computer, and the controlled computer uses a standard radiotherapy equipment mode to compute a radiotherapy plan for a patient to generate a standard radiotherapy plan, which is based on an established model; and(4) according to the standard radiotherapy plan, the master cloud server or the controlled computer conducts conversion to generate a specific radiotherapy plan that matches specific radiotherapy equipment,wherein generating the specific radiotherapy plan comprises introducing the standard radiotherapy plan, and using a dose-volume histogram and isodose line in the standard radiotherapy plan as constraint conditions for optimization of the specific radiotherapy plan, and recomputing a final specific radiotherapy plan based on field parameters of the standard radiotherapy plan,wherein the
  • the patient image includes one or a combination of a CT image, a MRI image, and a PET image.
  • the medical order data include one or a combination of target radiotherapy dose, DVH curve, and radiotherapy dose constraint value of each organ.
  • the delineation is automatic delineation, semi-automatic delineation, or manual delineation.
  • a step (5) of quality assurance (QA) is further included, before treatment of the patient, whether the converted specific radiotherapy plan is correct is verified by the QA; if correct, executing the specific radiotherapy plan; if not, returning to the step (4) to regenerate a new specific radiotherapy plan according to the standard radiotherapy plan.
  • QA quality assurance
  • the method further includes a step of selecting a radiotherapy equipment for conversion according to the congestion situation of the radiotherapy equipment: preferentially converting the standard radiotherapy plan to a radiotherapy equipment currently idle or to a radiotherapy equipment with few task to be performed or to a radiotherapy equipment user-defined for conversion.
  • a process queue conversion or a user-defined priority of a computation task is performed according to available computing resources.
  • the method further includes the following step: comparing parameter coincidence between the standard radiotherapy equipment and the specific radiotherapy equipment to be matched, wherein if the parameter coincidence meets requirement of a predetermined threshold, the standard radiotherapy plan is directly used as the final radiotherapy plan, and if not, proceed to the step (4).
  • Parameters to be compared between the standard radiotherapy equipment and the specific radiotherapy equipment to be matched include a source parameter and a multi-leaf collimator parameter.
  • the source parameter is obtained by comparing dose measurement characteristic data of the source in a uniform or non-uniform medium; the dose measurement characteristic data is obtained by a three-dimensional dose curve.
  • the multi-leaf collimator parameter includes leaf size and pair number, maximum open field size, and whether to allow interleaving.
  • the conversion is set to generate one or more specific radiotherapy plans that respectively match one or more specific radiotherapy equipment.
  • the present invention also provides a computer-readable storage medium storing one or more programs, the one or more programs including instructions, the instructions being adapted to be loaded from a memory and execute the above-mentioned standardized cloud radiotherapy planning method.
  • the present invention provides a standardized cloud radiotherapy planning method, which converts a standard radiotherapy plan into a specific radiotherapy plan through information such as patient data and a patient image, thereby avoiding delay of treatment of patients and idle resources for treatment in the case where a certain type of machine in the hospital fails while other machines are available.
  • TPS automatic delineation and formulation of automatic radiotherapy plan
  • the computation task of the radiotherapy plan is assigned to the controlled computer through the master cloud server, which makes it possible to apply the "gold standard" for clinical radiotherapy dose computation, i.e., the dose computation simulated based on Monte Carlo particle transport, to clinical use.
  • the dose-volume histogram (DVH) and/or isodose line in the standard radiotherapy plan are close to the real situation. Therefore, taking the DVH curve and/or isodose line in the standard radiotherapy plan as input values for dose optimization in subsequent specific radiotherapy plans can greatly reduce the generation time of subsequent specific radiotherapy plans.
  • a standardized cloud radiotherapy planning method and system are herein described, by which method a standard radiotherapy plan is converted into a specific radiotherapy plan in a cloud radiotherapy planning system through information such as patient data and a patient image.
  • FIG. 1 is a schematic structural diagram of a cloud radiotherapy planning system according to an embodiment of the present invention.
  • the cloud radiotherapy planning system includes a master cloud server, a network communication module, a client, and a controlled computer, wherein the master cloud server, the controlled computer, and the client are communicatively connected through the network communication module; preferably, a data communication channel is established between the master cloud server, the controlled computer and the client through the DICOM (Digital Imaging and Communications in Medicine) protocol.
  • DICOM Digital Imaging and Communications in Medicine
  • the master cloud server is used to define the computation phantom, delineate a target area and define computation parameters, decompose the computation task into subtasks, optimize the assignment and schedule of tasks, and monitor the execution of the controlled computer;
  • the controlled computer is used to receive the operation instructions sent by the master cloud server, determine task execution, perform computation tasks, and feed computation progress and computation results back, wherein the computation results include specific radiotherapy plans, computation progress, etc.;
  • the client is used to upload patient images, patient data or clinical doses to the master cloud server and check the results of the radiotherapy plan.
  • the master cloud server defines computation parameters, optimizes assignment and schedule of tasks, and monitors execution of the controlled computer, wherein said optimizing assignment and schedule of tasks is determined by establishing an optimization model, which includes optimization goals and constraint conditions; optionally, the optimization goals include minimum completion time, maximum number of tasks completed, minimum cost, or one or more combinations thereof according to such weights as task priority level, urgency level, etc.
  • Constraint conditions include determining the number of current tasks, distribution of available network, distribution of available controlled computers or distribution of task completion rates of the controlled computers; wherein said optimizing assignment and schedule of tasks includes the following steps:
  • the master cloud server defines a computation phantom, delineates a target area, and defines computation parameters; the master cloud server decomposes, allocates, and schedules computation tasks according to the current user's computation requirements, wherein the assignment and schedule of the computation tasks include one or more of sending a computation task to the controlled computer, closing a computation task, transferring a computation task, switching on and off management, task priority management, or task security management.
  • the master cloud server monitors the controlled computers, and when any one of the controlled computers is found to be out of contact, the task of the controlled computer is reassigned to another controlled computer.
  • the monitoring method includes actively sending or passively receiving heartbeat packets, actively requesting or passively receiving computation progress, actively requesting or passively receiving computation result related information.
  • the cloud radiotherapy planning system of this embodiment includes several controlled computers. After receipt of the task assigned by the master cloud server, the controlled computer firstly determine whether the task is performable. If it is determined that the assigned task cannot be completed, the controlled computer feeds the current task status back to the master cloud server and requests the master cloud server to schedule the assigned task to another controlled computer; if it is determined that the assigned task is performable, the controlled computer continues the steps of performing computation tasks (including subtasks, etc.), and feeding the computation progress and computation results back.
  • the computation tasks performed by the controlled computer for formulating a radiotherapy plan include dose computation and/or dose optimization; the controlled computer performing the computation tasks includes decomposition of the tasks into subtasks and execution of the subtasks; optionally, the controlled computer decomposes the tasks into one or more of the following subtasks: GPU parallel tasks, CPU parallel tasks, or CPU-GPU hybrid parallel tasks.
  • the cloud radiotherapy planning system provided by the present invention can be accessed by multiple users at the same time.
  • users such as doctors, physicists or technicians, etc.
  • access the master cloud server through the client to define the computing phantom, delineate the target area and define the computation parameters, and check through the client the conversion progress and the specific radiotherapy plan results obtained by the conversion.
  • the user may also select and set the model of the specific radiotherapy equipment to be converted and the like through the client.
  • FIG. 2 is a flowchart of a standardized cloud radiotherapy planning method in an exemplary embodiment of the present invention.
  • a standardized cloud radiotherapy planning method suitable for execution in a standardized cloud radiotherapy planning system includes the following steps:
  • the method of target area delineation is automatic delineation, semi-automatic delineation, or manual delineation, wherein the automatic delineation of target areas pertains to the prior art.
  • the patent with a publication number CN103247046B and a title of "A method and device for automatically delineating target areas in a radiotherapy plan", in which, with a physicist's manual delineation of a certain target area as prior knowledge, automatic spread of the contour is achieved using circular two-dimensional tomographic registration; or refer to "Automatic delineation evaluation of nasopharyngeal carcinoma target area" (" Sichuan Medical" June 2015 Vol. 36 (No.
  • Step 230 the master cloud server decomposes the computation task and assigns it to the controlled computer, and the controlled computer computes the patient's radiotherapy plan using a standard radiotherapy equipment mode to generate a standard radiotherapy plan;
  • the standard radiotherapy equipment is user-defined radiotherapy equipment or an established model selected as the standard radiotherapy equipment. It is further preferred that the radiotherapy equipment of the model with the largest number is used as the standard radiotherapy equipment, thereby reducing probability of a standard radiotherapy plan being converted into a specific radiotherapy plan and therefore further reducing the amount of computation.
  • the radiotherapy plan obtained based on computation of the standard radiotherapy equipment in the present invention is a standard radiotherapy plan.
  • the equipment parameters that need to be defined for the above-mentioned user-defined radiotherapy equipment include a source parameter, a multi-leaf collimator parameter, a tungsten gate parameter, and the like.
  • the source parameter includes position of the radioactive source, energy spectrum, direction of movement, type of particles, whether to use a flattening filter, etc.; the said flattening filter is used to reduce intensity in the middle of rays, so as to level the rays.
  • the flattening filter There would be a 3F mode if the flattening filter is not used, where the intensity around the middle of the beam is large, presenting Gaussian distribution; if the flattening filter is used, there would be a 2F mode, where the intensity around the center of the beam is flat and uniform; the multi-leaf collimator parameter includes blade size and pair number, maximum open field size, and whether to allow staggering, etc.; the tungsten gate parameter includes maximum open field size of the tungsten gate.
  • the computation task in this step is to generate a standard radiotherapy plan.
  • Process of generating the standard radiotherapy plan includes dose computation and/or dose optimization.
  • dose computation parameters of the standard radiotherapy plan include a geometric phantom (determined by a target area image, where the image can be selected from one or a combination of a CT image, an MRI image, a PET image, etc.), medical order data, radiography field size, irradiation direction, source parameter, total number of tracking particles, electron cut-off energy, photon cut-off energy, bremsstrahlung segmentation, range exclusion, and electron segmentation, where the source parameter includes location of the radioactive source, energy spectrum, direction of movement, type of particles, whether to use a flattening filter, etc.
  • existing radiation dose computation models include: a Monte Carlo computation model, an Acuros XB dose computation model (used by a Varian system), and a convolutional superposition dose computation model.
  • the convolutional superposition dose computation model further includes Collapse Cone Convolution algorithms (CCC, such computation models is applied in, for example, Pinnacle, CMS, XiO, etc.), and Analytical Anisotropic Algorithm (AAA), and Pencil Beam Model (PBM).
  • CCC Collapse Cone Convolution algorithms
  • AAAA Analytical Anisotropic Algorithm
  • PBM Pencil Beam Model
  • generating a standard radiotherapy plan is a computation task, and there are following optional method for decomposing a computation task into subtasks:
  • Method I Splitting a computation task into several subtasks by using a flux map. Specifically, an arbitrary cross section of a beam in an incident direction is divided into a two-dimensional flux grid, and a region of interest in a patient image is divided into a three-dimensional voxel grid. Then, the i th two-dimensional flux grid contributes to the j th voxel with a dose D ij ; computation task of each dose D ij is a subtask.
  • each subtask is assigned as a GPU parallel task, a CPU parallel task, or a CPU-GPU hybrid parallel task.
  • the mode in which the master cloud server allocates computation tasks to the controlled computer includes a single plan mode and a multi-plan mode.
  • the single plan mode is an execution mode of a single radiotherapy plan in the cloud radiotherapy planning system;
  • the multi-plan mode is a number of (equal to or more than 2) radiotherapy plans to be executed at the same time, which radiotherapy plans can be from different patients or can be multiple radiotherapy plans for the same patient.
  • the method of allocating the radiotherapy plan computation task in the single plan mode can be implemented by the following steps:
  • Mode 2 Multi-plan Mode
  • the method of allocating the radiotherapy plan computation task in the multi-plan mode can be determined by the following steps:
  • the standard radiotherapy plan in this embodiment may be generated in the following two methods: Method I: Obtaining a standard radiotherapy plan by flux map optimization (FMO): Fig. 5 is a schematic diagram of dose computation based on Monte Carlo-based grid parallel dose computation principle in an exemplary embodiment of the present invention.
  • Method I Obtaining a standard radiotherapy plan by flux map optimization (FMO):
  • Fig. 5 is a schematic diagram of dose computation based on Monte Carlo-based grid parallel dose computation principle in an exemplary embodiment of the present invention.
  • 3D images of patients or phantoms are divided into 3D grids based on patient images, where each 3D grid is a voxel, and a region of interest is selected from the 3D grids; preferably, a Monte Carlo computation region is determined based on the region of interest, that is, setting a grid within a valid electronic range around the region of an interest and a grid where the region of interest is located as the computation region or directly taking the region of interest as the computation region; any cross section in an incident direction is divided into 2D flux grids, where D ij is a dose contributed by the i th flux grid to the j th voxel; the weight corresponding to each 2D flux grid is ⁇ i ; Monte Carlo dose computation parameters and/or phantom parameters are input; radiation dose of particles in each voxel is computed based on the Monte Carlo particle transport principle and the computation results are normalized; and then the normalized computation results of all grid doses in the computation region are superposed to obtain a
  • the weight of each of the above 2D flux grids are optimized by an optimization target and further through the Flux Map Optimization; a final inverse dose optimization result is obtained.
  • Dose distribution in each voxel in the region of interest is obtained through computation, thereby determining an isodose line and a dose-volume histogram (DVH); the dose-volume histogram presents in a graph the relation between dose to which the target area lesion and other key organs are subject and volume, indicating how much dose is at least radiated to an organ of a certain volume.
  • dose-volume histogram dose of each voxel can be obtained through statistics, and then the voxels with the same dose are cumulated to obtain a volume value of the corresponding dose, thereby obtaining a dose-volume histogram of the lesion or organ.
  • a leaf sequence of each subfield of the field opening shape including MLC and tungsten gate positions is determined to obtain a standard radiotherapy plan.
  • Method II Automatically generate a standard radiotherapy plan according to a set model by a machine learning method; for the generation of the standard radiotherapy plan by a machine learning method, please refer to Dose Prediction with U -net: A Feasibility Study for Predicting Dose Distributions from Contours using Deep Learning on Prostate IMRT Patients [J] .2017, Dan N, Long T, Jia X, et a. According to the dose distribution information contained in the radiotherapy plan obtained through machine learning, dose volume histograms and isodose lines can be obtained for subsequent optimization to generate constraint conditions for specific radiotherapy plan steps.
  • Step 240 The master cloud server or the controlled computer conducts conversion according to the standard radiotherapy plant to generate a radiotherapy plan that matches the specific radiotherapy equipment.
  • the "matching" in the present invention is that the generated specific radiotherapy plan can be executed in the corresponding specific radiotherapy equipment.
  • This step particularly includes: introducing a standard radiotherapy plan, and using dose-volume histograms, isodose lines, and hardware parameters of equipment with a certain model as constraint conditions to recompute a final specific radiotherapy plan based on field parameters of the standard radiotherapy plan.
  • the conversion is set to generate one or more specific radiotherapy plan that respectively match one or more specific radiotherapy equipment. That is, when a standard radiotherapy plan is converted into a specific radiotherapy plan, a setting could be made so that the standard radiotherapy plan is converted into multiple specific radiotherapy plans (also known as redundant conversion) that match the specific radiotherapy equipment respectively or converted into a specific radiotherapy plan (also known as specific conversion).
  • a specific conversion mode can be used to complete the conversion from a standard radiotherapy plan to a specific radiotherapy plan as soon as possible.
  • the specific radiotherapy plan includes a dose volume histogram (DVH), an isodose line, an execution sequence, an opening shape of each subfield, and an execution time of each subfield, which match the specific radiotherapy equipment.
  • the above-mentioned hardware parameter constraint conditions include presence or absence of a tungsten gate, maximum opening size of the tungsten gate, and moving direction of a multi-leaf collimator, blade thickness, maximum opening position, number of blade pairs, leakage and transmission, etc.
  • the recomputing includes one or a combination of dose computation and/or inverse optimization; wherein, optionally, the inverse optimization includes using one or combination of a direct aperture optimization (DAO) method and a flux map optimization (FMO) method, etc.
  • DAO direct aperture optimization
  • FMO flux map optimization
  • the DVH curve and/or isodose line of the standard radiotherapy plan are/is used as constraint conditions for the optimization of the specific radiotherapy plan. Because the DVH curve and the isodose line of the standard radiotherapy plan are rather similar to or the same as the final DVH curve and isodose line of the specific radiotherapy plan, the speed of dose optimization in the specific radiotherapy plan can be accelerated.
  • the standard radiotherapy plan in this embodiment may be converted into a dynamic multi-leaf collimator (DMLC) radiotherapy plan, a static multi-leaf collimator (SMLC) radiotherapy plan, a volumetric-modulated arc therapy (VMAT) plan or a constant dose rate intensity modulated art therapy (IMAT) plan according to the model of the specific radiotherapy equipment to be converted.
  • DMLC dynamic multi-leaf collimator
  • SMLC static multi-leaf collimator
  • VMAT volumetric-modulated arc therapy
  • IMAT constant dose rate intensity modulated art therapy
  • a step 240' is further included to compare whether parameter coincidence between standard radiotherapy equipment and equipment to be matched is within a threshold range. If the parameter coincidence meets a preset threshold requirement, the standard radiotherapy plan is directly used as the final specific radiotherapy plan in the step 241', otherwise turned to step 240;
  • the equipment parameters to be compared include a source parameter, a multi-leaf collimator parameter, D ij value under the same conditions, whether the grating model matches, the maximum opening position of the tungsten gate, and the like.
  • the source parameter includes source energy spectrum, position, direction, particle type, whether to use a flattening filter, etc.
  • the multi-leaf collimator parameter includes leaf size and pair number, maximum open field size, whether to allow staggering, etc.
  • the coincidence of source parameters is obtained by comparing the characteristics data (three-dimensional dose curve) of dose measurement of the source in a uniform or non-uniform medium, specifically including the following steps:
  • a quality assurance (QA) step is further included after step (4), to enable a patient to verify by QA before treatment whether the converted plan is right or not.
  • FIG. 3 is a flowchart of a standardized cloud radiotherapy planning method in another preferred embodiment of the present invention, which is suitable for execution in a standardized cloud radiotherapy planning system, including the following steps:
  • the standardized cloud radiotherapy planning method shown in FIG. 3 is the same as the method shown in FIG. 2 except for the contents described above.
  • a flowchart of a standardized cloud radiotherapy planning method in the process of formulating a radiotherapy plan, further includes a step of selecting the model of radiotherapy equipment for conversion according to use status of the radiotherapy equipment, priorly selecting the equipment idle or having few tasks or making selection as defined by users.
  • the standardized cloud radiotherapy planning method of this embodiment specifically includes the following steps:
  • the standardized cloud radiotherapy planning method shown in FIG. 4 is the same as the method shown in FIG. 2 or FIG. 3 except for the content described above.
  • the present invention also provides a computer-readable storage medium storing one or more programs.
  • the one or more programs include instructions, which are adapted to be loaded from the memory and execute the above-mentioned standardized cloud radiotherapy planning method.
  • the method includes steps:
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device
  • the instruction device implements the functions specified in one or more processes of a flowchart and/or one or more blocks of a block diagram.
  • These computer program instructions may also be loaded on a computer or other programmable data processing device, so that a series of operation steps are performed on the computer or other programmable device to generate a computer-implemented process, and thus the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes of a flowchart and/or one or more blocks of a block diagram.
  • Computer-readable media include permanent and non-permanent, removable and non-removable media. Information storage can be accomplished by any method or technology. Information may be computer-readable instructions, data structures, modules of a program, or other data. Examples of computer storage media include, without limitation, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, read-only disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, magnetic tape cartridges, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media, which may be used to store information that can be accessed by computing devices. As defined herein, computer-readable media does not include temporary computer-readable media (transitory media), such as modulated data signals and carrier waves.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • a master cloud service assigning a computation task of a radiotherapy plan to a controlled computer makes it possible to apply the "gold standard" of radiotherapy dose computation, i.e., Monte Carlo particle transport simulation dose computation, which is difficult for clinical use, greatly saving the time of formulating a radiotherapy plan and waiting time of patients, and improving accuracy of dose computation of the radiotherapy plan.
  • the "gold standard" of radiotherapy dose computation i.e., Monte Carlo particle transport simulation dose computation

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Bioethics (AREA)
  • Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Radiation-Therapy Devices (AREA)

Claims (12)

  1. Procédé de planification de radiothérapie en nuage standardisée adapté à l'exécution dans un système de planification de radiothérapie en nuage standardisée, comprenant les étapes suivantes :
    (1) des données de patient sont téléchargées sur un serveur cloud maître, en ce que les données de patient comprennent une image de patient et des données d'ordre médical ;
    (2) une zone cible est délimitée sur la base de l'image de patient ;
    (3) le serveur cloud maître décompose une tâche de calcul et l'attribue à un ordinateur commandé, et l'ordinateur commandé utilise un mode d'équipement de radiothérapie standard pour calculer un plan de radiothérapie pour un patient en vue de générer un plan de radiothérapie standard qui est basé sur un modèle établi ; et
    (4) selon le plan de radiothérapie standard, le serveur cloud maître ou l'ordinateur commandé effectue une conversion pour générer un plan de radiothérapie spécifique qui correspond à un équipement de radiothérapie spécifique,
    le procédé étant caractérisé par les étapes suivantes
    la génération du plan de radiothérapie spécifique comprend l'introduction du plan de radiothérapie standard, et l'utilisation d'un histogramme dose-volume et d'une ligne d'isodose dans le plan de radiothérapie standard comme conditions de contrainte pour l'optimisation du plan de radiothérapie spécifique, et le recalcul d'un plan de radiothérapie spécifique final sur la base de paramètres de champ du plan de radiothérapie standard,
    en ce que le recalcul comprend un calcul ou une combinaison de calcul de dose ou d'optimisation inverse, en ce que l'optimisation inverse comprend l'utilisation d'un procédé ou d'une combinaison d'un procédé d'optimisation de sous-champ direct et un procédé d'optimisation de carte de flux.
  2. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 1, en ce que l'image de patient comprend une ou une combinaison d'images TDM, images IRM ou images TEP.
  3. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 1, en ce que les données d'ordre médical comprennent une ou une combinaison de dose de radiothérapie cible, de courbe DVH, et de valeur de contrainte de dose de radiothérapie de chaque organe.
  4. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 1, en ce que la délimitation est une délimitation automatique, une délimitation semi-automatique, ou une délimitation manuelle.
  5. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 1, en ce qu'une étape d'assurance qualité est également prévue après l'étape (4), vérifiant par le biais de l'étape d'assurance qualité avant traitement d'un patient si le plan converti est correct ou non ; s'il est correct, exécutant le plan de radiothérapie spécifique ; et s'il n'est pas correct, retournant à l'étape (4) pour régénérer un nouveau plan de radiothérapie spécifique conformément au plan de radiothérapie standard.
  6. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 1, en ce qu'entre l'étape (3) et l'étape (4), le procédé comprend en outre une étape de sélection d'un équipement de radiothérapie pour la conversion en fonction de la situation d'encombrement de l'équipement de radiothérapie, le plan de radiothérapie standard étant de préférence converti en un équipement de radiothérapie actuellement inactif ou en un équipement de radiothérapie ayant peu de tâches à effectuer ou en un équipement de radiothérapie dont la conversion est définie par l'utilisateur.
  7. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 1, en ce que, lorsque le plan de radiothérapie standard est généré ou avant que le plan de radiothérapie correspondant à l'équipement de radiothérapie spécifique ne soit généré par conversion, une conversion de file d'attente de processus est effectuée en fonction des ressources informatiques disponibles ou la priorité des tâches de calcul est définie par les utilisateurs eux-mêmes.
  8. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 1, en ce que ledit « en fonction du plan de radiothérapie standard, le serveur cloud maître ou l'ordinateur commandé effectue une conversion pour générer un plan de radiothérapie spécifique qui correspond à l'équipement de radiothérapie spécifique » comprend en outre l'étape suivante : comparaison de la coïncidence de paramètres entre l'équipement de radiothérapie standard et l'équipement de radiothérapie spécifique à adapter, et utilisation du plan de radiothérapie standard directement comme plan de radiothérapie final si la coïncidence de paramètres répond aux conditions requises d'un seuil prédéterminé, et si ce n'est pas le cas, passage à l'étape (4).
  9. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 8, en ce que des paramètres à comparer entre l'équipement de radiothérapie standard et l'équipement de radiothérapie spécifique à adapter comprennent un paramètre source et un paramètre de collimateur multilame.
  10. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 9, en ce que le paramètre source est obtenu par comparaison des données caractéristiques de mesure de dose dans un milieu uniforme ou non uniforme ; les données caractéristiques de mesure de dose sont obtenues par une courbe de dose tridimensionnelle ; le paramètre de collimateur multilame comprend la taille de lame et le nombre de paires, la taille maximale de champ ouvert, et l'autorisation ou non de l'échelonnement.
  11. Procédé de planification de radiothérapie en nuage standardisée selon la revendication 1, en ce que, à l'étape (4), lorsque le plan de planification standard est converti en plan de radiothérapie spécifique, la conversion est définie pour générer un ou plusieurs plans de radiothérapie spécifiques qui correspondent respectivement à un ou plusieurs équipements de radiothérapie spécifiques.
  12. Support de stockage lisible par ordinateur stockant un ou plusieurs programmes, le ou les programmes comprenant des instructions, les instructions étant adaptées pour être chargées à partir d'une mémoire et exécution du procédé de planification de radiothérapie en nuage standardisée selon l'une des revendications 1 à 11.
EP18900998.8A 2018-01-19 2018-08-08 Procédé de planification de radiothérapie en nuage standardisée et support de stockage Active EP3742702B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810054052.5A CN110060765B (zh) 2018-01-19 2018-01-19 一种标准化云放疗计划系统和存储介质
PCT/CN2018/099445 WO2019140886A1 (fr) 2018-01-19 2018-08-08 Procédé de planification de radiothérapie en nuage standardisée, support de stockage, et système

Publications (3)

Publication Number Publication Date
EP3742702A1 EP3742702A1 (fr) 2020-11-25
EP3742702A4 EP3742702A4 (fr) 2021-11-10
EP3742702B1 true EP3742702B1 (fr) 2024-02-21

Family

ID=67301976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18900998.8A Active EP3742702B1 (fr) 2018-01-19 2018-08-08 Procédé de planification de radiothérapie en nuage standardisée et support de stockage

Country Status (4)

Country Link
US (1) US20200203022A1 (fr)
EP (1) EP3742702B1 (fr)
CN (1) CN110060765B (fr)
WO (1) WO2019140886A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465004A (zh) * 2019-08-02 2019-11-19 北京全域医疗技术集团有限公司 一种云放射治疗计划系统及放射治疗计划的生成方法
CN110975172B (zh) * 2019-12-18 2022-05-31 上海联影医疗科技股份有限公司 一种通量图重建方法和系统
CN111388879B (zh) * 2020-03-19 2022-06-14 上海联影医疗科技股份有限公司 一种放射剂量确定系统、装置及存储介质
CN111437521B (zh) * 2020-04-23 2023-01-31 华东医院 一种非均匀容积弧形调强方法
CN112057753B (zh) * 2020-09-23 2022-08-16 上海联影医疗科技股份有限公司 一种放疗计划调整系统和装置
CN112336996A (zh) * 2020-09-30 2021-02-09 四川大学 基于深度神经网络的放疗靶区自动勾画系统
CN112837796A (zh) * 2021-02-09 2021-05-25 安徽医科大学第二附属医院 一种基于遗传算法的后疫情时期癌症患者放疗排程系统
CN114201459B (zh) * 2021-11-03 2024-06-25 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 一种改进的放疗结构标准化命名方法、装置及存储介质
CN115966281B (zh) * 2023-01-16 2024-02-09 迈胜医疗设备有限公司 一种弧形放疗计划的生成方法、装置、设备及存储介质

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408127C (zh) * 2002-08-09 2008-08-06 定锦霞 远程立体定向放射治疗系统
CN1438602A (zh) * 2003-03-17 2003-08-27 吴大可 处方剂量自动计算的放射治疗系统
US8467497B2 (en) * 2007-10-25 2013-06-18 Tomotherapy Incorporated System and method for motion adaptive optimization for radiation therapy delivery
RU2571374C2 (ru) * 2009-08-31 2015-12-20 Конинклейке Филипс Электроникс, Н.В. Интерактивный компьютеризованный редактор для компенсаторов, используемых в планировании лучевой терапии
US8477903B2 (en) * 2011-03-31 2013-07-02 Axellis Ventures Ltd Validating a compensator for use in a radiation therapy machine to treat a cancer patient
CN102306239B (zh) * 2011-07-22 2014-11-05 上海赛提菲克医疗器械有限公司 基于锥形束ct图像ct值校正技术的放疗剂量评估和优化方法
US9468776B2 (en) * 2012-06-01 2016-10-18 Raysearch Laboratories Ab Method and a system for optimizing a radiation treatment plan based on a reference dose distribution
CN103247046B (zh) 2013-04-19 2016-07-06 深圳先进技术研究院 一种放射治疗计划中靶区自动勾画的方法和装置
CN103279660A (zh) * 2013-05-23 2013-09-04 浙江大学 放化疗规范化云中心系统
WO2015090457A1 (fr) * 2013-12-20 2015-06-25 Raysearch Laboratories Ab Sélection de plans de traitement par radiothérapie
CN104548372B (zh) * 2015-01-07 2017-12-22 上海联影医疗科技有限公司 放射治疗的剂量确定装置
CN104519140A (zh) * 2015-01-08 2015-04-15 浪潮(北京)电子信息产业有限公司 一种分布式并行计算的服务器系统及其管理方法
CN104815392B (zh) * 2015-04-10 2018-01-26 石峰 一种交互式放射治疗计划系统优化系统
CN105031819B (zh) * 2015-08-25 2018-11-06 上海联影医疗科技有限公司 一种剂量优化系统
CN105688335B (zh) * 2015-11-23 2019-01-08 北京全域医疗技术有限公司 云放疗远程协作的方法
US11058891B2 (en) * 2015-11-23 2021-07-13 Board Of Regents, The University Of Texas System Systems and methods for cloud-based radiation therapy treatment planning
US20190046813A1 (en) * 2016-02-02 2019-02-14 Suzhou Evidance Medical Technologies Inc. Systems and Methods for Radiation Treatment Planning
WO2017174189A1 (fr) * 2016-04-05 2017-10-12 Varian Medical System Particle Therapy Gmbh Traitement par rayonnement à optimisation temporelle
CN105893772B (zh) * 2016-04-20 2018-09-18 上海联影医疗科技有限公司 用于放射治疗计划的数据获取方法和装置
CN107480416A (zh) * 2016-06-08 2017-12-15 瑞地玛医学科技有限公司 一种放射治疗计划系统
CN106139424A (zh) * 2016-08-02 2016-11-23 丽水市人民医院 一种精确放射治疗计划系统
CN106920234B (zh) * 2017-02-27 2021-08-27 北京连心医疗科技有限公司 一种复合式自动放疗计划的方法
CN107391920B (zh) * 2017-07-13 2019-03-05 中科超精(安徽)科技有限公司 一种dicom计划文件兼容转换系统和方法
CN107545137A (zh) * 2017-08-16 2018-01-05 强深智能医疗科技(昆山)有限公司 肿瘤放射治疗计划智能优化方法
CN107491659B (zh) * 2017-09-20 2022-03-15 上海联影医疗科技股份有限公司 一种医疗设备系统升级方法和装置

Also Published As

Publication number Publication date
CN110060765B (zh) 2022-06-17
CN110060765A (zh) 2019-07-26
EP3742702A4 (fr) 2021-11-10
WO2019140886A1 (fr) 2019-07-25
EP3742702A1 (fr) 2020-11-25
US20200203022A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
EP3742702B1 (fr) Procédé de planification de radiothérapie en nuage standardisée et support de stockage
US11383102B2 (en) Three-dimensional radiotherapy dose distribution prediction
US20190046813A1 (en) Systems and Methods for Radiation Treatment Planning
US10417390B2 (en) Methods and systems for radiotherapy treatment planning
US11534625B2 (en) Radiation treatment based on dose rate
US11103726B2 (en) Creating treatment field using initial field and patient specific geometry and achievable dose
US11116995B2 (en) Radiation treatment planning based on dose rate
US11738211B2 (en) Dose-distribution estimation in proton therapy
US20170028221A1 (en) Image-Guided Radiation Therapy
CN110504016A (zh) 一种蒙特卡罗网格并行剂量计算方法、设备和存储介质
CN110404184A (zh) 一种测算放疗射线剂量分布和剂量目标函数的方法和系统
Van Dyk et al. Has the use of computers in radiation therapy improved the accuracy in radiation dose delivery?
Neph Accelerating Radiation Dose Calculation with High Performance Computing and Machine Learning for Large-scale Radiotherapy Treatment Planning
Frederick Novel Techniques for Determining and Assessing Radiotherapy Margins
Ionele 4D-VMAT dose calculation using treatment-specific respiratory motions
Carrington Parameters affecting tumour control and toxicity in oesophageal cancer: a multi-dimensional outcome analysis

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602018065700

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04L0029080000

Ipc: A61N0005100000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H04L0029080000

Ipc: A61N0005100000

A4 Supplementary search report drawn up and despatched

Effective date: 20211008

RIC1 Information provided on ipc code assigned before grant

Ipc: G16H 70/20 20180101ALI20211004BHEP

Ipc: G16H 30/20 20180101ALI20211004BHEP

Ipc: G16H 20/40 20180101ALI20211004BHEP

Ipc: A61N 5/10 20060101AFI20211004BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231024

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018065700

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240223

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240621