EP3740309A1 - Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading - Google Patents
Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneadingInfo
- Publication number
- EP3740309A1 EP3740309A1 EP19700010.2A EP19700010A EP3740309A1 EP 3740309 A1 EP3740309 A1 EP 3740309A1 EP 19700010 A EP19700010 A EP 19700010A EP 3740309 A1 EP3740309 A1 EP 3740309A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- organic compound
- catalyst
- function
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 170
- 238000000034 method Methods 0.000 title claims abstract description 82
- 230000008569 process Effects 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title claims abstract description 47
- 238000005984 hydrogenation reaction Methods 0.000 title claims description 78
- 150000001491 aromatic compounds Chemical class 0.000 title claims description 14
- 238000004898 kneading Methods 0.000 title description 8
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 194
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 171
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 110
- 239000002243 precursor Substances 0.000 claims abstract description 91
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 77
- 125000003158 alcohol group Chemical group 0.000 claims abstract description 26
- 150000002148 esters Chemical group 0.000 claims abstract description 25
- 150000001412 amines Chemical group 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 15
- 150000001875 compounds Chemical class 0.000 claims description 88
- 239000002253 acid Substances 0.000 claims description 75
- 230000002378 acidificating effect Effects 0.000 claims description 47
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 45
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 45
- 125000003118 aryl group Chemical group 0.000 claims description 39
- -1 acyclic amides Chemical class 0.000 claims description 38
- 125000004432 carbon atom Chemical group C* 0.000 claims description 38
- 239000001257 hydrogen Substances 0.000 claims description 37
- 229910052739 hydrogen Inorganic materials 0.000 claims description 37
- 239000012071 phase Substances 0.000 claims description 37
- 239000000725 suspension Substances 0.000 claims description 37
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 34
- 150000002430 hydrocarbons Chemical class 0.000 claims description 34
- 238000010438 heat treatment Methods 0.000 claims description 33
- 229930195733 hydrocarbon Natural products 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 30
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 29
- 229910052782 aluminium Inorganic materials 0.000 claims description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 29
- 239000004215 Carbon black (E152) Substances 0.000 claims description 28
- 150000001408 amides Chemical group 0.000 claims description 27
- 238000001556 precipitation Methods 0.000 claims description 26
- 239000000843 powder Substances 0.000 claims description 25
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 24
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 24
- 238000001035 drying Methods 0.000 claims description 23
- 239000011148 porous material Substances 0.000 claims description 22
- 229910052753 mercury Inorganic materials 0.000 claims description 19
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 18
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 18
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 17
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 17
- 125000004122 cyclic group Chemical group 0.000 claims description 16
- BUACSMWVFUNQET-UHFFFAOYSA-H dialuminum;trisulfate;hydrate Chemical compound O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BUACSMWVFUNQET-UHFFFAOYSA-H 0.000 claims description 16
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 15
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- KVOIJEARBNBHHP-UHFFFAOYSA-N potassium;oxido(oxo)alumane Chemical compound [K+].[O-][Al]=O KVOIJEARBNBHHP-UHFFFAOYSA-N 0.000 claims description 15
- 125000000524 functional group Chemical group 0.000 claims description 14
- 239000007791 liquid phase Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000012429 reaction media Substances 0.000 claims description 14
- 229910021529 ammonia Inorganic materials 0.000 claims description 13
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 12
- 150000002576 ketones Chemical class 0.000 claims description 12
- 150000002763 monocarboxylic acids Chemical class 0.000 claims description 12
- 229910017604 nitric acid Inorganic materials 0.000 claims description 12
- 238000009835 boiling Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 11
- 238000002459 porosimetry Methods 0.000 claims description 11
- 238000000975 co-precipitation Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 7
- 239000002202 Polyethylene glycol Substances 0.000 claims description 6
- 150000001299 aldehydes Chemical class 0.000 claims description 6
- 239000012431 aqueous reaction media Substances 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 6
- 150000001993 dienes Chemical class 0.000 claims description 6
- 229920001223 polyethylene glycol Polymers 0.000 claims description 6
- 230000001376 precipitating effect Effects 0.000 claims description 6
- 238000007493 shaping process Methods 0.000 claims description 6
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 6
- 150000003628 tricarboxylic acids Chemical class 0.000 claims description 5
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 claims description 4
- 150000003950 cyclic amides Chemical class 0.000 claims description 4
- 150000002170 ethers Chemical class 0.000 claims description 4
- 150000002772 monosaccharides Chemical class 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 150000005690 diesters Chemical class 0.000 claims description 3
- 150000002016 disaccharides Chemical class 0.000 claims description 3
- 239000007792 gaseous phase Substances 0.000 claims description 3
- 150000003951 lactams Chemical class 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- 150000000000 tetracarboxylic acids Chemical class 0.000 claims description 3
- 150000004043 trisaccharides Chemical class 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 150000002771 monosaccharide derivatives Chemical class 0.000 claims description 2
- 150000001735 carboxylic acids Chemical group 0.000 claims 4
- 125000003262 carboxylic acid ester group Chemical group [H]C([H])([*:2])OC(=O)C([H])([H])[*:1] 0.000 claims 2
- 150000000475 acetylene derivatives Chemical class 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 13
- 125000003368 amide group Chemical group 0.000 abstract 1
- 125000002843 carboxylic acid group Chemical group 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 41
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 34
- 239000000499 gel Substances 0.000 description 31
- 238000004230 steam cracking Methods 0.000 description 28
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 27
- 150000007513 acids Chemical class 0.000 description 23
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 17
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 17
- 125000000217 alkyl group Chemical group 0.000 description 17
- 229920006395 saturated elastomer Polymers 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 14
- 238000005470 impregnation Methods 0.000 description 14
- 230000003197 catalytic effect Effects 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 11
- 239000011593 sulfur Substances 0.000 description 11
- 229910052717 sulfur Inorganic materials 0.000 description 11
- PDGXJDXVGMHUIR-UHFFFAOYSA-N 2,3-Dihydroxy-3-methylpentanoate Chemical compound CCC(C)(O)C(O)C(O)=O PDGXJDXVGMHUIR-UHFFFAOYSA-N 0.000 description 10
- TYEYBOSBBBHJIV-UHFFFAOYSA-N 2-oxobutanoic acid Chemical compound CCC(=O)C(O)=O TYEYBOSBBBHJIV-UHFFFAOYSA-N 0.000 description 10
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 description 10
- QHKABHOOEWYVLI-UHFFFAOYSA-N 3-methyl-2-oxobutanoic acid Chemical compound CC(C)C(=O)C(O)=O QHKABHOOEWYVLI-UHFFFAOYSA-N 0.000 description 10
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- 150000001733 carboxylic acid esters Chemical group 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 10
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 10
- UQDUPQYQJKYHQI-UHFFFAOYSA-N methyl laurate Chemical compound CCCCCCCCCCCC(=O)OC UQDUPQYQJKYHQI-UHFFFAOYSA-N 0.000 description 10
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 9
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 9
- 238000002161 passivation Methods 0.000 description 9
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 8
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 8
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 8
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 8
- NMDWGEGFJUBKLB-YFKPBYRVSA-N (2S)-2-hydroxy-2-methyl-3-oxobutanoic acid Chemical compound CC(=O)[C@](C)(O)C(O)=O NMDWGEGFJUBKLB-YFKPBYRVSA-N 0.000 description 7
- 125000001931 aliphatic group Chemical group 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 150000001261 hydroxy acids Chemical class 0.000 description 7
- 239000006259 organic additive Substances 0.000 description 7
- HJSRRUNWOFLQRG-UHFFFAOYSA-N propanedioic acid Chemical compound OC(=O)CC(O)=O.OC(=O)CC(O)=O HJSRRUNWOFLQRG-UHFFFAOYSA-N 0.000 description 7
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 6
- GLDQAMYCGOIJDV-UHFFFAOYSA-N 2,3-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1O GLDQAMYCGOIJDV-UHFFFAOYSA-N 0.000 description 6
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 6
- HWKRAUXFMLQKLS-UHFFFAOYSA-N 2-oxidanylidenepropanoic acid Chemical compound CC(=O)C(O)=O.CC(=O)C(O)=O HWKRAUXFMLQKLS-UHFFFAOYSA-N 0.000 description 6
- KVZLHPXEUGJPAH-UHFFFAOYSA-N 2-oxidanylpropanoic acid Chemical compound CC(O)C(O)=O.CC(O)C(O)=O KVZLHPXEUGJPAH-UHFFFAOYSA-N 0.000 description 6
- FGSBNBBHOZHUBO-UHFFFAOYSA-N 2-oxoadipic acid Chemical compound OC(=O)CCCC(=O)C(O)=O FGSBNBBHOZHUBO-UHFFFAOYSA-N 0.000 description 6
- YQUVCSBJEUQKSH-UHFFFAOYSA-N 3,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1 YQUVCSBJEUQKSH-UHFFFAOYSA-N 0.000 description 6
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical group CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- YSEKNCXYRGKTBJ-UHFFFAOYSA-N dimethyl 2-hydroxybutanedioate Chemical compound COC(=O)CC(O)C(=O)OC YSEKNCXYRGKTBJ-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- BTNMPGBKDVTSJY-UHFFFAOYSA-N keto-phenylpyruvic acid Chemical compound OC(=O)C(=O)CC1=CC=CC=C1 BTNMPGBKDVTSJY-UHFFFAOYSA-N 0.000 description 6
- NIFHFRBCEUSGEE-UHFFFAOYSA-N oxalic acid Chemical compound OC(=O)C(O)=O.OC(=O)C(O)=O NIFHFRBCEUSGEE-UHFFFAOYSA-N 0.000 description 6
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 6
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 6
- KQTIIICEAUMSDG-UHFFFAOYSA-N tricarballylic acid Chemical compound OC(=O)CC(C(O)=O)CC(O)=O KQTIIICEAUMSDG-UHFFFAOYSA-N 0.000 description 6
- SXFBQAMLJMDXOD-UHFFFAOYSA-N (+)-hydrogentartrate bitartrate salt Chemical compound OC(=O)C(O)C(O)C(O)=O.OC(=O)C(O)C(O)C(O)=O SXFBQAMLJMDXOD-UHFFFAOYSA-N 0.000 description 5
- AAWZDTNXLSGCEK-LNVDRNJUSA-N (3r,5r)-1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid Chemical compound O[C@@H]1CC(O)(C(O)=O)C[C@@H](O)C1O AAWZDTNXLSGCEK-LNVDRNJUSA-N 0.000 description 5
- OTOIIPJYVQJATP-BYPYZUCNSA-N (R)-pantoic acid Chemical compound OCC(C)(C)[C@@H](O)C(O)=O OTOIIPJYVQJATP-BYPYZUCNSA-N 0.000 description 5
- NAOLWIGVYRIGTP-UHFFFAOYSA-N 1,3,5-trihydroxyanthracene-9,10-dione Chemical compound C1=CC(O)=C2C(=O)C3=CC(O)=CC(O)=C3C(=O)C2=C1 NAOLWIGVYRIGTP-UHFFFAOYSA-N 0.000 description 5
- KUCURORHKGPKIX-UHFFFAOYSA-N 2-hydroxypropanedioic acid Chemical compound OC(=O)C(O)C(O)=O.OC(=O)C(O)C(O)=O KUCURORHKGPKIX-UHFFFAOYSA-N 0.000 description 5
- OORRCVPWRPVJEK-UHFFFAOYSA-N 2-oxidanylethanoic acid Chemical compound OCC(O)=O.OCC(O)=O OORRCVPWRPVJEK-UHFFFAOYSA-N 0.000 description 5
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 5
- OXTNCQMOKLOUAM-UHFFFAOYSA-N 3-Oxoglutaric acid Chemical compound OC(=O)CC(=O)CC(O)=O OXTNCQMOKLOUAM-UHFFFAOYSA-N 0.000 description 5
- 239000001388 3-methyl-2-oxobutanoic acid Substances 0.000 description 5
- CZJAMWADLBRIAX-UHFFFAOYSA-N 4-oxopentanoic acid Chemical compound CC(=O)CCC(O)=O.CC(=O)CCC(O)=O CZJAMWADLBRIAX-UHFFFAOYSA-N 0.000 description 5
- AAWZDTNXLSGCEK-UHFFFAOYSA-N Cordycepinsaeure Natural products OC1CC(O)(C(O)=O)CC(O)C1O AAWZDTNXLSGCEK-UHFFFAOYSA-N 0.000 description 5
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 5
- DSLZVSRJTYRBFB-UHFFFAOYSA-N Galactaric acid Natural products OC(=O)C(O)C(O)C(O)C(O)C(O)=O DSLZVSRJTYRBFB-UHFFFAOYSA-N 0.000 description 5
- AAWZDTNXLSGCEK-ZHQZDSKASA-N Quinic acid Natural products O[C@H]1CC(O)(C(O)=O)C[C@H](O)C1O AAWZDTNXLSGCEK-ZHQZDSKASA-N 0.000 description 5
- WDJHALXBUFZDSR-UHFFFAOYSA-N acetoacetic acid Chemical compound CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 description 5
- OVYQSRKFHNKIBM-UHFFFAOYSA-N butanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCC(O)=O OVYQSRKFHNKIBM-UHFFFAOYSA-N 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- VUCKYGJSXHHQOJ-UHFFFAOYSA-N dihydroxymalonic acid Chemical compound OC(=O)C(O)(O)C(O)=O VUCKYGJSXHHQOJ-UHFFFAOYSA-N 0.000 description 5
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 5
- BLNNXYDKWOJQGK-UHFFFAOYSA-N dioxosuccinic acid Chemical compound OC(=O)C(=O)C(=O)C(O)=O BLNNXYDKWOJQGK-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 125000001033 ether group Chemical group 0.000 description 5
- DSLZVSRJTYRBFB-DUHBMQHGSA-N galactaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O DSLZVSRJTYRBFB-DUHBMQHGSA-N 0.000 description 5
- 239000000174 gluconic acid Substances 0.000 description 5
- 235000012208 gluconic acid Nutrition 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 5
- XEEVLJKYYUVTRC-UHFFFAOYSA-N oxomalonic acid Chemical compound OC(=O)C(=O)C(O)=O XEEVLJKYYUVTRC-UHFFFAOYSA-N 0.000 description 5
- YKEKYBOBVREARV-UHFFFAOYSA-N pentanedioic acid Chemical compound OC(=O)CCCC(O)=O.OC(=O)CCCC(O)=O YKEKYBOBVREARV-UHFFFAOYSA-N 0.000 description 5
- 229960003742 phenol Drugs 0.000 description 5
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- WKOLLVMJNQIZCI-UHFFFAOYSA-N vanillic acid Chemical compound COC1=CC(C(O)=O)=CC=C1O WKOLLVMJNQIZCI-UHFFFAOYSA-N 0.000 description 5
- TUUBOHWZSQXCSW-UHFFFAOYSA-N vanillic acid Natural products COC1=CC(O)=CC(C(O)=O)=C1 TUUBOHWZSQXCSW-UHFFFAOYSA-N 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- STGNLGBPLOVYMA-MAZDBSFSSA-N (E)-but-2-enedioic acid Chemical compound OC(=O)\C=C\C(O)=O.OC(=O)\C=C\C(O)=O STGNLGBPLOVYMA-MAZDBSFSSA-N 0.000 description 4
- STGNLGBPLOVYMA-TZKOHIRVSA-N (z)-but-2-enedioic acid Chemical compound OC(=O)\C=C/C(O)=O.OC(=O)\C=C/C(O)=O STGNLGBPLOVYMA-TZKOHIRVSA-N 0.000 description 4
- RBNPOMFGQQGHHO-UHFFFAOYSA-N -2,3-Dihydroxypropanoic acid Natural products OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 4
- BRRSNXCXLSVPFC-UHFFFAOYSA-N 2,3,4-Trihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1O BRRSNXCXLSVPFC-UHFFFAOYSA-N 0.000 description 4
- ULHLNVIDIVAORK-UHFFFAOYSA-N 2-hydroxybutanedioic acid Chemical compound OC(=O)C(O)CC(O)=O.OC(=O)C(O)CC(O)=O ULHLNVIDIVAORK-UHFFFAOYSA-N 0.000 description 4
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 4
- QIGJYVCQYDKYDW-UHFFFAOYSA-N 3-O-alpha-D-mannopyranosyl-D-mannopyranose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(CO)OC(O)C1O QIGJYVCQYDKYDW-UHFFFAOYSA-N 0.000 description 4
- XPCTZQVDEJYUGT-UHFFFAOYSA-N 3-hydroxy-2-methyl-4-pyrone Chemical compound CC=1OC=CC(=O)C=1O XPCTZQVDEJYUGT-UHFFFAOYSA-N 0.000 description 4
- QCXJEYYXVJIFCE-UHFFFAOYSA-N 4-acetamidobenzoic acid Chemical compound CC(=O)NC1=CC=C(C(O)=O)C=C1 QCXJEYYXVJIFCE-UHFFFAOYSA-N 0.000 description 4
- JOOXCMJARBKPKM-UHFFFAOYSA-N 4-oxopentanoic acid Chemical compound CC(=O)CCC(O)=O JOOXCMJARBKPKM-UHFFFAOYSA-N 0.000 description 4
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 4
- PVXPPJIGRGXGCY-TZLCEDOOSA-N 6-O-alpha-D-glucopyranosyl-D-fructofuranose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)C(O)(CO)O1 PVXPPJIGRGXGCY-TZLCEDOOSA-N 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 4
- 239000005711 Benzoic acid Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 4
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 4
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- 229930091371 Fructose Natural products 0.000 description 4
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 4
- 239000005715 Fructose Substances 0.000 description 4
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 4
- XGEGHDBEHXKFPX-UHFFFAOYSA-N N-methyl urea Chemical compound CNC(N)=O XGEGHDBEHXKFPX-UHFFFAOYSA-N 0.000 description 4
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical compound C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- UJMDYLWCYJJYMO-UHFFFAOYSA-N benzene-1,2,3-tricarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1C(O)=O UJMDYLWCYJJYMO-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 4
- 229910001593 boehmite Inorganic materials 0.000 description 4
- WFYPICNXBKQZGB-UHFFFAOYSA-N butenyne Chemical group C=CC#C WFYPICNXBKQZGB-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- PGRHXDWITVMQBC-UHFFFAOYSA-N dehydroacetic acid Chemical compound CC(=O)C1C(=O)OC(C)=CC1=O PGRHXDWITVMQBC-UHFFFAOYSA-N 0.000 description 4
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 4
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 4
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 4
- OMSUIQOIVADKIM-UHFFFAOYSA-N ethyl 3-hydroxybutyrate Chemical compound CCOC(=O)CC(C)O OMSUIQOIVADKIM-UHFFFAOYSA-N 0.000 description 4
- OBNCKNCVKJNDBV-UHFFFAOYSA-N ethyl butyrate Chemical compound CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 4
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 4
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 4
- 238000011066 ex-situ storage Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 4
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Chemical compound CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- YRHYCMZPEVDGFQ-UHFFFAOYSA-N methyl decanoate Chemical compound CCCCCCCCCC(=O)OC YRHYCMZPEVDGFQ-UHFFFAOYSA-N 0.000 description 4
- NUKZAGXMHTUAFE-UHFFFAOYSA-N methyl hexanoate Chemical compound CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 4
- JGHZJRVDZXSNKQ-UHFFFAOYSA-N methyl octanoate Chemical compound CCCCCCCC(=O)OC JGHZJRVDZXSNKQ-UHFFFAOYSA-N 0.000 description 4
- HNBDRPTVWVGKBR-UHFFFAOYSA-N methyl pentanoate Chemical compound CCCCC(=O)OC HNBDRPTVWVGKBR-UHFFFAOYSA-N 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- AMKYESDOVDKZKV-UHFFFAOYSA-N o-orsellinic acid Chemical compound CC1=CC(O)=CC(O)=C1C(O)=O AMKYESDOVDKZKV-UHFFFAOYSA-N 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- ILOQVASMWJNLLY-UHFFFAOYSA-N pent-2-enedioic acid Chemical compound OC(=O)CC=CC(O)=O.OC(=O)CC=CC(O)=O ILOQVASMWJNLLY-UHFFFAOYSA-N 0.000 description 4
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000600 sorbitol Substances 0.000 description 4
- 235000010356 sorbitol Nutrition 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 4
- VERMEZLHWFHDLK-UHFFFAOYSA-N tetrahydroxybenzene Natural products OC1=CC=C(O)C(O)=C1O VERMEZLHWFHDLK-UHFFFAOYSA-N 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 229940005605 valeric acid Drugs 0.000 description 4
- 239000000811 xylitol Substances 0.000 description 4
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 4
- 235000010447 xylitol Nutrition 0.000 description 4
- 229960002675 xylitol Drugs 0.000 description 4
- 150000003952 β-lactams Chemical class 0.000 description 4
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 3
- JFVQYQDTHWLYHG-ZCFIWIBFSA-N (6R)-6-ethyloxan-2-one Chemical compound CC[C@@H]1CCCC(=O)O1 JFVQYQDTHWLYHG-ZCFIWIBFSA-N 0.000 description 3
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 3
- CEGRHPCDLKAHJD-UHFFFAOYSA-N 1,1,1-propanetricarboxylic acid Chemical compound CCC(C(O)=O)(C(O)=O)C(O)=O CEGRHPCDLKAHJD-UHFFFAOYSA-N 0.000 description 3
- YBBLOADPFWKNGS-UHFFFAOYSA-N 1,1-dimethylurea Chemical compound CN(C)C(N)=O YBBLOADPFWKNGS-UHFFFAOYSA-N 0.000 description 3
- VBSTXRUAXCTZBQ-UHFFFAOYSA-N 1-hexyl-4-phenylpiperazine Chemical compound C1CN(CCCCCC)CCN1C1=CC=CC=C1 VBSTXRUAXCTZBQ-UHFFFAOYSA-N 0.000 description 3
- 229940082044 2,3-dihydroxybenzoic acid Drugs 0.000 description 3
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 3
- VQUBZTADBUIIIK-UHFFFAOYSA-N 2-(carboxymethoxy)acetic acid Chemical compound OC(=O)COCC(O)=O.OC(=O)COCC(O)=O VQUBZTADBUIIIK-UHFFFAOYSA-N 0.000 description 3
- TZGPACAKMCUCKX-UHFFFAOYSA-N 2-hydroxyacetamide Chemical compound NC(=O)CO TZGPACAKMCUCKX-UHFFFAOYSA-N 0.000 description 3
- FZIPCQLKPTZZIM-UHFFFAOYSA-N 2-oxidanylpropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O FZIPCQLKPTZZIM-UHFFFAOYSA-N 0.000 description 3
- 239000001903 2-oxo-3-phenylpropanoic acid Substances 0.000 description 3
- HHDDCCUIIUWNGJ-UHFFFAOYSA-N 3-hydroxypyruvic acid Chemical compound OCC(=O)C(O)=O HHDDCCUIIUWNGJ-UHFFFAOYSA-N 0.000 description 3
- VOXXWSYKYCBWHO-UHFFFAOYSA-N 3-phenyllactic acid Chemical compound OC(=O)C(O)CC1=CC=CC=C1 VOXXWSYKYCBWHO-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 3
- AEMOLEFTQBMNLQ-YMDCURPLSA-N D-galactopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-YMDCURPLSA-N 0.000 description 3
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 3
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical compound OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 3
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 3
- ZMJBYMUCKBYSCP-UHFFFAOYSA-N Hydroxycitric acid Chemical compound OC(=O)C(O)C(O)(C(O)=O)CC(O)=O ZMJBYMUCKBYSCP-UHFFFAOYSA-N 0.000 description 3
- AEMOLEFTQBMNLQ-HNFCZKTMSA-N L-idopyranuronic acid Chemical compound OC1O[C@@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-HNFCZKTMSA-N 0.000 description 3
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 3
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 3
- LKJPYSCBVHEWIU-UHFFFAOYSA-N N-[4-cyano-3-(trifluoromethyl)phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methylpropanamide Chemical compound C=1C=C(C#N)C(C(F)(F)F)=CC=1NC(=O)C(O)(C)CS(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-UHFFFAOYSA-N 0.000 description 3
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- JACRWUWPXAESPB-QMMMGPOBSA-N Tropic acid Natural products OC[C@H](C(O)=O)C1=CC=CC=C1 JACRWUWPXAESPB-QMMMGPOBSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229940091181 aconitic acid Drugs 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229940061720 alpha hydroxy acid Drugs 0.000 description 3
- 150000001280 alpha hydroxy acids Chemical class 0.000 description 3
- DEDGUGJNLNLJSR-UHFFFAOYSA-N alpha-hydroxycinnamic acid Natural products OC(=O)C(O)=CC1=CC=CC=C1 DEDGUGJNLNLJSR-UHFFFAOYSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- ZNFNDZCXTPWRLQ-UHFFFAOYSA-N butane-1,1,1-tricarboxylic acid Chemical compound CCCC(C(O)=O)(C(O)=O)C(O)=O ZNFNDZCXTPWRLQ-UHFFFAOYSA-N 0.000 description 3
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 3
- NKCVNYJQLIWBHK-UHFFFAOYSA-N carbonodiperoxoic acid Chemical compound OOC(=O)OO NKCVNYJQLIWBHK-UHFFFAOYSA-N 0.000 description 3
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 3
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 3
- 229940018557 citraconic acid Drugs 0.000 description 3
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 3
- 125000006165 cyclic alkyl group Chemical group 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 229960005219 gentisic acid Drugs 0.000 description 3
- 229940097043 glucuronic acid Drugs 0.000 description 3
- 150000002391 heterocyclic compounds Chemical class 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229940089491 hydroxycitric acid Drugs 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- SXQFCVDSOLSHOQ-UHFFFAOYSA-N lactamide Chemical compound CC(O)C(N)=O SXQFCVDSOLSHOQ-UHFFFAOYSA-N 0.000 description 3
- 229960002510 mandelic acid Drugs 0.000 description 3
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 3
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 3
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 3
- DIHKMUNUGQVFES-UHFFFAOYSA-N n,n,n',n'-tetraethylethane-1,2-diamine Chemical compound CCN(CC)CCN(CC)CC DIHKMUNUGQVFES-UHFFFAOYSA-N 0.000 description 3
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 3
- MBHINSULENHCMF-UHFFFAOYSA-N n,n-dimethylpropanamide Chemical compound CCC(=O)N(C)C MBHINSULENHCMF-UHFFFAOYSA-N 0.000 description 3
- KERBAAIBDHEFDD-UHFFFAOYSA-N n-ethylformamide Chemical compound CCNC=O KERBAAIBDHEFDD-UHFFFAOYSA-N 0.000 description 3
- 150000002815 nickel Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- UFSCUAXLTRFIDC-UHFFFAOYSA-N oxalosuccinic acid Chemical compound OC(=O)CC(C(O)=O)C(=O)C(O)=O UFSCUAXLTRFIDC-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- FAQJJMHZNSSFSM-UHFFFAOYSA-N phenylglyoxylic acid Chemical compound OC(=O)C(=O)C1=CC=CC=C1 FAQJJMHZNSSFSM-UHFFFAOYSA-N 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 3
- WWBMGKDLVQBYLQ-UHFFFAOYSA-N prop-2-ene-1,1,1-tricarboxylic acid Chemical compound OC(=O)C(C=C)(C(O)=O)C(O)=O WWBMGKDLVQBYLQ-UHFFFAOYSA-N 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229960004889 salicylic acid Drugs 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000001384 succinic acid Substances 0.000 description 3
- 229960005137 succinic acid Drugs 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 3
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 2
- XKJVEVRQMLKSMO-SSDOTTSWSA-N (2R)-homocitric acid Chemical compound OC(=O)CC[C@](O)(C(O)=O)CC(O)=O XKJVEVRQMLKSMO-SSDOTTSWSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- DXALOGXSFLZLLN-WTZPKTTFSA-N (3s,4s,5r)-1,3,4,6-tetrahydroxy-5-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexan-2-one Chemical compound OCC(=O)[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DXALOGXSFLZLLN-WTZPKTTFSA-N 0.000 description 2
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 2
- SVBWNHOBPFJIRU-UHFFFAOYSA-N 1-O-alpha-D-Glucopyranosyl-D-fructose Natural products OC1C(O)C(O)C(CO)OC1OCC1(O)C(O)C(O)C(O)CO1 SVBWNHOBPFJIRU-UHFFFAOYSA-N 0.000 description 2
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 2
- FEWLNYSYJNLUOO-UHFFFAOYSA-N 1-Piperidinecarboxaldehyde Chemical compound O=CN1CCCCC1 FEWLNYSYJNLUOO-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 2
- IBHWREHFNDMRPR-UHFFFAOYSA-N 2,4,6-Trihydroxybenzoic acid Chemical compound OC(=O)C1=C(O)C=C(O)C=C1O IBHWREHFNDMRPR-UHFFFAOYSA-N 0.000 description 2
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- UYEMGAFJOZZIFP-UHFFFAOYSA-N 3,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC(O)=C1 UYEMGAFJOZZIFP-UHFFFAOYSA-N 0.000 description 2
- IHCCAYCGZOLTEU-UHFFFAOYSA-N 3-furoic acid Chemical compound OC(=O)C=1C=COC=1 IHCCAYCGZOLTEU-UHFFFAOYSA-N 0.000 description 2
- DBXBTMSZEOQQDU-UHFFFAOYSA-N 3-hydroxyisobutyric acid Chemical compound OCC(C)C(O)=O DBXBTMSZEOQQDU-UHFFFAOYSA-N 0.000 description 2
- AXFYFNCPONWUHW-UHFFFAOYSA-N 3-hydroxyisovaleric acid Chemical compound CC(C)(O)CC(O)=O AXFYFNCPONWUHW-UHFFFAOYSA-N 0.000 description 2
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical compound CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 2
- XHQZJYCNDZAGLW-UHFFFAOYSA-N 3-methoxybenzoic acid Chemical compound COC1=CC=CC(C(O)=O)=C1 XHQZJYCNDZAGLW-UHFFFAOYSA-N 0.000 description 2
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 2
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 2
- XQXPVVBIMDBYFF-UHFFFAOYSA-N 4-hydroxyphenylacetic acid Chemical compound OC(=O)CC1=CC=C(O)C=C1 XQXPVVBIMDBYFF-UHFFFAOYSA-N 0.000 description 2
- GACSIVHAIFQKTC-UPHRSURJSA-N 4-maleylacetoacetic acid Chemical compound OC(=O)CC(=O)CC(=O)\C=C/C(O)=O GACSIVHAIFQKTC-UPHRSURJSA-N 0.000 description 2
- ZEYHEAKUIGZSGI-UHFFFAOYSA-N 4-methoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1 ZEYHEAKUIGZSGI-UHFFFAOYSA-N 0.000 description 2
- BKAJNAXTPSGJCU-UHFFFAOYSA-N 4-methyl-2-oxopentanoic acid Chemical compound CC(C)CC(=O)C(O)=O BKAJNAXTPSGJCU-UHFFFAOYSA-N 0.000 description 2
- VWXGRWMELBPMCU-UHFFFAOYSA-N 5-chloro-1-[3-(dimethylamino)propyl]-3-phenylbenzimidazol-2-one Chemical compound O=C1N(CCCN(C)C)C2=CC=C(Cl)C=C2N1C1=CC=CC=C1 VWXGRWMELBPMCU-UHFFFAOYSA-N 0.000 description 2
- QNVNLUSHGRBCLO-UHFFFAOYSA-N 5-hydroxybenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC(O)=CC(C(O)=O)=C1 QNVNLUSHGRBCLO-UHFFFAOYSA-N 0.000 description 2
- SERLAGPUMNYUCK-YJOKQAJESA-N 6-O-alpha-D-glucopyranosyl-D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-YJOKQAJESA-N 0.000 description 2
- ODEHMIGXGLNAKK-OESPXIITSA-N 6-kestotriose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 ODEHMIGXGLNAKK-OESPXIITSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FBXFSONDSA-N Allitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-FBXFSONDSA-N 0.000 description 2
- UIERETOOQGIECD-UHFFFAOYSA-N Angelic acid Natural products CC=C(C)C(O)=O UIERETOOQGIECD-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- 239000004358 Butane-1, 3-diol Substances 0.000 description 2
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 2
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 2
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 description 2
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 2
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 2
- LKDRXBCSQODPBY-JDJSBBGDSA-N D-allulose Chemical compound OCC1(O)OC[C@@H](O)[C@@H](O)[C@H]1O LKDRXBCSQODPBY-JDJSBBGDSA-N 0.000 description 2
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-DUZGATOHSA-N D-araboascorbic acid Natural products OC[C@@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-DUZGATOHSA-N 0.000 description 2
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 2
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 2
- OXQKEKGBFMQTML-UHFFFAOYSA-N D-glycero-D-gluco-heptitol Natural products OCC(O)C(O)C(O)C(O)C(O)CO OXQKEKGBFMQTML-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-ZXXMMSQZSA-N D-iditol Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-ZXXMMSQZSA-N 0.000 description 2
- HSNZZMHEPUFJNZ-QMTIVRBISA-N D-keto-manno-heptulose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)C(=O)CO HSNZZMHEPUFJNZ-QMTIVRBISA-N 0.000 description 2
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 2
- HAIWUXASLYEWLM-UHFFFAOYSA-N D-manno-Heptulose Natural products OCC1OC(O)(CO)C(O)C(O)C1O HAIWUXASLYEWLM-UHFFFAOYSA-N 0.000 description 2
- QWIZNVHXZXRPDR-UHFFFAOYSA-N D-melezitose Natural products O1C(CO)C(O)C(O)C(O)C1OC1C(O)C(CO)OC1(CO)OC1OC(CO)C(O)C(O)C1O QWIZNVHXZXRPDR-UHFFFAOYSA-N 0.000 description 2
- ZCLAHGAZPPEVDX-UHFFFAOYSA-N D-panose Natural products OC1C(O)C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC1COC1C(O)C(O)C(O)C(CO)O1 ZCLAHGAZPPEVDX-UHFFFAOYSA-N 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- ZAQJHHRNXZUBTE-NQXXGFSBSA-N D-ribulose Chemical compound OC[C@@H](O)[C@@H](O)C(=O)CO ZAQJHHRNXZUBTE-NQXXGFSBSA-N 0.000 description 2
- UNXHWFMMPAWVPI-QWWZWVQMSA-N D-threitol Chemical compound OC[C@@H](O)[C@H](O)CO UNXHWFMMPAWVPI-QWWZWVQMSA-N 0.000 description 2
- ZAQJHHRNXZUBTE-UHFFFAOYSA-N D-threo-2-Pentulose Natural products OCC(O)C(O)C(=O)CO ZAQJHHRNXZUBTE-UHFFFAOYSA-N 0.000 description 2
- ODBLHEXUDAPZAU-ZAFYKAAXSA-N D-threo-isocitric acid Chemical compound OC(=O)[C@H](O)[C@@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-ZAFYKAAXSA-N 0.000 description 2
- YTBSYETUWUMLBZ-QWWZWVQMSA-N D-threose Chemical compound OC[C@@H](O)[C@H](O)C=O YTBSYETUWUMLBZ-QWWZWVQMSA-N 0.000 description 2
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 2
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 2
- 239000004287 Dehydroacetic acid Substances 0.000 description 2
- VIZORQUEIQEFRT-UHFFFAOYSA-N Diethyl adipate Chemical compound CCOC(=O)CCCCC(=O)OCC VIZORQUEIQEFRT-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 description 2
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 description 2
- 239000004386 Erythritol Substances 0.000 description 2
- 206010056474 Erythrosis Diseases 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- YIKYNHJUKRTCJL-UHFFFAOYSA-N Ethyl maltol Chemical compound CCC=1OC=CC(=O)C=1O YIKYNHJUKRTCJL-UHFFFAOYSA-N 0.000 description 2
- ICMAFTSLXCXHRK-UHFFFAOYSA-N Ethyl pentanoate Chemical compound CCCCC(=O)OCC ICMAFTSLXCXHRK-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- RTVRUWIBAVHRQX-PMEZUWKYSA-N Fucosyllactose Chemical compound C([C@H]1O[C@@H]([C@H]([C@@H](O[C@@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@@H]1O)O)OC)O[C@H]1OC[C@@H](O)[C@H](O)[C@@H]1O RTVRUWIBAVHRQX-PMEZUWKYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 2
- MUPFEKGTMRGPLJ-OBAJZVCXSA-N Gentianose Natural products O(C[C@@H]1[C@@H](O)[C@H](O)[C@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@H](O)[C@@H](CO)O2)O1)[C@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-OBAJZVCXSA-N 0.000 description 2
- 239000005792 Geraniol Substances 0.000 description 2
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- ODBLHEXUDAPZAU-FONMRSAGSA-N Isocitric acid Natural products OC(=O)[C@@H](O)[C@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-FONMRSAGSA-N 0.000 description 2
- AYRXSINWFIIFAE-SCLMCMATSA-N Isomaltose Natural products OC[C@H]1O[C@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)[C@@H](O)[C@@H](O)[C@@H]1O AYRXSINWFIIFAE-SCLMCMATSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- OKPQBUWBBBNTOV-UHFFFAOYSA-N Kojibiose Natural products COC1OC(O)C(OC2OC(OC)C(O)C(O)C2O)C(O)C1O OKPQBUWBBBNTOV-UHFFFAOYSA-N 0.000 description 2
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 2
- SKCKOFZKJLZSFA-UHFFFAOYSA-N L-Gulomethylit Natural products CC(O)C(O)C(O)C(O)CO SKCKOFZKJLZSFA-UHFFFAOYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- HSNZZMHEPUFJNZ-UHFFFAOYSA-N L-galacto-2-Heptulose Natural products OCC(O)C(O)C(O)C(O)C(=O)CO HSNZZMHEPUFJNZ-UHFFFAOYSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- ZDGJAHTZVHVLOT-YUMQZZPRSA-N L-saccharopine Chemical compound OC(=O)[C@@H](N)CCCCN[C@H](C(O)=O)CCC(O)=O ZDGJAHTZVHVLOT-YUMQZZPRSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- JPFGFRMPGVDDGE-UHFFFAOYSA-N Leucrose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)(CO)OC1 JPFGFRMPGVDDGE-UHFFFAOYSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- HYMLWHLQFGRFIY-UHFFFAOYSA-N Maltol Natural products CC1OC=CC(=O)C1=O HYMLWHLQFGRFIY-UHFFFAOYSA-N 0.000 description 2
- NBGXQZRRLOGAJF-UHFFFAOYSA-N Maltulose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)(CO)OCC1O NBGXQZRRLOGAJF-UHFFFAOYSA-N 0.000 description 2
- LMXFTMYMHGYJEI-UHFFFAOYSA-N Menthoglycol Natural products CC1CCC(C(C)(C)O)C(O)C1 LMXFTMYMHGYJEI-UHFFFAOYSA-N 0.000 description 2
- 239000005640 Methyl decanoate Substances 0.000 description 2
- 239000005641 Methyl octanoate Substances 0.000 description 2
- LOMVENUNSWAXEN-UHFFFAOYSA-N Methyl oxalate Chemical compound COC(=O)C(=O)OC LOMVENUNSWAXEN-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- HSMNQINEKMPTIC-UHFFFAOYSA-N N-(4-aminobenzoyl)glycine Chemical compound NC1=CC=C(C(=O)NCC(O)=O)C=C1 HSMNQINEKMPTIC-UHFFFAOYSA-N 0.000 description 2
- OTCCIMWXFLJLIA-UHFFFAOYSA-N N-acetyl-DL-aspartic acid Natural products CC(=O)NC(C(O)=O)CC(O)=O OTCCIMWXFLJLIA-UHFFFAOYSA-N 0.000 description 2
- OTCCIMWXFLJLIA-BYPYZUCNSA-N N-acetyl-L-aspartic acid Chemical compound CC(=O)N[C@H](C(O)=O)CC(O)=O OTCCIMWXFLJLIA-BYPYZUCNSA-N 0.000 description 2
- RFMMMVDNIPUKGG-YFKPBYRVSA-N N-acetyl-L-glutamic acid Chemical compound CC(=O)N[C@H](C(O)=O)CCC(O)=O RFMMMVDNIPUKGG-YFKPBYRVSA-N 0.000 description 2
- WXNXCEHXYPACJF-ZETCQYMHSA-N N-acetyl-L-leucine Chemical compound CC(C)C[C@@H](C(O)=O)NC(C)=O WXNXCEHXYPACJF-ZETCQYMHSA-N 0.000 description 2
- FZERHIULMFGESH-UHFFFAOYSA-N N-phenylacetamide Chemical compound CC(=O)NC1=CC=CC=C1 FZERHIULMFGESH-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- FVVCFHXLWDDRHG-UHFFFAOYSA-N Nigellamose Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(OC2C(C(O)C(O)C(CO)O2)O)C(CO)O1 FVVCFHXLWDDRHG-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- AYRXSINWFIIFAE-UHFFFAOYSA-N O6-alpha-D-Galactopyranosyl-D-galactose Natural products OCC1OC(OCC(O)C(O)C(O)C(O)C=O)C(O)C(O)C1O AYRXSINWFIIFAE-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920001273 Polyhydroxy acid Polymers 0.000 description 2
- ZEGRKMXCOCRTCS-UHFFFAOYSA-N Poppy acid Chemical compound OC(=O)C1=CC(=O)C(O)=C(C(O)=O)O1 ZEGRKMXCOCRTCS-UHFFFAOYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 239000004146 Propane-1,2-diol Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 2
- JVWLUVNSQYXYBE-UHFFFAOYSA-N Ribitol Natural products OCC(C)C(O)C(O)CO JVWLUVNSQYXYBE-UHFFFAOYSA-N 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- OVVGHDNPYGTYIT-VHBGUFLRSA-N Robinobiose Natural products O(C[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)O1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](C)O1 OVVGHDNPYGTYIT-VHBGUFLRSA-N 0.000 description 2
- HAIWUXASLYEWLM-AZEWMMITSA-N Sedoheptulose Natural products OC[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@](O)(CO)O1 HAIWUXASLYEWLM-AZEWMMITSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- HIWPGCMGAMJNRG-ACCAVRKYSA-N Sophorose Natural products O([C@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HIWPGCMGAMJNRG-ACCAVRKYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- DRQXUCVJDCRJDB-UHFFFAOYSA-N Turanose Natural products OC1C(CO)OC(O)(CO)C1OC1C(O)C(O)C(O)C(CO)O1 DRQXUCVJDCRJDB-UHFFFAOYSA-N 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 229960000669 acetylleucine Drugs 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000001334 alicyclic compounds Chemical class 0.000 description 2
- 150000007824 aliphatic compounds Chemical class 0.000 description 2
- 150000004716 alpha keto acids Chemical class 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- LHAOFBCHXGZGOR-NAVBLJQLSA-N alpha-D-Manp-(1->3)-alpha-D-Manp-(1->2)-alpha-D-Manp Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@@H](O[C@@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1 LHAOFBCHXGZGOR-NAVBLJQLSA-N 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 2
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 229960004567 aminohippuric acid Drugs 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- GCAIEATUVJFSMC-UHFFFAOYSA-N benzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1C(O)=O GCAIEATUVJFSMC-UHFFFAOYSA-N 0.000 description 2
- GGNQRNBDZQJCCN-UHFFFAOYSA-N benzene-1,2,4-triol Chemical compound OC1=CC=C(O)C(O)=C1 GGNQRNBDZQJCCN-UHFFFAOYSA-N 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- VWPUAXALDFFXJW-UHFFFAOYSA-N benzenehexol Chemical compound OC1=C(O)C(O)=C(O)C(O)=C1O VWPUAXALDFFXJW-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- DLRVVLDZNNYCBX-ZZFZYMBESA-N beta-melibiose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)O1 DLRVVLDZNNYCBX-ZZFZYMBESA-N 0.000 description 2
- HIWPGCMGAMJNRG-UHFFFAOYSA-N beta-sophorose Natural products OC1C(O)C(CO)OC(O)C1OC1C(O)C(O)C(O)C(CO)O1 HIWPGCMGAMJNRG-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- NAJAZZSIKSSBGH-UHFFFAOYSA-N butane-1,1,1,2-tetracarboxylic acid Chemical compound CCC(C(O)=O)C(C(O)=O)(C(O)=O)C(O)=O NAJAZZSIKSSBGH-UHFFFAOYSA-N 0.000 description 2
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- 239000001191 butyl (2R)-2-hydroxypropanoate Substances 0.000 description 2
- VFGRALUHHHDIQI-UHFFFAOYSA-N butyl 2-hydroxyacetate Chemical compound CCCCOC(=O)CO VFGRALUHHHDIQI-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 238000001833 catalytic reforming Methods 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 229940013361 cresol Drugs 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 150000001923 cyclic compounds Chemical class 0.000 description 2
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 2
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 2
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- JBDSSBMEKXHSJF-UHFFFAOYSA-N cyclopentanecarboxylic acid Chemical compound OC(=O)C1CCCC1 JBDSSBMEKXHSJF-UHFFFAOYSA-N 0.000 description 2
- 229940061632 dehydroacetic acid Drugs 0.000 description 2
- 235000019258 dehydroacetic acid Nutrition 0.000 description 2
- OUWSNHWQZPEFEX-UHFFFAOYSA-N diethyl glutarate Chemical compound CCOC(=O)CCCC(=O)OCC OUWSNHWQZPEFEX-UHFFFAOYSA-N 0.000 description 2
- VKNUORWMCINMRB-UHFFFAOYSA-N diethyl malate Chemical compound CCOC(=O)CC(O)C(=O)OCC VKNUORWMCINMRB-UHFFFAOYSA-N 0.000 description 2
- FFYPMLJYZAEMQB-UHFFFAOYSA-N diethyl pyrocarbonate Chemical compound CCOC(=O)OC(=O)OCC FFYPMLJYZAEMQB-UHFFFAOYSA-N 0.000 description 2
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 2
- YSAVZVORKRDODB-WDSKDSINSA-N diethyl tartrate Chemical compound CCOC(=O)[C@@H](O)[C@H](O)C(=O)OCC YSAVZVORKRDODB-WDSKDSINSA-N 0.000 description 2
- 229940120503 dihydroxyacetone Drugs 0.000 description 2
- XEBCWEDRGPSHQH-UHFFFAOYSA-N diisopropyl tartrate Chemical compound CC(C)OC(=O)C(O)C(O)C(=O)OC(C)C XEBCWEDRGPSHQH-UHFFFAOYSA-N 0.000 description 2
- PVRATXCXJDHJJN-UHFFFAOYSA-N dimethyl 2,3-dihydroxybutanedioate Chemical compound COC(=O)C(O)C(O)C(=O)OC PVRATXCXJDHJJN-UHFFFAOYSA-N 0.000 description 2
- NFOQJNGQQXICBY-UHFFFAOYSA-N dimethyl 2-methylbutanedioate Chemical compound COC(=O)CC(C)C(=O)OC NFOQJNGQQXICBY-UHFFFAOYSA-N 0.000 description 2
- YIJLMTNDXYVGPQ-UHFFFAOYSA-N dimethyl 3-methylpentanedioate Chemical compound COC(=O)CC(C)CC(=O)OC YIJLMTNDXYVGPQ-UHFFFAOYSA-N 0.000 description 2
- 239000004316 dimethyl dicarbonate Substances 0.000 description 2
- 235000010300 dimethyl dicarbonate Nutrition 0.000 description 2
- BEPAFCGSDWSTEL-UHFFFAOYSA-N dimethyl malonate Chemical compound COC(=O)CC(=O)OC BEPAFCGSDWSTEL-UHFFFAOYSA-N 0.000 description 2
- XTDYIOOONNVFMA-UHFFFAOYSA-N dimethyl pentanedioate Chemical compound COC(=O)CCCC(=O)OC XTDYIOOONNVFMA-UHFFFAOYSA-N 0.000 description 2
- XYVHRFVONMVDGK-UHFFFAOYSA-N dipropan-2-yl 2-hydroxybutanedioate Chemical compound CC(C)OC(=O)CC(O)C(=O)OC(C)C XYVHRFVONMVDGK-UHFFFAOYSA-N 0.000 description 2
- FVVCFHXLWDDRHG-KKNDGLDKSA-N erlose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@@H](CO)O1 FVVCFHXLWDDRHG-KKNDGLDKSA-N 0.000 description 2
- 235000010350 erythorbic acid Nutrition 0.000 description 2
- 239000004318 erythorbic acid Substances 0.000 description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 2
- 235000019414 erythritol Nutrition 0.000 description 2
- 229940009714 erythritol Drugs 0.000 description 2
- UQPHVQVXLPRNCX-UHFFFAOYSA-N erythrulose Chemical compound OCC(O)C(=O)CO UQPHVQVXLPRNCX-UHFFFAOYSA-N 0.000 description 2
- ZANNOFHADGWOLI-UHFFFAOYSA-N ethyl 2-hydroxyacetate Chemical compound CCOC(=O)CO ZANNOFHADGWOLI-UHFFFAOYSA-N 0.000 description 2
- HCPOCMMGKBZWSJ-UHFFFAOYSA-N ethyl 3-hydrazinyl-3-oxopropanoate Chemical compound CCOC(=O)CC(=O)NN HCPOCMMGKBZWSJ-UHFFFAOYSA-N 0.000 description 2
- SAXHIDRUJXPDOD-UHFFFAOYSA-N ethyl hydroxy(phenyl)acetate Chemical compound CCOC(=O)C(O)C1=CC=CC=C1 SAXHIDRUJXPDOD-UHFFFAOYSA-N 0.000 description 2
- 229940116333 ethyl lactate Drugs 0.000 description 2
- 229940093503 ethyl maltol Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- SKCKOFZKJLZSFA-FSIIMWSLSA-N fucitol Chemical compound C[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO SKCKOFZKJLZSFA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-GUCUJZIJSA-N galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- MUPFEKGTMRGPLJ-WSCXOGSTSA-N gentianose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-WSCXOGSTSA-N 0.000 description 2
- DLRVVLDZNNYCBX-CQUJWQHSSA-N gentiobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O)O1 DLRVVLDZNNYCBX-CQUJWQHSSA-N 0.000 description 2
- 229940113087 geraniol Drugs 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical compound OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 229960004275 glycolic acid Drugs 0.000 description 2
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- HQCIDICSTHKZGB-UHFFFAOYSA-N hexane-2,2,4-triol Chemical compound CCC(O)CC(C)(O)O HQCIDICSTHKZGB-UHFFFAOYSA-N 0.000 description 2
- SAMYCKUDTNLASP-UHFFFAOYSA-N hexane-2,2-diol Chemical compound CCCCC(C)(O)O SAMYCKUDTNLASP-UHFFFAOYSA-N 0.000 description 2
- IGMNYECMUMZDDF-UHFFFAOYSA-N homogentisic acid Chemical compound OC(=O)CC1=CC(O)=CC=C1O IGMNYECMUMZDDF-UHFFFAOYSA-N 0.000 description 2
- OEJZZCGRGVFWHK-UHFFFAOYSA-N homoisocitric acid Chemical compound OC(=O)C(O)C(C(O)=O)CCC(O)=O OEJZZCGRGVFWHK-UHFFFAOYSA-N 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000002453 idose derivatives Chemical class 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 150000002469 indenes Chemical class 0.000 description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 2
- 229960000367 inositol Drugs 0.000 description 2
- UVEIHXHNEIMXTD-VORSWSGSSA-N inulotriose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C(=O)CO[C@]1(CO[C@]2(CO)O[C@H](CO)[C@@H](O)[C@@H]2O)O[C@H](CO)[C@@H](O)[C@@H]1O UVEIHXHNEIMXTD-VORSWSGSSA-N 0.000 description 2
- 229940026239 isoascorbic acid Drugs 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-M isobutyrate Chemical compound CC(C)C([O-])=O KQNPFQTWMSNSAP-UHFFFAOYSA-M 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- DLRVVLDZNNYCBX-RTPHMHGBSA-N isomaltose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O)O1 DLRVVLDZNNYCBX-RTPHMHGBSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- PZDOWFGHCNHPQD-OQPGPFOOSA-N kojibiose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PZDOWFGHCNHPQD-OQPGPFOOSA-N 0.000 description 2
- BEJNERDRQOWKJM-UHFFFAOYSA-N kojic acid Chemical compound OCC1=CC(=O)C(O)=CO1 BEJNERDRQOWKJM-UHFFFAOYSA-N 0.000 description 2
- 229960004705 kojic acid Drugs 0.000 description 2
- WZNJWVWKTVETCG-UHFFFAOYSA-N kojic acid Natural products OC(=O)C(N)CN1C=CC(=O)C(O)=C1 WZNJWVWKTVETCG-UHFFFAOYSA-N 0.000 description 2
- 239000000832 lactitol Substances 0.000 description 2
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 2
- 235000010448 lactitol Nutrition 0.000 description 2
- 229960003451 lactitol Drugs 0.000 description 2
- JCQLYHFGKNRPGE-FCVZTGTOSA-N lactulose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 JCQLYHFGKNRPGE-FCVZTGTOSA-N 0.000 description 2
- 229960000511 lactulose Drugs 0.000 description 2
- PFCRQPBOOFTZGQ-UHFFFAOYSA-N lactulose keto form Natural products OCC(=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O PFCRQPBOOFTZGQ-UHFFFAOYSA-N 0.000 description 2
- QIGJYVCQYDKYDW-LCOYTZNXSA-N laminarabiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1O QIGJYVCQYDKYDW-LCOYTZNXSA-N 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 239000000845 maltitol Substances 0.000 description 2
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 2
- 235000010449 maltitol Nutrition 0.000 description 2
- 229940035436 maltitol Drugs 0.000 description 2
- 229940043353 maltol Drugs 0.000 description 2
- JCQLYHFGKNRPGE-HFZVAGMNSA-N maltulose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JCQLYHFGKNRPGE-HFZVAGMNSA-N 0.000 description 2
- MAGPZHKLEZXLNU-UHFFFAOYSA-N mandelamide Chemical compound NC(=O)C(O)C1=CC=CC=C1 MAGPZHKLEZXLNU-UHFFFAOYSA-N 0.000 description 2
- LIVNCPMCQTZXRZ-UHFFFAOYSA-N meconic acid Natural products CC(=O)C1=CC(=O)C(O)=C(C(C)=O)O1 LIVNCPMCQTZXRZ-UHFFFAOYSA-N 0.000 description 2
- QWIZNVHXZXRPDR-WSCXOGSTSA-N melezitose Chemical compound O([C@@]1(O[C@@H]([C@H]([C@@H]1O[C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O)CO)CO)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O QWIZNVHXZXRPDR-WSCXOGSTSA-N 0.000 description 2
- 229940041616 menthol Drugs 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- TXXHDPDFNKHHGW-UHFFFAOYSA-N muconic acid Chemical compound OC(=O)C=CC=CC(O)=O TXXHDPDFNKHHGW-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- QIGJYVCQYDKYDW-NSYYTRPSSA-N nigerose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1O QIGJYVCQYDKYDW-NSYYTRPSSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 2
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- ZCLAHGAZPPEVDX-MQHGYYCBSA-N panose Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@@H](O[C@H]([C@H](O)CO)[C@H](O)[C@@H](O)C=O)O[C@@H]1CO[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 ZCLAHGAZPPEVDX-MQHGYYCBSA-N 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pent-2-ene Chemical class CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N pentadiene group Chemical class C=CC=CC PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- WCVRQHFDJLLWFE-UHFFFAOYSA-N pentane-1,2-diol Chemical compound CCCC(O)CO WCVRQHFDJLLWFE-UHFFFAOYSA-N 0.000 description 2
- RUOPINZRYMFPBF-UHFFFAOYSA-N pentane-1,3-diol Chemical compound CCC(O)CCO RUOPINZRYMFPBF-UHFFFAOYSA-N 0.000 description 2
- JJAIIULJXXEFLV-UHFFFAOYSA-N pentane-2,3,4-triol Chemical compound CC(O)C(O)C(C)O JJAIIULJXXEFLV-UHFFFAOYSA-N 0.000 description 2
- XLMFDCKSFJWJTP-UHFFFAOYSA-N pentane-2,3-diol Chemical compound CCC(O)C(C)O XLMFDCKSFJWJTP-UHFFFAOYSA-N 0.000 description 2
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 2
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 2
- 229960001553 phloroglucinol Drugs 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 229940079877 pyrogallol Drugs 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 2
- 238000000066 reactive distillation Methods 0.000 description 2
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 description 2
- OVVGHDNPYGTYIT-PEPLWKDOSA-N robinose Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1OC[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@H](O)O1 OVVGHDNPYGTYIT-PEPLWKDOSA-N 0.000 description 2
- OVVGHDNPYGTYIT-BNXXONSGSA-N rutinose Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)O1 OVVGHDNPYGTYIT-BNXXONSGSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 2
- HSNZZMHEPUFJNZ-SHUUEZRQSA-N sedoheptulose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(=O)CO HSNZZMHEPUFJNZ-SHUUEZRQSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- PCMORTLOPMLEFB-ONEGZZNKSA-N sinapic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-ONEGZZNKSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- PZDOWFGHCNHPQD-VNNZMYODSA-N sophorose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PZDOWFGHCNHPQD-VNNZMYODSA-N 0.000 description 2
- JMSVCTWVEWCHDZ-UHFFFAOYSA-N syringic acid Chemical compound COC1=CC(C(O)=O)=CC(OC)=C1O JMSVCTWVEWCHDZ-UHFFFAOYSA-N 0.000 description 2
- ODBLHEXUDAPZAU-UHFFFAOYSA-N threo-D-isocitric acid Natural products OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 2
- UAXOELSVPTZZQG-UHFFFAOYSA-N tiglic acid Natural products CC(C)=C(C)C(O)=O UAXOELSVPTZZQG-UHFFFAOYSA-N 0.000 description 2
- QAIPRVGONGVQAS-DUXPYHPUSA-N trans-caffeic acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-DUXPYHPUSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- NMXLJRHBJVMYPD-IPFGBZKGSA-N trehalulose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@]1(O)CO[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 NMXLJRHBJVMYPD-IPFGBZKGSA-N 0.000 description 2
- HDDLVZWGOPWKFW-UHFFFAOYSA-N trimethyl 2-hydroxypropane-1,2,3-tricarboxylate Chemical compound COC(=O)CC(O)(C(=O)OC)CC(=O)OC HDDLVZWGOPWKFW-UHFFFAOYSA-N 0.000 description 2
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- RULSWEULPANCDV-PIXUTMIVSA-N turanose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](C(=O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O RULSWEULPANCDV-PIXUTMIVSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- OXQKEKGBFMQTML-KVTDHHQDSA-N volemitol Chemical compound OC[C@@H](O)[C@@H](O)C(O)[C@H](O)[C@H](O)CO OXQKEKGBFMQTML-KVTDHHQDSA-N 0.000 description 2
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- HQFMTRMPFIZQJF-MBBOGVHQSA-N (3r,4s,5s,6r)-2-[(2r,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-6-[[(2r,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxymethyl]oxane-3,4,5-triol Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O[C@@]2(CO)[C@H]([C@H](O)[C@@H](CO)O2)O)O1 HQFMTRMPFIZQJF-MBBOGVHQSA-N 0.000 description 1
- ACEAELOMUCBPJP-UHFFFAOYSA-N (E)-3,4,5-trihydroxycinnamic acid Natural products OC(=O)C=CC1=CC(O)=C(O)C(O)=C1 ACEAELOMUCBPJP-UHFFFAOYSA-N 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-M (E)-Ferulic acid Natural products COC1=CC(\C=C\C([O-])=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-M 0.000 description 1
- XVOUMQNXTGKGMA-OWOJBTEDSA-N (E)-glutaconic acid Chemical compound OC(=O)C\C=C\C(O)=O XVOUMQNXTGKGMA-OWOJBTEDSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- YFOOEYJGMMJJLS-UHFFFAOYSA-N 1,8-diaminonaphthalene Chemical compound C1=CC(N)=C2C(N)=CC=CC2=C1 YFOOEYJGMMJJLS-UHFFFAOYSA-N 0.000 description 1
- ZOASGOXWEHUTKZ-UHFFFAOYSA-N 1-(Methylthio)-propane Chemical compound CCCSC ZOASGOXWEHUTKZ-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- AGRIQBHIKABLPJ-UHFFFAOYSA-N 1-Pyrrolidinecarboxaldehyde Chemical compound O=CN1CCCC1 AGRIQBHIKABLPJ-UHFFFAOYSA-N 0.000 description 1
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 1
- KYNFOMQIXZUKRK-UHFFFAOYSA-N 2,2'-dithiodiethanol Chemical compound OCCSSCCO KYNFOMQIXZUKRK-UHFFFAOYSA-N 0.000 description 1
- HDIJZFORGDBEKL-UHFFFAOYSA-N 2,3,4-trimethylbenzoic acid Chemical compound CC1=CC=C(C(O)=O)C(C)=C1C HDIJZFORGDBEKL-UHFFFAOYSA-N 0.000 description 1
- CDULGHZNHURECF-UHFFFAOYSA-N 2,3-dimethylaniline 2,4-dimethylaniline 2,5-dimethylaniline 2,6-dimethylaniline 3,4-dimethylaniline 3,5-dimethylaniline Chemical class CC1=CC=C(N)C(C)=C1.CC1=CC=C(C)C(N)=C1.CC1=CC(C)=CC(N)=C1.CC1=CC=C(N)C=C1C.CC1=CC=CC(N)=C1C.CC1=CC=CC(C)=C1N CDULGHZNHURECF-UHFFFAOYSA-N 0.000 description 1
- RIZUCYSQUWMQLX-UHFFFAOYSA-N 2,3-dimethylbenzoic acid Chemical compound CC1=CC=CC(C(O)=O)=C1C RIZUCYSQUWMQLX-UHFFFAOYSA-N 0.000 description 1
- QONLASGFBWKWIH-UHFFFAOYSA-N 2,5-dihydrofuran-3,4-dicarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)COC1 QONLASGFBWKWIH-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- RZWGTXHSYZGXKF-UHFFFAOYSA-N 2-(2-methylphenyl)acetic acid Chemical compound CC1=CC=CC=C1CC(O)=O RZWGTXHSYZGXKF-UHFFFAOYSA-N 0.000 description 1
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 1
- OXQGTIUCKGYOAA-UHFFFAOYSA-N 2-Ethylbutanoic acid Chemical compound CCC(CC)C(O)=O OXQGTIUCKGYOAA-UHFFFAOYSA-N 0.000 description 1
- UIERETOOQGIECD-ARJAWSKDSA-M 2-Methyl-2-butenoic acid Natural products C\C=C(\C)C([O-])=O UIERETOOQGIECD-ARJAWSKDSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- CGMMPMYKMDITEA-UHFFFAOYSA-N 2-ethylbenzoic acid Chemical compound CCC1=CC=CC=C1C(O)=O CGMMPMYKMDITEA-UHFFFAOYSA-N 0.000 description 1
- RVHOBHMAPRVOLO-UHFFFAOYSA-N 2-ethylbutanedioic acid Chemical compound CCC(C(O)=O)CC(O)=O RVHOBHMAPRVOLO-UHFFFAOYSA-N 0.000 description 1
- RLHGFJMGWQXPBW-UHFFFAOYSA-N 2-hydroxy-3-(1h-imidazol-5-ylmethyl)benzamide Chemical compound NC(=O)C1=CC=CC(CC=2NC=NC=2)=C1O RLHGFJMGWQXPBW-UHFFFAOYSA-N 0.000 description 1
- WFAFGNCZWMJZCK-UHFFFAOYSA-N 2-hydroxy-n-methylacetamide Chemical compound CNC(=O)CO WFAFGNCZWMJZCK-UHFFFAOYSA-N 0.000 description 1
- UFSWGVBXXHBOPX-UHFFFAOYSA-N 2-hydroxypropanoic acid;methyl 2-hydroxypropanoate Chemical compound CC(O)C(O)=O.COC(=O)C(C)O UFSWGVBXXHBOPX-UHFFFAOYSA-N 0.000 description 1
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 1
- WLJVXDMOQOGPHL-PPJXEINESA-N 2-phenylacetic acid Chemical compound O[14C](=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-PPJXEINESA-N 0.000 description 1
- LVFFZQQWIZURIO-UHFFFAOYSA-N 2-phenylbutanedioic acid Chemical compound OC(=O)CC(C(O)=O)C1=CC=CC=C1 LVFFZQQWIZURIO-UHFFFAOYSA-N 0.000 description 1
- ZPSJGADGUYYRKE-UHFFFAOYSA-N 2H-pyran-2-one Chemical compound O=C1C=CC=CO1 ZPSJGADGUYYRKE-UHFFFAOYSA-N 0.000 description 1
- DAUAQNGYDSHRET-UHFFFAOYSA-N 3,4-dimethoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1OC DAUAQNGYDSHRET-UHFFFAOYSA-N 0.000 description 1
- HJBWJAPEBGSQPR-GQCTYLIASA-N 3,4-dimethoxycinnamic acid Chemical compound COC1=CC=C(\C=C\C(O)=O)C=C1OC HJBWJAPEBGSQPR-GQCTYLIASA-N 0.000 description 1
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- LEVONNIFUFSRKZ-UHFFFAOYSA-N 3-(carboxymethyl)-2,2-dimethylcyclobutane-1-carboxylic acid Chemical compound CC1(C)C(CC(O)=O)CC1C(O)=O LEVONNIFUFSRKZ-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- FVMDYYGIDFPZAX-UHFFFAOYSA-N 3-hydroxyphenylacetic acid Chemical compound OC(=O)CC1=CC=CC(O)=C1 FVMDYYGIDFPZAX-UHFFFAOYSA-N 0.000 description 1
- SMGLHFBQMBVRCP-UHFFFAOYSA-N 3-hydroxypropanamide Chemical compound NC(=O)CCO SMGLHFBQMBVRCP-UHFFFAOYSA-N 0.000 description 1
- FHSUFDYFOHSYHI-UHFFFAOYSA-N 3-oxopentanoic acid Chemical compound CCC(=O)CC(O)=O FHSUFDYFOHSYHI-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-M 4-hydroxybenzoate Chemical compound OC1=CC=C(C([O-])=O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-M 0.000 description 1
- 229940006015 4-hydroxybutyric acid Drugs 0.000 description 1
- KKADPXVIOXHVKN-UHFFFAOYSA-N 4-hydroxyphenylpyruvic acid Chemical compound OC(=O)C(=O)CC1=CC=C(O)C=C1 KKADPXVIOXHVKN-UHFFFAOYSA-N 0.000 description 1
- 239000001142 4-methyl-2-oxopentanoic acid Substances 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- HOSGXJWQVBHGLT-UHFFFAOYSA-N 6-hydroxy-3,4-dihydro-1h-quinolin-2-one Chemical group N1C(=O)CCC2=CC(O)=CC=C21 HOSGXJWQVBHGLT-UHFFFAOYSA-N 0.000 description 1
- MAUFTTLGOUBZNA-UHFFFAOYSA-N 6-n-Pentyl-alpha-pyrone Chemical compound CCCCCC1=CC=CC(=O)O1 MAUFTTLGOUBZNA-UHFFFAOYSA-N 0.000 description 1
- GHBSPIPJMLAMEP-UHFFFAOYSA-N 6-pentyloxan-2-one Chemical compound CCCCCC1CCCC(=O)O1 GHBSPIPJMLAMEP-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- LIAWQASKBFCRNR-UHFFFAOYSA-N Bucetin Chemical compound CCOC1=CC=C(NC(=O)CC(C)O)C=C1 LIAWQASKBFCRNR-UHFFFAOYSA-N 0.000 description 1
- RPYGNGNSGIZECM-FYZOBXCZSA-N C(C[C@@](O)(C)CCO)(=O)O.OC(CC(=O)O)(CCO)C Chemical compound C(C[C@@](O)(C)CCO)(=O)O.OC(CC(=O)O)(CCO)C RPYGNGNSGIZECM-FYZOBXCZSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- QCDFBFJGMNKBDO-UHFFFAOYSA-N Clioquinol Chemical compound C1=CN=C2C(O)=C(I)C=C(Cl)C2=C1 QCDFBFJGMNKBDO-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LKDRXBCSQODPBY-OEXCPVAWSA-N D-tagatose Chemical compound OCC1(O)OC[C@@H](O)[C@H](O)[C@@H]1O LKDRXBCSQODPBY-OEXCPVAWSA-N 0.000 description 1
- HJBWJAPEBGSQPR-UHFFFAOYSA-N DMCA Natural products COC1=CC=C(C=CC(O)=O)C=C1OC HJBWJAPEBGSQPR-UHFFFAOYSA-N 0.000 description 1
- DKMROQRQHGEIOW-UHFFFAOYSA-N Diethyl succinate Chemical compound CCOC(=O)CCC(=O)OCC DKMROQRQHGEIOW-UHFFFAOYSA-N 0.000 description 1
- ZERULLAPCVRMCO-UHFFFAOYSA-N Dipropyl sulfide Chemical compound CCCSCCC ZERULLAPCVRMCO-UHFFFAOYSA-N 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ZDGJAHTZVHVLOT-UHFFFAOYSA-N L-Saccharopine Natural products OC(=O)C(N)CCCCNC(C(O)=O)CCC(O)=O ZDGJAHTZVHVLOT-UHFFFAOYSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AEFLONBTGZFSGQ-VKHMYHEASA-N L-isoglutamine Chemical compound NC(=O)[C@@H](N)CCC(O)=O AEFLONBTGZFSGQ-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- ZFOMKMMPBOQKMC-KXUCPTDWSA-N L-pyrrolysine Chemical compound C[C@@H]1CC=N[C@H]1C(=O)NCCCC[C@H]([NH3+])C([O-])=O ZFOMKMMPBOQKMC-KXUCPTDWSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- TXXHDPDFNKHHGW-CCAGOZQPSA-N Muconic acid Natural products OC(=O)\C=C/C=C\C(O)=O TXXHDPDFNKHHGW-CCAGOZQPSA-N 0.000 description 1
- MGJKQDOBUOMPEZ-UHFFFAOYSA-N N,N'-dimethylurea Chemical compound CNC(=O)NC MGJKQDOBUOMPEZ-UHFFFAOYSA-N 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-GSVOUGTGSA-N Pyroglutamic acid Natural products OC(=O)[C@H]1CCC(=O)N1 ODHCTXKNWHHXJC-GSVOUGTGSA-N 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- MUCRYNWJQNHDJH-OADIDDRXSA-N Ursonic acid Chemical compound C1CC(=O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C MUCRYNWJQNHDJH-OADIDDRXSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- GPVDHNVGGIAOQT-UHFFFAOYSA-N Veratric acid Natural products COC1=CC=C(C(O)=O)C(OC)=C1 GPVDHNVGGIAOQT-UHFFFAOYSA-N 0.000 description 1
- 229960001413 acetanilide Drugs 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- RRUDCFGSUDOHDG-UHFFFAOYSA-N acetohydroxamic acid Chemical compound CC(O)=NO RRUDCFGSUDOHDG-UHFFFAOYSA-N 0.000 description 1
- 229960001171 acetohydroxamic acid Drugs 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- UIERETOOQGIECD-ARJAWSKDSA-N angelic acid Chemical compound C\C=C(\C)C(O)=O UIERETOOQGIECD-ARJAWSKDSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- JRFMZTLWVBLNLM-UHFFFAOYSA-N benzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1.OC(=O)C1=CC=CC(C(O)=O)=C1 JRFMZTLWVBLNLM-UHFFFAOYSA-N 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical group C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- 150000004718 beta keto acids Chemical class 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 229960005470 bucetin Drugs 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- YTIVTFGABIZHHX-UHFFFAOYSA-N butynedioic acid Chemical compound OC(=O)C#CC(O)=O YTIVTFGABIZHHX-UHFFFAOYSA-N 0.000 description 1
- 235000004883 caffeic acid Nutrition 0.000 description 1
- 229940074360 caffeic acid Drugs 0.000 description 1
- 150000004650 carbonic acid diesters Chemical class 0.000 description 1
- 150000004651 carbonic acid esters Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- QAIPRVGONGVQAS-UHFFFAOYSA-N cis-caffeic acid Natural products OC(=O)C=CC1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-UHFFFAOYSA-N 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- KZZKOVLJUKWSKX-UHFFFAOYSA-N cyclobutanamine Chemical compound NC1CCC1 KZZKOVLJUKWSKX-UHFFFAOYSA-N 0.000 description 1
- VZFUCHSFHOYXIS-UHFFFAOYSA-N cycloheptane carboxylic acid Natural products OC(=O)C1CCCCCC1 VZFUCHSFHOYXIS-UHFFFAOYSA-N 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- PONXTPCRRASWKW-KBPBESRZSA-N diphenylethylenediamine Chemical compound C1([C@H](N)[C@@H](N)C=2C=CC=CC=2)=CC=CC=C1 PONXTPCRRASWKW-KBPBESRZSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- AIJZIRPGCQPZSL-UHFFFAOYSA-N ethylenetetracarboxylic acid Chemical compound OC(=O)C(C(O)=O)=C(C(O)=O)C(O)=O AIJZIRPGCQPZSL-UHFFFAOYSA-N 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- KSEBMYQBYZTDHS-HWKANZROSA-N ferulic acid Chemical compound COC1=CC(\C=C\C(O)=O)=CC=C1O KSEBMYQBYZTDHS-HWKANZROSA-N 0.000 description 1
- 235000001785 ferulic acid Nutrition 0.000 description 1
- 229940114124 ferulic acid Drugs 0.000 description 1
- KSEBMYQBYZTDHS-UHFFFAOYSA-N ferulic acid Natural products COC1=CC(C=CC(O)=O)=CC=C1O KSEBMYQBYZTDHS-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229960002870 gabapentin Drugs 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- XEUHNWODXVYLFD-UHFFFAOYSA-N heptanedioic acid Chemical compound OC(=O)CCCCCC(O)=O.OC(=O)CCCCCC(O)=O XEUHNWODXVYLFD-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid group Chemical group C(CCCCCC)(=O)O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- YVSCCMNRWFOKDU-UHFFFAOYSA-N hexanedioic acid Chemical compound OC(=O)CCCCC(O)=O.OC(=O)CCCCC(O)=O YVSCCMNRWFOKDU-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- LDHQCZJRKDOVOX-IHWYPQMZSA-N isocrotonic acid Chemical compound C\C=C/C(O)=O LDHQCZJRKDOVOX-IHWYPQMZSA-N 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229940040102 levulinic acid Drugs 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 150000002730 mercury Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NKVMCSDLYHGDMD-UHFFFAOYSA-N methanetetracarboxylic acid Chemical compound OC(=O)C(C(O)=O)(C(O)=O)C(O)=O NKVMCSDLYHGDMD-UHFFFAOYSA-N 0.000 description 1
- RMIODHQZRUFFFF-UHFFFAOYSA-N methoxyacetic acid Chemical compound COCC(O)=O RMIODHQZRUFFFF-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- UNBDDZDKBWPHAX-UHFFFAOYSA-N n,n-di(propan-2-yl)formamide Chemical compound CC(C)N(C=O)C(C)C UNBDDZDKBWPHAX-UHFFFAOYSA-N 0.000 description 1
- NZMAJUHVSZBJHL-UHFFFAOYSA-N n,n-dibutylformamide Chemical compound CCCCN(C=O)CCCC NZMAJUHVSZBJHL-UHFFFAOYSA-N 0.000 description 1
- RZCCQWOCSZOHMQ-UHFFFAOYSA-N n,n-diethyl-2-hydroxyacetamide Chemical compound CCN(CC)C(=O)CO RZCCQWOCSZOHMQ-UHFFFAOYSA-N 0.000 description 1
- VMOWKUTXPNPTEN-UHFFFAOYSA-N n,n-dimethylpropan-2-amine Chemical compound CC(C)N(C)C VMOWKUTXPNPTEN-UHFFFAOYSA-N 0.000 description 1
- DCNUQRBLZWSGAV-UHFFFAOYSA-N n,n-diphenylformamide Chemical compound C=1C=CC=CC=1N(C=O)C1=CC=CC=C1 DCNUQRBLZWSGAV-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- GHVUKOCVBVUUGS-UHFFFAOYSA-N n-ethyl-n-methylpropanamide Chemical compound CCN(C)C(=O)CC GHVUKOCVBVUUGS-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- CCBCHURBDSNSTJ-UHFFFAOYSA-N n-hydroxybutanamide Chemical compound CCCC(=O)NO CCBCHURBDSNSTJ-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- HQFMTRMPFIZQJF-UAEIHXJMSA-N neokestose Natural products OC[C@H]1O[C@@](CO)(OC[C@H]2O[C@@H](O[C@]3(CO)O[C@H](CO)[C@@H](O)[C@@H]3O)[C@H](O)[C@@H](O)[C@@H]2O)[C@@H](O)[C@@H]1O HQFMTRMPFIZQJF-UAEIHXJMSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- WPBWJEYRHXACLR-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O.OC(=O)CCCCCCCC(O)=O WPBWJEYRHXACLR-UHFFFAOYSA-N 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- TWHMVKPVFOOAMY-UHFFFAOYSA-N octanedioic acid Chemical compound OC(=O)CCCCCCC(O)=O.OC(=O)CCCCCCC(O)=O TWHMVKPVFOOAMY-UHFFFAOYSA-N 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 229940039748 oxalate Drugs 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 235000019371 penicillin G benzathine Nutrition 0.000 description 1
- 125000004817 pentamethylene group Chemical class [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 150000003140 primary amides Chemical class 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- UORVCLMRJXCDCP-UHFFFAOYSA-N propynoic acid Chemical compound OC(=O)C#C UORVCLMRJXCDCP-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 150000003334 secondary amides Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- JXOHGGNKMLTUBP-HSUXUTPPSA-N shikimic acid Chemical compound O[C@@H]1CC(C(O)=O)=C[C@@H](O)[C@H]1O JXOHGGNKMLTUBP-HSUXUTPPSA-N 0.000 description 1
- JXOHGGNKMLTUBP-JKUQZMGJSA-N shikimic acid Natural products O[C@@H]1CC(C(O)=O)=C[C@H](O)[C@@H]1O JXOHGGNKMLTUBP-JKUQZMGJSA-N 0.000 description 1
- PCMORTLOPMLEFB-UHFFFAOYSA-N sinapinic acid Natural products COC1=CC(C=CC(O)=O)=CC(OC)=C1O PCMORTLOPMLEFB-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 description 1
- 229940039790 sodium oxalate Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- YIBXWXOYFGZLRU-UHFFFAOYSA-N syringic aldehyde Natural products CC12CCC(C3(CCC(=O)C(C)(C)C3CC=3)C)C=3C1(C)CCC2C1COC(C)(C)C(O)C(O)C1 YIBXWXOYFGZLRU-UHFFFAOYSA-N 0.000 description 1
- ZWPWUVNMFVVHHE-UHFFFAOYSA-N terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1.OC(=O)C1=CC=C(C(O)=O)C=C1 ZWPWUVNMFVVHHE-UHFFFAOYSA-N 0.000 description 1
- IXXMVXXFAJGOQO-UHFFFAOYSA-N tert-butyl 2-hydroxypropanoate Chemical compound CC(O)C(=O)OC(C)(C)C IXXMVXXFAJGOQO-UHFFFAOYSA-N 0.000 description 1
- 150000003511 tertiary amides Chemical class 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- UJJLJRQIPMGXEZ-UHFFFAOYSA-N tetrahydro-2-furoic acid Chemical compound OC(=O)C1CCCO1 UJJLJRQIPMGXEZ-UHFFFAOYSA-N 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- UIERETOOQGIECD-ONEGZZNKSA-N tiglic acid Chemical compound C\C=C(/C)C(O)=O UIERETOOQGIECD-ONEGZZNKSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- QURCVMIEKCOAJU-UHFFFAOYSA-N trans-isoferulic acid Natural products COC1=CC=C(C=CC(O)=O)C=C1O QURCVMIEKCOAJU-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- QENJZWZWAWWESF-UHFFFAOYSA-N tri-methylbenzoic acid Natural products CC1=CC(C)=C(C(O)=O)C=C1C QENJZWZWAWWESF-UHFFFAOYSA-N 0.000 description 1
- NFJBLNUDISAJPD-UHFFFAOYSA-N triethyl 2-hydroxypropane-1,2,3-tricarboxylate trimethyl 2-hydroxypropane-1,2,3-tricarboxylate Chemical compound C(CC(O)(C(=O)OCC)CC(=O)OCC)(=O)OCC.C(CC(O)(C(=O)OC)CC(=O)OC)(=O)OC NFJBLNUDISAJPD-UHFFFAOYSA-N 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 1
- 229960000604 valproic acid Drugs 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N xylylenediamine group Chemical group C=1(C(=CC=CC1)CN)CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- 150000003953 γ-lactams Chemical class 0.000 description 1
- 150000003955 ε-lactams Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/657—Pore diameter larger than 1000 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
- B01J35/695—Pore distribution polymodal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/021—After-treatment of oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/32—Selective hydrogenation of the diolefin or acetylene compounds
- C10G45/34—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
- C10G45/36—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/44—Hydrogenation of the aromatic hydrocarbons
- C10G45/46—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
- C10G45/48—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
Definitions
- the subject of the invention is a process for the particular preparation of a catalyst used in the selective hydrogenation of polyunsaturated compounds in a hydrocarbon feedstock, especially in C2-C5 steam cracking cuts and steam cracking gasolines, or in the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feed allowing the conversion of aromatic compounds of petroleum or petrochemical cuts by conversion of aromatic rings to naphthenic rings.
- the most active catalysts in hydrogenation reactions are conventionally based on noble metals such as palladium or platinum. These catalysts are used industrially in refining and in petrochemistry for the purification of certain petroleum fractions by hydrogenation, in particular in reactions of selective hydrogenation of polyunsaturated molecules such as diolefins, acetylenics or alkenylaromates, or in hydrogenation reactions. aromatic. It is often proposed to substitute palladium for nickel, a less active metal than palladium. It is therefore necessary to dispose of it in greater quantity in the catalyst.
- the nickel-based catalysts generally have a metal content of between 5 and 60% by weight of nickel relative to the total weight of the catalyst.
- the speed of the hydrogenation reaction is governed by several criteria, such as the diffusion of the reagents on the surface of the catalyst (external diffusional limitations), the diffusion of the reagents in the porosity of the support towards the active sites (internal diffusion limitations) and the intrinsic properties of the active phase such as the size of the metal particles and the distribution of the active phase within the support.
- the porous distribution of the macropores and mesopores is adapted to the desired reaction in order to ensure the diffusion of the reagents in the porosity of the support towards the active sites as well as the diffusion of the formed products. outwards.
- SUBSTITUTE SHEET (RULE 26) As regards the size of the metal particles, it is generally accepted that the catalyst is all the more active as the size of the metal particles is small. In addition, it is important to obtain a particle size distribution centered on the optimum value and a narrow distribution around this value.
- the most conventional way of preparing these catalysts is the impregnation of the support with an aqueous solution of a nickel precursor, followed generally by drying and calcination. Before their use in hydrogenation reactions these catalysts are generally reduced in order to obtain the active phase which is in metallic form (that is to say in the zero valency state).
- the nickel-based catalysts on alumina prepared by a single impregnation step generally make it possible to attain nickel contents of between 12 and 15% by weight of nickel, depending on the pore volume of the alumina used.
- several successive impregnations are often necessary to obtain the desired nickel content, followed by at least one drying step, then possibly a calcination step between each impregnation. .
- the document WO201 1/080515 describes a catalyst based on nickel on alumina which is active in hydrogenation, especially aromatics, said catalyst having a nickel content greater than 35% by weight relative to the total weight of the catalyst, and a large nickel dispersion.
- the catalyst is prepared by at least four successive impregnations. The preparation of nickel catalysts having a high nickel content by the impregnation route thus involves a sequence of numerous steps which increases the associated manufacturing costs.
- coprecipitation Another route of preparation also used to obtain catalysts with a high nickel content is coprecipitation.
- the coprecipitation generally consists of a simultaneous casting in a batch reactor of both an aluminum salt (aluminum nitrate for example) and a nickel salt (nickel nitrate for example). Both salts precipitate simultaneously. Then calcination at high temperature is necessary to make the transition from alumina gel (boehmite for example) to alumina. By this preparation route, contents up to 70% by weight nickel are reached.
- Catalysts Prepared by coprecipitation are for example described in US 4,273,680, US 8,518,851 and US 2010/01 16717.
- Comalaxing generally consists of a mixture of a nickel salt with an alumina gel such as boehmite, said mixture being subsequently shaped, generally by extrusion, then dried and calcined.
- US 5,478,791 discloses a nickel-on-alumina catalyst having a nickel content of between 10 and 60% by weight and a nickel particle size of 15 to 60 nm, prepared by comalling a nickel compound. with an alumina gel, followed by shaping, drying and reduction.
- the application FR2984761 discloses a process for the preparation of a selective hydrogenation catalyst comprising a support and an active phase comprising a group VIII metal, said catalyst being prepared by a process comprising a step of impregnating a solution containing a Group VIII metal precursor and an organic additive, more particularly an organic compound having one to three carboxylic acid functions, a step of drying the impregnated support, and a step of calcining the dried support to obtain the catalyst.
- Document US2006 / 0149097 discloses a process for the hydrogenation of aromatic compounds of benzenepolycarboxylic acid type in the presence of a catalyst comprising an active phase comprising at least one Group VIII metal, which catalyst is prepared by a process comprising an impregnation step of a solution containing a group VIII metal precursor and a step of impregnating an organic additive of amine or amino acid type.
- the impregnation step of the organic additive may be carried out before or after the step of impregnating the active phase, or even simultaneously.
- a catalyst based on nickel supported on alumina prepared by comalaxing a calcined aluminous porous oxide with a solution comprising at least one nickel precursor and at least one additive of organic compounds type chosen from organic compounds comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function or at least one amine function, makes it possible to obtain performances in selective hydrogenation of polyunsaturated compounds or in hydrogenation of aromatic compounds in at least as good or better than the known methods of the state of the art.
- the resulting porous distribution of such a process of preparation by comalaxing makes it possible to provide a porosity particularly adapted to promote the diffusion of the reagents in the porous medium and then their reaction with the active phase.
- the advantage of a comparison compared to an impregnation is that significantly reduces any risk of partial blockage of the porosity of the support when the deposition of the active phase and thus the appearance of internal diffusion limitations.
- such a catalyst used in the context of a process for the selective hydrogenation of polyunsaturated compounds or a process for the hydrogenation of aromatic or polyaromatic compounds has the particularity of being able to contain high amounts of active phase.
- the fact of preparing the catalyst according to the invention by comalaxing makes it possible to strongly charge this catalyst in the active phase in a single pass.
- the catalyst obtained by the preparation method according to the invention is structurally distinguished from a catalyst obtained by simply impregnating a metal precursor on the alumina support in which the alumina forms the support and the active phase is introduced into the pores of this support.
- the preparation process according to the invention makes it possible to obtain a composite in which the nickel particles and the alumina are intimately mixed thus forming the structure of the catalyst with a porosity and an active phase content adapted to the desired reactions.
- the present invention firstly relates to a process for preparing a catalyst comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, and an active phase comprising nickel, said active phase not comprising a group VIB metal, the nickel content being between 1 and 65% by weight of said element relative to the total weight of the catalyst, said active phase being in the form of nickel particles having a diameter less than or equal to 18 nm, said catalyst comprising a total pore volume measured by mercury porosimetry greater than 0.10 ml / g, a mesoporous volume measured by mercury porosimetry greater than 0.10 ml / g, a measured macroporous volume by mercury porosimetry less than or equal to 0.6 ml / g, a median mesoporous diameter of between 3 and 25 nm, a macroporous median diameter of between 50 and 1500 nm, and a SBET specific surface area of between 20 and 400
- the aluminized calcined porous oxide obtained in step a) is kneaded with a solution resulting from a mixture of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amine function, or at least one amide function to obtain a paste, the molar ratio between said organic compound and the nickel element being between 0.01 and 5.0 mol / mol;
- step c) the shaped dough obtained in step c) is dried at a temperature below 250 ° C to obtain a dried catalyst
- a heat treatment of the dried catalyst obtained in step d) is carried out at a temperature of between 250 and 1000 ° C, in the presence or absence of water.
- said organic compound comprises at least one carboxylic acid function.
- said organic compound is chosen from monocarboxylic acids, dicarboxylic acids, tricarboxylic acids and tetracarboxylic acids.
- said organic compound comprises at least one alcohol function.
- said organic compound is chosen from:
- organic compounds comprising two alcohol functions; organic compounds chosen from diethylene glycol, triethylene glycol, tetraethylene glycol, or a polyethylene glycol having the formula H (OC 2 H 4 ) n OH with n greater than 4 and having an average molecular weight of less than 20000 g / mol; monosaccharides of formula C n (H 2 0) p with n between 3 and 12;
- said organic compound comprises at least one ester function.
- said organic compound is chosen from:
- organic compounds comprising at least two carboxylic acid ester functions
- organic compounds comprising at least one carboxylic acid ester function and at least one second functional group chosen from alcohols, ethers, ketones and aldehydes;
- said organic compound comprises at least one amide function.
- said organic compound is chosen from:
- organic compounds comprising at least one amide function and a carboxylic acid function or an alcohol function
- organic compounds comprising at least one amide function and an additional nitrogen heteroatom.
- aluminized porous oxide calcined according to step a) is obtained by the following steps:
- a1) a first step of precipitation, in an aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, and of at least one acidic precursor chosen from aluminum sulphate, aluminum chloride and nitrate of aluminum, sulfuric acid, hydrochloric acid and nitric acid, in which at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a degree of progression of the first stage of between 5 and 13%, the degree of progress being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the end of step a3) of the process preparation, said step operating at a temperature between 20 and 90 ° C and for
- a3) a second step of precipitating the suspension obtained at the end of the heating step a2) by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, acid hydrochloric acid and nitric acid, wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10, And the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a progress rate of the second step of between 87 and 95%, the rate of progress being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said second precipitation step relative to the total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature between 40 and 90 ° C
- step a5) a step of drying said alumina gel obtained in step a4) to obtain a powder; a6) a step of heat treatment of the powder obtained at the end of step a5) between 500 and 1000 ° C, for a duration of between 2 and 10 h, in the presence or absence of a flow of air containing up to 60% water volume to obtain a calcined aluminous porous oxide.
- said calcined aluminous porous oxide according to step a) is obtained by the following steps: a1 ') a step of dissolving an aluminum acid precursor chosen from aluminum sulphate, aluminum chloride and aluminum nitrate in water, at a temperature of between 20 and 90 ° C, at a pH of between 0.5 and 5, for a period of between 2 and 60 minutes,
- a2 ' a step of adjusting the pH by adding to the suspension obtained in step a1') at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, at a temperature between 20 and 90 ° C, and at a pH between 7 and 10, for a period of between 5 and 30 minutes,
- a3 ' a step of coprecipitation of the suspension obtained at the end of step a2') by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, at least one of the basic or acidic precursors comprising aluminum, the relative flow rate of the acidic and basic precursors being chosen so as to obtain a pH of the reaction medium of between 7 and 10 and the flow rate of the aluminum-containing acidic and basic precursors being adjusted so as to obtain a final alumina concentration in the suspension of between 10 and 38 g / l,
- a5 ' a step of drying said alumina gel obtained in step a4') to obtain a powder
- said calcined aluminous porous oxide according to step a) is obtained by the following steps:
- a1 at least a first step of precipitating alumina, in aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, aqueous ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid, and nitric acid, in which at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen in such a way as to obtain a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the acidic and basic precursor (s) containing aluminum is adjusted so as to obtain a degree of progress.
- at least one basic precursor chosen from sodium aluminate, potassium aluminate, aqueous ammonia, sodium hydroxide and potassium hydroxide
- the advancement rate being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the result of step c) of the preparation process, said first precipitation step operating at a temperature between 10 and 50 ° C, and for a period of between 2 minutes and 30 minutes;
- step a4 a step of drying the alumina gel obtained at the end of step a3") to obtain a powder;
- a5 a step of heat treatment of the powder obtained at the end of step a4") at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, to obtain a calcined aluminous porous oxide.
- Another subject of the invention relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromates, contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300 ° C., which process is carried out at a temperature of between 0 and 300 ° C., at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds) to be hydrogenated) between 0.1 and 10 and at a hourly space velocity of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0 and , 5 and 1000 and at an hourly volume rate between 100 and 40000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst obtained by the preparation
- Another object according to the invention relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650 ° C., said process being carried out in phase gaseous or in liquid phase, at a temperature of between 30 and 350 ° C, at a pressure of between 0.1 and 20 MPa, at a molar ratio of hydrogen / (aromatic compounds with hydrogenate) between 0.1 and 10 and at a hourly volume velocity VVH between 0.05 and 50 h 1 , in the presence of a catalyst obtained by the preparation process according to the invention.
- Macropores means pores whose opening is greater than 50 nm.
- pores is meant pores whose opening is between 2 nm and 50 nm, limits included.
- micropores pores whose opening is less than 2 nm.
- total pore volume of the catalyst or the support used for the preparation of the catalyst according to the invention is meant the volume measured by mercury porosimeter intrusion according to the ASTM D4284-83 standard at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
- the anchoring angle was taken equal to 140 ° according to the recommendations of the book "Techniques of the engineer, treated analysis and characterization", pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
- the value of the total pore volume corresponds to the value of the total pore volume measured by mercury porosimeter intrusion measured on the sample minus the value of the total pore volume measured by mercury porosimeter intrusion measured on the same sample for a pressure corresponding to 30 psi (about 0.2 MPa).
- the volume of macropores and mesopores is measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
- the value at which mercury fills all the intergranular voids is fixed at 0.2 MPa, and it is considered that beyond this mercury enters the pores of the sample.
- the macroporous volume of the catalyst or support used for the preparation of the catalyst according to the invention is defined as the cumulative volume of mercury introduced at a pressure of between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores of diameter apparent greater than 50 nm.
- the mesoporous volume of the catalyst or support used for the preparation of the catalyst according to the invention is defined as the cumulative volume of mercury introduced at a pressure of between 30 MPa and 400 MPa, corresponding to the volume contained in the pores of apparent diameter included between 2 and 50 nm.
- micropore volume is measured by nitrogen porosimetry.
- the quantitative analysis of the microporosity is carried out using the "t" method (Lippens-De Boer method, 1965) which corresponds to a transformation of the starting adsorption isotherm as described in the book “Adsorption by powders and porous solids. Principles, methodology and applications "written by F. Rouquérol, J. Rouquérol and K. Sing, Academy Press, 1999.
- the mesoporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the mesoporous volume, of size less than this diameter constitute 50% of the total mesoporous volume determined by intrusion into the mercury porosimeter.
- the macroporous median diameter is also defined as the diameter such that all the pores, among all the pores constituting the macroporous volume, of size less than this diameter constitute 50% of the total macroporous volume determined by intrusion into the mercury porosimeter.
- the specific surface of the catalyst or of the support used for the preparation of the catalyst according to the invention the specific surface B.E.T. determined by nitrogen adsorption according to ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the journal "The Journal of the American Society", 60, 309, (1938).
- the size of the nickel nanoparticles is understood to mean the average diameter of the nickel crystallites measured in their oxide forms.
- group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
- the process for preparing the catalyst comprises the following steps:
- step b) the aluminized calcined porous oxide obtained in step a) is kneaded with a solution resulting from the mixing of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function to obtain a paste, the molar ratio between said organic compound and the nickel element being between 0.01 and 5.0 mol / mol;
- step c) the shaped dough obtained in step c) is dried at a temperature below 250 ° C to obtain a dried catalyst
- a heat treatment of the dried catalyst obtained in step d) is carried out at a temperature of between 250 and 1000 ° C, in the presence or absence of water.
- the calcined aluminous porous oxide is obtained from a specific alumina gel.
- the particular porous distribution observed in the catalyst is in particular due to the process of preparation from the specific alumina gel.
- the calcined aluminic oxide can be synthesized by various methods known to those skilled in the art. For example, a process for obtaining a gel consisting of a precursor of the gamma-oxy (hydroxide) aluminum type (AIO (OH), otherwise known as boehmite, is used, for example the alumina gel can be obtained by precipitation of basic and / or acid solutions of aluminum salts induced by pH change or any other method known to those skilled in the art This method is described in particular by P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, JL The Loarer, JP Jolivet, C. Froidefond, Alumina, in Handbook of Porous Solids, Eds F. Schüth, Sing KSW, J. Weitkamp, Wiley-VCH, Weinheim, Germany, 2002, pp. 1591-1677.
- AIO gamma-oxy aluminum type
- the porous aluminum oxide is prepared from specific alumina gels prepared according to particular modes of preparation as described below.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the calcined aluminous porous oxide used in the context of the catalyst preparation process according to the invention is obtained by carrying out the following steps:
- a1) a first step of precipitation, in an aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, and of at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, wherein at least one of the basic precursors or acid comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the acidic and basic precursor (s) containing aluminum is adjusted so as to obtain a first step progress rate of between 5 and 13%, the feed rate being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first step of precipitation over the qu total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature of between 20 and 90 ° C and for a time of between 2
- a3) a second step of precipitating the suspension obtained at the end of the heating step a2) by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, acid hydrochloric acid and nitric acid, wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10, 5 and the debit of the Aluminum-containing acidic and basic precursors are adjusted to obtain a second stage progress rate of between 87 and 95%, the feed rate being defined as the proportion of alumina formed in Al 2 equivalent 0 3 during said second precipitation step relative to the total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature between 40 and 90 ° C and during a duration between 2
- step a5) a step of drying said alumina gel obtained in step a4) to obtain a powder; for example at a temperature between 20 and 200 ° C and for a period of between 8 h and 15 h;
- step a6) a step of heat treatment of the powder obtained at the end of step a5) between 500 and 1000 ° C, for a duration of between 2 and 10 h, in the presence or absence of a flow of air containing up to 60% water volume to obtain a calcined aluminous porous oxide.
- the rate of progress for each of the precipitation stages is defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first or second precipitation stage relative to the total amount of alumina formed in Al 2 equivalent. 0 3 at the end of the two precipitation steps and more generally at the end of the steps of preparation of the alumina gel and in particular at the end of step a3) of the preparation process according to the invention.
- the calcined aluminous porous oxide used in the context of the process for preparing the catalyst according to the invention is obtained by carrying out the following steps:
- a1 ' a step of dissolving an aluminum acid precursor chosen from aluminum sulphate, aluminum chloride and aluminum nitrate in water, at a temperature of between 20 and 90 ° C, at a pH of between 0.5 and 5, for a period of between 2 and 60 minutes,
- a2 ' a step of adjusting the pH by adding to the suspension obtained in step a1') at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, at a temperature between 20 and 90 ° C, and at a pH of between 7 and 10, for a period of between 5 and 30 minutes,
- a3 ' a step of coprecipitation of the suspension obtained at the end of step a2') by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, at least one of the basic or acidic precursors comprising aluminum, the relative flow rate of the acidic and basic precursors being chosen so as to obtain a pH of the reaction medium of between 7 and 10 and the flow rate of the aluminum-containing acidic and basic precursors being adjusted so as to obtain a final alumina concentration in the suspension of between 10 and 38 g / l,
- a5 ' a step of drying said alumina gel obtained in step a4') to obtain a powder, said drying step being operable at a temperature between 120 and 300 ° C, very preferably at a temperature between 150 and 250 ° C for 2 to 16 hours;
- a6 ' a step of heat treatment of the powder obtained at the end of step a5') at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, for a period of between 2 and 10 hours, to obtain a calcined aluminous porous oxide.
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- the calcined aluminous porous oxide used in the context of the process for preparing the catalyst according to the invention is obtained by carrying out the following steps:
- a1 at least a first step of precipitating alumina, in aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, aqueous ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid, and nitric acid, in wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium between 8.5 and 10.5 and the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a progress rate of said first step of between 40 and 100%, the rate of advancement being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the end of step c) of the preparation process, said first precipitation stage operating at a temperature between 10 and
- a4 a step of drying the alumina gel obtained at the end of step a3") to obtain a powder; said drying step being carried out at a temperature between 20 and 250 ° C, preferably between 50 and 200 ° C, for a period of between 1 day and 3 weeks, preferably between 2 hours and 1 week and even more preferably between 5 hours and 48 hours;
- a5 a step of heat treatment of the powder obtained at the end of step a4") at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, for a period of between 2 and 10 h, to obtain a calcined aluminous porous oxide.
- the term "advancement rate" of the nth precipitation stage means the percentage of alumina formed in Al 2 0 3 equivalent in said nth stage, relative to the total quantity of alumina formed. at the end of all the precipitation steps and more generally after the steps of preparation of the alumina gel.
- said precipitation step a1"" generally makes it possible to obtain a suspension of alumina having a concentration of Al 2 O 3 included between 20 and 100 g / l, preferably between 20 and 80 g / l, preferably between 20 and 50 g / l.
- the calcined aluminous porous oxide obtained in step a) is mixed with a solution resulting from a mixture of one or more solution (s) comprising a nickel precursor and at least one solution comprising at least one organic compound comprising less a carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function to obtain a paste, the molar ratio between the said organic compound and the nickel element being between 0.01 and 5.0 mol / mol.
- the solution (s) comprising a nickel precursor may be aqueous or consist of an organic solvent or a mixture of water and water. minus an organic solvent (for example ethanol or toluene).
- the solution is aqueous.
- the pH of this solution may be modified by the possible addition of an acid.
- the aqueous solution may contain ammonia or ammonium ions NH 4 + .
- said nickel precursor is introduced in aqueous solution, for example in the form of nitrate, carbonate, acetate, chloride, hydroxide, hydroxycarbonate, oxalate, complexes formed by a polyacid or an acid-alcohol and its salts, complexes formed with acetylacetonates, or any other soluble inorganic derivative in aqueous solution, which is brought into contact with said calcined aluminous porous oxide.
- nickel precursor nickel nitrate, nickel chloride, nickel acetate or nickel hydroxycarbonate is advantageously used.
- the nickel precursor is nickel nitrate or nickel hydroxycarbonate.
- said nickel precursor is introduced into an ammoniacal solution by introducing a nickel salt, for example nickel hydroxide or nickel carbonate, into an ammoniacal solution or into an ammonium carbonate or ammonium carbonate solution. ammonium hydrogen carbonate.
- a nickel salt for example nickel hydroxide or nickel carbonate
- the amounts of the nickel precursor (s) introduced into the solution are chosen such that the total nickel content is between 1 and 65% by weight, preferably between 5 and 55% by weight, preferably between 8 and 40% by weight. % by weight, and more preferably between 10 and 35% by weight, more preferably between 12 and 35% by weight, more preferably between 15 and 35% by weight, and more preferably between 18 and 35% by weight. 32% by weight of said element relative to the total mass of the catalyst.
- the nickel contents are generally adapted to the targeted hydrogenation reactions as described above.
- Said solution (s) containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one an amine function may be aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or be constituted a mixture of water and at least one organic solvent.
- the said organic compound (s) is (are) previously at least partially dissolved in the said solution (s) at the desired concentration.
- said solution (s) is (are) aqueous or contains ethanol. Even more preferably, said solution is aqueous.
- the pH of said solution may be modified by the possible addition of an acid or a base.
- Comalaxing is advantageously carried out in a kneader, for example a "Brabender" kneader, well known to those skilled in the art.
- a kneader for example a "Brabender" kneader, well known to those skilled in the art.
- the calcined alumina powder obtained in step a) is placed in the tank of the kneader.
- the solution resulting from the mixing of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function, and optionally deionized water is added to the syringe or with any other means for a period of a few minutes, typically about 2 minutes at a given kneading speed. After obtaining a paste, kneading can be continued for a few minutes, for example about 15 minutes at 50 rpm.
- Said solution resulting from mixing can also be added in several times during this phase of comalaxing.
- the organic compound comprises at least one carboxylic acid function.
- the molar ratio of said organic compound comprising at least one carboxylic acid function is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 2.0 mol / mol, more preferably between 0.1 and 1 , 5 mol / mol and even more preferably between 0.3 and 1, 2 mol / mol, with respect to the nickel element.
- Said organic compound comprising at least one carboxylic acid function may be a saturated or unsaturated aliphatic organic compound or an aromatic organic compound.
- the aliphatic organic compound, saturated or unsaturated comprises between 1 and 9 carbon atoms, preferably between 2 and 7 carbon atoms.
- the aromatic organic compound comprises between 7 and 10 carbon atoms, preferably between 7 and 9 carbon atoms.
- Said aliphatic organic compound, saturated or unsaturated, or said aromatic organic compound, comprising at least one carboxylic acid function may be chosen from monocarboxylic acids, dicarboxylic acids, tricarboxylic acids, tetracarboxylic acids.
- said organic compound is a saturated aliphatic monocarboxylic acid, the aliphatic chain being linear or branched or cyclic.
- the organic compound is preferably selected from formic acid, acetic acid, propionic acid, butanoic acid, valeric acid, hexanoic acid, heptanoic, octanoic acid, nonanoic acid.
- the organic compound is a saturated branched monocarboxylic acid
- it is preferably chosen from isobutyric acid, pivalic acid, methyl-4-octanoic acid, methyl-3-valeric acid, methyl 4-valeric acid, methyl-2-valeric acid, isovaleric acid, 2-ethyl-hexanoic acid, 2-methyl-butyric acid, 2-ethyl-butyric acid, propyl- 2-valerianic, valproic acid, in any of their isomeric forms.
- the organic compound is a saturated cyclic monocarboxylic acid
- it is preferably selected from cyclopentane carboxylic acid, cyclohexane carboxylic acid.
- said organic compound is an unsaturated aliphatic monocarboxylic acid, the aliphatic chain being linear or branched or cyclic, preferably selected from methacrylic acid, acrylic acid, vinylacetic acid, crotonic acid, isocrotonic acid, pentene-2-oic acid, penten-3-oic acid, pentene-4-oic acid, tiglic acid, angelic acid, acid sorbic acid, acetylene carboxylic acid, in any of their isomeric forms.
- said organic compound is an aromatic monocarboxylic acid, preferably selected from benzoic acid, methylbenzoic acid, dimethylbenzoic acid, trimethylbenzoic acid, ethylbenzoic acid, o-tolylacetic acid, phenylacetic acid, phenyl-2-propionic acid, phenyl-3-propionic acid, vinyl-4-benzoic acid, phenylacetylenecarbonic acid , cinnamic acid, in any of their isomeric forms.
- said organic compound is a saturated or unsaturated aliphatic dicarboxylic acid, the aliphatic chain being linear or branched or cyclic.
- the organic compound is a saturated linear dicarboxylic acid
- it is preferably chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (acid glutaric), hexanedioic acid (adipic acid), heptanedioic acid (pimelic acid), octanedioic acid (suberic acid), nonanedioic acid (azelaic acid).
- the organic compound is a saturated branched dicarboxylic acid
- it is preferably chosen from methyl-2-glutaric acid, methyl-3-glutaric acid, dimethyl-3,3-glutaric acid and dimethyl acid.
- the organic compound is a cyclic saturated dicarboxylic acid, it is preferably selected from cyclohexanedicarboxylic acid, pinic acid, in any of their isomeric forms.
- said organic compound is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid) and pentanedioic acid (glutaric acid).
- ethanedioic acid oxalic acid
- propanedioic acid malonic acid
- butanedioic acid succinic acid
- pentanedioic acid glutaric acid
- 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid in any of their isomeric forms.
- said organic compound is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid) and pentanedioic acid (glutaric acid).
- the organic compound is an unsaturated, linear or branched or cyclic dicarboxylic acid
- it is preferably chosen from (Z) -butenedioic acid (maleic acid), (E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid), (2E-4E) -hexa-2,4-dienediioic acid (muconic acid), mesaconic acid, citraconic acid, acetylenedicarboxylic acid, acid methylene-2-succinic acid (itaconic acid), hexadiene-2,4-dioic acid, in any of their isomeric forms.
- said organic compound is chosen from (Z) -butenedioic acid (maleic acid), (E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid), mesaconic acid, citraconic acid, methylene-2-succinic acid (itaconic acid), in any of their isomeric forms. Even more preferably, said organic compound is chosen from (Z) -butenedioic acid (acid maleic), (E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid).
- said organic compound is an aromatic dicarboxylic acid, preferably selected from benzene-1,2-dicarboxylic acid (phthalic acid), benzene-1,3-dicarboxylic acid ( isophthalic acid), benzene-1,4-dicarboxylic acid (terephthalic acid), phenylsuccinic acid, in any of their isomeric forms.
- said organic compound is benzene-1,2-dicarboxylic acid (phthalic acid).
- said organic compound is an aliphatic tricarboxylic acid, saturated or unsaturated, or aromatic, preferably selected from propanetricarboxylic acid-1,2,3 (tricarballylic acid), butanetricarboxylic acid 1, 2,4, propene-tricarboxylic acid-1,2,3 (aconitic acid), benzenetricarboxylic acid-1,3,5 (trimesic acid), benzenetricarboxylic acid-1,2,4, in any of their isomeric forms.
- said organic compound is chosen from propanetricarboxylic acid-1,2,3 (tricarballylic acid), butanetricarboxylic acid-1,2,4, propene-tricarboxylic acid-1,2,3 (aconitic acid). ), benzenetricarboxylic acid-1,2,4, in any of their isomeric forms.
- said organic compound is a saturated or unsaturated, or aromatic, aliphatic tetracarboxylic acid, preferably selected from methanetetracarboxylic acid, butanetetracarboxylic acid-1, 2,3,4, ethylenetetracarboxylic acid, benzenetetracarboxylic acid-1,2,4,5, in any of their isomeric forms.
- said organic compound is selected from butanetetracarboxylic acid-1, 2, 3, 4, benzenetetracarboxylic acid-1, 2, 4, 5, in any of their isomeric forms.
- said organic compound may comprise at least one second functional group chosen from ethers, hydroxyls, ketones and esters.
- said organic compound comprises at least one carboxylic acid function and at least one hydroxyl function, or at least one carboxylic acid function and at least one ether function, or at least one carboxylic acid function and at least one ketone function.
- said compound organic can comprise at least three different functional groups selected from at least one carboxylic acid function, at least one hydroxide function and at least one functional group different from the carboxylic acid and hydroxyl functions, such as an ether function or a ketone function.
- the organic compounds comprising at least one carboxylic acid function and at least one hydroxyl group
- the carbon chain of said acids can be saturated aliphatic (linear, branched or cyclic), or unsaturated aliphatic (linear, branched or cyclic) or may contain at least one aromatic ring.
- said organic compound is chosen from hydroxy acids or dihydroxy acids of monocarboxylic acids or dicarboxylic acids or tricarboxylic acids.
- the organic compound is a hydroxy acid of a monocarboxylic acid
- it is preferably chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), hydroxy-2-isobutyric acid or the other ⁇ -hydroxy acids, 3-hydroxypropanoic acid, 3-hydroxy-butyric acid, 3-hydroxypentanoic acid, 3-hydroxy-3-isobutyric acid, 3-hydroxy-3-methylbutanoic acid, or the other b-hydroxy acids, 4-hydroxy-butyric acid or other g-hydroxy acids, mandelic acid, 3-phenyllactic acid, tropic acid, hydroxybenzoic acid, salicylic acid, acid ( hydroxy-2-phenyl) -acetic acid, (3-hydroxy-phenyl) -acetic acid, (4-hydroxy-phenyl) -acetic acid, coumaric acid, in any of their isomeric forms.
- said organic compound is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, 3-hydroxy-butyric acid, hydroxy-acid and 3-isobutyric, mandelic acid, 3-phenyllactic acid, tropic acid, salicylic acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, hydroxy-3-butyric acid, hydroxy-3-isobutyric acid.
- the organic compound is a hydroxy acid of a polycarboxylic acid
- it is preferably chosen from 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid or the others.
- hydroxy acids or b-hydroxy acids or g-hydroxy acids of dicarboxylic acids 5-hydroxy-isophthalic acid, 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), isocitric acid, homocitric acid , the homoisocitric acid or the other ⁇ -hydroxy acids or b-hydroxy acids or ⁇ -hydroxy acids of the tricarboxylic acids, in any of their isomeric forms.
- said organic compound is chosen from 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid, 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), isocitric acid, homocitric acid, homoisocitric acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid, 2-hydroxypropane-1, 2 acid, 3-tricarboxylic acid (citric acid).
- the organic compound is a dihydroxy acid of a monocarboxylic acid
- it is preferably chosen from glyceric acid, 2,3-dihydroxy-3-methylpentanoic acid, pantoic acid or the other ⁇ , ⁇ -dihydroxy acids or ⁇ , ⁇ -dihydroxy acids or ⁇ ,--dihydroxy acids, 3,5-dihydroxy-3-methylpentanoic acid (mevalonic acid), or the other b, b-dihydroxy acids or b, g-dihydroxy acids or g, g-dihydroxy acids, Bis (hydroxymethyl) acid
- said organic compound is chosen from glycerolic acid,
- 2,3-dihydroxy-3-methylpentanoic acid pantoic acid, 2,3-dihydroxybenzoic acid, b-resorcylic acid, g-resorcylic acid, gentisic acid, orsellinic acid, under one any of their isomeric forms.
- said organic compound is chosen from glyceric acid, 2,3-dihydroxy-3-methylpentanoic acid and pantoic acid.
- the organic compound is a dihydroxy acid of a polycarboxylic acid
- it is preferably chosen from dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid) or the other ⁇ , ⁇ -dihydroxyacids or ⁇ , ⁇ -dihydroxyacids or ⁇ , ⁇ -dihydroxy acids or ⁇ , ⁇ -dihydroxy acids or ⁇ -dihydroxy acids of the dicarboxylic acids, hydroxycitric acid, in any of their isomeric forms.
- said organic compound is chosen from dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid) and hydroxycitric acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid).
- the organic compound is a polyhydroxy acid of a monocarboxylic acid or of a polycarboxylic acid, it is preferably selected from shikimic acid, trihydroxybenzoic acid, gallic acid, phloroglucinic acid, pyrogallol carboxylic acid, quinic acid, gluconic acid, mucic acid, saccharic acid, in any of their isomeric forms.
- said organic compound is chosen from trihydroxybenzoic acid, quinic acid, gluconic acid, mucic acid and saccharic acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from quinic acid, gluconic acid, mucic acid and saccharic acid.
- organic compounds comprising at least one carboxylic acid function and at least one ether function
- 2-methoxyacetic acid 2,2'-oxydiacetic acid (diglycolic acid)
- 4-methoxybenzoic acid isopropoxy-4-benzoic acid, methoxy-3-phenylacetic acid, methoxy-3-cinnamic acid, methoxy-4-cinnamic acid, 3,4-dimethoxycinnamic acid, veratric acid, acid tetrahydrofuran-2-carboxylic acid, furan-3-carboxylic acid, 2,5-dihydro-3,4-furan dicarboxylic acid acid, according to any of their isomeric forms.
- said organic compound is 2,2'-oxydiacetic acid (diglycolic acid).
- organic compounds comprising at least one carboxylic acid function and at least one ketone functional group
- said organic compound is chosen from glyoxylic acid, 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid, phenylglyoxylic acid, phenylpyruvic acid, mesoxalic acid, 2-oxoglutaric acid, 2-oxohexanedioic acid, oxalosuccinic acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid (levulinic acid), dioxosuccinic acid, according to any one of their isomeric forms.
- 2-oxopropanoic acid pyruvic acid
- 2-oxobutanoic acid 3-methyl-2-oxobutanoic acid
- phenylglyoxylic acid phenylpyruvic acid
- mesoxalic acid 2-oxoglutaric acid
- said organic compound is chosen from glyoxylic acid, 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid and mesoxalic acid. , 2-oxoglutaric acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid (levulinic acid), dioxosuccinic acid.
- organic compounds comprising at least one carboxylic acid function and at least one ester function
- organic compounds comprising at least one carboxylic acid function, at least one hydroxide functional group and at least one ether functional group
- glucuronic acid, galacturonic acid, ferulic acid, sinapic acid according to any of their isomeric forms.
- said organic compound is chosen from 4-hydroxy-3-methoxybenzoic acid (vanillic acid), glucuronic acid and galacturonic acid, according to any of their isomeric forms.
- organic compounds comprising at least one carboxylic acid function, at least one hydroxide functional group and at least one ketone functional group
- hydroxypyruvic acid acetolactic acid, iduronic acid, ulosonic acid and acid.
- meconic, 4-hydroxyphenylpyruvic acid according to any of their forms isomers.
- said organic compound is selected from hydroxypyruvic acid, acetolactic acid, iduronic acid, meconic acid, according to any of their isomeric forms.
- said organic compound comprising at least one carboxylic acid function is preferably chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid).
- glyoxylic acid 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid, phenylglyoxylic acid, phenylpyruvic acid, mesoxalic acid, 2-oxoglutaric acid, 2-oxohexanedioic acid, oxalosuccinic acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid (levulinic acid), dioxosuccinic acid, 4-hydroxy acid 3-methoxybenzoic acid (vanillic acid), glucuronic acid, galacturonic acid, hydroxypyruvic acid, acetolactic acid, iduronic acid, meconic acid, according to any of their isomeric forms.
- said organic compound comprising at least one carboxylic acid function is more preferably chosen from acid ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid), (Z) - butenedioic acid (maleic acid), acid ( E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid), hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, 3-hydroxy-butyric acid, 3-hydroxy-isobutyric acid, 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid, 2-hydroxypropane acid 1,2,3-tricarboxylic acid (citric acid), glyceric acid, 2,3-
- the organic compound comprising at least one carboxylic acid function is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), pentanedioic acid (glutaric acid), hydroxyacetic acid (acid glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), 2,3-acid - dihydroxybutanedioic acid (tartaric acid), 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid).
- the organic compound comprises at least one alcohol function.
- the molar ratio of said organic compound comprising at least one alcohol function with respect to the nickel element is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 1.5 mol / mol, more preferably between 0.08 and 0.9 mol / mol.
- said organic compound comprises between 2 and 20 carbon atoms, preferably between 2 and 12 carbon atoms, and even more preferably between 2 and 8 carbon atoms.
- the organic compound comprises a single alcohol function (mono-alcohol).
- the organic compound is chosen from methanol, ethanol, propanol, butanol, pentanol, hexanol, 2-propyn-1-ol, geraniol, menthol, phenol and cresol. in any of their isomeric forms. More preferentially, said organic compound is chosen from methanol, ethanol and phenol.
- the organic compound comprises at least two alcohol functions (diol or more generally polyol).
- the organic compound is selected from ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol , heptane-1,7-diol, octane-1,8-diol, propane-1,2-diol, butane-1,2-diol, butane-2,3-diol, butane 1,3-diol, pentane-1,2-diol, pentane-1,3-diol, pentane-2,3-diol, pentane-2,4-diol, 2-ethylhexane-1, 3-diol (hexhexadiol), p-menthane-3,8-diol, 2-ethyl
- said organic compound is chosen from ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol and hexane-1,6-diol. , glycerol, xylitol, mannitol, sorbitol, in any of their isomeric forms.
- the organic compound is an aromatic organic compound comprising at least two alcohol functional groups.
- the organic compound is selected from pyrocatechol, resorcinol, hydroquinol, pyrogallol, phloroglucinol, hydroxyquinol, tetrahydroxybenzene, benzenehexol, in any of their isomeric forms. More preferably, said organic compound is selected from pyrocatechol, resorcinol, hydroquinol.
- the organic compound may be selected from diethylene glycol, triethylene glycol, tetraethylene glycol, or more generally polyethylene glycol having the formula H (OC 2 H 4 ) n OH with n greater than at 4 and having an average molecular weight of less than 20000 g / mol. More preferably, said organic compound is selected from diethylene glycol, triethylene glycol, polyethylene glycol having an average molecular weight of less than 600 g / mol. In another embodiment according to the invention, the organic compound is a monosaccharide of formula C n (H 2 O) p with n of between 3 and 12, preferably between 3 and 10.
- the organic compound is selected from glyceraldehyde, dihydroxyacetone, erythrose, threose, erythrulose, lyxose, arabinose, xylose, ribose, ribulose, xylulose, glucose, mannose, sorbose, galactose, fructose, allose, altrose, gulose, idose, talose, psicose, tagatose, sedoheptulose, mannoheptulose, in any of their isomeric forms. More preferably, said organic compound is selected from glucose, mannose, fructose, in any of their isomeric forms.
- the organic compound is a disaccharide or a trisaccharide, or a derivative of a monosaccharide, selected from sucrose, maltose, lactose, cellobiose, gentiobiose, inulobiosis, isomaltose, isomaltulose, kojibiose, lactulose, laminaribiose, leucrose, maltulose, melibiose, nigerose, robinose, rutinose, sophorose, trehalose, trehalulose, turanose, erlose , fucosyllactose, gentianose, inulotriose, kestose, maltotriose, mannotriose, melezitose, neokestose, panose, raffinose, rhamninose, maltitol, lactitol, isomaltitol, iso
- the organic compound comprises at least one alcohol function, at least one ketone functional group and at least one unsaturated heterocyclic functional group, preferably chosen from isomaltol, maltol, ethylmaltol and the acid. dehydroacetic acid, kojic acid, erythorbic acid, in any of their isomeric forms.
- said organic compound comprising at least one alcohol function is preferably chosen from methanol, ethanol, propanol, butanol, pentanol, hexanol and 2-propyn-1-ol. , geraniol, menthol, phenol, cresol, ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1 , 6-diol, heptane-1,7-diol, octane-1,8-diol, propane-1,2-diol, butane-1,2-diol, 2,3-butane diol, butane-1,3-diol, pentane-1,2-diol, pentane-1,3-diol, pentane-2,3-diol, pentane-2,4-dio
- said organic compound is selected from methanol, ethanol, phenol, ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol , hexane-1,6-diol, glycerol, xylitol, mannitol, sorbitol, pyrocatechol, resorcinol, hydroquinol, diethylene glycol, triethylene glycol, polyethylene glycol having a lower average molecular weight at 600 g / mol, glucose, mannose, fructose, sucrose, maltose, lactose, in any of their isomeric forms.
- the organic compound comprises at least one ester function.
- the molar ratio of said organic compound comprising at least one ester function with respect to the nickel element is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 2.0 mol / mol, more preferably between 0.1 and 1.5 mol / mol and even more preferably between 0.3 and 1.2 mol / mol.
- said organic compound comprises between 2 and 20 carbon atoms, preferably between 3 and 14 carbon atoms, and even more preferably between 3 and 8 carbon atoms.
- said organic compound comprises at least one ester function. It may be chosen from an unsaturated linear or cyclic or cyclic carboxylic acid ester, or a cyclic or linear carbonic acid ester or a linear carbonic acid diester.
- the compound may be a saturated cyclic ester.
- Said compound may also be substituted by one or more alkyl group (s) or aryl (s) or alkyl (s) containing unsaturations.
- said compound is a lactone containing between 4 and 12 carbon atoms, such as g-butyrolactone, g-valerolactone, d-valerolactone, g-caprolactone, d-caprolactone, Ge-caprolactone, g-caprolactone, -heptalactone, d-heptalactone, g-octalactone, d-octalactone, d-nonalactone, c-nonalactone, d-decalactone, g-decalactone, c-decalactone, d-dodecalactone, g-octalactone, -dodecalactone, in any of their isomeric forms.
- g-butyrolactone such as g-butyrolactone, g-valerolactone, d-valerolactone, g-caprolactone, d-caprolactone, Ge-caprolactone, g
- said compound is a g-lactone or a d-lactone containing between 4 and 8 carbon atoms, g-butyrolactone, g-valerolactone, d-valerolactone, g-caprolactone, d-valerolactone, caprolactone, g-heptalactone, d-heptalactone, g-octalactone, d-octalactone, in any of their isomeric forms.
- the compound is g-valerolactone.
- the compound may be furan or pyrone or any of their derivatives, such as 6-pentyl-a-pyrone .
- the compound may be a compound having a single ester function corresponding to the empirical formula RCOOR ', in which R and R' are alkyl, linear, branched, or cyclic, or alkyl groups containing unsaturations, or alkyl groups substituted with one or more aromatic rings, or aryl groups, each containing between 1 and 15 carbon atoms, and which may be the same or different.
- R may also be the hydrogen atom H.
- the group R '(of the alkoxy function COR') contains a number of carbon atoms less than or equal to that of the group R, more preferably the number of carbon atoms of said group R 'is between 1 and 6, even more preferably between 1 and 4.
- Said organic compound is preferably chosen from methyl methanoate, methyl acetate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl hexanoate, methyl octanoate and methyl decanoate.
- the organic compound is methyl laurate.
- the organic compound may be a compound comprising at least two carboxylic acid ester functions.
- the carbon chain in which these carboxylic acid ester functions are inserted is a linear or branched or cyclic aliphatic carbon chain, saturated or possibly containing unsaturations, and contains between 2 and 15 carbon atoms and each R 'group ( each of the alkoxy functions COR ') may be a linear, branched or cyclic alkyl group, or an alkyl group containing unsaturations, or an alkyl group substituted with one or more aromatic rings, or an aryl group, and containing between 1 and 15 carbon atoms, preferably between 1 and 6 carbon atoms, even more preferably between 1 and 4 carbon atoms.
- the different groups R ' may be identical or different.
- said compound is chosen from dimethyl oxalate, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, diethyl oxalate, diethyl malonate and diethyl succinate.
- the organic compound may be a compound comprising at least one carboxylic acid ester function and at least one second functional group chosen from alcohols, ethers, ketones and aldehydes.
- said organic compound comprises at least one carboxylic acid ester function and at least one alcohol function.
- the carbon chain in which the carboxylic acid ester function (s) is inserted is a linear or branched or cyclic aliphatic carbon chain, which is saturated or may contain unsaturations, and contains between 2 and 15 carbon atoms.
- carbon and each R 'group (of each of the alkoxy functions COR') may be a linear, branched, or cyclic alkyl group, or an alkyl group containing unsaturations, or an alkyl group substituted by one or more aromatic rings, or an aryl group and containing between 1 and 15 carbon atoms, preferably between 1 and 6 carbon atoms, more preferably between 1 and 4 carbon atoms, the different groups R 'may be identical or different.
- This carbon chain contains at least one hydroxyl group, preferably between 1 and 6 hydroxyl groups.
- said compound is chosen from methyl glycolate, ethyl glycolate, butyl glycolate, benzyl glycolate, methyl lactate, ethyl lactate, butyl lactate, tert-lactate and butyl, ethyl 3-hydroxybutyrate, ethyl mandelate, dimethyl malate, diethyl malate, diisopropyl malate, dimethyl tartrate, diethyl tartrate, diisopropyl tartrate, trimethyl citrate triethyl citrate, in any of their isomeric form. More preferentially, said compound is dimethyl malate.
- said organic compound comprises at least one carboxylic acid ester function and at least one ketone or aldehyde function.
- the carbon chain in which the carboxylic acid ester function (s) is inserted is a linear or branched or cyclic aliphatic carbon chain, which is saturated or may contain unsaturations, and contains between 2 and 15 carbon atoms.
- each R 'group (of each of the alkoxy functions COR') can be a linear, branched, or cyclic alkyl group, or an alkyl group containing unsaturations, or an alkyl group substituted by one or more aromatic rings, or a aryl group, and containing between 1 and 15 carbon atoms, preferably between 1 and 6 carbon atoms, even more preferably between 1 and 4 carbon atoms, the different groups R 'may be identical or different.
- This carbon chain contains at least one ketone or aldehyde function, preferably between 1 and 3 ketone or aldehyde function (s).
- the organic compound is an acetoacid.
- the compound may be ethylene carbonate, propylene carbonate or trimethylene carbonate.
- the compound is propylene carbonate.
- the compound in the case of a linear ester of carbonic acid, may be dimethyl carbonate, diethyl carbonate or diphenyl carbonate. In the case of a linear diester of carbonic acid, the compound may be dimethyl dicarbonate, diethyl dicarbonate, di-tert-butyl dicarbonate.
- said organic compound may comprise at least three different functional groups chosen from at least one ester function, at least one carboxylic acid function and at least one functional group other than the ester and carboxylic acid functions, such as an ether function or a ketone function.
- said organic compound comprising at least one ester function is preferably chosen from a g-lactone or a d-lactone containing between 4 and 8 carbon atoms, g-butyrolactone, g-valerolactone, d-valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -heptalactone, d-heptalactone, ⁇ -octalactone, d-octalactone, methyl methanoate, methyl acetate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl hexanoate, methyl octanoate, methyl decanoate, methyl laurate, methyl dodecanoate, ethyl acetate, ethyl propanoate, ethyl butanoate, ethyl pentanoate, ethyl hexano
- diethyl, diethyl malonate succinate diethyl nate, diethyl glutarate, diethyl adipate, dimethyl methyl succinate, dimethyl 3-methylglutarate, methyl glycolate, ethyl glycolate, butyl glycolate, benzyl glycolate, lactate methyl lactate, ethyl lactate, butyl lactate, tert-butyl lactate, ethyl 3-hydroxybutyrate, ethyl mandelate, dimethyl malate, diethyl malate, diisopropyl malate, dimethyl tartrate, diethyl tartrate, diisopropyl tartrate, trimethyl citrate, triethyl citrate, ethylene carbonate, propylene carbonate, trimethylene carbonate, diethyl carbonate, diphenyl, dimethyl dicarbonate, diethyl dicarbonate, di-tert-butyl dicarbonate, in any of their isomeric form.
- the organic compound comprises at least one amide function, chosen from an acyclic amide function or a cyclic amide function, optionally comprising alkyl or aryl or alkyl substituents containing unsaturations.
- the amide functions may be chosen from primary, secondary or tertiary amides.
- the molar ratio of said organic compound comprising at least one amide function relative to the nickel element is between 0.01 and 1.5 mol / mol, preferably between 0.05 and 1.0 mol / mol, more preferably between 0.08 and 0.9 mol / mol.
- the organic compound comprises at least one acyclic amide function.
- Said organic compound may comprise a single amide function and does not contain any other functional group, such as formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N N, N-dibutylformamide, N, N-diisopropylformamide, N, N-diphenylformamide, acetamide, N-methylacetamide, N, N-dimethylmethanamide, N, N-diethylacetamide, N, N-dimethylpropionamide, propanamide, N-ethyl-N-methylpropanamide, benzamide, acetanilide, according to any of their isomeric forms.
- any other functional group such as formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N N, N-dibutylformamide, N, N-diisopropy
- said organic compound is chosen from formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N- dimethylmethanamide, N, N-diethylacetamide, N, N-dimethylpropionamide, propanamide,
- Said organic compound may comprise two amide functions and contains no other functional group, such as tetraacetylethylenediamine.
- the organic compound comprises at least one cyclic amide function, such as 1-formylpyrrolidine, 1-formylpiperidine, or a lactam function.
- said organic compound is selected from ⁇ -lactam, ⁇ -lactam, ⁇ -lactam and ⁇ -lactam and their derivatives, according to any of their isomeric forms. More preferably, said organic compound is selected from 2-pyrrolidone, N-methyl-2-pyrrolidone, ⁇ -lactam, caprolactam, according to any of their isomeric forms.
- said organic compound may comprise at least one amide function and at least one other function different from the amide function.
- said organic compound comprises at least one amide functional group and at least one carboxylic acid functional group, such as acetylleucine, N-acetylaspartic acid, aminohippuric acid, N-acetylglutamic acid and 4-acetamidobenzoic acid. according to any of their isomeric forms.
- said organic compound comprises at least one amide function and at least one alcohol function, such as glycolamide, lactamide, N, N-diethyl-2-hydroxyacetamide, 2-hydroxy-N-methylacetamide and 3-hydroxypropionamide. mandelamide, acetohydroxamic acid, butyrylhydroxamic acid, bucetin, according to any of their isomeric forms.
- said organic compound is chosen from lactamide and glycolamide.
- the organic compound comprises at least one amide functional group and at least one additional nitrogen heteroatom, preferably chosen from urea, N-methylurea, N, N'-dimethylurea, 1,1 dimethylurea, tetramethylurea, according to any of their isomeric forms.
- formamide N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, are more particularly preferred.
- the organic compound comprises at least one amine function.
- the molar ratio of said organic compound comprising at least one amine function with respect to the nickel element is between 0.01 and 1.5 mol / mol, preferably between 0.05 and 1.0 mol / mol, more preferably between 0.08 and 0.9 mol / mol.
- Said organic compound comprises between 1 and 20 carbon atoms, preferably between 1 and 14 carbon atoms, and even more preferably between 2 and 8 carbon atoms.
- Said organic compound may be chosen from a saturated or unsaturated aliphatic, cyclic, alicyclic, aromatic or heterocyclic amine, optionally comprising alkyl or aryl or alkyl substituents containing unsaturations.
- the amine functions can be chosen from primary, secondary or tertiary amines.
- the organic compound comprises a single amine function and does not contain any other functional group.
- said organic compound comprising a single amine function is chosen from aliphatic compounds, such as propylamine, ethylmethylamine, butylamine, dimethylisopropylamine, dipropylamine, diisopropylamine, octylamine, cyclic or alicyclic compounds, such as cyclobutylamine, cyclohexylamine, aromatic compounds, such as aniline, N, N-dimethylaniline, xylidines, saturated heterocyclic compounds, such as piperidine, pyrrolidine, morpholine, or unsaturated heterocyclic compounds such as pyrrole, pyridine, indole, quinoline, said compounds may be substituted by one or more alkyl group (s) or aryl (s) or alkyl (s) containing unsaturations.
- aliphatic compounds such as propylamine, ethylmethylamine, butylamine, dimethylisopropylamine, dipropylamine, di
- the organic compound comprises two amine functional groups and does not contain any other functional group.
- said organic compound comprising two amine functional groups is chosen from aliphatic compounds, such as ethylenediamine, 1,3-diaminopropane, 1,2-diaminopropane, diaminohexane, tetramethylenediamine, hexamethylenediamine and tetramethylethylenediamine.
- tetraethylethylenediamine benzathine, xylylenediamines, diphenylethylenediamine, cyclic or alicyclic compounds, such as 1,2-diaminocyclohexane, aromatic compounds, such as phenylenediamines and their derivatives, 4,4'-diaminobiphenyl, 1, 8-diaminonaphthalene, or heterocyclic compounds such as piperazine, imidazole, pyrimidine, purine, said compounds may be substituted with one or more alkyl group (s) or aryl group (s) or alkyl group (s) containing unsaturations.
- said organic compound is chosen from ethylenediamine, diaminohexane, tetramethylenediamine, hexamethylenediamine, tetramethylethylenediamine and tetraethylethylenediamine.
- the organic compound comprises at least three amine functional groups and does not contain any other functional group. More particularly, said compound is chosen from diethylenetriamine and triethylenetetramine.
- said compound is chosen from diethylenetriamine and triethylenetetramine.
- the organic compounds comprising at least one amine function corresponding to the empirical formula C x N y H z in which 1 ⁇ x ⁇ 20, 1 ⁇ y ⁇ x, 2 ⁇ z ⁇ 2x + 2 are cited above, it is more preferable to especially ethylenediamine, diaminohexane, tetramethylenediamine, hexamethylenediamine, tetramethylethylenediamine, tetraethylethylenediamine, diethylenetriamine, triethylenetetramine.
- said organic compound comprises at least one amine function and at least one carboxylic acid function (amino acid).
- amino acids said organic compound may be chosen from the following compounds: alanine, arginine, asparagine, pyroglutamic acid, citrulline, gabapentin, glutamine, histidine, isoleucine, isoglutamine, leucine, lysine, norvaline, ornithine, phenylalanine, proline, saccharopine sarcosine, serine, threonine, tryptophan, tyrosine, valine, pyrrolysine, 2-aminoisobutyric acid, ethylene diamine tetraacetic acid (EDTA), according to any of their isomeric forms.
- the compound is an amino acid, it is preferably chosen from alanine, arginine, lysine, proline, serine, threonine and EDTA.
- the paste obtained at the end of the comalaxing step b) is then shaped according to any technique known to those skilled in the art, for example extrusion forming methods, pelletizing, by the method of the invention. drop of oil (dripping) or by granulation at the turntable.
- the paste is shaped by extrusion in the form of extrudates of diameter generally between 0.5 and 10 mm, preferably 0.8 and 3.2 mm, and very preferably between 1, 0 and 2 , 5 mm.
- This may advantageously be in the form of cylindrical, trilobed or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed.
- said comalling step b) and said forming step c) are combined in a single kneading-extrusion step.
- the paste obtained after the mixing can be introduced into a piston extruder through a die having the desired diameter, typically between 0.5 and 10 mm.
- Step dl Drying the shaped dough
- the shaped dough undergoes drying d) at a temperature below 250 ° C, preferably between 15 and 240 ° C, more preferably between 30 and 220 ° C, still more preferably between 50 and 200 ° C, and even more preferably between 70 and 180 ° C, for a period of time typically between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily improve.
- the drying step may be performed by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or under reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
- the catalyst thus dried can then undergo a complementary step of heat or hydrothermal treatment e) at a temperature of between 250 and 1000 ° C. and preferably between 250 and 750 ° C., for a duration of typically between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer treatment times are not excluded, but do not require improvement. Several combined cycles of thermal or hydrothermal treatments can be carried out. After this or these treatment (s), the catalyst precursor comprises nickel in oxide form, that is to say in NiO form.
- the contact with the water vapor can take place at atmospheric pressure or autogenous pressure.
- the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably between 250 and 650 grams per kilogram of dry air.
- At least one reducing treatment step f) is carried out in the presence of a reducing gas after steps d) or e ) to obtain a catalyst comprising nickel at least partially in metallic form.
- This treatment makes it possible to activate the said catalyst and to form metal particles, in particular nickel in the zero state.
- Said reducing treatment can be carried out in situ or ex-situ, that is to say after or before the loading of the catalyst into the hydrogenation reactor.
- the reducing gas is preferably hydrogen.
- the hydrogen can be used pure or as a mixture (for example a hydrogen / nitrogen mixture, hydrogen / argon, hydrogen / methane). In the case where the hydrogen is used as a mixture, all proportions are possible.
- Said reducing treatment is carried out at a temperature between 120 and 500 ° C, preferably between 150 and 450 ° C.
- the reducing treatment is carried out at a temperature between 350 and 500 ° C, preferably between 350 and 450 ° C.
- the reducing treatment is generally carried out at a temperature between 120 and 350 ° C, preferably between 150 and 350 ° C.
- the duration of the reducing treatment is generally between 2 and 40 hours, preferably between 3 and 30 hours.
- the rise in temperature to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
- the flow rate of hydrogen, expressed in L / hour / g of catalyst is between 0.1 and 100 L / hour / g of catalyst, preferably between 0.5 and 10 L / hour / g of catalyst, still more preferred between 0.7 and 5 L / hour / gram of catalyst.
- the catalyst according to the invention may optionally undergo a passivation step (step g) with a sulfur or oxygenated compound or with CO 2 before or after the reducing treatment step f) .
- This passivation step may be performed ex situ or in situ.
- the passivation step is carried out by the implementation of methods known to those skilled in the art.
- the sulfur passivation step makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways when starting new catalysts ("run away" according to the English terminology).
- Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites of the nickel which exist on the new catalyst and thus in attenuating the activity of the catalyst in favor of its selectivity.
- the passivation step is carried out by the implementation of methods known to those skilled in the art and in particular, for example by the implementation of one of the methods described in patent documents EP0466567, US5153163, FR2676184, WO2004 / 098774, EP0707890.
- the sulfur compound is, for example, chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulfide and propylmethylsulphide or an organic disulphide of formula HO-R1-SS-R2-OH such as di-thio-di -ethanol of formula HO-C2H4-SS-C2H4-OH (often called DEODS).
- the sulfur content is generally between 0.1 and 2% by weight of said element relative to the mass of the catalyst.
- the passivation step with an oxygenated compound or with CO 2 is generally carried out after a reducing treatment beforehand at elevated temperature, generally between 350 and 500 ° C., and makes it possible to preserve the metallic phase of the catalyst in the presence of air. .
- the oxygenated compound is generally air or any other stream containing oxygen.
- the catalyst obtained by the preparation process according to the invention is in the form of a composite comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, in which is distributed the active phase comprising nickel, preferably consisting of nickel.
- the characteristics of the gel which has led to obtaining the alumina contained in said oxide matrix, as well as the textural properties obtained with the active phase, give the catalyst its specific properties.
- said catalyst comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, and an active phase comprising nickel, preferably consisting of nickel, said active phase not comprising no group VI B metal (Cr, Mo, W), the nickel content being between 1 and 65% by weight of said element relative to the total weight of the catalyst, said active phase being in the form of nickel particles having a diameter of less than or equal to 18 nm, said catalyst comprising a total pore volume measured by mercury porosimetry greater than 0.10 ml / g, a mesoporous volume measured by mercury porosimetry greater than 0.10 ml / g, a volume macroporous measured by mercury porosimetry less than or equal to 0.6 ml / g, a median mesoporous diameter of between 3 and 25 nm, a macroporous median diameter of between 50 and 1500 nm, and an SBET surface area of between 20 and 400 m
- All textural properties are measured on the dried catalyst (if the catalyst preparation process does not provide the optional step e) of treatment after drying step d)) or on the catalyst obtained after step e) of heat treatment (if this step is carried out).
- the nickel content is between 1 and 65% by weight, preferably between 5 and 55% by weight, preferably between 8 and 40% by weight, and particularly preferably between 10 and 35% by weight, so that more preferably between 12 and 35% by weight, more preferably between 15 and 35% by weight, and more preferably between 18 and 32% by weight of said element relative to the total mass of the catalyst.
- the Ni content is measured by X-ray fluorescence.
- the size of the nickel particles in the catalyst according to the invention, measured in their oxide form, is less than 18 nm, preferably less than 15 nm, more preferably between 0.5 and 12 nm, more preferably between 1 and 8 nm, even more preferably between 1 and 6 nm, and even more preferably between 1, 5 and 5 nm.
- the active phase of the catalyst does not include a Group VIB metal. It does not include molybdenum or tungsten.
- the catalyst obtained by the method of preparation as described above present when the latter is used in the context of the process for the selective hydrogenation of polyunsaturated compounds or hydrogenation of aromatics according to the invention a good compromise between a high pore volume, a high mesoporous volume and a mesoporous median diameter, a high Ni content, a small size of nickel particles thus making it possible to have hydrogenation performance in terms of activity at least as good as the catalysts known from the state of the prior art.
- the catalyst further comprises an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, optionally supplemented with silica and / or phosphorus to a total content of at most 10 % equivalent weight Si0 2 and / or P 2 0 5 , preferably less than 5% by weight, and very preferably less than 2% by weight relative to the total weight of said matrix.
- Silica and / or phosphorus can be introduced by any technique known to those skilled in the art, during the synthesis of the alumina gel or during the comalaxing.
- the oxide matrix consists of alumina.
- the alumina present in said matrix is a transition alumina such as gamma, delta, theta, chi, rho or eta alumina, alone or as a mixture. More preferably, the alumina is a gamma, delta or theta transition alumina, alone or as a mixture.
- Said catalyst is generally presented in all the forms known to those skilled in the art, for example in the form of beads (generally having a diameter of between 1 and 8 mm), extrudates, tablets, hollow cylinders. Preferably, it consists of extrudates of diameter generally between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and of average length. between 0.5 and 20 mm.
- the term "mean diameter" of the extrudates means the average diameter of the circle circumscribed in the cross-section of these extrusions.
- the catalyst may advantageously be in the form of cylindrical, multilobed, trilobed or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all known methods of the prior art.
- the catalyst has a total pore volume of at least 0.10 ml / g, preferably at least 0.30 ml / g, preferably between 0.35 and 1.2 ml / g, more preferentially between 0.4 and 1 mL / g and even more preferably between 0.45 and 0.9 mL / g.
- the catalyst advantageously has a macroporous volume less than or equal to 0.6 mL / g, preferably less than or equal to 0.5 mL / g, more preferably less than or equal to 0.4 mL / g, and even more preferably between 0 , 02 and 0.3 mL / g.
- the mesoporous volume of the catalyst is at least 0.10 ml / g, preferably at least 0.20 ml / g, preferably between 0.25 ml / g and 0.80 ml / g, more preferably between 0.30 and 0.65 mL / g, and even more preferably between 0.35 and 0.55 mL / g.
- the median mesoporous diameter is between 3 nm and 25 nm, and preferably between 6 and 20 nm, and particularly preferably between 8 and 18 nm.
- the catalyst has a macroporous median diameter of between 50 and 1500 nm, preferably between 80 and 1000 nm, even more preferably between 250 and 800 nm.
- the catalyst has a BET specific surface area of between 20 and 400 m 2 / g, and more preferably between 30 and 350 m 2 / g, and even more preferably between 40 and 250 m 2 / g.
- the specific surface area is measured on the dried catalyst (if the catalyst preparation process does not provide the optional step e) of heat treatment after step d) of drying) or on the catalyst obtained after the treatment step e) thermal (if this step is performed).
- the catalyst has a low microporosity, very preferably it has no microporosity.
- the subject of the present invention is also a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatician, also known as styrenics, contained in a polyunsaturated charge.
- hydrocarbons having a final boiling point less than or equal to 300 ° C which process is carried out at a temperature of between 0 and 300 ° C, at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen to (polyunsaturated compounds to be hydrogenated) between 0.1 and 10 and at an hourly space velocity of between 0, 1 and 200 h 1 when the process is carried out in the liquid phase, or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) between 0.5 and 1000 and at an hourly space velocity between 100 and 40000 h 1 when the process is carried out in the gaseous phase, in the presence of a catalyst obtained by the process of preparation as described above in the description.
- Monounsaturated organic compounds such as, for example, ethylene and propylene, are at the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
- Selective hydrogenation is the main treatment developed to specifically remove undesired polyunsaturated compounds from these hydrocarbon feeds. It allows the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics, avoiding their total saturation and thus the formation of the corresponding alkanes or naphthenes. In the case of steam cracking gasolines used as a filler, the selective hydrogenation also makes it possible to selectively hydrogenate alkenyl aromatics to aromatics by avoiding the hydrogenation of the aromatic rings.
- the hydrocarbon feedstock treated in the selective hydrogenation process has a final boiling point less than or equal to 300 ° C and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound.
- polyunsaturated compounds means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function.
- the filler is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a steam cracking C3 cut, a steam cracking C4 cut, a steam cracking C5 cut and a still called steam cracking gasoline.
- a C2 steam cracking cut a C2-C3 steam cracking cut
- a steam cracking C3 cut a steam cracking C4 cut
- a steam cracking C5 cut and a still called steam cracking gasoline.
- pyrolysis gasoline or C5 + cut pyrolysis gasoline or C5 + cut.
- the steam cracking section C2 advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane. In certain steam cracking sections, between 0.1 and 1% by weight of C 3 compounds may also be present.
- the C3 steam-cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C 2 compounds and C 4 compounds may also be present. A C2 - C3 cut can also be advantageously used for the implementation of the selective hydrogenation process according to the invention.
- composition of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane.
- This filler may also contain between 0.1 and 2% by weight of C4 compounds.
- the C4 steam-cracking cut advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average mass composition: 1% weight of butane, 46.5% weight of butene, 51% by weight butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds may also be present.
- the C5 steam-cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following composition: 21% by weight of pentanes, 45% by weight of pentenes and 34% by weight of pentadienes.
- the steam cracking gasoline or pyrolysis gasoline corresponds to a hydrocarbon fraction whose boiling point is generally between 0 and 300 ° C., preferably between 10 and 250 ° C.
- the polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are, in particular, diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrenic compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene). ).
- Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
- a charge formed of pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulfur, preferably from 0 to 500 ppm by weight of sulfur.
- the polyunsaturated hydrocarbon feedstock treated according to the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a steam cracking gasoline.
- the selective hydrogenation process according to the invention aims at eliminating said polyunsaturated hydrocarbons present in said feedstock to be hydrogenated without hydrogenating the monounsaturated hydrocarbons.
- the selective hydrogenation process aims to selectively hydrogenate acetylene.
- the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
- the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefinic compounds are partially hydrogenated to mono-olefins and that the styrenic and indene compounds are partially hydrogenated to corresponding aromatic compounds by avoiding the hydrogenation of aromatic rings.
- the technological implementation of the selective hydrogenation process is carried out, for example, by injection, in ascending or descending current, of the polyunsaturated hydrocarbon feedstock and hydrogen in at least one fixed bed reactor.
- Said reactor may be of the isothermal or adiabatic type. An adiabatic reactor is preferred.
- the polyunsaturated hydrocarbon feed may advantageously be diluted by one or more re-injection of the effluent from said reactor, where the selective hydrogenation reaction occurs, at various points in the reactor, located between the inlet and the outlet. reactor outlet to limit the temperature gradient in the reactor.
- the technological implementation of the selective hydrogenation process according to the invention may also be advantageously carried out by implanting at least one of said supported catalyst in a reactive distillation column or in reactor-exchangers or in a slurry-type reactor. .
- the flow of hydrogen can be introduced at the same time as the feedstock to be hydrogenated and / or at one or more different points of the reactor.
- the selective hydrogenation of the steam-cracking cuts C2, C2-C3, C3, C4, C5 and C5 + can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the phase gaseous for C2 and C2-C3 cuts.
- a reaction in the liquid phase makes it possible to lower the energy cost and to increase the catalyst cycle time.
- the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point of less than or equal to 300 ° C. is carried out at a temperature of between 0 and 300 ° C., at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) ) between 0, 1 and 10 and at an hourly space velocity VVH (defined as the ratio of the volume flow rate of charge to the volume of the catalyst) of between 0, 1 and 200 h 1 for a process carried out in the liquid phase, or a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.5 and 1000 and at a hourly space velocity VVH of between 100 and 40,000 h 1 for a process carried out in the gas phase.
- VVH hourly space velocity
- the feedstock is a steam cracking gasoline containing polyunsaturated compounds
- the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally understood.
- the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C
- the hourly volume velocity (VVH) is generally between 0.5 and 100 h 1 , preferably between 1 and 50 h 1
- the pressure is generally between 0, 3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa.
- a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline comprising polyunsaturated compounds, the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0, the temperature is between 20 and 200 ° C, the hourly volume velocity (VVH) is generally between 1 and 50 h 1 and the pressure is between 1.0 and 7.0 MPa.
- the feedstock is a steam cracking gasoline comprising polyunsaturated compounds
- the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0
- the temperature is between 20 and 200 ° C
- the hourly volume velocity (VVH) is generally between 1 and 50 h 1
- the pressure is between 1.0 and 7.0 MPa.
- a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline comprising polyunsaturated compounds, the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 1.0 and 2.0, the temperature is between 30 and 180 ° C, the hourly volume velocity (VVH) is generally between 1 and 50 h 1 and the pressure is between 1, 5 and 4.0 MPa.
- the feedstock is a steam cracking gasoline comprising polyunsaturated compounds
- the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 1.0 and 2.0
- the temperature is between 30 and 180 ° C
- the hourly volume velocity (VVH) is generally between 1 and 50 h 1
- the pressure is between 1, 5 and 4.0 MPa.
- the hydrogen flow rate is adjusted in order to dispose of it in sufficient quantity to theoretically hydrogenate all of the polyunsaturated compounds and to maintain an excess of hydrogen at the outlet of the reactor.
- the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800
- the temperature is between 0 and and 300 ° C, preferably between 15 and 280 ° C
- the hourly volume velocity (VVH) is generally between 100 and 40000 h 1 , preferably between 500 and 30000 h 1
- the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa.
- the subject of the present invention is also a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650 ° C., generally between 20 and 650 ° C. and preferably between 20 and 450 ° C.
- Said hydrocarbon feedstock containing at least one aromatic or polyaromatic compound may be chosen from the following petroleum or petrochemical cuts: catalytic reforming reformate, kerosene, light gas oil, heavy gas oil, cracking distillates, such as FCC recycling oil, coker unit diesel, hydrocracking distillates.
- the content of aromatic or polyaromatic compounds contained in the hydrocarbon feedstock treated in the hydrogenation process according to the invention is generally between 0.1 and 80% by weight, preferably between 1 and 50% by weight, and particularly preferably between 2 and 35% by weight, the percentage being based on the total weight of the hydrocarbon feed.
- the aromatic compounds present in said hydrocarbon feedstock are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, o-xylene, m-xylene or p-xylene, or else aromatics having several aromatic (polyaromatic) rings such as naphthalene.
- the sulfur or chlorine content of the feedstock is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and particularly preferably less than 10 ppm by weight.
- the technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is for example carried out by injection, in ascending or descending current, of the hydrocarbon feedstock and hydrogen in at least one fixed bed reactor.
- Said reactor may be of the isothermal or adiabatic type.
- An adiabatic reactor is preferred.
- the hydrocarbon feedstock can advantageously be diluted by one or more re-injection (s) of the effluent, from said reactor where the aromatic hydrogenation reaction occurs, at various points of the reactor, situated between the inlet and the outlet of the reactor in order to limit the gradient of temperature in the reactor.
- the technological implementation of the process for the hydrogenation of aromatics according to the invention can also be advantageously carried out by implanting at least one of said supported catalyst in a reactive distillation column or in reactor-exchangers or in a reactor of the following type slurry.
- the flow of hydrogen can be introduced at the same time as the feedstock to be hydrogenated and / or at one or more different points of the reactor.
- the hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
- the hydrogenation of the aromatic or polyaromatic compounds is carried out at a temperature of between 30 and 350 ° C., preferably between 50 and 325 ° C., at a pressure of between 0.1 and 20 MPa, preferably between 0.5 and 10 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at a hourly volume velocity VVH between 0.05 and 50 h 1 , preferably between 0.1 and 10 h 1 of a hydrocarbon feedstock containing aromatic or polyaromatic compounds and having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C, and preferably between 20 and 450 ° C .
- the hydrogen flow rate is adjusted in order to dispose of it in sufficient quantity to theoretically hydrogenate all the aromatic compounds and to maintain an excess of hydrogen at the outlet of the reactor.
- the conversion of the aromatic or polyaromatic compounds is generally greater than 20 mol%, preferably greater than 40 mol%, more preferably greater than 80 mol%, and particularly preferably greater than 90 mol% of the aromatic compounds. or polyaromatic content contained in the hydrocarbon feedstock.
- the conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feedstock and the product by the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feedstock.
- a process is carried out for the hydrogenation of benzene from a hydrocarbon feedstock, such as the reformate resulting from a catalytic reforming unit.
- the benzene content in said hydrocarbon feedstock is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the hydrocarbon feed.
- the sulfur or chlorine content of the feedstock is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
- the hydrogenation of the benzene contained in the hydrocarbon feed can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
- a solvent may be present, such as cyclohexane, heptane or octane.
- the hydrogenation of benzene is carried out at a temperature of between 30 and 250 ° C., preferably between 50 and 200 ° C., and more preferably between 80 and 180 ° C., at a pressure comprised between between 0.1 and 10 MPa, preferably between 0.5 and 4 MPa, at a hydrogen / (benzene) molar ratio between 0.1 and 10 and at a hourly volume velocity VVH between 0.05 and 50 h 1 , preferably between 0.5 and 10 h 1 .
- the conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
- solution S used for the preparation of catalysts B and C is prepared by dissolving 46.1 g of nickel nitrate (Ni (NO 3 ) 2 .6H 2 O, supplier Strem Chemicals®) in a volume of 13 mL of distilled water. Solution S is obtained whose NiO concentration is 20.1% by weight (relative to the mass of the solution).
- Example 2 Preparation of a calcined aluminous porous oxide (according to embodiment 2)
- alumina A The synthesis of alumina A is carried out in a laboratory reactor with a capacity of about 7000 ml. The synthesis is carried out at 70 ° C with stirring in six steps, named below (a1 ') to a6'). It is sought to prepare 5 L of solution at a concentration of 27 g / L of alumina in the final suspension (obtained at the end of step a3 ') and with a contribution rate of the first step (a1') at 2.1% of the total alumina.
- A2 ' pH adjustment About 70 ml of NaAlOO sodium aluminate are gradually added. The goal is to reach a pH between 7 and 10 in a period of 5 to 15 minutes.
- the pH is between 8.7 and 9.9.
- a4 ' Filtration: The suspension obtained at the end of step a3') is filtered by displacement on a sintered Buchner tool P4 and washed several times with distilled water. An alumina gel is obtained.
- step a5 Drying: The alumina gel obtained at the end of step a4') is dried in an oven for 16 hours at 200 ° C.
- step a6 Heat treatment: The powder obtained at the end of step a5') is then calcined under a flow of air of 1 L / h / g of alumina gel at 750 ° C. for 2 hours to obtain the transition from boehmite to alumina. Alumina A is then obtained.
- Example 3 (Comparative) Preparation of a catalyst B by impregnation of nickel nitrate without additive
- Catalyst B is prepared by dry impregnation of alumina A described in Example 2 with solution S of Ni precursors.
- alumina A The synthesis of alumina A is carried out by following the six steps, steps aT) to a6 '), of Example 2 described above.
- the operating conditions are strictly identical.
- a shaping step of the dried alumina gel from step a5 ') is inserted between steps a5') and a6 '):
- the shaping of this powder is carried out on a Brabender type kneader. with an acid content of 1% (total acid level, expressed relative to dry alumina), a neutralization rate of 20% and acid and basic fire losses of 62% and 64% respectively.
- the extrusion is then carried out on a piston extruder through a 2.1 mm diameter die. After extrusion, the extrusions are dried for 16 hours at 80 ° C.
- step a6 ') of calcination extrudates of alumina A are obtained.
- Example 2 The solution S prepared in Example 1 is impregnated dry with 10 g of alumina A. The solid thus obtained is then dried in an oven for 16 hours at 120 ° C. and then calcined under a flow of air of 1 L / h / g catalyst at 450 ° C for 2 hours.
- the other structural characteristics of catalyst B are listed in Table 1 below.
- Catalyst C is prepared from alumina A and Ni precursor solution S, prepared above, according to the following four steps:
- a "Brabender" mixer is used with a bowl of 80 mL and a mixing speed of 30 rpm.
- Alumina powder A is placed in the bowl of the kneader.
- solution S of Ni precursors is added gradually to the syringe for about 10 minutes at 15 rpm while heating to evacuate the water. After obtaining a paste, the kneading is maintained for 15 minutes at 50 rpm.
- Heat treatment The dried catalyst is then calcined in a tubular furnace, under a flow of air of 1 L / h / g of catalyst, at 450 ° C for 2 hours (ramp temperature rise of 5 ° C / min).
- the calcined catalyst C which contains 24.3% by weight of the nickel element relative to the total weight of the comalaxed catalyst, is then obtained and has nickel oxide crystallites with an average diameter of 9.5 nm.
- the other structural characteristics of catalyst C are listed in Table 1 below. nickel nitrate and propanedioic acid (malonic acid)
- Catalyst D is prepared by dry co-impregnation of nickel nitrate and malonic acid on alumina A using a molar ratio ⁇ malonic acid / nickel ⁇ equal to 0.6.
- an aqueous solution S ' is prepared by dissolving 89.0 g of nickel nitrate Ni (N0 3 ) 2 .6H 2 O (supplier Strem Chemicals®) and 19.1 g of malonic acid (CAS 141- 82-2, Fluka® supplier) in 20 mL of demineralized water.
- This solution S ' then impregnated dry on 10 g of alumina A previously shaped in the form of extrudates as described above in Example 3.
- the solid thus obtained is then dried in an oven for 16 hours at 120.degree. ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
- the calcined catalyst D thus prepared contains 22.9% by weight of the nickel element relative to the total weight of the catalyst supported on alumina and has nickel oxide crystallites with an average diameter of 4.8 nm.
- the other structural characteristics of the catalyst D are listed in Table 1 below.
- Example 6 a catalyst E in the presence of prc acid
- Catalyst E is prepared from alumina A and solution S 'containing the precursor of Ni and propanedioic acid, prepared above, according to the following four steps:
- a "Brabender" mixer is used with a bowl of 80 mL and a mixing speed of 30 rpm.
- Alumina powder A is placed in the bowl of the kneader.
- the precursor solution S 'of Ni and propanedioic acid is added gradually to the syringe for about 10 minutes at 15 rpm while heating to evacuate the water. After obtaining a paste, the kneading is maintained for 15 minutes at 50 rpm.
- the dried catalyst is then calcined in a tubular furnace, under a flow of air of 1 L / h / g of catalyst, at 450 ° C for 2 hours (ramp temperature rise of 5 ° C / min).
- the calcined catalyst E which contains TI, 7% by weight of the nickel element relative to the total weight of the comalaxed catalyst is then obtained and has crystallites of nickel oxide whose average diameter is 4.2 nm.
- the other structural characteristics of catalyst E are listed in Table 1 below.
- Catalysts B, C, D and E described in the examples above are tested for the selective hydrogenation reaction of a mixture containing styrene and isoprene.
- composition of the filler to be selectively hydrogenated is as follows: 8% by weight styrene (supplier Sigma Aldrich®, purity 99%), 8% by weight isoprene (supplier Sigma Aldrich®, purity 99%), 84% by weight n-heptane (solvent ) (VWR® supplier, purity> 99% chromanorm HPLC).
- This feed also contains sulfur compounds in very low content: 10 ppm wt of sulfur introduced in the form of pentanethiol (supplier Fluka®, purity> 97%) and 100 ppm wt of sulfur introduced in the form of thiophene (Merck® supplier, purity 99 %).
- This composition corresponds to the initial composition of the reaction mixture.
- This mixture of model molecules is representative of a pyrolysis species.
- the selective hydrogenation reaction is carried out in a 500 ml autoclave made of stainless steel, equipped with magnetic stirring mechanical stirring and capable of operating at a maximum pressure of 100 bar (10 MPa) and temperatures of between 5 ° C. and 5 ° C. 200 ° C.
- a quantity of 3 mL of catalyst Prior to its introduction into the autoclave, a quantity of 3 mL of catalyst is reduced ex situ under a flow of hydrogen of 1 L / h / g of catalyst, at 400 ° C. for 16 hours (temperature rise ramp of 1 ° C / min), then it is transferred to the autoclave, protected from the air. After addition of 214 mL of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC), the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to temperature. test equal to 30 ° C.
- the progress of the reaction is monitored by taking samples of the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and the isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane. Hydrogen consumption is also monitored during time by reducing the pressure in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
- Table 2 Comparison of the performances in selective hydrogenation of a mixture containing styrene and isoprene (A H YDI) and hydrogenation of toluene (A H YD2) This shows the improved performance of the catalyst E prepared according to the invention and in particular the impact of the use of a step of mixing the active phase in the presence of an organic additive rather than an impregnation step. Indeed, the catalyst D, although having NiO crystallites of size substantially equal to those of the catalyst E, has poorer catalytic performance.
- Catalysts B, C, D and E described in the above examples are also tested against the hydrogenation reaction of toluene.
- the selective hydrogenation reaction is carried out in the same autoclave as that described in Example 6.
- a quantity of 2 mL of catalyst Prior to its introduction into the autoclave, a quantity of 2 mL of catalyst is reduced ex situ under a flow of hydrogen of 1 L / h / g of catalyst, at 400 ° C. for 16 hours (temperature rise ramp of 1 ° C / min), then it is transferred to the autoclave, protected from the air. After addition of 216 ml of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC), the autoclave is closed, purged and then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to temperature. test equal to 80 ° C.
- toluene supplier SDS®, purity> 99.8%
- stirring is started at 1600 rpm.
- the pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
- the progress of the reaction is monitored by taking samples of the reaction medium at regular time intervals: toluene is completely hydrogenated to methylcyclohexane. Hydrogen consumption is also monitored over time by the pressure decrease in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Nanotechnology (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1850280A FR3076747B1 (en) | 2018-01-15 | 2018-01-15 | METHOD FOR PREPARING A PARTICULAR CATALYST FOR SELECTIVE HYDROGENATION AND HYDROGENATION OF AROMATICS BY MIXING |
PCT/EP2019/050025 WO2019137836A1 (en) | 2018-01-15 | 2019-01-02 | Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3740309A1 true EP3740309A1 (en) | 2020-11-25 |
EP3740309B1 EP3740309B1 (en) | 2023-03-15 |
Family
ID=62067664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19700010.2A Active EP3740309B1 (en) | 2018-01-15 | 2019-01-02 | Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200338531A1 (en) |
EP (1) | EP3740309B1 (en) |
FR (1) | FR3076747B1 (en) |
WO (1) | WO2019137836A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3104602A1 (en) * | 2019-12-17 | 2021-06-18 | IFP Energies Nouvelles | Finishing hydrodesulfurization process in the presence of a catalyst obtained by the molten salt route |
FR3104462B1 (en) * | 2019-12-17 | 2022-06-10 | Ifp Energies Now | CATALYST FOR THE HYDROGENATION OF AROMATIC COMPOUNDS OBTAINED FROM MOLTEN SALTS AND AN ORGANIC ADDITIVE |
FR3104461B1 (en) * | 2019-12-17 | 2022-06-17 | Ifp Energies Now | SELECTIVE HYDROGENATION CATALYST OBTAINED FROM MOLTEN SALTS AND AN ORGANIC ADDITIVE |
FR3104463B1 (en) * | 2019-12-17 | 2021-12-17 | Ifp Energies Now | HYDROGENOLYSIS CATALYST OBTAINED FROM MOLTEN SALTS AND AN ORGANIC ADDITIVE |
JP2024533624A (en) * | 2021-09-16 | 2024-09-12 | サーク、エルエルシー | Method for forming polyesters from regenerated diacids formed by depolymerization of waste materials |
TW202330759A (en) * | 2021-09-16 | 2023-08-01 | 美商賽克股份有限公司 | Method of aging regenerated diacid crystals |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4273680A (en) | 1979-11-06 | 1981-06-16 | Exxon Research & Engineering Co. | Supported non-ferrous group VIII aluminate coprecipitated hydrogenation catalysts and process for their preparation |
GB9010075D0 (en) * | 1990-05-04 | 1990-06-27 | Shell Int Research | Process for the preparation of alumina based extrudates |
FR2664507B1 (en) | 1990-07-13 | 1995-04-14 | Eurecat Europ Retrait Catalys | PROCESS FOR PRETREATING A CATALYST WITH A MIXTURE OF A SULFUR AGENT AND AN ORGANIC REDUCING AGENT. |
FR2664610A1 (en) | 1990-07-13 | 1992-01-17 | Inst Francais Du Petrole | SELECTIVE HYDROGENATION OF VAPOCRACKING SPECIES ON CATALYSTS BASED ON A SUPPORTED METAL IN WHICH AN ORGANIC COMPOUND HAS BEEN INCORPORATED BEFORE LOADING INTO THE REACTOR. |
FR2676184B1 (en) | 1991-05-06 | 1995-04-14 | Eurecat Europ Retrait Catalys | PROCESS FOR PRETREATING A CATALYST WITH A MIXTURE OF A SULFUR AGENT AND AN ORGANIC REDUCING AGENT. |
KR100297939B1 (en) * | 1993-02-15 | 2001-10-22 | 다께우찌 야스오끼 | METHOD FOR PREPARING CATALYST COMPOSITION AND METHOD FOR HYDROGEN SULFURING SULFUR-CONTAINING HYDROCARBONES USING THE SAME |
DE4310971A1 (en) | 1993-04-03 | 1994-10-06 | Huels Chemische Werke Ag | Nickel / alumina catalyst, process for its preparation, its use and process for the hydrogenation of aromatic hydrocarbons with the aid of the catalyst |
FR2725381B1 (en) | 1994-10-07 | 1996-12-13 | Eurecat Europ Retrait Catalys | OFF-SITE PRETREATMENT PROCESS FOR A HYDROCARBON TREATMENT CATALYST |
GB0227086D0 (en) | 2002-11-20 | 2002-12-24 | Exxonmobil Res & Eng Co | Hydrogenation processes |
FR2854335B1 (en) | 2003-04-30 | 2009-03-20 | Eurecat Sa | OFF-SITE TREATMENT OF HYDROGENATION CATALYSTS |
DE102007012812A1 (en) | 2007-03-16 | 2008-09-18 | Süd-Chemie AG | Method for the desulphurisation of fuels and suitable high-activity nickel-supported catalyst based on alumina |
WO2009050292A2 (en) | 2007-10-19 | 2009-04-23 | Shell Internationale Research Maatschappij B.V. | Catalyst for the hydrogenation of unsaturated hydrocarbons and process for its preparation |
GB201000045D0 (en) | 2010-01-04 | 2010-02-17 | Johnson Matthey Plc | Catalyst and method of catalyst manufacture |
FR2963344B1 (en) * | 2010-07-29 | 2012-07-27 | IFP Energies Nouvelles | METHOD OF SELECTIVE HYDROGENATION IN THE PRESENCE OF A CATALYST BASED ON A GROUP VIII METAL PREPARED BY MEANS OF AT LEAST ONE CYCLIC OLIGOSACCHARIDE |
FR2984761B1 (en) * | 2011-12-21 | 2014-12-26 | IFP Energies Nouvelles | PROCESS FOR THE PREPARATION OF A CATALYST BASED ON A GROUP VIII METAL PREPARED USING AT LEAST ONE ORGANIC ADDITIVE AND METHOD OF SELECTIVE HYDROGENATION USING SAID CATALYST |
WO2015046323A1 (en) * | 2013-09-27 | 2015-04-02 | コスモ石油株式会社 | Hydrogenation treatment catalyst for heavy hydrocarbon oil, and method for hydrogenation treatment of heavy hydrocarbon oil |
CN104549286B (en) * | 2013-10-23 | 2017-05-17 | 中国石油化工股份有限公司 | Hydrorefining catalyst as well as preparation method thereof and application thereof |
FR3022160B1 (en) * | 2014-06-13 | 2021-05-07 | Ifp Energies Now | ACTIVE PHASE CATALYST OF MESOPOREOUS AND MACROPOREOUS COMALAXED NICKEL WITH A MEDIAN MACROPOREOUS DIAMETER BETWEEN 50 AND 300 NM AND ITS USE IN HYDROGENATION |
FR3022161B1 (en) * | 2014-06-13 | 2021-05-07 | Ifp Energies Now | ACTIVE PHASE CATALYST OF MESOPOREOUS AND MACROPOREOUS COMALAXED NICKEL WITH A MEDIAN MACROPOREOUS DIAMETER GREATER THAN 300 NM AND ITS USE IN HYDROGENATION |
FR3022162B1 (en) * | 2014-06-13 | 2021-05-07 | Ifp Energies Now | MESOPOREOUS AND MACROPOROUS NICKEL BASED CATALYST WITH A MEDIAN MACROPOROUS DIAMETER BETWEEN 50 NM AND 200 NM AND ITS USE IN HYDROGENATION |
CN106140315B (en) * | 2015-04-15 | 2018-11-30 | 中国石油化工股份有限公司 | A kind of hydrogenation catalyst and its application in hydrocarbon oil hydrogenation |
-
2018
- 2018-01-15 FR FR1850280A patent/FR3076747B1/en active Active
-
2019
- 2019-01-02 US US16/962,102 patent/US20200338531A1/en not_active Abandoned
- 2019-01-02 EP EP19700010.2A patent/EP3740309B1/en active Active
- 2019-01-02 WO PCT/EP2019/050025 patent/WO2019137836A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
FR3076747B1 (en) | 2022-06-10 |
WO2019137836A1 (en) | 2019-07-18 |
US20200338531A1 (en) | 2020-10-29 |
EP3740309B1 (en) | 2023-03-15 |
FR3076747A1 (en) | 2019-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3076746A1 (en) | PROCESS FOR THE PREPARATION OF A PARTICULAR CATALYST OF SELECTIVE HYDROGENATION BY MIXING AND IMPREGNATION | |
WO2019137836A1 (en) | Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading | |
FR3061198B1 (en) | HYDROGENATION PROCESS FOR AROMATICS USING A NICKEL CATALYST | |
EP3559165B1 (en) | Selective hydrogenation process with a nickel based catalyst prepared by an additive having a carboxylic acid function | |
EP4003587B1 (en) | Catalyst comprising an active nickel phase in the form of small particles distributed in a shell and a nickel-copper alloy | |
EP4003591A1 (en) | Catalyst comprising an active nickel phase in the form of small particles and a nickel-copper alloy | |
WO2021018602A1 (en) | Catalyst comprising an active nickel phase in the form of small particles distributed in a shell | |
WO2020083714A1 (en) | Hydrogenation process comprising a catalyst prepared by addition of an organic compound in the gas phase | |
FR3099387A1 (en) | CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST | |
FR3061197A1 (en) | SELECTIVE HYDROGENATION PROCESS USING A NICKEL CATALYST PREPARED USING AN ADDITIVE COMPRISING AN ESTER FUNCTION | |
WO2018114398A1 (en) | Selective hydrogenation method using a nickel-based catalyst produced using an additive comprising an alcohol function | |
FR3099389A1 (en) | CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL SULFUR DISTRIBUTED IN CRUST | |
FR3068983A1 (en) | SELECTIVE HYDROGENATION PROCESS USING A CATALYST OBTAINED BY IMPREGNATION COMPRISING A SPECIFIC SUPPORT | |
FR3061195A1 (en) | SELECTIVE HYDROGENATION PROCESS USING A PREPARED NICKEL CATALYST USING AN ADDITIVE COMPRISING AMINO ACID, AMIDE FUNCTION OR AN AMINO ACID | |
WO2024017703A1 (en) | Method for preparing a catalyst containing an active nickel phase and a nickel-copper alloy | |
EP4373611A1 (en) | Method for preparing a catalyst comprising an active nickel phase distributed in a shell via hexanol impregnation | |
EP4373612A1 (en) | Method for preparing a catalyst comprising a nickel active phase distributed in a crust via impregnation of heptanol | |
WO2021197845A1 (en) | Method for preparing a palladium catalyst comprising a carrier prepared from an aluminium material and a polyol | |
FR3068982A1 (en) | SELECTIVE HYDROGENATION PROCESS USING A CATALYST OBTAINED BY COMALAXING COMPRISING A SPECIFIC SUPPORT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200817 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210709 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10G 45/48 20060101ALN20220824BHEP Ipc: C10G 45/36 20060101ALN20220824BHEP Ipc: C10G 45/32 20060101ALN20220824BHEP Ipc: C10G 45/60 20060101ALN20220824BHEP Ipc: B01J 37/04 20060101ALI20220824BHEP Ipc: B01J 35/10 20060101ALI20220824BHEP Ipc: B01J 23/755 20060101AFI20220824BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220930 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019026387 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1553665 Country of ref document: AT Kind code of ref document: T Effective date: 20230415 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230615 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1553665 Country of ref document: AT Kind code of ref document: T Effective date: 20230315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230616 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230717 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019026387 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 |
|
26N | No opposition filed |
Effective date: 20231218 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240125 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240129 Year of fee payment: 6 Ref country code: GB Payment date: 20240123 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240125 Year of fee payment: 6 Ref country code: BE Payment date: 20240125 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240102 |