EP3740309A1 - Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading - Google Patents

Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading

Info

Publication number
EP3740309A1
EP3740309A1 EP19700010.2A EP19700010A EP3740309A1 EP 3740309 A1 EP3740309 A1 EP 3740309A1 EP 19700010 A EP19700010 A EP 19700010A EP 3740309 A1 EP3740309 A1 EP 3740309A1
Authority
EP
European Patent Office
Prior art keywords
acid
organic compound
catalyst
function
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19700010.2A
Other languages
German (de)
French (fr)
Other versions
EP3740309B1 (en
Inventor
Malika Boualleg
Anne-Claire Dubreuil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3740309A1 publication Critical patent/EP3740309A1/en
Application granted granted Critical
Publication of EP3740309B1 publication Critical patent/EP3740309B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/695Pore distribution polymodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina

Definitions

  • the subject of the invention is a process for the particular preparation of a catalyst used in the selective hydrogenation of polyunsaturated compounds in a hydrocarbon feedstock, especially in C2-C5 steam cracking cuts and steam cracking gasolines, or in the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feed allowing the conversion of aromatic compounds of petroleum or petrochemical cuts by conversion of aromatic rings to naphthenic rings.
  • the most active catalysts in hydrogenation reactions are conventionally based on noble metals such as palladium or platinum. These catalysts are used industrially in refining and in petrochemistry for the purification of certain petroleum fractions by hydrogenation, in particular in reactions of selective hydrogenation of polyunsaturated molecules such as diolefins, acetylenics or alkenylaromates, or in hydrogenation reactions. aromatic. It is often proposed to substitute palladium for nickel, a less active metal than palladium. It is therefore necessary to dispose of it in greater quantity in the catalyst.
  • the nickel-based catalysts generally have a metal content of between 5 and 60% by weight of nickel relative to the total weight of the catalyst.
  • the speed of the hydrogenation reaction is governed by several criteria, such as the diffusion of the reagents on the surface of the catalyst (external diffusional limitations), the diffusion of the reagents in the porosity of the support towards the active sites (internal diffusion limitations) and the intrinsic properties of the active phase such as the size of the metal particles and the distribution of the active phase within the support.
  • the porous distribution of the macropores and mesopores is adapted to the desired reaction in order to ensure the diffusion of the reagents in the porosity of the support towards the active sites as well as the diffusion of the formed products. outwards.
  • SUBSTITUTE SHEET (RULE 26) As regards the size of the metal particles, it is generally accepted that the catalyst is all the more active as the size of the metal particles is small. In addition, it is important to obtain a particle size distribution centered on the optimum value and a narrow distribution around this value.
  • the most conventional way of preparing these catalysts is the impregnation of the support with an aqueous solution of a nickel precursor, followed generally by drying and calcination. Before their use in hydrogenation reactions these catalysts are generally reduced in order to obtain the active phase which is in metallic form (that is to say in the zero valency state).
  • the nickel-based catalysts on alumina prepared by a single impregnation step generally make it possible to attain nickel contents of between 12 and 15% by weight of nickel, depending on the pore volume of the alumina used.
  • several successive impregnations are often necessary to obtain the desired nickel content, followed by at least one drying step, then possibly a calcination step between each impregnation. .
  • the document WO201 1/080515 describes a catalyst based on nickel on alumina which is active in hydrogenation, especially aromatics, said catalyst having a nickel content greater than 35% by weight relative to the total weight of the catalyst, and a large nickel dispersion.
  • the catalyst is prepared by at least four successive impregnations. The preparation of nickel catalysts having a high nickel content by the impregnation route thus involves a sequence of numerous steps which increases the associated manufacturing costs.
  • coprecipitation Another route of preparation also used to obtain catalysts with a high nickel content is coprecipitation.
  • the coprecipitation generally consists of a simultaneous casting in a batch reactor of both an aluminum salt (aluminum nitrate for example) and a nickel salt (nickel nitrate for example). Both salts precipitate simultaneously. Then calcination at high temperature is necessary to make the transition from alumina gel (boehmite for example) to alumina. By this preparation route, contents up to 70% by weight nickel are reached.
  • Catalysts Prepared by coprecipitation are for example described in US 4,273,680, US 8,518,851 and US 2010/01 16717.
  • Comalaxing generally consists of a mixture of a nickel salt with an alumina gel such as boehmite, said mixture being subsequently shaped, generally by extrusion, then dried and calcined.
  • US 5,478,791 discloses a nickel-on-alumina catalyst having a nickel content of between 10 and 60% by weight and a nickel particle size of 15 to 60 nm, prepared by comalling a nickel compound. with an alumina gel, followed by shaping, drying and reduction.
  • the application FR2984761 discloses a process for the preparation of a selective hydrogenation catalyst comprising a support and an active phase comprising a group VIII metal, said catalyst being prepared by a process comprising a step of impregnating a solution containing a Group VIII metal precursor and an organic additive, more particularly an organic compound having one to three carboxylic acid functions, a step of drying the impregnated support, and a step of calcining the dried support to obtain the catalyst.
  • Document US2006 / 0149097 discloses a process for the hydrogenation of aromatic compounds of benzenepolycarboxylic acid type in the presence of a catalyst comprising an active phase comprising at least one Group VIII metal, which catalyst is prepared by a process comprising an impregnation step of a solution containing a group VIII metal precursor and a step of impregnating an organic additive of amine or amino acid type.
  • the impregnation step of the organic additive may be carried out before or after the step of impregnating the active phase, or even simultaneously.
  • a catalyst based on nickel supported on alumina prepared by comalaxing a calcined aluminous porous oxide with a solution comprising at least one nickel precursor and at least one additive of organic compounds type chosen from organic compounds comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function or at least one amine function, makes it possible to obtain performances in selective hydrogenation of polyunsaturated compounds or in hydrogenation of aromatic compounds in at least as good or better than the known methods of the state of the art.
  • the resulting porous distribution of such a process of preparation by comalaxing makes it possible to provide a porosity particularly adapted to promote the diffusion of the reagents in the porous medium and then their reaction with the active phase.
  • the advantage of a comparison compared to an impregnation is that significantly reduces any risk of partial blockage of the porosity of the support when the deposition of the active phase and thus the appearance of internal diffusion limitations.
  • such a catalyst used in the context of a process for the selective hydrogenation of polyunsaturated compounds or a process for the hydrogenation of aromatic or polyaromatic compounds has the particularity of being able to contain high amounts of active phase.
  • the fact of preparing the catalyst according to the invention by comalaxing makes it possible to strongly charge this catalyst in the active phase in a single pass.
  • the catalyst obtained by the preparation method according to the invention is structurally distinguished from a catalyst obtained by simply impregnating a metal precursor on the alumina support in which the alumina forms the support and the active phase is introduced into the pores of this support.
  • the preparation process according to the invention makes it possible to obtain a composite in which the nickel particles and the alumina are intimately mixed thus forming the structure of the catalyst with a porosity and an active phase content adapted to the desired reactions.
  • the present invention firstly relates to a process for preparing a catalyst comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, and an active phase comprising nickel, said active phase not comprising a group VIB metal, the nickel content being between 1 and 65% by weight of said element relative to the total weight of the catalyst, said active phase being in the form of nickel particles having a diameter less than or equal to 18 nm, said catalyst comprising a total pore volume measured by mercury porosimetry greater than 0.10 ml / g, a mesoporous volume measured by mercury porosimetry greater than 0.10 ml / g, a measured macroporous volume by mercury porosimetry less than or equal to 0.6 ml / g, a median mesoporous diameter of between 3 and 25 nm, a macroporous median diameter of between 50 and 1500 nm, and a SBET specific surface area of between 20 and 400
  • the aluminized calcined porous oxide obtained in step a) is kneaded with a solution resulting from a mixture of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amine function, or at least one amide function to obtain a paste, the molar ratio between said organic compound and the nickel element being between 0.01 and 5.0 mol / mol;
  • step c) the shaped dough obtained in step c) is dried at a temperature below 250 ° C to obtain a dried catalyst
  • a heat treatment of the dried catalyst obtained in step d) is carried out at a temperature of between 250 and 1000 ° C, in the presence or absence of water.
  • said organic compound comprises at least one carboxylic acid function.
  • said organic compound is chosen from monocarboxylic acids, dicarboxylic acids, tricarboxylic acids and tetracarboxylic acids.
  • said organic compound comprises at least one alcohol function.
  • said organic compound is chosen from:
  • organic compounds comprising two alcohol functions; organic compounds chosen from diethylene glycol, triethylene glycol, tetraethylene glycol, or a polyethylene glycol having the formula H (OC 2 H 4 ) n OH with n greater than 4 and having an average molecular weight of less than 20000 g / mol; monosaccharides of formula C n (H 2 0) p with n between 3 and 12;
  • said organic compound comprises at least one ester function.
  • said organic compound is chosen from:
  • organic compounds comprising at least two carboxylic acid ester functions
  • organic compounds comprising at least one carboxylic acid ester function and at least one second functional group chosen from alcohols, ethers, ketones and aldehydes;
  • said organic compound comprises at least one amide function.
  • said organic compound is chosen from:
  • organic compounds comprising at least one amide function and a carboxylic acid function or an alcohol function
  • organic compounds comprising at least one amide function and an additional nitrogen heteroatom.
  • aluminized porous oxide calcined according to step a) is obtained by the following steps:
  • a1) a first step of precipitation, in an aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, and of at least one acidic precursor chosen from aluminum sulphate, aluminum chloride and nitrate of aluminum, sulfuric acid, hydrochloric acid and nitric acid, in which at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a degree of progression of the first stage of between 5 and 13%, the degree of progress being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the end of step a3) of the process preparation, said step operating at a temperature between 20 and 90 ° C and for
  • a3) a second step of precipitating the suspension obtained at the end of the heating step a2) by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, acid hydrochloric acid and nitric acid, wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10, And the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a progress rate of the second step of between 87 and 95%, the rate of progress being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said second precipitation step relative to the total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature between 40 and 90 ° C
  • step a5) a step of drying said alumina gel obtained in step a4) to obtain a powder; a6) a step of heat treatment of the powder obtained at the end of step a5) between 500 and 1000 ° C, for a duration of between 2 and 10 h, in the presence or absence of a flow of air containing up to 60% water volume to obtain a calcined aluminous porous oxide.
  • said calcined aluminous porous oxide according to step a) is obtained by the following steps: a1 ') a step of dissolving an aluminum acid precursor chosen from aluminum sulphate, aluminum chloride and aluminum nitrate in water, at a temperature of between 20 and 90 ° C, at a pH of between 0.5 and 5, for a period of between 2 and 60 minutes,
  • a2 ' a step of adjusting the pH by adding to the suspension obtained in step a1') at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, at a temperature between 20 and 90 ° C, and at a pH between 7 and 10, for a period of between 5 and 30 minutes,
  • a3 ' a step of coprecipitation of the suspension obtained at the end of step a2') by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, at least one of the basic or acidic precursors comprising aluminum, the relative flow rate of the acidic and basic precursors being chosen so as to obtain a pH of the reaction medium of between 7 and 10 and the flow rate of the aluminum-containing acidic and basic precursors being adjusted so as to obtain a final alumina concentration in the suspension of between 10 and 38 g / l,
  • a5 ' a step of drying said alumina gel obtained in step a4') to obtain a powder
  • said calcined aluminous porous oxide according to step a) is obtained by the following steps:
  • a1 at least a first step of precipitating alumina, in aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, aqueous ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid, and nitric acid, in which at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen in such a way as to obtain a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the acidic and basic precursor (s) containing aluminum is adjusted so as to obtain a degree of progress.
  • at least one basic precursor chosen from sodium aluminate, potassium aluminate, aqueous ammonia, sodium hydroxide and potassium hydroxide
  • the advancement rate being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the result of step c) of the preparation process, said first precipitation step operating at a temperature between 10 and 50 ° C, and for a period of between 2 minutes and 30 minutes;
  • step a4 a step of drying the alumina gel obtained at the end of step a3") to obtain a powder;
  • a5 a step of heat treatment of the powder obtained at the end of step a4") at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, to obtain a calcined aluminous porous oxide.
  • Another subject of the invention relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromates, contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300 ° C., which process is carried out at a temperature of between 0 and 300 ° C., at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds) to be hydrogenated) between 0.1 and 10 and at a hourly space velocity of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0 and , 5 and 1000 and at an hourly volume rate between 100 and 40000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst obtained by the preparation
  • Another object according to the invention relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650 ° C., said process being carried out in phase gaseous or in liquid phase, at a temperature of between 30 and 350 ° C, at a pressure of between 0.1 and 20 MPa, at a molar ratio of hydrogen / (aromatic compounds with hydrogenate) between 0.1 and 10 and at a hourly volume velocity VVH between 0.05 and 50 h 1 , in the presence of a catalyst obtained by the preparation process according to the invention.
  • Macropores means pores whose opening is greater than 50 nm.
  • pores is meant pores whose opening is between 2 nm and 50 nm, limits included.
  • micropores pores whose opening is less than 2 nm.
  • total pore volume of the catalyst or the support used for the preparation of the catalyst according to the invention is meant the volume measured by mercury porosimeter intrusion according to the ASTM D4284-83 standard at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • the anchoring angle was taken equal to 140 ° according to the recommendations of the book "Techniques of the engineer, treated analysis and characterization", pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume corresponds to the value of the total pore volume measured by mercury porosimeter intrusion measured on the sample minus the value of the total pore volume measured by mercury porosimeter intrusion measured on the same sample for a pressure corresponding to 30 psi (about 0.2 MPa).
  • the volume of macropores and mesopores is measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • the value at which mercury fills all the intergranular voids is fixed at 0.2 MPa, and it is considered that beyond this mercury enters the pores of the sample.
  • the macroporous volume of the catalyst or support used for the preparation of the catalyst according to the invention is defined as the cumulative volume of mercury introduced at a pressure of between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores of diameter apparent greater than 50 nm.
  • the mesoporous volume of the catalyst or support used for the preparation of the catalyst according to the invention is defined as the cumulative volume of mercury introduced at a pressure of between 30 MPa and 400 MPa, corresponding to the volume contained in the pores of apparent diameter included between 2 and 50 nm.
  • micropore volume is measured by nitrogen porosimetry.
  • the quantitative analysis of the microporosity is carried out using the "t" method (Lippens-De Boer method, 1965) which corresponds to a transformation of the starting adsorption isotherm as described in the book “Adsorption by powders and porous solids. Principles, methodology and applications "written by F. Rouquérol, J. Rouquérol and K. Sing, Academy Press, 1999.
  • the mesoporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the mesoporous volume, of size less than this diameter constitute 50% of the total mesoporous volume determined by intrusion into the mercury porosimeter.
  • the macroporous median diameter is also defined as the diameter such that all the pores, among all the pores constituting the macroporous volume, of size less than this diameter constitute 50% of the total macroporous volume determined by intrusion into the mercury porosimeter.
  • the specific surface of the catalyst or of the support used for the preparation of the catalyst according to the invention the specific surface B.E.T. determined by nitrogen adsorption according to ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the journal "The Journal of the American Society", 60, 309, (1938).
  • the size of the nickel nanoparticles is understood to mean the average diameter of the nickel crystallites measured in their oxide forms.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the process for preparing the catalyst comprises the following steps:
  • step b) the aluminized calcined porous oxide obtained in step a) is kneaded with a solution resulting from the mixing of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function to obtain a paste, the molar ratio between said organic compound and the nickel element being between 0.01 and 5.0 mol / mol;
  • step c) the shaped dough obtained in step c) is dried at a temperature below 250 ° C to obtain a dried catalyst
  • a heat treatment of the dried catalyst obtained in step d) is carried out at a temperature of between 250 and 1000 ° C, in the presence or absence of water.
  • the calcined aluminous porous oxide is obtained from a specific alumina gel.
  • the particular porous distribution observed in the catalyst is in particular due to the process of preparation from the specific alumina gel.
  • the calcined aluminic oxide can be synthesized by various methods known to those skilled in the art. For example, a process for obtaining a gel consisting of a precursor of the gamma-oxy (hydroxide) aluminum type (AIO (OH), otherwise known as boehmite, is used, for example the alumina gel can be obtained by precipitation of basic and / or acid solutions of aluminum salts induced by pH change or any other method known to those skilled in the art This method is described in particular by P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, JL The Loarer, JP Jolivet, C. Froidefond, Alumina, in Handbook of Porous Solids, Eds F. Schüth, Sing KSW, J. Weitkamp, Wiley-VCH, Weinheim, Germany, 2002, pp. 1591-1677.
  • AIO gamma-oxy aluminum type
  • the porous aluminum oxide is prepared from specific alumina gels prepared according to particular modes of preparation as described below.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the calcined aluminous porous oxide used in the context of the catalyst preparation process according to the invention is obtained by carrying out the following steps:
  • a1) a first step of precipitation, in an aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, and of at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, wherein at least one of the basic precursors or acid comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the acidic and basic precursor (s) containing aluminum is adjusted so as to obtain a first step progress rate of between 5 and 13%, the feed rate being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first step of precipitation over the qu total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature of between 20 and 90 ° C and for a time of between 2
  • a3) a second step of precipitating the suspension obtained at the end of the heating step a2) by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, acid hydrochloric acid and nitric acid, wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10, 5 and the debit of the Aluminum-containing acidic and basic precursors are adjusted to obtain a second stage progress rate of between 87 and 95%, the feed rate being defined as the proportion of alumina formed in Al 2 equivalent 0 3 during said second precipitation step relative to the total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature between 40 and 90 ° C and during a duration between 2
  • step a5) a step of drying said alumina gel obtained in step a4) to obtain a powder; for example at a temperature between 20 and 200 ° C and for a period of between 8 h and 15 h;
  • step a6) a step of heat treatment of the powder obtained at the end of step a5) between 500 and 1000 ° C, for a duration of between 2 and 10 h, in the presence or absence of a flow of air containing up to 60% water volume to obtain a calcined aluminous porous oxide.
  • the rate of progress for each of the precipitation stages is defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first or second precipitation stage relative to the total amount of alumina formed in Al 2 equivalent. 0 3 at the end of the two precipitation steps and more generally at the end of the steps of preparation of the alumina gel and in particular at the end of step a3) of the preparation process according to the invention.
  • the calcined aluminous porous oxide used in the context of the process for preparing the catalyst according to the invention is obtained by carrying out the following steps:
  • a1 ' a step of dissolving an aluminum acid precursor chosen from aluminum sulphate, aluminum chloride and aluminum nitrate in water, at a temperature of between 20 and 90 ° C, at a pH of between 0.5 and 5, for a period of between 2 and 60 minutes,
  • a2 ' a step of adjusting the pH by adding to the suspension obtained in step a1') at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, at a temperature between 20 and 90 ° C, and at a pH of between 7 and 10, for a period of between 5 and 30 minutes,
  • a3 ' a step of coprecipitation of the suspension obtained at the end of step a2') by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, at least one of the basic or acidic precursors comprising aluminum, the relative flow rate of the acidic and basic precursors being chosen so as to obtain a pH of the reaction medium of between 7 and 10 and the flow rate of the aluminum-containing acidic and basic precursors being adjusted so as to obtain a final alumina concentration in the suspension of between 10 and 38 g / l,
  • a5 ' a step of drying said alumina gel obtained in step a4') to obtain a powder, said drying step being operable at a temperature between 120 and 300 ° C, very preferably at a temperature between 150 and 250 ° C for 2 to 16 hours;
  • a6 ' a step of heat treatment of the powder obtained at the end of step a5') at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, for a period of between 2 and 10 hours, to obtain a calcined aluminous porous oxide.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the calcined aluminous porous oxide used in the context of the process for preparing the catalyst according to the invention is obtained by carrying out the following steps:
  • a1 at least a first step of precipitating alumina, in aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, aqueous ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid, and nitric acid, in wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium between 8.5 and 10.5 and the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a progress rate of said first step of between 40 and 100%, the rate of advancement being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the end of step c) of the preparation process, said first precipitation stage operating at a temperature between 10 and
  • a4 a step of drying the alumina gel obtained at the end of step a3") to obtain a powder; said drying step being carried out at a temperature between 20 and 250 ° C, preferably between 50 and 200 ° C, for a period of between 1 day and 3 weeks, preferably between 2 hours and 1 week and even more preferably between 5 hours and 48 hours;
  • a5 a step of heat treatment of the powder obtained at the end of step a4") at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, for a period of between 2 and 10 h, to obtain a calcined aluminous porous oxide.
  • the term "advancement rate" of the nth precipitation stage means the percentage of alumina formed in Al 2 0 3 equivalent in said nth stage, relative to the total quantity of alumina formed. at the end of all the precipitation steps and more generally after the steps of preparation of the alumina gel.
  • said precipitation step a1"" generally makes it possible to obtain a suspension of alumina having a concentration of Al 2 O 3 included between 20 and 100 g / l, preferably between 20 and 80 g / l, preferably between 20 and 50 g / l.
  • the calcined aluminous porous oxide obtained in step a) is mixed with a solution resulting from a mixture of one or more solution (s) comprising a nickel precursor and at least one solution comprising at least one organic compound comprising less a carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function to obtain a paste, the molar ratio between the said organic compound and the nickel element being between 0.01 and 5.0 mol / mol.
  • the solution (s) comprising a nickel precursor may be aqueous or consist of an organic solvent or a mixture of water and water. minus an organic solvent (for example ethanol or toluene).
  • the solution is aqueous.
  • the pH of this solution may be modified by the possible addition of an acid.
  • the aqueous solution may contain ammonia or ammonium ions NH 4 + .
  • said nickel precursor is introduced in aqueous solution, for example in the form of nitrate, carbonate, acetate, chloride, hydroxide, hydroxycarbonate, oxalate, complexes formed by a polyacid or an acid-alcohol and its salts, complexes formed with acetylacetonates, or any other soluble inorganic derivative in aqueous solution, which is brought into contact with said calcined aluminous porous oxide.
  • nickel precursor nickel nitrate, nickel chloride, nickel acetate or nickel hydroxycarbonate is advantageously used.
  • the nickel precursor is nickel nitrate or nickel hydroxycarbonate.
  • said nickel precursor is introduced into an ammoniacal solution by introducing a nickel salt, for example nickel hydroxide or nickel carbonate, into an ammoniacal solution or into an ammonium carbonate or ammonium carbonate solution. ammonium hydrogen carbonate.
  • a nickel salt for example nickel hydroxide or nickel carbonate
  • the amounts of the nickel precursor (s) introduced into the solution are chosen such that the total nickel content is between 1 and 65% by weight, preferably between 5 and 55% by weight, preferably between 8 and 40% by weight. % by weight, and more preferably between 10 and 35% by weight, more preferably between 12 and 35% by weight, more preferably between 15 and 35% by weight, and more preferably between 18 and 35% by weight. 32% by weight of said element relative to the total mass of the catalyst.
  • the nickel contents are generally adapted to the targeted hydrogenation reactions as described above.
  • Said solution (s) containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one an amine function may be aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or be constituted a mixture of water and at least one organic solvent.
  • the said organic compound (s) is (are) previously at least partially dissolved in the said solution (s) at the desired concentration.
  • said solution (s) is (are) aqueous or contains ethanol. Even more preferably, said solution is aqueous.
  • the pH of said solution may be modified by the possible addition of an acid or a base.
  • Comalaxing is advantageously carried out in a kneader, for example a "Brabender" kneader, well known to those skilled in the art.
  • a kneader for example a "Brabender" kneader, well known to those skilled in the art.
  • the calcined alumina powder obtained in step a) is placed in the tank of the kneader.
  • the solution resulting from the mixing of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function, and optionally deionized water is added to the syringe or with any other means for a period of a few minutes, typically about 2 minutes at a given kneading speed. After obtaining a paste, kneading can be continued for a few minutes, for example about 15 minutes at 50 rpm.
  • Said solution resulting from mixing can also be added in several times during this phase of comalaxing.
  • the organic compound comprises at least one carboxylic acid function.
  • the molar ratio of said organic compound comprising at least one carboxylic acid function is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 2.0 mol / mol, more preferably between 0.1 and 1 , 5 mol / mol and even more preferably between 0.3 and 1, 2 mol / mol, with respect to the nickel element.
  • Said organic compound comprising at least one carboxylic acid function may be a saturated or unsaturated aliphatic organic compound or an aromatic organic compound.
  • the aliphatic organic compound, saturated or unsaturated comprises between 1 and 9 carbon atoms, preferably between 2 and 7 carbon atoms.
  • the aromatic organic compound comprises between 7 and 10 carbon atoms, preferably between 7 and 9 carbon atoms.
  • Said aliphatic organic compound, saturated or unsaturated, or said aromatic organic compound, comprising at least one carboxylic acid function may be chosen from monocarboxylic acids, dicarboxylic acids, tricarboxylic acids, tetracarboxylic acids.
  • said organic compound is a saturated aliphatic monocarboxylic acid, the aliphatic chain being linear or branched or cyclic.
  • the organic compound is preferably selected from formic acid, acetic acid, propionic acid, butanoic acid, valeric acid, hexanoic acid, heptanoic, octanoic acid, nonanoic acid.
  • the organic compound is a saturated branched monocarboxylic acid
  • it is preferably chosen from isobutyric acid, pivalic acid, methyl-4-octanoic acid, methyl-3-valeric acid, methyl 4-valeric acid, methyl-2-valeric acid, isovaleric acid, 2-ethyl-hexanoic acid, 2-methyl-butyric acid, 2-ethyl-butyric acid, propyl- 2-valerianic, valproic acid, in any of their isomeric forms.
  • the organic compound is a saturated cyclic monocarboxylic acid
  • it is preferably selected from cyclopentane carboxylic acid, cyclohexane carboxylic acid.
  • said organic compound is an unsaturated aliphatic monocarboxylic acid, the aliphatic chain being linear or branched or cyclic, preferably selected from methacrylic acid, acrylic acid, vinylacetic acid, crotonic acid, isocrotonic acid, pentene-2-oic acid, penten-3-oic acid, pentene-4-oic acid, tiglic acid, angelic acid, acid sorbic acid, acetylene carboxylic acid, in any of their isomeric forms.
  • said organic compound is an aromatic monocarboxylic acid, preferably selected from benzoic acid, methylbenzoic acid, dimethylbenzoic acid, trimethylbenzoic acid, ethylbenzoic acid, o-tolylacetic acid, phenylacetic acid, phenyl-2-propionic acid, phenyl-3-propionic acid, vinyl-4-benzoic acid, phenylacetylenecarbonic acid , cinnamic acid, in any of their isomeric forms.
  • said organic compound is a saturated or unsaturated aliphatic dicarboxylic acid, the aliphatic chain being linear or branched or cyclic.
  • the organic compound is a saturated linear dicarboxylic acid
  • it is preferably chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (acid glutaric), hexanedioic acid (adipic acid), heptanedioic acid (pimelic acid), octanedioic acid (suberic acid), nonanedioic acid (azelaic acid).
  • the organic compound is a saturated branched dicarboxylic acid
  • it is preferably chosen from methyl-2-glutaric acid, methyl-3-glutaric acid, dimethyl-3,3-glutaric acid and dimethyl acid.
  • the organic compound is a cyclic saturated dicarboxylic acid, it is preferably selected from cyclohexanedicarboxylic acid, pinic acid, in any of their isomeric forms.
  • said organic compound is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid) and pentanedioic acid (glutaric acid).
  • ethanedioic acid oxalic acid
  • propanedioic acid malonic acid
  • butanedioic acid succinic acid
  • pentanedioic acid glutaric acid
  • 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid in any of their isomeric forms.
  • said organic compound is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid) and pentanedioic acid (glutaric acid).
  • the organic compound is an unsaturated, linear or branched or cyclic dicarboxylic acid
  • it is preferably chosen from (Z) -butenedioic acid (maleic acid), (E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid), (2E-4E) -hexa-2,4-dienediioic acid (muconic acid), mesaconic acid, citraconic acid, acetylenedicarboxylic acid, acid methylene-2-succinic acid (itaconic acid), hexadiene-2,4-dioic acid, in any of their isomeric forms.
  • said organic compound is chosen from (Z) -butenedioic acid (maleic acid), (E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid), mesaconic acid, citraconic acid, methylene-2-succinic acid (itaconic acid), in any of their isomeric forms. Even more preferably, said organic compound is chosen from (Z) -butenedioic acid (acid maleic), (E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid).
  • said organic compound is an aromatic dicarboxylic acid, preferably selected from benzene-1,2-dicarboxylic acid (phthalic acid), benzene-1,3-dicarboxylic acid ( isophthalic acid), benzene-1,4-dicarboxylic acid (terephthalic acid), phenylsuccinic acid, in any of their isomeric forms.
  • said organic compound is benzene-1,2-dicarboxylic acid (phthalic acid).
  • said organic compound is an aliphatic tricarboxylic acid, saturated or unsaturated, or aromatic, preferably selected from propanetricarboxylic acid-1,2,3 (tricarballylic acid), butanetricarboxylic acid 1, 2,4, propene-tricarboxylic acid-1,2,3 (aconitic acid), benzenetricarboxylic acid-1,3,5 (trimesic acid), benzenetricarboxylic acid-1,2,4, in any of their isomeric forms.
  • said organic compound is chosen from propanetricarboxylic acid-1,2,3 (tricarballylic acid), butanetricarboxylic acid-1,2,4, propene-tricarboxylic acid-1,2,3 (aconitic acid). ), benzenetricarboxylic acid-1,2,4, in any of their isomeric forms.
  • said organic compound is a saturated or unsaturated, or aromatic, aliphatic tetracarboxylic acid, preferably selected from methanetetracarboxylic acid, butanetetracarboxylic acid-1, 2,3,4, ethylenetetracarboxylic acid, benzenetetracarboxylic acid-1,2,4,5, in any of their isomeric forms.
  • said organic compound is selected from butanetetracarboxylic acid-1, 2, 3, 4, benzenetetracarboxylic acid-1, 2, 4, 5, in any of their isomeric forms.
  • said organic compound may comprise at least one second functional group chosen from ethers, hydroxyls, ketones and esters.
  • said organic compound comprises at least one carboxylic acid function and at least one hydroxyl function, or at least one carboxylic acid function and at least one ether function, or at least one carboxylic acid function and at least one ketone function.
  • said compound organic can comprise at least three different functional groups selected from at least one carboxylic acid function, at least one hydroxide function and at least one functional group different from the carboxylic acid and hydroxyl functions, such as an ether function or a ketone function.
  • the organic compounds comprising at least one carboxylic acid function and at least one hydroxyl group
  • the carbon chain of said acids can be saturated aliphatic (linear, branched or cyclic), or unsaturated aliphatic (linear, branched or cyclic) or may contain at least one aromatic ring.
  • said organic compound is chosen from hydroxy acids or dihydroxy acids of monocarboxylic acids or dicarboxylic acids or tricarboxylic acids.
  • the organic compound is a hydroxy acid of a monocarboxylic acid
  • it is preferably chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), hydroxy-2-isobutyric acid or the other ⁇ -hydroxy acids, 3-hydroxypropanoic acid, 3-hydroxy-butyric acid, 3-hydroxypentanoic acid, 3-hydroxy-3-isobutyric acid, 3-hydroxy-3-methylbutanoic acid, or the other b-hydroxy acids, 4-hydroxy-butyric acid or other g-hydroxy acids, mandelic acid, 3-phenyllactic acid, tropic acid, hydroxybenzoic acid, salicylic acid, acid ( hydroxy-2-phenyl) -acetic acid, (3-hydroxy-phenyl) -acetic acid, (4-hydroxy-phenyl) -acetic acid, coumaric acid, in any of their isomeric forms.
  • said organic compound is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, 3-hydroxy-butyric acid, hydroxy-acid and 3-isobutyric, mandelic acid, 3-phenyllactic acid, tropic acid, salicylic acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, hydroxy-3-butyric acid, hydroxy-3-isobutyric acid.
  • the organic compound is a hydroxy acid of a polycarboxylic acid
  • it is preferably chosen from 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid or the others.
  • hydroxy acids or b-hydroxy acids or g-hydroxy acids of dicarboxylic acids 5-hydroxy-isophthalic acid, 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), isocitric acid, homocitric acid , the homoisocitric acid or the other ⁇ -hydroxy acids or b-hydroxy acids or ⁇ -hydroxy acids of the tricarboxylic acids, in any of their isomeric forms.
  • said organic compound is chosen from 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid, 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), isocitric acid, homocitric acid, homoisocitric acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid, 2-hydroxypropane-1, 2 acid, 3-tricarboxylic acid (citric acid).
  • the organic compound is a dihydroxy acid of a monocarboxylic acid
  • it is preferably chosen from glyceric acid, 2,3-dihydroxy-3-methylpentanoic acid, pantoic acid or the other ⁇ , ⁇ -dihydroxy acids or ⁇ , ⁇ -dihydroxy acids or ⁇ ,--dihydroxy acids, 3,5-dihydroxy-3-methylpentanoic acid (mevalonic acid), or the other b, b-dihydroxy acids or b, g-dihydroxy acids or g, g-dihydroxy acids, Bis (hydroxymethyl) acid
  • said organic compound is chosen from glycerolic acid,
  • 2,3-dihydroxy-3-methylpentanoic acid pantoic acid, 2,3-dihydroxybenzoic acid, b-resorcylic acid, g-resorcylic acid, gentisic acid, orsellinic acid, under one any of their isomeric forms.
  • said organic compound is chosen from glyceric acid, 2,3-dihydroxy-3-methylpentanoic acid and pantoic acid.
  • the organic compound is a dihydroxy acid of a polycarboxylic acid
  • it is preferably chosen from dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid) or the other ⁇ , ⁇ -dihydroxyacids or ⁇ , ⁇ -dihydroxyacids or ⁇ , ⁇ -dihydroxy acids or ⁇ , ⁇ -dihydroxy acids or ⁇ -dihydroxy acids of the dicarboxylic acids, hydroxycitric acid, in any of their isomeric forms.
  • said organic compound is chosen from dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid) and hydroxycitric acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid).
  • the organic compound is a polyhydroxy acid of a monocarboxylic acid or of a polycarboxylic acid, it is preferably selected from shikimic acid, trihydroxybenzoic acid, gallic acid, phloroglucinic acid, pyrogallol carboxylic acid, quinic acid, gluconic acid, mucic acid, saccharic acid, in any of their isomeric forms.
  • said organic compound is chosen from trihydroxybenzoic acid, quinic acid, gluconic acid, mucic acid and saccharic acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from quinic acid, gluconic acid, mucic acid and saccharic acid.
  • organic compounds comprising at least one carboxylic acid function and at least one ether function
  • 2-methoxyacetic acid 2,2'-oxydiacetic acid (diglycolic acid)
  • 4-methoxybenzoic acid isopropoxy-4-benzoic acid, methoxy-3-phenylacetic acid, methoxy-3-cinnamic acid, methoxy-4-cinnamic acid, 3,4-dimethoxycinnamic acid, veratric acid, acid tetrahydrofuran-2-carboxylic acid, furan-3-carboxylic acid, 2,5-dihydro-3,4-furan dicarboxylic acid acid, according to any of their isomeric forms.
  • said organic compound is 2,2'-oxydiacetic acid (diglycolic acid).
  • organic compounds comprising at least one carboxylic acid function and at least one ketone functional group
  • said organic compound is chosen from glyoxylic acid, 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid, phenylglyoxylic acid, phenylpyruvic acid, mesoxalic acid, 2-oxoglutaric acid, 2-oxohexanedioic acid, oxalosuccinic acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid (levulinic acid), dioxosuccinic acid, according to any one of their isomeric forms.
  • 2-oxopropanoic acid pyruvic acid
  • 2-oxobutanoic acid 3-methyl-2-oxobutanoic acid
  • phenylglyoxylic acid phenylpyruvic acid
  • mesoxalic acid 2-oxoglutaric acid
  • said organic compound is chosen from glyoxylic acid, 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid and mesoxalic acid. , 2-oxoglutaric acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid (levulinic acid), dioxosuccinic acid.
  • organic compounds comprising at least one carboxylic acid function and at least one ester function
  • organic compounds comprising at least one carboxylic acid function, at least one hydroxide functional group and at least one ether functional group
  • glucuronic acid, galacturonic acid, ferulic acid, sinapic acid according to any of their isomeric forms.
  • said organic compound is chosen from 4-hydroxy-3-methoxybenzoic acid (vanillic acid), glucuronic acid and galacturonic acid, according to any of their isomeric forms.
  • organic compounds comprising at least one carboxylic acid function, at least one hydroxide functional group and at least one ketone functional group
  • hydroxypyruvic acid acetolactic acid, iduronic acid, ulosonic acid and acid.
  • meconic, 4-hydroxyphenylpyruvic acid according to any of their forms isomers.
  • said organic compound is selected from hydroxypyruvic acid, acetolactic acid, iduronic acid, meconic acid, according to any of their isomeric forms.
  • said organic compound comprising at least one carboxylic acid function is preferably chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid).
  • glyoxylic acid 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid, phenylglyoxylic acid, phenylpyruvic acid, mesoxalic acid, 2-oxoglutaric acid, 2-oxohexanedioic acid, oxalosuccinic acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid (levulinic acid), dioxosuccinic acid, 4-hydroxy acid 3-methoxybenzoic acid (vanillic acid), glucuronic acid, galacturonic acid, hydroxypyruvic acid, acetolactic acid, iduronic acid, meconic acid, according to any of their isomeric forms.
  • said organic compound comprising at least one carboxylic acid function is more preferably chosen from acid ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid), (Z) - butenedioic acid (maleic acid), acid ( E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid), hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, 3-hydroxy-butyric acid, 3-hydroxy-isobutyric acid, 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid, 2-hydroxypropane acid 1,2,3-tricarboxylic acid (citric acid), glyceric acid, 2,3-
  • the organic compound comprising at least one carboxylic acid function is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), pentanedioic acid (glutaric acid), hydroxyacetic acid (acid glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), 2,3-acid - dihydroxybutanedioic acid (tartaric acid), 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid).
  • the organic compound comprises at least one alcohol function.
  • the molar ratio of said organic compound comprising at least one alcohol function with respect to the nickel element is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 1.5 mol / mol, more preferably between 0.08 and 0.9 mol / mol.
  • said organic compound comprises between 2 and 20 carbon atoms, preferably between 2 and 12 carbon atoms, and even more preferably between 2 and 8 carbon atoms.
  • the organic compound comprises a single alcohol function (mono-alcohol).
  • the organic compound is chosen from methanol, ethanol, propanol, butanol, pentanol, hexanol, 2-propyn-1-ol, geraniol, menthol, phenol and cresol. in any of their isomeric forms. More preferentially, said organic compound is chosen from methanol, ethanol and phenol.
  • the organic compound comprises at least two alcohol functions (diol or more generally polyol).
  • the organic compound is selected from ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol , heptane-1,7-diol, octane-1,8-diol, propane-1,2-diol, butane-1,2-diol, butane-2,3-diol, butane 1,3-diol, pentane-1,2-diol, pentane-1,3-diol, pentane-2,3-diol, pentane-2,4-diol, 2-ethylhexane-1, 3-diol (hexhexadiol), p-menthane-3,8-diol, 2-ethyl
  • said organic compound is chosen from ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol and hexane-1,6-diol. , glycerol, xylitol, mannitol, sorbitol, in any of their isomeric forms.
  • the organic compound is an aromatic organic compound comprising at least two alcohol functional groups.
  • the organic compound is selected from pyrocatechol, resorcinol, hydroquinol, pyrogallol, phloroglucinol, hydroxyquinol, tetrahydroxybenzene, benzenehexol, in any of their isomeric forms. More preferably, said organic compound is selected from pyrocatechol, resorcinol, hydroquinol.
  • the organic compound may be selected from diethylene glycol, triethylene glycol, tetraethylene glycol, or more generally polyethylene glycol having the formula H (OC 2 H 4 ) n OH with n greater than at 4 and having an average molecular weight of less than 20000 g / mol. More preferably, said organic compound is selected from diethylene glycol, triethylene glycol, polyethylene glycol having an average molecular weight of less than 600 g / mol. In another embodiment according to the invention, the organic compound is a monosaccharide of formula C n (H 2 O) p with n of between 3 and 12, preferably between 3 and 10.
  • the organic compound is selected from glyceraldehyde, dihydroxyacetone, erythrose, threose, erythrulose, lyxose, arabinose, xylose, ribose, ribulose, xylulose, glucose, mannose, sorbose, galactose, fructose, allose, altrose, gulose, idose, talose, psicose, tagatose, sedoheptulose, mannoheptulose, in any of their isomeric forms. More preferably, said organic compound is selected from glucose, mannose, fructose, in any of their isomeric forms.
  • the organic compound is a disaccharide or a trisaccharide, or a derivative of a monosaccharide, selected from sucrose, maltose, lactose, cellobiose, gentiobiose, inulobiosis, isomaltose, isomaltulose, kojibiose, lactulose, laminaribiose, leucrose, maltulose, melibiose, nigerose, robinose, rutinose, sophorose, trehalose, trehalulose, turanose, erlose , fucosyllactose, gentianose, inulotriose, kestose, maltotriose, mannotriose, melezitose, neokestose, panose, raffinose, rhamninose, maltitol, lactitol, isomaltitol, iso
  • the organic compound comprises at least one alcohol function, at least one ketone functional group and at least one unsaturated heterocyclic functional group, preferably chosen from isomaltol, maltol, ethylmaltol and the acid. dehydroacetic acid, kojic acid, erythorbic acid, in any of their isomeric forms.
  • said organic compound comprising at least one alcohol function is preferably chosen from methanol, ethanol, propanol, butanol, pentanol, hexanol and 2-propyn-1-ol. , geraniol, menthol, phenol, cresol, ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1 , 6-diol, heptane-1,7-diol, octane-1,8-diol, propane-1,2-diol, butane-1,2-diol, 2,3-butane diol, butane-1,3-diol, pentane-1,2-diol, pentane-1,3-diol, pentane-2,3-diol, pentane-2,4-dio
  • said organic compound is selected from methanol, ethanol, phenol, ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol , hexane-1,6-diol, glycerol, xylitol, mannitol, sorbitol, pyrocatechol, resorcinol, hydroquinol, diethylene glycol, triethylene glycol, polyethylene glycol having a lower average molecular weight at 600 g / mol, glucose, mannose, fructose, sucrose, maltose, lactose, in any of their isomeric forms.
  • the organic compound comprises at least one ester function.
  • the molar ratio of said organic compound comprising at least one ester function with respect to the nickel element is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 2.0 mol / mol, more preferably between 0.1 and 1.5 mol / mol and even more preferably between 0.3 and 1.2 mol / mol.
  • said organic compound comprises between 2 and 20 carbon atoms, preferably between 3 and 14 carbon atoms, and even more preferably between 3 and 8 carbon atoms.
  • said organic compound comprises at least one ester function. It may be chosen from an unsaturated linear or cyclic or cyclic carboxylic acid ester, or a cyclic or linear carbonic acid ester or a linear carbonic acid diester.
  • the compound may be a saturated cyclic ester.
  • Said compound may also be substituted by one or more alkyl group (s) or aryl (s) or alkyl (s) containing unsaturations.
  • said compound is a lactone containing between 4 and 12 carbon atoms, such as g-butyrolactone, g-valerolactone, d-valerolactone, g-caprolactone, d-caprolactone, Ge-caprolactone, g-caprolactone, -heptalactone, d-heptalactone, g-octalactone, d-octalactone, d-nonalactone, c-nonalactone, d-decalactone, g-decalactone, c-decalactone, d-dodecalactone, g-octalactone, -dodecalactone, in any of their isomeric forms.
  • g-butyrolactone such as g-butyrolactone, g-valerolactone, d-valerolactone, g-caprolactone, d-caprolactone, Ge-caprolactone, g
  • said compound is a g-lactone or a d-lactone containing between 4 and 8 carbon atoms, g-butyrolactone, g-valerolactone, d-valerolactone, g-caprolactone, d-valerolactone, caprolactone, g-heptalactone, d-heptalactone, g-octalactone, d-octalactone, in any of their isomeric forms.
  • the compound is g-valerolactone.
  • the compound may be furan or pyrone or any of their derivatives, such as 6-pentyl-a-pyrone .
  • the compound may be a compound having a single ester function corresponding to the empirical formula RCOOR ', in which R and R' are alkyl, linear, branched, or cyclic, or alkyl groups containing unsaturations, or alkyl groups substituted with one or more aromatic rings, or aryl groups, each containing between 1 and 15 carbon atoms, and which may be the same or different.
  • R may also be the hydrogen atom H.
  • the group R '(of the alkoxy function COR') contains a number of carbon atoms less than or equal to that of the group R, more preferably the number of carbon atoms of said group R 'is between 1 and 6, even more preferably between 1 and 4.
  • Said organic compound is preferably chosen from methyl methanoate, methyl acetate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl hexanoate, methyl octanoate and methyl decanoate.
  • the organic compound is methyl laurate.
  • the organic compound may be a compound comprising at least two carboxylic acid ester functions.
  • the carbon chain in which these carboxylic acid ester functions are inserted is a linear or branched or cyclic aliphatic carbon chain, saturated or possibly containing unsaturations, and contains between 2 and 15 carbon atoms and each R 'group ( each of the alkoxy functions COR ') may be a linear, branched or cyclic alkyl group, or an alkyl group containing unsaturations, or an alkyl group substituted with one or more aromatic rings, or an aryl group, and containing between 1 and 15 carbon atoms, preferably between 1 and 6 carbon atoms, even more preferably between 1 and 4 carbon atoms.
  • the different groups R ' may be identical or different.
  • said compound is chosen from dimethyl oxalate, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, diethyl oxalate, diethyl malonate and diethyl succinate.
  • the organic compound may be a compound comprising at least one carboxylic acid ester function and at least one second functional group chosen from alcohols, ethers, ketones and aldehydes.
  • said organic compound comprises at least one carboxylic acid ester function and at least one alcohol function.
  • the carbon chain in which the carboxylic acid ester function (s) is inserted is a linear or branched or cyclic aliphatic carbon chain, which is saturated or may contain unsaturations, and contains between 2 and 15 carbon atoms.
  • carbon and each R 'group (of each of the alkoxy functions COR') may be a linear, branched, or cyclic alkyl group, or an alkyl group containing unsaturations, or an alkyl group substituted by one or more aromatic rings, or an aryl group and containing between 1 and 15 carbon atoms, preferably between 1 and 6 carbon atoms, more preferably between 1 and 4 carbon atoms, the different groups R 'may be identical or different.
  • This carbon chain contains at least one hydroxyl group, preferably between 1 and 6 hydroxyl groups.
  • said compound is chosen from methyl glycolate, ethyl glycolate, butyl glycolate, benzyl glycolate, methyl lactate, ethyl lactate, butyl lactate, tert-lactate and butyl, ethyl 3-hydroxybutyrate, ethyl mandelate, dimethyl malate, diethyl malate, diisopropyl malate, dimethyl tartrate, diethyl tartrate, diisopropyl tartrate, trimethyl citrate triethyl citrate, in any of their isomeric form. More preferentially, said compound is dimethyl malate.
  • said organic compound comprises at least one carboxylic acid ester function and at least one ketone or aldehyde function.
  • the carbon chain in which the carboxylic acid ester function (s) is inserted is a linear or branched or cyclic aliphatic carbon chain, which is saturated or may contain unsaturations, and contains between 2 and 15 carbon atoms.
  • each R 'group (of each of the alkoxy functions COR') can be a linear, branched, or cyclic alkyl group, or an alkyl group containing unsaturations, or an alkyl group substituted by one or more aromatic rings, or a aryl group, and containing between 1 and 15 carbon atoms, preferably between 1 and 6 carbon atoms, even more preferably between 1 and 4 carbon atoms, the different groups R 'may be identical or different.
  • This carbon chain contains at least one ketone or aldehyde function, preferably between 1 and 3 ketone or aldehyde function (s).
  • the organic compound is an acetoacid.
  • the compound may be ethylene carbonate, propylene carbonate or trimethylene carbonate.
  • the compound is propylene carbonate.
  • the compound in the case of a linear ester of carbonic acid, may be dimethyl carbonate, diethyl carbonate or diphenyl carbonate. In the case of a linear diester of carbonic acid, the compound may be dimethyl dicarbonate, diethyl dicarbonate, di-tert-butyl dicarbonate.
  • said organic compound may comprise at least three different functional groups chosen from at least one ester function, at least one carboxylic acid function and at least one functional group other than the ester and carboxylic acid functions, such as an ether function or a ketone function.
  • said organic compound comprising at least one ester function is preferably chosen from a g-lactone or a d-lactone containing between 4 and 8 carbon atoms, g-butyrolactone, g-valerolactone, d-valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -heptalactone, d-heptalactone, ⁇ -octalactone, d-octalactone, methyl methanoate, methyl acetate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl hexanoate, methyl octanoate, methyl decanoate, methyl laurate, methyl dodecanoate, ethyl acetate, ethyl propanoate, ethyl butanoate, ethyl pentanoate, ethyl hexano
  • diethyl, diethyl malonate succinate diethyl nate, diethyl glutarate, diethyl adipate, dimethyl methyl succinate, dimethyl 3-methylglutarate, methyl glycolate, ethyl glycolate, butyl glycolate, benzyl glycolate, lactate methyl lactate, ethyl lactate, butyl lactate, tert-butyl lactate, ethyl 3-hydroxybutyrate, ethyl mandelate, dimethyl malate, diethyl malate, diisopropyl malate, dimethyl tartrate, diethyl tartrate, diisopropyl tartrate, trimethyl citrate, triethyl citrate, ethylene carbonate, propylene carbonate, trimethylene carbonate, diethyl carbonate, diphenyl, dimethyl dicarbonate, diethyl dicarbonate, di-tert-butyl dicarbonate, in any of their isomeric form.
  • the organic compound comprises at least one amide function, chosen from an acyclic amide function or a cyclic amide function, optionally comprising alkyl or aryl or alkyl substituents containing unsaturations.
  • the amide functions may be chosen from primary, secondary or tertiary amides.
  • the molar ratio of said organic compound comprising at least one amide function relative to the nickel element is between 0.01 and 1.5 mol / mol, preferably between 0.05 and 1.0 mol / mol, more preferably between 0.08 and 0.9 mol / mol.
  • the organic compound comprises at least one acyclic amide function.
  • Said organic compound may comprise a single amide function and does not contain any other functional group, such as formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N N, N-dibutylformamide, N, N-diisopropylformamide, N, N-diphenylformamide, acetamide, N-methylacetamide, N, N-dimethylmethanamide, N, N-diethylacetamide, N, N-dimethylpropionamide, propanamide, N-ethyl-N-methylpropanamide, benzamide, acetanilide, according to any of their isomeric forms.
  • any other functional group such as formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N N, N-dibutylformamide, N, N-diisopropy
  • said organic compound is chosen from formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N- dimethylmethanamide, N, N-diethylacetamide, N, N-dimethylpropionamide, propanamide,
  • Said organic compound may comprise two amide functions and contains no other functional group, such as tetraacetylethylenediamine.
  • the organic compound comprises at least one cyclic amide function, such as 1-formylpyrrolidine, 1-formylpiperidine, or a lactam function.
  • said organic compound is selected from ⁇ -lactam, ⁇ -lactam, ⁇ -lactam and ⁇ -lactam and their derivatives, according to any of their isomeric forms. More preferably, said organic compound is selected from 2-pyrrolidone, N-methyl-2-pyrrolidone, ⁇ -lactam, caprolactam, according to any of their isomeric forms.
  • said organic compound may comprise at least one amide function and at least one other function different from the amide function.
  • said organic compound comprises at least one amide functional group and at least one carboxylic acid functional group, such as acetylleucine, N-acetylaspartic acid, aminohippuric acid, N-acetylglutamic acid and 4-acetamidobenzoic acid. according to any of their isomeric forms.
  • said organic compound comprises at least one amide function and at least one alcohol function, such as glycolamide, lactamide, N, N-diethyl-2-hydroxyacetamide, 2-hydroxy-N-methylacetamide and 3-hydroxypropionamide. mandelamide, acetohydroxamic acid, butyrylhydroxamic acid, bucetin, according to any of their isomeric forms.
  • said organic compound is chosen from lactamide and glycolamide.
  • the organic compound comprises at least one amide functional group and at least one additional nitrogen heteroatom, preferably chosen from urea, N-methylurea, N, N'-dimethylurea, 1,1 dimethylurea, tetramethylurea, according to any of their isomeric forms.
  • formamide N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, are more particularly preferred.
  • the organic compound comprises at least one amine function.
  • the molar ratio of said organic compound comprising at least one amine function with respect to the nickel element is between 0.01 and 1.5 mol / mol, preferably between 0.05 and 1.0 mol / mol, more preferably between 0.08 and 0.9 mol / mol.
  • Said organic compound comprises between 1 and 20 carbon atoms, preferably between 1 and 14 carbon atoms, and even more preferably between 2 and 8 carbon atoms.
  • Said organic compound may be chosen from a saturated or unsaturated aliphatic, cyclic, alicyclic, aromatic or heterocyclic amine, optionally comprising alkyl or aryl or alkyl substituents containing unsaturations.
  • the amine functions can be chosen from primary, secondary or tertiary amines.
  • the organic compound comprises a single amine function and does not contain any other functional group.
  • said organic compound comprising a single amine function is chosen from aliphatic compounds, such as propylamine, ethylmethylamine, butylamine, dimethylisopropylamine, dipropylamine, diisopropylamine, octylamine, cyclic or alicyclic compounds, such as cyclobutylamine, cyclohexylamine, aromatic compounds, such as aniline, N, N-dimethylaniline, xylidines, saturated heterocyclic compounds, such as piperidine, pyrrolidine, morpholine, or unsaturated heterocyclic compounds such as pyrrole, pyridine, indole, quinoline, said compounds may be substituted by one or more alkyl group (s) or aryl (s) or alkyl (s) containing unsaturations.
  • aliphatic compounds such as propylamine, ethylmethylamine, butylamine, dimethylisopropylamine, dipropylamine, di
  • the organic compound comprises two amine functional groups and does not contain any other functional group.
  • said organic compound comprising two amine functional groups is chosen from aliphatic compounds, such as ethylenediamine, 1,3-diaminopropane, 1,2-diaminopropane, diaminohexane, tetramethylenediamine, hexamethylenediamine and tetramethylethylenediamine.
  • tetraethylethylenediamine benzathine, xylylenediamines, diphenylethylenediamine, cyclic or alicyclic compounds, such as 1,2-diaminocyclohexane, aromatic compounds, such as phenylenediamines and their derivatives, 4,4'-diaminobiphenyl, 1, 8-diaminonaphthalene, or heterocyclic compounds such as piperazine, imidazole, pyrimidine, purine, said compounds may be substituted with one or more alkyl group (s) or aryl group (s) or alkyl group (s) containing unsaturations.
  • said organic compound is chosen from ethylenediamine, diaminohexane, tetramethylenediamine, hexamethylenediamine, tetramethylethylenediamine and tetraethylethylenediamine.
  • the organic compound comprises at least three amine functional groups and does not contain any other functional group. More particularly, said compound is chosen from diethylenetriamine and triethylenetetramine.
  • said compound is chosen from diethylenetriamine and triethylenetetramine.
  • the organic compounds comprising at least one amine function corresponding to the empirical formula C x N y H z in which 1 ⁇ x ⁇ 20, 1 ⁇ y ⁇ x, 2 ⁇ z ⁇ 2x + 2 are cited above, it is more preferable to especially ethylenediamine, diaminohexane, tetramethylenediamine, hexamethylenediamine, tetramethylethylenediamine, tetraethylethylenediamine, diethylenetriamine, triethylenetetramine.
  • said organic compound comprises at least one amine function and at least one carboxylic acid function (amino acid).
  • amino acids said organic compound may be chosen from the following compounds: alanine, arginine, asparagine, pyroglutamic acid, citrulline, gabapentin, glutamine, histidine, isoleucine, isoglutamine, leucine, lysine, norvaline, ornithine, phenylalanine, proline, saccharopine sarcosine, serine, threonine, tryptophan, tyrosine, valine, pyrrolysine, 2-aminoisobutyric acid, ethylene diamine tetraacetic acid (EDTA), according to any of their isomeric forms.
  • the compound is an amino acid, it is preferably chosen from alanine, arginine, lysine, proline, serine, threonine and EDTA.
  • the paste obtained at the end of the comalaxing step b) is then shaped according to any technique known to those skilled in the art, for example extrusion forming methods, pelletizing, by the method of the invention. drop of oil (dripping) or by granulation at the turntable.
  • the paste is shaped by extrusion in the form of extrudates of diameter generally between 0.5 and 10 mm, preferably 0.8 and 3.2 mm, and very preferably between 1, 0 and 2 , 5 mm.
  • This may advantageously be in the form of cylindrical, trilobed or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed.
  • said comalling step b) and said forming step c) are combined in a single kneading-extrusion step.
  • the paste obtained after the mixing can be introduced into a piston extruder through a die having the desired diameter, typically between 0.5 and 10 mm.
  • Step dl Drying the shaped dough
  • the shaped dough undergoes drying d) at a temperature below 250 ° C, preferably between 15 and 240 ° C, more preferably between 30 and 220 ° C, still more preferably between 50 and 200 ° C, and even more preferably between 70 and 180 ° C, for a period of time typically between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily improve.
  • the drying step may be performed by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or under reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • the catalyst thus dried can then undergo a complementary step of heat or hydrothermal treatment e) at a temperature of between 250 and 1000 ° C. and preferably between 250 and 750 ° C., for a duration of typically between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer treatment times are not excluded, but do not require improvement. Several combined cycles of thermal or hydrothermal treatments can be carried out. After this or these treatment (s), the catalyst precursor comprises nickel in oxide form, that is to say in NiO form.
  • the contact with the water vapor can take place at atmospheric pressure or autogenous pressure.
  • the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably between 250 and 650 grams per kilogram of dry air.
  • At least one reducing treatment step f) is carried out in the presence of a reducing gas after steps d) or e ) to obtain a catalyst comprising nickel at least partially in metallic form.
  • This treatment makes it possible to activate the said catalyst and to form metal particles, in particular nickel in the zero state.
  • Said reducing treatment can be carried out in situ or ex-situ, that is to say after or before the loading of the catalyst into the hydrogenation reactor.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or as a mixture (for example a hydrogen / nitrogen mixture, hydrogen / argon, hydrogen / methane). In the case where the hydrogen is used as a mixture, all proportions are possible.
  • Said reducing treatment is carried out at a temperature between 120 and 500 ° C, preferably between 150 and 450 ° C.
  • the reducing treatment is carried out at a temperature between 350 and 500 ° C, preferably between 350 and 450 ° C.
  • the reducing treatment is generally carried out at a temperature between 120 and 350 ° C, preferably between 150 and 350 ° C.
  • the duration of the reducing treatment is generally between 2 and 40 hours, preferably between 3 and 30 hours.
  • the rise in temperature to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
  • the flow rate of hydrogen, expressed in L / hour / g of catalyst is between 0.1 and 100 L / hour / g of catalyst, preferably between 0.5 and 10 L / hour / g of catalyst, still more preferred between 0.7 and 5 L / hour / gram of catalyst.
  • the catalyst according to the invention may optionally undergo a passivation step (step g) with a sulfur or oxygenated compound or with CO 2 before or after the reducing treatment step f) .
  • This passivation step may be performed ex situ or in situ.
  • the passivation step is carried out by the implementation of methods known to those skilled in the art.
  • the sulfur passivation step makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways when starting new catalysts ("run away" according to the English terminology).
  • Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites of the nickel which exist on the new catalyst and thus in attenuating the activity of the catalyst in favor of its selectivity.
  • the passivation step is carried out by the implementation of methods known to those skilled in the art and in particular, for example by the implementation of one of the methods described in patent documents EP0466567, US5153163, FR2676184, WO2004 / 098774, EP0707890.
  • the sulfur compound is, for example, chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulfide and propylmethylsulphide or an organic disulphide of formula HO-R1-SS-R2-OH such as di-thio-di -ethanol of formula HO-C2H4-SS-C2H4-OH (often called DEODS).
  • the sulfur content is generally between 0.1 and 2% by weight of said element relative to the mass of the catalyst.
  • the passivation step with an oxygenated compound or with CO 2 is generally carried out after a reducing treatment beforehand at elevated temperature, generally between 350 and 500 ° C., and makes it possible to preserve the metallic phase of the catalyst in the presence of air. .
  • the oxygenated compound is generally air or any other stream containing oxygen.
  • the catalyst obtained by the preparation process according to the invention is in the form of a composite comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, in which is distributed the active phase comprising nickel, preferably consisting of nickel.
  • the characteristics of the gel which has led to obtaining the alumina contained in said oxide matrix, as well as the textural properties obtained with the active phase, give the catalyst its specific properties.
  • said catalyst comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, and an active phase comprising nickel, preferably consisting of nickel, said active phase not comprising no group VI B metal (Cr, Mo, W), the nickel content being between 1 and 65% by weight of said element relative to the total weight of the catalyst, said active phase being in the form of nickel particles having a diameter of less than or equal to 18 nm, said catalyst comprising a total pore volume measured by mercury porosimetry greater than 0.10 ml / g, a mesoporous volume measured by mercury porosimetry greater than 0.10 ml / g, a volume macroporous measured by mercury porosimetry less than or equal to 0.6 ml / g, a median mesoporous diameter of between 3 and 25 nm, a macroporous median diameter of between 50 and 1500 nm, and an SBET surface area of between 20 and 400 m
  • All textural properties are measured on the dried catalyst (if the catalyst preparation process does not provide the optional step e) of treatment after drying step d)) or on the catalyst obtained after step e) of heat treatment (if this step is carried out).
  • the nickel content is between 1 and 65% by weight, preferably between 5 and 55% by weight, preferably between 8 and 40% by weight, and particularly preferably between 10 and 35% by weight, so that more preferably between 12 and 35% by weight, more preferably between 15 and 35% by weight, and more preferably between 18 and 32% by weight of said element relative to the total mass of the catalyst.
  • the Ni content is measured by X-ray fluorescence.
  • the size of the nickel particles in the catalyst according to the invention, measured in their oxide form, is less than 18 nm, preferably less than 15 nm, more preferably between 0.5 and 12 nm, more preferably between 1 and 8 nm, even more preferably between 1 and 6 nm, and even more preferably between 1, 5 and 5 nm.
  • the active phase of the catalyst does not include a Group VIB metal. It does not include molybdenum or tungsten.
  • the catalyst obtained by the method of preparation as described above present when the latter is used in the context of the process for the selective hydrogenation of polyunsaturated compounds or hydrogenation of aromatics according to the invention a good compromise between a high pore volume, a high mesoporous volume and a mesoporous median diameter, a high Ni content, a small size of nickel particles thus making it possible to have hydrogenation performance in terms of activity at least as good as the catalysts known from the state of the prior art.
  • the catalyst further comprises an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, optionally supplemented with silica and / or phosphorus to a total content of at most 10 % equivalent weight Si0 2 and / or P 2 0 5 , preferably less than 5% by weight, and very preferably less than 2% by weight relative to the total weight of said matrix.
  • Silica and / or phosphorus can be introduced by any technique known to those skilled in the art, during the synthesis of the alumina gel or during the comalaxing.
  • the oxide matrix consists of alumina.
  • the alumina present in said matrix is a transition alumina such as gamma, delta, theta, chi, rho or eta alumina, alone or as a mixture. More preferably, the alumina is a gamma, delta or theta transition alumina, alone or as a mixture.
  • Said catalyst is generally presented in all the forms known to those skilled in the art, for example in the form of beads (generally having a diameter of between 1 and 8 mm), extrudates, tablets, hollow cylinders. Preferably, it consists of extrudates of diameter generally between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and of average length. between 0.5 and 20 mm.
  • the term "mean diameter" of the extrudates means the average diameter of the circle circumscribed in the cross-section of these extrusions.
  • the catalyst may advantageously be in the form of cylindrical, multilobed, trilobed or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all known methods of the prior art.
  • the catalyst has a total pore volume of at least 0.10 ml / g, preferably at least 0.30 ml / g, preferably between 0.35 and 1.2 ml / g, more preferentially between 0.4 and 1 mL / g and even more preferably between 0.45 and 0.9 mL / g.
  • the catalyst advantageously has a macroporous volume less than or equal to 0.6 mL / g, preferably less than or equal to 0.5 mL / g, more preferably less than or equal to 0.4 mL / g, and even more preferably between 0 , 02 and 0.3 mL / g.
  • the mesoporous volume of the catalyst is at least 0.10 ml / g, preferably at least 0.20 ml / g, preferably between 0.25 ml / g and 0.80 ml / g, more preferably between 0.30 and 0.65 mL / g, and even more preferably between 0.35 and 0.55 mL / g.
  • the median mesoporous diameter is between 3 nm and 25 nm, and preferably between 6 and 20 nm, and particularly preferably between 8 and 18 nm.
  • the catalyst has a macroporous median diameter of between 50 and 1500 nm, preferably between 80 and 1000 nm, even more preferably between 250 and 800 nm.
  • the catalyst has a BET specific surface area of between 20 and 400 m 2 / g, and more preferably between 30 and 350 m 2 / g, and even more preferably between 40 and 250 m 2 / g.
  • the specific surface area is measured on the dried catalyst (if the catalyst preparation process does not provide the optional step e) of heat treatment after step d) of drying) or on the catalyst obtained after the treatment step e) thermal (if this step is performed).
  • the catalyst has a low microporosity, very preferably it has no microporosity.
  • the subject of the present invention is also a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatician, also known as styrenics, contained in a polyunsaturated charge.
  • hydrocarbons having a final boiling point less than or equal to 300 ° C which process is carried out at a temperature of between 0 and 300 ° C, at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen to (polyunsaturated compounds to be hydrogenated) between 0.1 and 10 and at an hourly space velocity of between 0, 1 and 200 h 1 when the process is carried out in the liquid phase, or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) between 0.5 and 1000 and at an hourly space velocity between 100 and 40000 h 1 when the process is carried out in the gaseous phase, in the presence of a catalyst obtained by the process of preparation as described above in the description.
  • Monounsaturated organic compounds such as, for example, ethylene and propylene, are at the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove undesired polyunsaturated compounds from these hydrocarbon feeds. It allows the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics, avoiding their total saturation and thus the formation of the corresponding alkanes or naphthenes. In the case of steam cracking gasolines used as a filler, the selective hydrogenation also makes it possible to selectively hydrogenate alkenyl aromatics to aromatics by avoiding the hydrogenation of the aromatic rings.
  • the hydrocarbon feedstock treated in the selective hydrogenation process has a final boiling point less than or equal to 300 ° C and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound.
  • polyunsaturated compounds means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function.
  • the filler is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a steam cracking C3 cut, a steam cracking C4 cut, a steam cracking C5 cut and a still called steam cracking gasoline.
  • a C2 steam cracking cut a C2-C3 steam cracking cut
  • a steam cracking C3 cut a steam cracking C4 cut
  • a steam cracking C5 cut and a still called steam cracking gasoline.
  • pyrolysis gasoline or C5 + cut pyrolysis gasoline or C5 + cut.
  • the steam cracking section C2 advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane. In certain steam cracking sections, between 0.1 and 1% by weight of C 3 compounds may also be present.
  • the C3 steam-cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C 2 compounds and C 4 compounds may also be present. A C2 - C3 cut can also be advantageously used for the implementation of the selective hydrogenation process according to the invention.
  • composition of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane.
  • This filler may also contain between 0.1 and 2% by weight of C4 compounds.
  • the C4 steam-cracking cut advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average mass composition: 1% weight of butane, 46.5% weight of butene, 51% by weight butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds may also be present.
  • the C5 steam-cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following composition: 21% by weight of pentanes, 45% by weight of pentenes and 34% by weight of pentadienes.
  • the steam cracking gasoline or pyrolysis gasoline corresponds to a hydrocarbon fraction whose boiling point is generally between 0 and 300 ° C., preferably between 10 and 250 ° C.
  • the polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are, in particular, diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrenic compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene). ).
  • Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
  • a charge formed of pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulfur, preferably from 0 to 500 ppm by weight of sulfur.
  • the polyunsaturated hydrocarbon feedstock treated according to the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a steam cracking gasoline.
  • the selective hydrogenation process according to the invention aims at eliminating said polyunsaturated hydrocarbons present in said feedstock to be hydrogenated without hydrogenating the monounsaturated hydrocarbons.
  • the selective hydrogenation process aims to selectively hydrogenate acetylene.
  • the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
  • the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefinic compounds are partially hydrogenated to mono-olefins and that the styrenic and indene compounds are partially hydrogenated to corresponding aromatic compounds by avoiding the hydrogenation of aromatic rings.
  • the technological implementation of the selective hydrogenation process is carried out, for example, by injection, in ascending or descending current, of the polyunsaturated hydrocarbon feedstock and hydrogen in at least one fixed bed reactor.
  • Said reactor may be of the isothermal or adiabatic type. An adiabatic reactor is preferred.
  • the polyunsaturated hydrocarbon feed may advantageously be diluted by one or more re-injection of the effluent from said reactor, where the selective hydrogenation reaction occurs, at various points in the reactor, located between the inlet and the outlet. reactor outlet to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process according to the invention may also be advantageously carried out by implanting at least one of said supported catalyst in a reactive distillation column or in reactor-exchangers or in a slurry-type reactor. .
  • the flow of hydrogen can be introduced at the same time as the feedstock to be hydrogenated and / or at one or more different points of the reactor.
  • the selective hydrogenation of the steam-cracking cuts C2, C2-C3, C3, C4, C5 and C5 + can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the phase gaseous for C2 and C2-C3 cuts.
  • a reaction in the liquid phase makes it possible to lower the energy cost and to increase the catalyst cycle time.
  • the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point of less than or equal to 300 ° C. is carried out at a temperature of between 0 and 300 ° C., at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) ) between 0, 1 and 10 and at an hourly space velocity VVH (defined as the ratio of the volume flow rate of charge to the volume of the catalyst) of between 0, 1 and 200 h 1 for a process carried out in the liquid phase, or a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.5 and 1000 and at a hourly space velocity VVH of between 100 and 40,000 h 1 for a process carried out in the gas phase.
  • VVH hourly space velocity
  • the feedstock is a steam cracking gasoline containing polyunsaturated compounds
  • the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally understood.
  • the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C
  • the hourly volume velocity (VVH) is generally between 0.5 and 100 h 1 , preferably between 1 and 50 h 1
  • the pressure is generally between 0, 3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa.
  • a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline comprising polyunsaturated compounds, the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0, the temperature is between 20 and 200 ° C, the hourly volume velocity (VVH) is generally between 1 and 50 h 1 and the pressure is between 1.0 and 7.0 MPa.
  • the feedstock is a steam cracking gasoline comprising polyunsaturated compounds
  • the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0
  • the temperature is between 20 and 200 ° C
  • the hourly volume velocity (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1.0 and 7.0 MPa.
  • a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline comprising polyunsaturated compounds, the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 1.0 and 2.0, the temperature is between 30 and 180 ° C, the hourly volume velocity (VVH) is generally between 1 and 50 h 1 and the pressure is between 1, 5 and 4.0 MPa.
  • the feedstock is a steam cracking gasoline comprising polyunsaturated compounds
  • the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 1.0 and 2.0
  • the temperature is between 30 and 180 ° C
  • the hourly volume velocity (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1, 5 and 4.0 MPa.
  • the hydrogen flow rate is adjusted in order to dispose of it in sufficient quantity to theoretically hydrogenate all of the polyunsaturated compounds and to maintain an excess of hydrogen at the outlet of the reactor.
  • the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800
  • the temperature is between 0 and and 300 ° C, preferably between 15 and 280 ° C
  • the hourly volume velocity (VVH) is generally between 100 and 40000 h 1 , preferably between 500 and 30000 h 1
  • the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa.
  • the subject of the present invention is also a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650 ° C., generally between 20 and 650 ° C. and preferably between 20 and 450 ° C.
  • Said hydrocarbon feedstock containing at least one aromatic or polyaromatic compound may be chosen from the following petroleum or petrochemical cuts: catalytic reforming reformate, kerosene, light gas oil, heavy gas oil, cracking distillates, such as FCC recycling oil, coker unit diesel, hydrocracking distillates.
  • the content of aromatic or polyaromatic compounds contained in the hydrocarbon feedstock treated in the hydrogenation process according to the invention is generally between 0.1 and 80% by weight, preferably between 1 and 50% by weight, and particularly preferably between 2 and 35% by weight, the percentage being based on the total weight of the hydrocarbon feed.
  • the aromatic compounds present in said hydrocarbon feedstock are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, o-xylene, m-xylene or p-xylene, or else aromatics having several aromatic (polyaromatic) rings such as naphthalene.
  • the sulfur or chlorine content of the feedstock is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and particularly preferably less than 10 ppm by weight.
  • the technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is for example carried out by injection, in ascending or descending current, of the hydrocarbon feedstock and hydrogen in at least one fixed bed reactor.
  • Said reactor may be of the isothermal or adiabatic type.
  • An adiabatic reactor is preferred.
  • the hydrocarbon feedstock can advantageously be diluted by one or more re-injection (s) of the effluent, from said reactor where the aromatic hydrogenation reaction occurs, at various points of the reactor, situated between the inlet and the outlet of the reactor in order to limit the gradient of temperature in the reactor.
  • the technological implementation of the process for the hydrogenation of aromatics according to the invention can also be advantageously carried out by implanting at least one of said supported catalyst in a reactive distillation column or in reactor-exchangers or in a reactor of the following type slurry.
  • the flow of hydrogen can be introduced at the same time as the feedstock to be hydrogenated and / or at one or more different points of the reactor.
  • the hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • the hydrogenation of the aromatic or polyaromatic compounds is carried out at a temperature of between 30 and 350 ° C., preferably between 50 and 325 ° C., at a pressure of between 0.1 and 20 MPa, preferably between 0.5 and 10 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at a hourly volume velocity VVH between 0.05 and 50 h 1 , preferably between 0.1 and 10 h 1 of a hydrocarbon feedstock containing aromatic or polyaromatic compounds and having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C, and preferably between 20 and 450 ° C .
  • the hydrogen flow rate is adjusted in order to dispose of it in sufficient quantity to theoretically hydrogenate all the aromatic compounds and to maintain an excess of hydrogen at the outlet of the reactor.
  • the conversion of the aromatic or polyaromatic compounds is generally greater than 20 mol%, preferably greater than 40 mol%, more preferably greater than 80 mol%, and particularly preferably greater than 90 mol% of the aromatic compounds. or polyaromatic content contained in the hydrocarbon feedstock.
  • the conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feedstock and the product by the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feedstock.
  • a process is carried out for the hydrogenation of benzene from a hydrocarbon feedstock, such as the reformate resulting from a catalytic reforming unit.
  • the benzene content in said hydrocarbon feedstock is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the hydrocarbon feed.
  • the sulfur or chlorine content of the feedstock is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
  • the hydrogenation of the benzene contained in the hydrocarbon feed can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • a solvent may be present, such as cyclohexane, heptane or octane.
  • the hydrogenation of benzene is carried out at a temperature of between 30 and 250 ° C., preferably between 50 and 200 ° C., and more preferably between 80 and 180 ° C., at a pressure comprised between between 0.1 and 10 MPa, preferably between 0.5 and 4 MPa, at a hydrogen / (benzene) molar ratio between 0.1 and 10 and at a hourly volume velocity VVH between 0.05 and 50 h 1 , preferably between 0.5 and 10 h 1 .
  • the conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
  • solution S used for the preparation of catalysts B and C is prepared by dissolving 46.1 g of nickel nitrate (Ni (NO 3 ) 2 .6H 2 O, supplier Strem Chemicals®) in a volume of 13 mL of distilled water. Solution S is obtained whose NiO concentration is 20.1% by weight (relative to the mass of the solution).
  • Example 2 Preparation of a calcined aluminous porous oxide (according to embodiment 2)
  • alumina A The synthesis of alumina A is carried out in a laboratory reactor with a capacity of about 7000 ml. The synthesis is carried out at 70 ° C with stirring in six steps, named below (a1 ') to a6'). It is sought to prepare 5 L of solution at a concentration of 27 g / L of alumina in the final suspension (obtained at the end of step a3 ') and with a contribution rate of the first step (a1') at 2.1% of the total alumina.
  • A2 ' pH adjustment About 70 ml of NaAlOO sodium aluminate are gradually added. The goal is to reach a pH between 7 and 10 in a period of 5 to 15 minutes.
  • the pH is between 8.7 and 9.9.
  • a4 ' Filtration: The suspension obtained at the end of step a3') is filtered by displacement on a sintered Buchner tool P4 and washed several times with distilled water. An alumina gel is obtained.
  • step a5 Drying: The alumina gel obtained at the end of step a4') is dried in an oven for 16 hours at 200 ° C.
  • step a6 Heat treatment: The powder obtained at the end of step a5') is then calcined under a flow of air of 1 L / h / g of alumina gel at 750 ° C. for 2 hours to obtain the transition from boehmite to alumina. Alumina A is then obtained.
  • Example 3 (Comparative) Preparation of a catalyst B by impregnation of nickel nitrate without additive
  • Catalyst B is prepared by dry impregnation of alumina A described in Example 2 with solution S of Ni precursors.
  • alumina A The synthesis of alumina A is carried out by following the six steps, steps aT) to a6 '), of Example 2 described above.
  • the operating conditions are strictly identical.
  • a shaping step of the dried alumina gel from step a5 ') is inserted between steps a5') and a6 '):
  • the shaping of this powder is carried out on a Brabender type kneader. with an acid content of 1% (total acid level, expressed relative to dry alumina), a neutralization rate of 20% and acid and basic fire losses of 62% and 64% respectively.
  • the extrusion is then carried out on a piston extruder through a 2.1 mm diameter die. After extrusion, the extrusions are dried for 16 hours at 80 ° C.
  • step a6 ') of calcination extrudates of alumina A are obtained.
  • Example 2 The solution S prepared in Example 1 is impregnated dry with 10 g of alumina A. The solid thus obtained is then dried in an oven for 16 hours at 120 ° C. and then calcined under a flow of air of 1 L / h / g catalyst at 450 ° C for 2 hours.
  • the other structural characteristics of catalyst B are listed in Table 1 below.
  • Catalyst C is prepared from alumina A and Ni precursor solution S, prepared above, according to the following four steps:
  • a "Brabender" mixer is used with a bowl of 80 mL and a mixing speed of 30 rpm.
  • Alumina powder A is placed in the bowl of the kneader.
  • solution S of Ni precursors is added gradually to the syringe for about 10 minutes at 15 rpm while heating to evacuate the water. After obtaining a paste, the kneading is maintained for 15 minutes at 50 rpm.
  • Heat treatment The dried catalyst is then calcined in a tubular furnace, under a flow of air of 1 L / h / g of catalyst, at 450 ° C for 2 hours (ramp temperature rise of 5 ° C / min).
  • the calcined catalyst C which contains 24.3% by weight of the nickel element relative to the total weight of the comalaxed catalyst, is then obtained and has nickel oxide crystallites with an average diameter of 9.5 nm.
  • the other structural characteristics of catalyst C are listed in Table 1 below. nickel nitrate and propanedioic acid (malonic acid)
  • Catalyst D is prepared by dry co-impregnation of nickel nitrate and malonic acid on alumina A using a molar ratio ⁇ malonic acid / nickel ⁇ equal to 0.6.
  • an aqueous solution S ' is prepared by dissolving 89.0 g of nickel nitrate Ni (N0 3 ) 2 .6H 2 O (supplier Strem Chemicals®) and 19.1 g of malonic acid (CAS 141- 82-2, Fluka® supplier) in 20 mL of demineralized water.
  • This solution S ' then impregnated dry on 10 g of alumina A previously shaped in the form of extrudates as described above in Example 3.
  • the solid thus obtained is then dried in an oven for 16 hours at 120.degree. ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the calcined catalyst D thus prepared contains 22.9% by weight of the nickel element relative to the total weight of the catalyst supported on alumina and has nickel oxide crystallites with an average diameter of 4.8 nm.
  • the other structural characteristics of the catalyst D are listed in Table 1 below.
  • Example 6 a catalyst E in the presence of prc acid
  • Catalyst E is prepared from alumina A and solution S 'containing the precursor of Ni and propanedioic acid, prepared above, according to the following four steps:
  • a "Brabender" mixer is used with a bowl of 80 mL and a mixing speed of 30 rpm.
  • Alumina powder A is placed in the bowl of the kneader.
  • the precursor solution S 'of Ni and propanedioic acid is added gradually to the syringe for about 10 minutes at 15 rpm while heating to evacuate the water. After obtaining a paste, the kneading is maintained for 15 minutes at 50 rpm.
  • the dried catalyst is then calcined in a tubular furnace, under a flow of air of 1 L / h / g of catalyst, at 450 ° C for 2 hours (ramp temperature rise of 5 ° C / min).
  • the calcined catalyst E which contains TI, 7% by weight of the nickel element relative to the total weight of the comalaxed catalyst is then obtained and has crystallites of nickel oxide whose average diameter is 4.2 nm.
  • the other structural characteristics of catalyst E are listed in Table 1 below.
  • Catalysts B, C, D and E described in the examples above are tested for the selective hydrogenation reaction of a mixture containing styrene and isoprene.
  • composition of the filler to be selectively hydrogenated is as follows: 8% by weight styrene (supplier Sigma Aldrich®, purity 99%), 8% by weight isoprene (supplier Sigma Aldrich®, purity 99%), 84% by weight n-heptane (solvent ) (VWR® supplier, purity> 99% chromanorm HPLC).
  • This feed also contains sulfur compounds in very low content: 10 ppm wt of sulfur introduced in the form of pentanethiol (supplier Fluka®, purity> 97%) and 100 ppm wt of sulfur introduced in the form of thiophene (Merck® supplier, purity 99 %).
  • This composition corresponds to the initial composition of the reaction mixture.
  • This mixture of model molecules is representative of a pyrolysis species.
  • the selective hydrogenation reaction is carried out in a 500 ml autoclave made of stainless steel, equipped with magnetic stirring mechanical stirring and capable of operating at a maximum pressure of 100 bar (10 MPa) and temperatures of between 5 ° C. and 5 ° C. 200 ° C.
  • a quantity of 3 mL of catalyst Prior to its introduction into the autoclave, a quantity of 3 mL of catalyst is reduced ex situ under a flow of hydrogen of 1 L / h / g of catalyst, at 400 ° C. for 16 hours (temperature rise ramp of 1 ° C / min), then it is transferred to the autoclave, protected from the air. After addition of 214 mL of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC), the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to temperature. test equal to 30 ° C.
  • the progress of the reaction is monitored by taking samples of the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and the isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane. Hydrogen consumption is also monitored during time by reducing the pressure in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
  • Table 2 Comparison of the performances in selective hydrogenation of a mixture containing styrene and isoprene (A H YDI) and hydrogenation of toluene (A H YD2) This shows the improved performance of the catalyst E prepared according to the invention and in particular the impact of the use of a step of mixing the active phase in the presence of an organic additive rather than an impregnation step. Indeed, the catalyst D, although having NiO crystallites of size substantially equal to those of the catalyst E, has poorer catalytic performance.
  • Catalysts B, C, D and E described in the above examples are also tested against the hydrogenation reaction of toluene.
  • the selective hydrogenation reaction is carried out in the same autoclave as that described in Example 6.
  • a quantity of 2 mL of catalyst Prior to its introduction into the autoclave, a quantity of 2 mL of catalyst is reduced ex situ under a flow of hydrogen of 1 L / h / g of catalyst, at 400 ° C. for 16 hours (temperature rise ramp of 1 ° C / min), then it is transferred to the autoclave, protected from the air. After addition of 216 ml of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC), the autoclave is closed, purged and then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to temperature. test equal to 80 ° C.
  • toluene supplier SDS®, purity> 99.8%
  • stirring is started at 1600 rpm.
  • the pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
  • the progress of the reaction is monitored by taking samples of the reaction medium at regular time intervals: toluene is completely hydrogenated to methylcyclohexane. Hydrogen consumption is also monitored over time by the pressure decrease in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

A process for the preparation of a catalyst comprising an oxide matrix and an active phase comprising nickel, which process comprises the following steps: - a calcined porous aluminium oxide is prepared; - the calcined porous aluminium oxide obtained is kneaded with a solution resulting from mixing one or more solution(s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound which comprises at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amine function, or at least one amide function, in order to obtain a paste, wherein the mole ratio of said organic compound to the nickel element is between 0.01 and 5.0 mol/mol; - the paste obtained is shaped; - the shaped paste obtained is dried at a temperature of less than 250°C in order to obtain a dried catalyst.

Description

PROCEDE DE PREPARATION D’UN CATALYSEUR PARTICULIER D’HYDROGENATION SELECTIVE ET D’HYDROGENATION DES AROMATIQUES PAR MALAXAGE  PROCESS FOR THE PREPARATION OF A PARTICULAR CATALYST OF SELECTIVE HYDROGENATION AND HYDROGENATION OF AROMATICS BY MIXING
Domaine technique Technical area
L'invention a pour objet un procédé de préparation particulier d’un catalyseur utilisé en hydrogénation sélective de composés polyinsaturés dans une charge hydrocarbonée, notamment dans les coupes C2-C5 de vapocraquage et les essences de vapocraquage, ou en hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge hydrocarbonée permettant la transformation des composés aromatiques de coupes pétrolières ou pétrochimiques par conversion des noyaux aromatiques en noyaux naphténiques. The subject of the invention is a process for the particular preparation of a catalyst used in the selective hydrogenation of polyunsaturated compounds in a hydrocarbon feedstock, especially in C2-C5 steam cracking cuts and steam cracking gasolines, or in the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feed allowing the conversion of aromatic compounds of petroleum or petrochemical cuts by conversion of aromatic rings to naphthenic rings.
Etat de la technique State of the art
Les catalyseurs les plus actifs dans des réactions d'hydrogénation sont classiquement à base de métaux nobles tels que le palladium ou le platine. Ces catalyseurs sont utilisés industriellement en raffinage et en pétrochimie pour la purification de certaines coupes pétrolières par hydrogénation, notamment dans des réactions d’hydrogénation sélective de molécules polyinsaturées telles que les dioléfines, les acétyléniques ou les alcénylaromatiques, ou dans des réactions d'hydrogénation d’aromatiques. Il est souvent proposé de substituer le palladium par le nickel, métal moins actif que le palladium. Il est donc nécessaire de le disposer en plus grande quantité dans le catalyseur. Ainsi, les catalyseurs à base de nickel ont généralement une teneur en métal entre 5 et 60% en poids de nickel par rapport poids total du catalyseur. The most active catalysts in hydrogenation reactions are conventionally based on noble metals such as palladium or platinum. These catalysts are used industrially in refining and in petrochemistry for the purification of certain petroleum fractions by hydrogenation, in particular in reactions of selective hydrogenation of polyunsaturated molecules such as diolefins, acetylenics or alkenylaromates, or in hydrogenation reactions. aromatic. It is often proposed to substitute palladium for nickel, a less active metal than palladium. It is therefore necessary to dispose of it in greater quantity in the catalyst. Thus, the nickel-based catalysts generally have a metal content of between 5 and 60% by weight of nickel relative to the total weight of the catalyst.
La vitesse de la réaction d’hydrogénation est gouvernée par plusieurs critères, tels que la diffusion des réactifs à la surface du catalyseur (limitations diffusionnelles externes), la diffusion des réactifs dans la porosité du support vers les sites actifs (limitations diffusionnelles internes) et les propriétés intrinsèques de la phase active telles que la taille des particules métalliques et la répartition de la phase active au sein du support. The speed of the hydrogenation reaction is governed by several criteria, such as the diffusion of the reagents on the surface of the catalyst (external diffusional limitations), the diffusion of the reagents in the porosity of the support towards the active sites (internal diffusion limitations) and the intrinsic properties of the active phase such as the size of the metal particles and the distribution of the active phase within the support.
En ce qui concerne les limitations diffusionnelles internes, il est important que la distribution poreuse des macropores et mésopores soit adaptée à la réaction souhaitée afin d’assurer la diffusion des réactifs dans la porosité du support vers les sites actifs ainsi que la diffusion des produits formés vers l’extérieur.  With regard to the internal diffusion limitations, it is important that the porous distribution of the macropores and mesopores is adapted to the desired reaction in order to ensure the diffusion of the reagents in the porosity of the support towards the active sites as well as the diffusion of the formed products. outwards.
FEUILLE DE REMPLACEMENT (RÈGLE 26) En ce qui concerne la taille des particules métalliques, il est généralement admis que le catalyseur est d’autant plus actif que la taille des particules métalliques est petite. De plus, il est important d’obtenir une répartition en taille des particules centrée sur la valeur optimale ainsi qu’une répartition étroite autour de cette valeur. SUBSTITUTE SHEET (RULE 26) As regards the size of the metal particles, it is generally accepted that the catalyst is all the more active as the size of the metal particles is small. In addition, it is important to obtain a particle size distribution centered on the optimum value and a narrow distribution around this value.
La teneur souvent importante de nickel dans les catalyseurs d’hydrogénation nécessite des voies de synthèse particulières. The often important content of nickel in the hydrogenation catalysts requires particular synthetic routes.
La voie la plus classique de préparation de ces catalyseurs est l'imprégnation du support par une solution aqueuse d'un précurseur de nickel, suivie généralement d'un séchage et d'une calcination. Avant leur utilisation dans des réactions d'hydrogénation ces catalyseurs sont généralement réduits afin d'obtenir la phase active qui est sous forme métallique (c'est-à-dire à l'état de valence zéro). Les catalyseurs à base de nickel sur alumine préparés par une seule étape d'imprégnation permettent généralement d'atteindre des teneurs en nickel comprises entre 12 et 15 % poids de nickel environ, selon le volume poreux de l'alumine utilisée. Lorsqu'on souhaite préparer des catalyseurs ayant une teneur en nickel plus élevée, plusieurs imprégnations successives sont souvent nécessaires pour obtenir la teneur en nickel souhaitée, suivie d'au moins une étape de séchage, puis éventuellement d'une étape de calcination entre chaque imprégnation.  The most conventional way of preparing these catalysts is the impregnation of the support with an aqueous solution of a nickel precursor, followed generally by drying and calcination. Before their use in hydrogenation reactions these catalysts are generally reduced in order to obtain the active phase which is in metallic form (that is to say in the zero valency state). The nickel-based catalysts on alumina prepared by a single impregnation step generally make it possible to attain nickel contents of between 12 and 15% by weight of nickel, depending on the pore volume of the alumina used. When it is desired to prepare catalysts having a higher nickel content, several successive impregnations are often necessary to obtain the desired nickel content, followed by at least one drying step, then possibly a calcination step between each impregnation. .
Ainsi, le document WO201 1/080515 décrit un catalyseur à base de nickel sur alumine actif en hydrogénation notamment des aromatiques, ledit catalyseur ayant une teneur en nickel supérieure à 35% poids par rapport au poids total du catalyseur, et une grande dispersion du nickel métallique sur la surface d'une alumine à porosité très ouverte et à surface spécifique élevée. Le catalyseur est préparé par au moins quatre imprégnations successives. La préparation de catalyseurs de nickel ayant une teneur en nickel élevée par la voie d'imprégnation implique ainsi un enchaînement de nombreuses étapes ce qui augmente les coûts de fabrication associés. Thus, the document WO201 1/080515 describes a catalyst based on nickel on alumina which is active in hydrogenation, especially aromatics, said catalyst having a nickel content greater than 35% by weight relative to the total weight of the catalyst, and a large nickel dispersion. metal on the surface of an alumina with a very open porosity and a high specific surface area. The catalyst is prepared by at least four successive impregnations. The preparation of nickel catalysts having a high nickel content by the impregnation route thus involves a sequence of numerous steps which increases the associated manufacturing costs.
Une autre voie de préparation également utilisée pour obtenir des catalyseurs à forte teneur en nickel est la coprécipitation. La coprécipitation consiste généralement en une coulée simultanée dans un réacteur batch à la fois d'un sel d'aluminium (le nitrate d'aluminium par exemple) et d'un sel du nickel (le nitrate de nickel par exemple). Les deux sels précipitent simultanément. Puis une calcination à haute température est nécessaire pour faire la transition du gel d’alumine (boehmite par exemple) vers l'alumine. Par cette voie de préparation, des teneurs jusqu'à 70% poids en nickel sont atteintes. Des catalyseurs préparés par coprécipitation sont par exemple décrits dans les documents US 4 273 680, US 8 518 851 et US 2010/01 16717. Another route of preparation also used to obtain catalysts with a high nickel content is coprecipitation. The coprecipitation generally consists of a simultaneous casting in a batch reactor of both an aluminum salt (aluminum nitrate for example) and a nickel salt (nickel nitrate for example). Both salts precipitate simultaneously. Then calcination at high temperature is necessary to make the transition from alumina gel (boehmite for example) to alumina. By this preparation route, contents up to 70% by weight nickel are reached. Catalysts Prepared by coprecipitation are for example described in US 4,273,680, US 8,518,851 and US 2010/01 16717.
Enfin, on connaît également la voie de préparation par comalaxage. Le comalaxage consiste généralement en un mélange d'un sel de nickel avec un gel d’alumine tel que la boehmite, ledit mélange étant par la suite mis en forme, généralement par extrusion, puis séché et calciné. Le document US 5 478 791 décrit un catalyseur à base de nickel sur alumine ayant une teneur en nickel comprise entre 10 et 60% poids et une taille de particules de nickel comprise entre 15 et 60 nm, préparé par comalaxage d'un composé de nickel avec un gel d'alumine, suivi d’une mise en forme, d’un séchage et d’une réduction.  Finally, it is also known the preparation route by comalaxing. Comalaxing generally consists of a mixture of a nickel salt with an alumina gel such as boehmite, said mixture being subsequently shaped, generally by extrusion, then dried and calcined. US 5,478,791 discloses a nickel-on-alumina catalyst having a nickel content of between 10 and 60% by weight and a nickel particle size of 15 to 60 nm, prepared by comalling a nickel compound. with an alumina gel, followed by shaping, drying and reduction.
Par ailleurs, en vue d’obtenir de meilleures performances catalytiques, notamment une meilleure sélectivité et/ou activité, il est connu dans l’état de la technique de procéder à l’utilisation d’additifs de type composés organiques pour la préparation de catalyseurs métalliques d’hydrogénation sélective ou d’hydrogénation des aromatiques. Moreover, in order to obtain better catalytic performances, in particular a better selectivity and / or activity, it is known in the state of the art to proceed with the use of organic compound additives for the preparation of catalysts. metal selective hydrogenation or hydrogenation of aromatics.
Par exemple, la demande FR2984761 divulgue un procédé de préparation d’un catalyseur d’hydrogénation sélective comprenant un support et une phase active comprenant un métal du groupe VIII, ledit catalyseur étant préparé par un procédé comprenant une étape de d’imprégnation d’une solution contenant un précurseur du métal du groupe VIII et un additif organique, plus particulièrement un composé organique présentant une à trois fonctions acides carboxyliques, une étape de séchage du support imprégné, et une étape de calcination du support séché afin d’obtenir le catalyseur. For example, the application FR2984761 discloses a process for the preparation of a selective hydrogenation catalyst comprising a support and an active phase comprising a group VIII metal, said catalyst being prepared by a process comprising a step of impregnating a solution containing a Group VIII metal precursor and an organic additive, more particularly an organic compound having one to three carboxylic acid functions, a step of drying the impregnated support, and a step of calcining the dried support to obtain the catalyst.
Le document US2006/0149097 divulgue un procédé d’hydrogénation de composés aromatiques de type acide benzenepolycarboxylique en présence d’un catalyseur comprenant une phase active comprenant au moins un métal du groupe VIII, lequel catalyseur étant préparé par un procédé comprenant une étape d’imprégnation d’une solution contenant un précurseur du métal du groupe VIII et une étape d’imprégnation d’un additif organique de type amine ou acide aminé. L’étape d’imprégnation de l’additif organique peut être réalisé avant ou après l’étape d’imprégnation de la phase active, ou même simultanément. Document US2006 / 0149097 discloses a process for the hydrogenation of aromatic compounds of benzenepolycarboxylic acid type in the presence of a catalyst comprising an active phase comprising at least one Group VIII metal, which catalyst is prepared by a process comprising an impregnation step of a solution containing a group VIII metal precursor and a step of impregnating an organic additive of amine or amino acid type. The impregnation step of the organic additive may be carried out before or after the step of impregnating the active phase, or even simultaneously.
La Demanderesse a découvert de manière surprenante qu’un catalyseur à base de nickel supporté sur alumine, préparé par comalaxage d’un oxyde poreux aluminique calciné avec une solution comprenant au moins un précurseur de nickel et au moins un additif de type composés organiques choisi parmi les composés organiques comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide ou au moins une fonction amine, permet l’obtention de performances en hydrogénation sélective de composés polyinsaturés ou en hydrogénation des composés aromatiques en terme d'activité au moins aussi bonnes, voire meilleures, que les procédés connus de l’état de la technique. The Applicant has surprisingly discovered that a catalyst based on nickel supported on alumina, prepared by comalaxing a calcined aluminous porous oxide with a solution comprising at least one nickel precursor and at least one additive of organic compounds type chosen from organic compounds comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function or at least one amine function, makes it possible to obtain performances in selective hydrogenation of polyunsaturated compounds or in hydrogenation of aromatic compounds in at least as good or better than the known methods of the state of the art.
La distribution poreuse résultante d’un tel procédé de préparation par comalaxage permet de fournir une porosité particulièrement adaptée à favoriser la diffusion des réactifs dans le milieu poreux puis leur réaction avec la phase active. En effet, en plus de la réduction du nombre d'étapes et donc du coût de fabrication, l'intérêt d'un comalaxage comparativement à une imprégnation est qu'on réduit de manière significative tout risque de bouchage partiel de la porosité du support lors du dépôt de la phase active et donc l'apparition des limitations diffusionnelles internes. The resulting porous distribution of such a process of preparation by comalaxing makes it possible to provide a porosity particularly adapted to promote the diffusion of the reagents in the porous medium and then their reaction with the active phase. Indeed, in addition to reducing the number of steps and therefore the manufacturing cost, the advantage of a comparison compared to an impregnation is that significantly reduces any risk of partial blockage of the porosity of the support when the deposition of the active phase and thus the appearance of internal diffusion limitations.
De plus, un tel catalyseur utilisé dans le cadre d’un procédé d’hydrogénation sélective de composés polyinsaturés ou d’un procédé d’hydrogénation des composés aromatiques ou polyaromatiques présente la particularité de pouvoir contenir des quantités élevées de phase active. En effet, le fait de préparer le catalyseur selon l'invention par comalaxage permet de pouvoir fortement charger ce catalyseur en phase active en une seule passe. In addition, such a catalyst used in the context of a process for the selective hydrogenation of polyunsaturated compounds or a process for the hydrogenation of aromatic or polyaromatic compounds has the particularity of being able to contain high amounts of active phase. Indeed, the fact of preparing the catalyst according to the invention by comalaxing makes it possible to strongly charge this catalyst in the active phase in a single pass.
Il est important de souligner que le catalyseur obtenu par le procédé de préparation selon l’invention se distingue structurellement d’un catalyseur obtenu par simple imprégnation d’un précurseur de métal sur le support d’alumine dans lequel l’alumine forme le support et la phase active est introduite dans les pores de ce support. Sans vouloir être lié par une quelconque théorie, il apparaît que le procédé de préparation selon l’invention permet d’obtenir un composite dans lequel les particules de nickel et l’alumine sont intimement mélangées formant ainsi la structure même du catalyseur avec une porosité et une teneur en phase active adaptées aux réactions souhaitées. It is important to emphasize that the catalyst obtained by the preparation method according to the invention is structurally distinguished from a catalyst obtained by simply impregnating a metal precursor on the alumina support in which the alumina forms the support and the active phase is introduced into the pores of this support. Without wishing to be bound by any theory, it appears that the preparation process according to the invention makes it possible to obtain a composite in which the nickel particles and the alumina are intimately mixed thus forming the structure of the catalyst with a porosity and an active phase content adapted to the desired reactions.
Objets de l’invention Objects of the invention
La présente invention a pour premier objet un procédé de préparation d’un catalyseur comprenant une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, et une phase active comprenant du nickel, ladite phase active ne comprenant pas de métal du groupe VIB, la teneur en nickel étant comprise entre 1 et 65% en poids dudit élément par rapport au poids total du catalyseur, ladite phase active se présentant sous la forme de particules de nickel ayant un diamètre inférieur ou égal à 18 nm, ledit catalyseur comprenant un volume poreux total mesuré par porosimétrie au mercure supérieur à 0,10 ml_/g, un volume mésoporeux mesuré par porosimétrie au mercure supérieur à 0,10 ml_/g, un volume macroporeux mesuré par porosimétrie au mercure inférieur ou égal à 0,6 ml/g, un diamètre médian mésoporeux compris entre 3 et 25 nm, un diamètre médian macroporeux compris entre 50 et 1500 nm, et une surface spécifique SBET compris entre 20 et 400 m2/g, lequel procédé comprend les étapes suivantes : The present invention firstly relates to a process for preparing a catalyst comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, and an active phase comprising nickel, said active phase not comprising a group VIB metal, the nickel content being between 1 and 65% by weight of said element relative to the total weight of the catalyst, said active phase being in the form of nickel particles having a diameter less than or equal to 18 nm, said catalyst comprising a total pore volume measured by mercury porosimetry greater than 0.10 ml / g, a mesoporous volume measured by mercury porosimetry greater than 0.10 ml / g, a measured macroporous volume by mercury porosimetry less than or equal to 0.6 ml / g, a median mesoporous diameter of between 3 and 25 nm, a macroporous median diameter of between 50 and 1500 nm, and a SBET specific surface area of between 20 and 400 m 2 / g, which method comprises the following steps:
a) on prépare un oxyde poreux aluminique calciné ;  a) a calcined aluminous porous oxide is prepared;
b) on malaxe l’oxyde poreux aluminique calciné obtenu à l’étape a) avec une solution résultant d’un mélange d’une ou plusieurs solution(s) comprenant au moins un précurseur de nickel et au moins une solution comprenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amine, ou au moins une fonction amide pour obtenir une pâte, le rapport molaire entre ledit composé organique et l’élément nickel étant compris entre 0,01 et 5,0 mol/mol ;  b) the aluminized calcined porous oxide obtained in step a) is kneaded with a solution resulting from a mixture of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amine function, or at least one amide function to obtain a paste, the molar ratio between said organic compound and the nickel element being between 0.01 and 5.0 mol / mol;
c) on met en forme la pâte obtenue à l’étape b) ;  c) shaping the paste obtained in step b);
d) on sèche la pâte mise en forme obtenue à l’étape c) à une température inférieure à 250°C pour obtenir un catalyseur séché ;  d) the shaped dough obtained in step c) is dried at a temperature below 250 ° C to obtain a dried catalyst;
e) éventuellement, on réalise un traitement thermique du catalyseur séché obtenu à l’étape d) à une température comprise entre 250 et 1000°C, en présence ou non d’eau.  e) optionally, a heat treatment of the dried catalyst obtained in step d) is carried out at a temperature of between 250 and 1000 ° C, in the presence or absence of water.
Dans un mode de réalisation selon l’invention, ledit composé organique comprend au moins une fonction acide carboxylique.  In one embodiment of the invention, said organic compound comprises at least one carboxylic acid function.
De préférence, ledit composé organique est choisi parmi les acides monocarboxyliques, les acides dicarboxyliques, les acides tricarboxyliques, les acides tétracarboxyliques. Preferably, said organic compound is chosen from monocarboxylic acids, dicarboxylic acids, tricarboxylic acids and tetracarboxylic acids.
Dans un mode de réalisation selon l’invention, ledit composé organique comprend au moins une fonction alcool. In one embodiment of the invention, said organic compound comprises at least one alcohol function.
De préférence, ledit composé organique est choisi parmi :  Preferably, said organic compound is chosen from:
les composés organiques comprenant une seule fonction alcool ;  organic compounds comprising a single alcohol function;
les composés organiques comprenant deux fonctions alcools ; les composés organiques choisis parmi le diéthylène glycol, le triéthylène glycol, le tétraéthylène glycol, ou un polyéthylène glycol répondant à la formule H(OC2H4)nOH avec n supérieur à 4 et ayant une masse molaire moyenne inférieure à 20000 g/mol ; les monosaccharides de formule brute Cn(H20)p avec n compris entre 3 et 12 ; organic compounds comprising two alcohol functions; organic compounds chosen from diethylene glycol, triethylene glycol, tetraethylene glycol, or a polyethylene glycol having the formula H (OC 2 H 4 ) n OH with n greater than 4 and having an average molecular weight of less than 20000 g / mol; monosaccharides of formula C n (H 2 0) p with n between 3 and 12;
les disaccharides, les trisaccharides, ou les dérivés de monosaccharide.  disaccharides, trisaccharides, or monosaccharide derivatives.
Dans un mode de réalisation selon l’invention, ledit composé organique comprend au moins une fonction ester.  In one embodiment of the invention, said organic compound comprises at least one ester function.
De préférence, ledit composé organique est choisi parmi :  Preferably, said organic compound is chosen from:
les esters linéaires ou cycliques ou cycliques insaturés d’acide carboxylique ;  linear or cyclic or cyclic unsaturated esters of carboxylic acid;
les composés organiques comprenant au moins deux fonctions esters d’acide carboxylique ;  organic compounds comprising at least two carboxylic acid ester functions;
les composés organiques comprenant au moins une fonction ester d’acide carboxylique et au moins un deuxième groupe fonctionnel choisi parmi les alcools, les éthers, les cétones, les aldéhydes ;  organic compounds comprising at least one carboxylic acid ester function and at least one second functional group chosen from alcohols, ethers, ketones and aldehydes;
les esters cycliques ou linéaires d’acide carbonique ;  cyclic or linear esters of carbonic acid;
les diesters linéaires d’acide carbonique.  linear diesters of carbonic acid.
Dans un mode de réalisation selon l’invention, ledit composé organique comprend au moins une fonction amide.  In one embodiment of the invention, said organic compound comprises at least one amide function.
De préférence, ledit composé organique est choisi parmi :  Preferably, said organic compound is chosen from:
les amides acycliques comprenant une ou deux fonction amides ;  acyclic amides comprising one or two amide functions;
les amides cycliques ou les lactames ;  cyclic amides or lactams;
les composés organiques comprenant au moins une fonction amide et une fonction acide carboxylique ou une fonction alcool ;  organic compounds comprising at least one amide function and a carboxylic acid function or an alcohol function;
les composés organiques comprenant au moins une fonction amide et un hétéroatome supplémentaire d’azote.  organic compounds comprising at least one amide function and an additional nitrogen heteroatom.
Dans un mode de réalisation selon l’invention, ledit composé organique comprend au moins une fonction amine répondant à la formule brute CxNyHz dans laquelle x est compris entre 1 et 20, y=1-x et z=2-(2x+2). In one embodiment according to the invention, said organic compound comprises at least one amine function corresponding to the empirical formula C x N y H z in which x is between 1 and 20, y = 1-x and z = 2- (2x + 2).
Dans un mode de réalisation selon l’invention, lequel ledit oxyde poreux aluminique calciné selon l’étape a) est obtenu par les étapes suivantes : In one embodiment according to the invention, which aluminized porous oxide calcined according to step a) is obtained by the following steps:
a1 ) une première étape de précipitation, en milieu réactionnel aqueux, d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, dans lequel au moins un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de la première étape compris entre 5 et 13%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite première étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape a3) du procédé de préparation, ladite étape opérant à une température comprise entre 20 et 90°C et pendant une durée comprise entre 2 minutes et 30 minutes; a1) a first step of precipitation, in an aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, and of at least one acidic precursor chosen from aluminum sulphate, aluminum chloride and nitrate of aluminum, sulfuric acid, hydrochloric acid and nitric acid, in which at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a degree of progression of the first stage of between 5 and 13%, the degree of progress being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the end of step a3) of the process preparation, said step operating at a temperature between 20 and 90 ° C and for a period of between 2 minutes and 30 minutes;
a2) une étape de chauffage de la suspension à une température comprise entre 40 et 90°C pendant une durée comprise entre 7 minutes et 45 minutes, a2) a step of heating the suspension at a temperature between 40 and 90 ° C for a period of between 7 minutes and 45 minutes,
a3) une deuxième étape de précipitation de la suspension obtenue à l'issue de l'étape de chauffage a2) par ajout dans la suspension d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, dans lequel au moins un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de la deuxième étape compris entre 87 et 95 %, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite deuxième étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape a3) du procédé de préparation, ladite étape opérant à une température comprise entre 40 et 90 °C et pendant une durée comprise entre 2 minutes et 50 minutes ; a3) a second step of precipitating the suspension obtained at the end of the heating step a2) by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, acid hydrochloric acid and nitric acid, wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10, And the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a progress rate of the second step of between 87 and 95%, the rate of progress being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said second precipitation step relative to the total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature between 40 and 90 ° C and for a period of time between 2 minutes and 50 minutes;
a4) une étape de filtration de la suspension obtenue à l'issue de l'étape a3) de deuxième précipitation pour obtenir un gel d'alumine ; a4) a filtration step of the suspension obtained at the end of the second precipitation step a3) to obtain an alumina gel;
a5) une étape de séchage dudit gel d'alumine obtenu à l'étape a4) pour obtenir une poudre ; a6) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape a5) entre 500 et 1000°C, pendant une durée comprise entre 2 et 10 h, en présence ou non d'un flux d'air contenant jusqu'à 60% volume d’eau pour obtenir un oxyde poreux aluminique calciné. Dans un mode de réalisation selon l’invention, ledit oxyde poreux aluminique calciné selon l’étape a) est obtenu par les étapes suivantes : a1’) une étape de mise en solution d'un précurseur acide d'aluminium choisi parmi le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium dans l'eau, à une température comprise entre 20 et 90°C, à un pH compris entre 0,5 et 5, pendant une durée comprise entre 2 et 60 minutes, a5) a step of drying said alumina gel obtained in step a4) to obtain a powder; a6) a step of heat treatment of the powder obtained at the end of step a5) between 500 and 1000 ° C, for a duration of between 2 and 10 h, in the presence or absence of a flow of air containing up to 60% water volume to obtain a calcined aluminous porous oxide. In one embodiment according to the invention, said calcined aluminous porous oxide according to step a) is obtained by the following steps: a1 ') a step of dissolving an aluminum acid precursor chosen from aluminum sulphate, aluminum chloride and aluminum nitrate in water, at a temperature of between 20 and 90 ° C, at a pH of between 0.5 and 5, for a period of between 2 and 60 minutes,
a2’) une étape d’ajustement du pH par ajout dans la suspension obtenue à l'étape a1’) d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium, à une température comprise entre 20 et 90°C, et à un pH compris entre 7 et 10, pendant une durée comprise entre 5 et 30 minutes, a2 ') a step of adjusting the pH by adding to the suspension obtained in step a1') at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, at a temperature between 20 and 90 ° C, and at a pH between 7 and 10, for a period of between 5 and 30 minutes,
a3’) une étape de coprécipitation de la suspension obtenue à l'issue de l'étape a2’) par ajout dans la suspension d’au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d’au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, au moins un des précurseurs basique ou acide comprenant de l'aluminium, le débit relatif des précurseurs acide et basique étant choisi de manière à obtenir un pH du milieu réactionnel compris entre 7 et 10 et le débit du ou des précurseurs acide et basique contenant de l'aluminium étant réglé de manière à obtenir une concentration en alumine finale dans la suspension comprise entre 10 et 38 g/L, a3 ') a step of coprecipitation of the suspension obtained at the end of step a2') by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, at least one of the basic or acidic precursors comprising aluminum, the relative flow rate of the acidic and basic precursors being chosen so as to obtain a pH of the reaction medium of between 7 and 10 and the flow rate of the aluminum-containing acidic and basic precursors being adjusted so as to obtain a final alumina concentration in the suspension of between 10 and 38 g / l,
a4’) une étape de filtration de la suspension obtenue à l'issue de l'étape a3’) de coprécipitation pour obtenir un gel d'alumine, a4 ') a filtration step of the suspension obtained at the end of the coprecipitation step a3') to obtain an alumina gel,
a5’) une étape de séchage dudit gel d'alumine obtenu à l'étape a4’) pour obtenir une poudre, a6’) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape a5’) à une température comprise entre 500 et 1000°C, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pendant une durée comprise entre 2 et 10 heures, pour obtenir un oxyde poreux aluminique calciné. a5 ') a step of drying said alumina gel obtained in step a4') to obtain a powder, a6 ') a step of heat treatment of the powder obtained at the end of step a5') at a temperature between 500 and 1000 ° C, in the presence or absence of a flow of air containing up to 60% by volume of water, for a period of between 2 and 10 hours, to obtain a calcined aluminous porous oxide.
Dans un mode de réalisation selon l’invention, ledit oxyde poreux aluminique calciné selon l’étape a) est obtenu par les étapes suivantes :  In one embodiment according to the invention, said calcined aluminous porous oxide according to step a) is obtained by the following steps:
a1”) au moins une première étape de précipitation d'alumine, en milieu réactionnel aqueux, d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de ladite première étape compris entre 40 et 100%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite première étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape c) du procédé de préparation, ladite première étape de précipitation opérant à une température comprise entre 10 et 50 °C, et pendant une durée comprise entre 2 minutes et 30 minutes ; a1 ") at least a first step of precipitating alumina, in aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, aqueous ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid, and nitric acid, in which at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen in such a way as to obtain a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the acidic and basic precursor (s) containing aluminum is adjusted so as to obtain a degree of progress. of said first step of between 40 and 100%, the advancement rate being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the result of step c) of the preparation process, said first precipitation step operating at a temperature between 10 and 50 ° C, and for a period of between 2 minutes and 30 minutes;
a2”) une étape de traitement thermique de la suspension chauffée à une température comprise entre 50 et 200°C pendant une durée comprise entre 30 minutes et 5 heures permettant l'obtention d'un gel d'alumine ; a2 ") a heat treatment step of the suspension heated to a temperature between 50 and 200 ° C for a period of between 30 minutes and 5 hours to obtain an alumina gel;
a3”) une étape de filtration de la suspension obtenue à l'issue de l'étape a2”) de traitement thermique, suivie d'au moins une étape de lavage du gel obtenu ; a3 ") a filtration step of the suspension obtained at the end of step a2") of heat treatment, followed by at least one washing step of the gel obtained;
a4”) une étape de séchage du gel d'alumine obtenu à l'issue de l'étape a3”) pour obtenir une poudre ; a4 ") a step of drying the alumina gel obtained at the end of step a3") to obtain a powder;
a5”) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape a4”) à une température comprise entre 500 et 1000°C, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pour obtenir un oxyde poreux aluminique calciné. a5 ") a step of heat treatment of the powder obtained at the end of step a4") at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, to obtain a calcined aluminous porous oxide.
Un autre objet selon l’invention concerne un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu par le procédé de préparation selon l’invention. Another subject of the invention relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromates, contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300 ° C., which process is carried out at a temperature of between 0 and 300 ° C., at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds) to be hydrogenated) between 0.1 and 10 and at a hourly space velocity of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0 and , 5 and 1000 and at an hourly volume rate between 100 and 40000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst obtained by the preparation process according to the invention.
Un autre objet selon l’invention concerne un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, ledit procédé étant réalisé en phase gazeuse ou en phase liquide, à une température comprise entre 30 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h 1, en présence d’un catalyseur obtenu par le procédé de préparation selon l’invention. Another object according to the invention relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650 ° C., said process being carried out in phase gaseous or in liquid phase, at a temperature of between 30 and 350 ° C, at a pressure of between 0.1 and 20 MPa, at a molar ratio of hydrogen / (aromatic compounds with hydrogenate) between 0.1 and 10 and at a hourly volume velocity VVH between 0.05 and 50 h 1 , in the presence of a catalyst obtained by the preparation process according to the invention.
Description détaillée de l’invention Detailed description of the invention
Définitions  Definitions
Par « macropores », on entend des pores dont l’ouverture est supérieure à 50 nm. "Macropores" means pores whose opening is greater than 50 nm.
Par « mésopores », on entend des pores dont l’ouverture est comprise entre 2 nm et 50 nm, bornes incluses. By "mesopores" is meant pores whose opening is between 2 nm and 50 nm, limits included.
Par « micropores », on entend des pores dont l’ouverture est inférieure à 2 nm. By "micropores" is meant pores whose opening is less than 2 nm.
On entend par volume poreux total du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », pages 1050-1055, écrit par Jean Charpin et Bernard Rasneur. By total pore volume of the catalyst or the support used for the preparation of the catalyst according to the invention is meant the volume measured by mercury porosimeter intrusion according to the ASTM D4284-83 standard at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °. The anchoring angle was taken equal to 140 ° according to the recommendations of the book "Techniques of the engineer, treated analysis and characterization", pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
Afin d'obtenir une meilleure précision, la valeur du volume poreux total correspond à la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur l'échantillon moins la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa). In order to obtain a better accuracy, the value of the total pore volume corresponds to the value of the total pore volume measured by mercury porosimeter intrusion measured on the sample minus the value of the total pore volume measured by mercury porosimeter intrusion measured on the same sample for a pressure corresponding to 30 psi (about 0.2 MPa).
Le volume des macropores et des mésopores est mesuré par porosimétrie par intrusion de mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. On fixe à 0,2 MPa la valeur à partir de laquelle le mercure remplit tous les vides intergranulaires, et on considère qu'au-delà le mercure pénètre dans les pores de l'échantillon. The volume of macropores and mesopores is measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °. The value at which mercury fills all the intergranular voids is fixed at 0.2 MPa, and it is considered that beyond this mercury enters the pores of the sample.
Le volume macroporeux du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 0,2 MPa et 30 MPa, correspondant au volume contenu dans les pores de diamètre apparent supérieur à 50 nm. Le volume mésoporeux du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 30 MPa et 400 MPa, correspondant au volume contenu dans les pores de diamètre apparent compris entre 2 et 50 nm. The macroporous volume of the catalyst or support used for the preparation of the catalyst according to the invention is defined as the cumulative volume of mercury introduced at a pressure of between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores of diameter apparent greater than 50 nm. The mesoporous volume of the catalyst or support used for the preparation of the catalyst according to the invention is defined as the cumulative volume of mercury introduced at a pressure of between 30 MPa and 400 MPa, corresponding to the volume contained in the pores of apparent diameter included between 2 and 50 nm.
Le volume des micropores est mesuré par porosimétrie à l’azote. L'analyse quantitative de la microporosité est effectuée à partir de la méthode "t" (méthode de Lippens-De Boer, 1965) qui correspond à une transformée de l'isotherme d'adsorption de départ comme décrit dans l'ouvrage « Adsorption by powders and porous solids. Principles, methodology and applications » écrit par F. Rouquérol, J. Rouquérol et K. Sing, Academie Press, 1999. The micropore volume is measured by nitrogen porosimetry. The quantitative analysis of the microporosity is carried out using the "t" method (Lippens-De Boer method, 1965) which corresponds to a transformation of the starting adsorption isotherm as described in the book "Adsorption by powders and porous solids. Principles, methodology and applications "written by F. Rouquérol, J. Rouquérol and K. Sing, Academie Press, 1999.
On définit également le diamètre médian mésoporeux comme étant le diamètre tel que tous les pores, parmi l’ensemble des pores constituant le volume mésoporeux, de taille inférieure à ce diamètre constituent 50% du volume mésoporeux total déterminé par intrusion au porosimètre à mercure. The mesoporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the mesoporous volume, of size less than this diameter constitute 50% of the total mesoporous volume determined by intrusion into the mercury porosimeter.
On définit également le diamètre médian macroporeux comme étant le diamètre tel que tous les pores, parmi l’ensemble des pores constituant le volume macroporeux, de taille inférieure à ce diamètre constituent 50% du volume macroporeux total déterminé par intrusion au porosimètre à mercure. The macroporous median diameter is also defined as the diameter such that all the pores, among all the pores constituting the macroporous volume, of size less than this diameter constitute 50% of the total macroporous volume determined by intrusion into the mercury porosimeter.
On entend par la surface spécifique du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention, la surface spécifique B.E.T. déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique « The Journal of American Society », 60, 309, (1938). By the specific surface of the catalyst or of the support used for the preparation of the catalyst according to the invention, the specific surface B.E.T. determined by nitrogen adsorption according to ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the journal "The Journal of the American Society", 60, 309, (1938).
On entend par taille des nanoparticules de nickel, le diamètre moyen des cristallites de nickel mesurée sous leurs formes oxyde. Le diamètre moyen des cristallites de nickel sous forme oxyde est déterminé par diffraction des rayons X, à partir de la largeur de la raie de diffraction située à l’angle 2thêta=43° (c’est-à-dire selon la direction cristallographique [200]) à l’aide de la relation de Scherrer. Cette méthode, utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des particules, est décrite en détail dans la référence : Appl. Cryst. (1978), 11 , 102- 113 « Scherrer after sixty years: A survey and some new results in the détermination of crystallite size», J. I. Langford and A. J. C. Wilson. Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. The size of the nickel nanoparticles is understood to mean the average diameter of the nickel crystallites measured in their oxide forms. The average diameter of nickel crystallites in oxide form is determined by X-ray diffraction from the width of the diffraction line at the angle 2theta = 43 ° (i.e. in the crystallographic direction [ 200]) using Scherrer's relation. This method, used in X-ray diffraction on powders or polycrystalline samples which connects the half-height width of the diffraction peaks to the particle size, is described in detail in the reference: Appl. Cryst. (1978), 11, 102-113 "Scherrer after sixty years: A survey and some new results in the determination of crystallite size", JI Langford and AJC Wilson. In the following, groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC Press, editor-in-chief DR Lide, 81st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
Description du procédé de préparation du catalyseur Description of the catalyst preparation process
D’une manière générale, le procédé de préparation du catalyseur comprend les étapes suivantes : In general, the process for preparing the catalyst comprises the following steps:
a) on prépare un oxyde poreux aluminique calciné ; a) a calcined aluminous porous oxide is prepared;
b) on malaxe l’oxyde poreux aluminique calciné obtenu à l’étape a) avec une solution résultant du mélange d’une ou plusieurs solution(s) comprenant au moins un précurseur de nickel et au moins une solution comprenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine pour obtenir une pâte, le rapport molaire entre ledit composé organique et l’élément nickel étant compris entre 0,01 et 5,0 mol/mol ; b) the aluminized calcined porous oxide obtained in step a) is kneaded with a solution resulting from the mixing of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function to obtain a paste, the molar ratio between said organic compound and the nickel element being between 0.01 and 5.0 mol / mol;
c) on met en forme la pâte obtenue à l’étape b) ; c) shaping the paste obtained in step b);
d) on sèche la pâte mise en forme obtenue à l’étape c) à une température inférieure à 250°C pour obtenir un catalyseur séché ; d) the shaped dough obtained in step c) is dried at a temperature below 250 ° C to obtain a dried catalyst;
e) éventuellement, on réalise un traitement thermique du catalyseur séché obtenu à l’étape d) à une température comprise entre 250 et 1000°C, en présence ou non d’eau. e) optionally, a heat treatment of the dried catalyst obtained in step d) is carried out at a temperature of between 250 and 1000 ° C, in the presence or absence of water.
Avantageusement, l’oxyde poreux aluminique calciné est obtenu à partir d’un gel d’alumine spécifique. La distribution poreuse particulière observée dans le catalyseur est notamment due au procédé de préparation à partir du gel d’alumine spécifique. Advantageously, the calcined aluminous porous oxide is obtained from a specific alumina gel. The particular porous distribution observed in the catalyst is in particular due to the process of preparation from the specific alumina gel.
Etape al de préparation de l’oxyde aluminique calciné Step al of calcined aluminum oxide preparation
L’oxyde aluminique calciné peut être synthétisé par différentes méthodes connues par l'homme du métier. Par exemple, on met en œuvre un procédé d'obtention de gel constitué d'un précurseur de type gamma-oxy(hydroxyde) d'aluminium (AIO(OH) autrement dénommé boehmite. Le gel d’alumine peut par exemple être obtenu par précipitation des solutions basiques et/ou acides de sels d'aluminium induite par changement de pH ou toute autre méthode connue de l'homme de métier. Cette méthode est notamment décrite par le document P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J.L. Le Loarer, J. P. Jolivet, C. Froidefond, Alumina, in Handbook of Porous Solids, Eds F. Schüth, K.S.W. Sing, J. Weitkamp, Wiley-VCH, Weinheim, Germany, 2002, pp. 1591-1677. The calcined aluminic oxide can be synthesized by various methods known to those skilled in the art. For example, a process for obtaining a gel consisting of a precursor of the gamma-oxy (hydroxide) aluminum type (AIO (OH), otherwise known as boehmite, is used, for example the alumina gel can be obtained by precipitation of basic and / or acid solutions of aluminum salts induced by pH change or any other method known to those skilled in the art This method is described in particular by P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, JL The Loarer, JP Jolivet, C. Froidefond, Alumina, in Handbook of Porous Solids, Eds F. Schüth, Sing KSW, J. Weitkamp, Wiley-VCH, Weinheim, Germany, 2002, pp. 1591-1677.
De manière particulièrement préférée, l’oxyde poreux aluminique est préparé à partir de gels d’alumine spécifiques préparés selon des modes particuliers de préparation tels que décrits ci-après. Particularly preferably, the porous aluminum oxide is prepared from specific alumina gels prepared according to particular modes of preparation as described below.
Mode de réalisation 1 : Embodiment 1:
Selon une première variante, l’oxyde poreux aluminique calciné utilisé dans le cadre du procédé de préparation du catalyseur selon l’invention est obtenu en réalisant les étapes suivantes :  According to a first variant, the calcined aluminous porous oxide used in the context of the catalyst preparation process according to the invention is obtained by carrying out the following steps:
a1 ) une première étape de précipitation, en milieu réactionnel aqueux, d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, dans lequel au moins un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de la première étape compris entre 5 et 13%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite première étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape a3) du procédé de préparation, ladite étape opérant à une température comprise entre 20 et 90°C et pendant une durée comprise entre 2 minutes et 30 minutes; a1) a first step of precipitation, in an aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, and of at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, wherein at least one of the basic precursors or acid comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the acidic and basic precursor (s) containing aluminum is adjusted so as to obtain a first step progress rate of between 5 and 13%, the feed rate being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first step of precipitation over the qu total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature of between 20 and 90 ° C and for a time of between 2 minutes and 30 minutes;
a2) une étape de chauffage de la suspension à une température comprise entre 40 et 90°C pendant une durée comprise entre 7 minutes et 45 minutes, a2) a step of heating the suspension at a temperature between 40 and 90 ° C for a period of between 7 minutes and 45 minutes,
a3) une deuxième étape de précipitation de la suspension obtenue à l'issue de l'étape de chauffage a2) par ajout dans la suspension d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, dans lequel au moins un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de la deuxième étape compris entre 87 et 95 %, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite deuxième étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape a3) du procédé de préparation, ladite étape opérant à une température comprise entre 40 et 90 °C et pendant une durée comprise entre 2 minutes et 50 minutes ; a3) a second step of precipitating the suspension obtained at the end of the heating step a2) by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, acid hydrochloric acid and nitric acid, wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10, 5 and the debit of the Aluminum-containing acidic and basic precursors are adjusted to obtain a second stage progress rate of between 87 and 95%, the feed rate being defined as the proportion of alumina formed in Al 2 equivalent 0 3 during said second precipitation step relative to the total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature between 40 and 90 ° C and during a duration between 2 minutes and 50 minutes;
a4) une étape de filtration de la suspension obtenue à l'issue de l'étape a3) de deuxième précipitation pour obtenir un gel d'alumine ; a4) a filtration step of the suspension obtained at the end of the second precipitation step a3) to obtain an alumina gel;
a5) une étape de séchage dudit gel d'alumine obtenu à l'étape a4) pour obtenir une poudre ; par exemple à une température comprise entre 20 et 200°C et pendant une durée comprise entre 8 h et 15 h ; a5) a step of drying said alumina gel obtained in step a4) to obtain a powder; for example at a temperature between 20 and 200 ° C and for a period of between 8 h and 15 h;
a6) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape a5) entre 500 et 1000°C, pendant une durée comprise entre 2 et 10 h, en présence ou non d'un flux d'air contenant jusqu'à 60% volume d’eau pour obtenir un oxyde poreux aluminique calciné. a6) a step of heat treatment of the powder obtained at the end of step a5) between 500 and 1000 ° C, for a duration of between 2 and 10 h, in the presence or absence of a flow of air containing up to 60% water volume to obtain a calcined aluminous porous oxide.
Le taux d’avancement pour chacune des étapes de précipitation est défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite première ou deuxième étape de précipitation par rapport à la quantité totale d'alumine formée en équivalent Al203 à l'issue des deux étapes de précipitation et plus généralement à l’issue des étapes de préparation du gel d’alumine et notamment à l’issue de l’étape a3) du procédé de préparation selon l’invention. The rate of progress for each of the precipitation stages is defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first or second precipitation stage relative to the total amount of alumina formed in Al 2 equivalent. 0 3 at the end of the two precipitation steps and more generally at the end of the steps of preparation of the alumina gel and in particular at the end of step a3) of the preparation process according to the invention.
Mode de réalisation 2 Embodiment 2
Selon une deuxième variante, l’oxyde poreux aluminique calciné utilisé dans le cadre du procédé de préparation du catalyseur selon l’invention est obtenu en réalisant les étapes suivantes :  According to a second variant, the calcined aluminous porous oxide used in the context of the process for preparing the catalyst according to the invention is obtained by carrying out the following steps:
a1’) une étape de mise en solution d'un précurseur acide d'aluminium choisi parmi le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium dans l'eau, à une température comprise entre 20 et 90°C, à un pH compris entre 0,5 et 5, pendant une durée comprise entre 2 et 60 minutes, a1 ') a step of dissolving an aluminum acid precursor chosen from aluminum sulphate, aluminum chloride and aluminum nitrate in water, at a temperature of between 20 and 90 ° C, at a pH of between 0.5 and 5, for a period of between 2 and 60 minutes,
a2’) une étape d’ajustement du pH par ajout dans la suspension obtenue à l'étape a1’) d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium, à une température comprise entre 20 et 90°C, et à un pH compris entre 7 et 10, pendant une durée comprise entre 5 et 30 minutes, a2 ') a step of adjusting the pH by adding to the suspension obtained in step a1') at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, at a temperature between 20 and 90 ° C, and at a pH of between 7 and 10, for a period of between 5 and 30 minutes,
a3’) une étape de coprécipitation de la suspension obtenue à l'issue de l'étape a2’) par ajout dans la suspension d’au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d’au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, au moins un des précurseurs basique ou acide comprenant de l'aluminium, le débit relatif des précurseurs acide et basique étant choisi de manière à obtenir un pH du milieu réactionnel compris entre 7 et 10 et le débit du ou des précurseurs acide et basique contenant de l'aluminium étant réglé de manière à obtenir une concentration en alumine finale dans la suspension comprise entre 10 et 38 g/L, a3 ') a step of coprecipitation of the suspension obtained at the end of step a2') by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, at least one of the basic or acidic precursors comprising aluminum, the relative flow rate of the acidic and basic precursors being chosen so as to obtain a pH of the reaction medium of between 7 and 10 and the flow rate of the aluminum-containing acidic and basic precursors being adjusted so as to obtain a final alumina concentration in the suspension of between 10 and 38 g / l,
a4’) une étape de filtration de la suspension obtenue à l'issue de l'étape a3’) de coprécipitation pour obtenir un gel d'alumine, a4 ') a filtration step of the suspension obtained at the end of the coprecipitation step a3') to obtain an alumina gel,
a5’) une étape de séchage dudit gel d'alumine obtenu à l'étape a4’) pour obtenir une poudre, ladite étape de séchage pouvant être opérée à une température comprise entre 120 et 300°C, de manière très préférée à une température comprise entre 150 et 250°C, pendant 2 à 16 h ; a5 ') a step of drying said alumina gel obtained in step a4') to obtain a powder, said drying step being operable at a temperature between 120 and 300 ° C, very preferably at a temperature between 150 and 250 ° C for 2 to 16 hours;
a6’) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape a5’) à une température comprise entre 500 et 1000°C, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pendant une durée comprise entre 2 et 10 heures, pour obtenir un oxyde poreux aluminique calciné. a6 ') a step of heat treatment of the powder obtained at the end of step a5') at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, for a period of between 2 and 10 hours, to obtain a calcined aluminous porous oxide.
Mode de réalisation 3 : Embodiment 3:
Selon une troisième variante, l’oxyde poreux aluminique calciné utilisé dans le cadre du procédé de préparation du catalyseur selon l’invention est obtenu en réalisant les étapes suivantes :  According to a third variant, the calcined aluminous porous oxide used in the context of the process for preparing the catalyst according to the invention is obtained by carrying out the following steps:
a1”) au moins une première étape de précipitation d'alumine, en milieu réactionnel aqueux, d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de ladite première étape compris entre 40 et 100%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite première étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape c) du procédé de préparation, ladite première étape de précipitation opérant à une température comprise entre 10 et 50 °C, et pendant une durée comprise entre 2 minutes et 30 minutes ; a1 ") at least a first step of precipitating alumina, in aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, aqueous ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid, and nitric acid, in wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium between 8.5 and 10.5 and the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a progress rate of said first step of between 40 and 100%, the rate of advancement being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the end of step c) of the preparation process, said first precipitation stage operating at a temperature between 10 and 50 ° C, and for a period of between 2 minutes and 30 minutes;
a2”) une étape de traitement thermique de la suspension chauffée à une température comprise entre 50 et 200°C pendant une durée comprise entre 30 minutes et 5 heures permettant l'obtention d'un gel d'alumine ; a2 ") a heat treatment step of the suspension heated to a temperature between 50 and 200 ° C for a period of between 30 minutes and 5 hours to obtain an alumina gel;
a3”) une étape de filtration de la suspension obtenue à l'issue de l'étape a2”) de traitement thermique, suivie d'au moins une étape de lavage du gel obtenu ; a3 ") a filtration step of the suspension obtained at the end of step a2") of heat treatment, followed by at least one washing step of the gel obtained;
a4”) une étape de séchage du gel d'alumine obtenu à l'issue de l'étape a3”) pour obtenir une poudre ; ladite étape de séchage étant mise en œuvre à une température comprise entre 20 et 250°C, de préférence entre 50 et 200°C, pendant une durée comprise entre 1 jour et 3 semaines, de préférence entre 2 heures et 1 semaine et encore plus préférentiellement entre 5 heures et 48 heures ; a4 ") a step of drying the alumina gel obtained at the end of step a3") to obtain a powder; said drying step being carried out at a temperature between 20 and 250 ° C, preferably between 50 and 200 ° C, for a period of between 1 day and 3 weeks, preferably between 2 hours and 1 week and even more preferably between 5 hours and 48 hours;
a5”) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape a4”) à une température comprise entre 500 et 1000°C, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pendant une durée comprise entre 2 et 10 h, pour obtenir un oxyde poreux aluminique calciné. a5 ") a step of heat treatment of the powder obtained at the end of step a4") at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, for a period of between 2 and 10 h, to obtain a calcined aluminous porous oxide.
De manière générale, on entend par « taux d’avancement » de la n-ième étape de précipitation le pourcentage d’alumine formé en équivalent Al203 dans ladite n-ième étape, par rapport à la quantité totale d’alumine formée à l’issue de l’ensemble des étapes de précipitation et plus généralement à l’issue des étapes de préparation du gel d’alumine.In general terms, the term "advancement rate" of the nth precipitation stage means the percentage of alumina formed in Al 2 0 3 equivalent in said nth stage, relative to the total quantity of alumina formed. at the end of all the precipitation steps and more generally after the steps of preparation of the alumina gel.
Dans le cas où le taux d'avancement de ladite étape a1”) de précipitation est de 100%, ladite étape a1”) de précipitation permet généralement l'obtention d'une suspension d'alumine ayant une concentration en Al203 comprise entre 20 et 100 g/L, de préférence entre 20 et 80 g/L, de manière préférée entre 20 et 50 g/L. In the case where the progress rate of said precipitation step a1 ") is 100%, said precipitation step a1"") generally makes it possible to obtain a suspension of alumina having a concentration of Al 2 O 3 included between 20 and 100 g / l, preferably between 20 and 80 g / l, preferably between 20 and 50 g / l.
Etape bl Comalaxaae Step bl Comalaxaae
Dans cette étape, l’oxyde poreux aluminique calciné obtenu à l’étape a) est malaxé avec une solution résultant d’un mélange d’une ou plusieurs solution(s) comprenant un précurseur de nickel et au moins une solution comprenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine pour obtenir une pâte, le rapport molaire entre ledit composé organique et l’élément nickel étant compris entre 0,01 et 5,0 mol/mol. In this step, the calcined aluminous porous oxide obtained in step a) is mixed with a solution resulting from a mixture of one or more solution (s) comprising a nickel precursor and at least one solution comprising at least one organic compound comprising less a carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function to obtain a paste, the molar ratio between the said organic compound and the nickel element being between 0.01 and 5.0 mol / mol.
La(les)dite(s) solution(s) comprenant un précurseur de nickel peu(ven)t être aqueuse(s) ou constituée(s) d'un solvant organique ou bien d'un mélange d'eau et d'au moins un solvant organique (par exemple l'éthanol ou le toluène). De préférence, la solution est aqueuse. Le pH de cette solution pourra être modifié par l'ajout éventuel d'un acide. Selon une autre variante préférée, la solution aqueuse peut contenir de l’ammoniaque ou des ions d’ammonium NH4 +. The solution (s) comprising a nickel precursor may be aqueous or consist of an organic solvent or a mixture of water and water. minus an organic solvent (for example ethanol or toluene). Preferably, the solution is aqueous. The pH of this solution may be modified by the possible addition of an acid. According to another preferred variant, the aqueous solution may contain ammonia or ammonium ions NH 4 + .
De manière préférée, ledit précurseur de nickel est introduit en solution aqueuse, par exemple sous forme de nitrate, de carbonate, d'acétate, de chlorure, d’hydroxyde, d’hydroxycarbonate, d'oxalate, de complexes formés par un polyacide ou un acide-alcool et ses sels, de complexes formés avec les acétylacétonates, ou de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit oxyde poreux aluminique calciné. De manière préférée, on utilise avantageusement comme précurseur de nickel, le nitrate de nickel, le chlorure de nickel, l'acétate de nickel ou le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel ou le hydroxycarbonate de nickel.  Preferably, said nickel precursor is introduced in aqueous solution, for example in the form of nitrate, carbonate, acetate, chloride, hydroxide, hydroxycarbonate, oxalate, complexes formed by a polyacid or an acid-alcohol and its salts, complexes formed with acetylacetonates, or any other soluble inorganic derivative in aqueous solution, which is brought into contact with said calcined aluminous porous oxide. Preferably, nickel precursor nickel nitrate, nickel chloride, nickel acetate or nickel hydroxycarbonate is advantageously used. Very preferably, the nickel precursor is nickel nitrate or nickel hydroxycarbonate.
Selon une autre variante préférée, ledit précurseur de nickel est introduit en solution ammoniacale en introduisant un sel de nickel, par exemple l’hydroxyde de nickel ou le carbonate de nickel dans une solution ammoniacale ou dans une solution de carbonate d’ammonium ou d’hydrogénocarbonate d’ammonium.  According to another preferred variant, said nickel precursor is introduced into an ammoniacal solution by introducing a nickel salt, for example nickel hydroxide or nickel carbonate, into an ammoniacal solution or into an ammonium carbonate or ammonium carbonate solution. ammonium hydrogen carbonate.
Les quantités du ou des précurseurs de nickel introduites dans la solution sont choisies de telle manière que la teneur totale en nickel est comprise entre 1 et 65 % poids, de préférence comprise entre 5 et 55 % poids, de manière préférée comprise entre 8 et 40 % poids, et de manière particulièrement préférée comprise entre 10 et 35 % poids, de manière encore plus préférée entre 12 et 35 % poids, de manière encore plus préférée entre 15 et 35 % en poids, et de manière plus particulièrement préférée entre 18 et 32% en poids dudit élément par rapport à la masse totale du catalyseur. Les teneurs en nickel sont généralement adaptées aux réactions d’hydrogénation visées tel que décrit ci-dessus. La(les)dite(s) solution(s) contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine peu(ven)t être aqueuse(s) ou organique(s) (par exemple le méthanol ou l'éthanol ou le phénol ou l’acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée(s) d'un mélange d'eau et d'au moins un solvant organique. Le(s)dit(s) composé(s) organique(s) est(sont) préalablement au moins partiellement dissous dans la(les)dite(s) solution(s) à la concentration voulue. De préférence, la(les)dite(s) solution(s) est(sont) aqueuse(s) ou contien(nen)t de l’éthanol. De façon encore plus préférée, ladite solution est aqueuse. Le pH de ladite solution pourra être modifié par l'ajout éventuel d'un acide ou d’une base. The amounts of the nickel precursor (s) introduced into the solution are chosen such that the total nickel content is between 1 and 65% by weight, preferably between 5 and 55% by weight, preferably between 8 and 40% by weight. % by weight, and more preferably between 10 and 35% by weight, more preferably between 12 and 35% by weight, more preferably between 15 and 35% by weight, and more preferably between 18 and 35% by weight. 32% by weight of said element relative to the total mass of the catalyst. The nickel contents are generally adapted to the targeted hydrogenation reactions as described above. Said solution (s) containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one an amine function may be aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or be constituted a mixture of water and at least one organic solvent. The said organic compound (s) is (are) previously at least partially dissolved in the said solution (s) at the desired concentration. Preferably, said solution (s) is (are) aqueous or contains ethanol. Even more preferably, said solution is aqueous. The pH of said solution may be modified by the possible addition of an acid or a base.
Le comalaxage se déroule avantageusement dans un malaxeur, par exemple un malaxeur de type "Brabender" bien connu de l’Homme du métier. La poudre d'alumine calcinée obtenue à l’étape a) est placée dans la cuve du malaxeur. Ensuite la solution résultant du mélange d’une ou plusieurs solution(s) comprenant au moins un précurseur de nickel et d’au moins une solution comprenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine, et éventuellement de l'eau permutée, est ajoutée à la seringue ou avec tout autre moyen pendant une durée de quelques minutes, typiquement environ 2 minutes à une vitesse de malaxage donnée. Après l'obtention d'une pâte, le malaxage peut être poursuivi pendant quelques minutes, par exemple environ 15 minutes à 50 tr/min. Comalaxing is advantageously carried out in a kneader, for example a "Brabender" kneader, well known to those skilled in the art. The calcined alumina powder obtained in step a) is placed in the tank of the kneader. Then the solution resulting from the mixing of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function, and optionally deionized water, is added to the syringe or with any other means for a period of a few minutes, typically about 2 minutes at a given kneading speed. After obtaining a paste, kneading can be continued for a few minutes, for example about 15 minutes at 50 rpm.
Ladite solution résultant du mélange peut également être ajoutée en plusieurs fois durant cette phase de comalaxage.  Said solution resulting from mixing can also be added in several times during this phase of comalaxing.
A) Composé organique comprenant au moins une fonction acide carboxylique A) Organic compound comprising at least one carboxylic acid function
Dans un mode de réalisation selon l’invention, le composé organique comprend au moins une fonction acide carboxylique. Le rapport molaire dudit composé organique comprenant au moins une fonction acide carboxylique est compris entre 0,01 et 5,0 mol/mol, de préférence compris entre 0,05 et 2,0 mol/mol, plus préférentiellement entre 0,1 et 1 ,5 mol/mol et encore plus préférentiellement entre 0,3 et 1 ,2 mol/mol, par rapport à l’élément nickel.  In one embodiment of the invention, the organic compound comprises at least one carboxylic acid function. The molar ratio of said organic compound comprising at least one carboxylic acid function is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 2.0 mol / mol, more preferably between 0.1 and 1 , 5 mol / mol and even more preferably between 0.3 and 1, 2 mol / mol, with respect to the nickel element.
Ledit composé organique comprenant au moins une fonction acide carboxylique peut être un composé organique aliphatique, saturé ou insaturé, ou un composé organique aromatique. De préférence, le composé organique aliphatique, saturé ou insaturé, comprend entre 1 et 9 atomes de carbone, de préférence entre 2 et 7 atomes de carbone. De préférence, le composé organique aromatique comprend entre 7 et 10 atomes de carbone, de préférence entre 7 et 9 atomes de carbone. Said organic compound comprising at least one carboxylic acid function may be a saturated or unsaturated aliphatic organic compound or an aromatic organic compound. Preferably, the aliphatic organic compound, saturated or unsaturated, comprises between 1 and 9 carbon atoms, preferably between 2 and 7 carbon atoms. Preferably, the aromatic organic compound comprises between 7 and 10 carbon atoms, preferably between 7 and 9 carbon atoms.
Ledit composé organique aliphatique, saturé ou insaturé, ou ledit composé organique aromatique, comprenant au moins une fonction acide carboxylique peut être choisi parmi les acides monocarboxyliques, les acides dicarboxyliques, les acides tricarboxyliques, les acides tétracarboxyliques. Said aliphatic organic compound, saturated or unsaturated, or said aromatic organic compound, comprising at least one carboxylic acid function may be chosen from monocarboxylic acids, dicarboxylic acids, tricarboxylic acids, tetracarboxylic acids.
Dans un mode de réalisation particulier de l’invention, ledit composé organique est un acide monocarboxylique aliphatique saturé, la chaîne aliphatique étant linéaire ou ramifiée ou cyclique. Lorsque le composé organique est un acide monocarboxylique linéaire saturé, il est de préférence choisi parmi l’acide formique, l’acide acétique, l’acide propionique, l’acide butanoïque, l’acide valérique, l’acide hexanoïque, l’acide heptanoïque, l’acide octanoïque, l’acide nonanoïque. Lorsque le composé organique est un acide monocarboxylique ramifié saturé, il est de préférence choisi parmi l’acide isobutyrique, l’acide pivalique, l’acide méthyl- 4-octanoïque, l’acide méthyl-3-valérique, l’acide méthyl-4-valérique, l’acide méthyl-2- valérique, l’acide isovalérique, l’acide éthyl-2-hexanoïque, l’acide méthyl-2-butyrique, l’acide éthyl-2-butyrique, l’acide propyl-2-valérianique, l’acide valproïque, sous l'une quelconque de leurs formes isomères. Lorsque le composé organique est un acide monocarboxylique cyclique saturé, il est de préférence choisi parmi l’acide cyclopentane carboxylique, l’acide cyclohexane carboxylique.  In a particular embodiment of the invention, said organic compound is a saturated aliphatic monocarboxylic acid, the aliphatic chain being linear or branched or cyclic. When the organic compound is a saturated linear monocarboxylic acid, it is preferably selected from formic acid, acetic acid, propionic acid, butanoic acid, valeric acid, hexanoic acid, heptanoic, octanoic acid, nonanoic acid. When the organic compound is a saturated branched monocarboxylic acid, it is preferably chosen from isobutyric acid, pivalic acid, methyl-4-octanoic acid, methyl-3-valeric acid, methyl 4-valeric acid, methyl-2-valeric acid, isovaleric acid, 2-ethyl-hexanoic acid, 2-methyl-butyric acid, 2-ethyl-butyric acid, propyl- 2-valerianic, valproic acid, in any of their isomeric forms. When the organic compound is a saturated cyclic monocarboxylic acid, it is preferably selected from cyclopentane carboxylic acid, cyclohexane carboxylic acid.
Dans un mode de réalisation particulier de l’invention, ledit composé organique est un acide monocarboxylique aliphatique insaturé, la chaîne aliphatique étant linéaire ou ramifiée ou cyclique, de préférence choisi parmi l’acide méthacrylique, l’acide acrylique, l’acide vinylacétique, l’acide crotonique, l’acide isocrotonique, l’acide pentène-2-oïque, l’acide pentène-3-oïque, l’acide pentène-4-oïque, l’acide tiglique, l’acide angélique, l’acide sorbique, l’acide acétylène carboxylique, sous l'une quelconque de leurs formes isomères.  In a particular embodiment of the invention, said organic compound is an unsaturated aliphatic monocarboxylic acid, the aliphatic chain being linear or branched or cyclic, preferably selected from methacrylic acid, acrylic acid, vinylacetic acid, crotonic acid, isocrotonic acid, pentene-2-oic acid, penten-3-oic acid, pentene-4-oic acid, tiglic acid, angelic acid, acid sorbic acid, acetylene carboxylic acid, in any of their isomeric forms.
Dans un mode de réalisation particulier de l’invention, ledit composé organique est un acide monocarboxylique aromatique, de préférence choisi parmi l’acide benzoïque, l’acide méthyl- benzoïque, l’acide diméthyl-benzoïque, l’acide triméthyl-benzoïque, l’acide éthyl-benzoïque, l’acide o-tolylacétique, l’acide phénylacétique, l’acide phényl-2-propionique, l’acide phényl-3- propionique, l’acide vinyl-4-benzoïque, l’acide phénylacétylènecarbonique, l’acide cinnamique, sous l'une quelconque de leurs formes isomères. Dans un mode de réalisation particulier de l’invention, ledit composé organique est un acide dicarboxylique aliphatique saturé ou insaturé, la chaîne aliphatique étant linéaire ou ramifiée ou cyclique. In a particular embodiment of the invention, said organic compound is an aromatic monocarboxylic acid, preferably selected from benzoic acid, methylbenzoic acid, dimethylbenzoic acid, trimethylbenzoic acid, ethylbenzoic acid, o-tolylacetic acid, phenylacetic acid, phenyl-2-propionic acid, phenyl-3-propionic acid, vinyl-4-benzoic acid, phenylacetylenecarbonic acid , cinnamic acid, in any of their isomeric forms. In a particular embodiment of the invention, said organic compound is a saturated or unsaturated aliphatic dicarboxylic acid, the aliphatic chain being linear or branched or cyclic.
Lorsque le composé organique est un acide dicarboxylique linéaire saturé, il est de préférence choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide butanedioïque (acide succinique), l’acide pentanedioïque (acide glutarique), l’acide hexanedioïque (acide adipique), l’acide heptanedioïque (acide pimélique), l’acide octanedioïque (acide subérique), l’acide nonanedioïque (acide azélaïque). Lorsque le composé organique est un acide dicarboxylique ramifié saturé, il est de préférence choisi parmi l’acide méthyl-2-glutarique, l’acide méthyl-3-glutarique, l’acide diméthyl-3,3-glutarique, l’acide diméthyl-2,2-glutarique, l’acide butane-1 ,2-dicarboxylique, sous l'une quelconque de leurs formes isomères.  When the organic compound is a saturated linear dicarboxylic acid, it is preferably chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (acid glutaric), hexanedioic acid (adipic acid), heptanedioic acid (pimelic acid), octanedioic acid (suberic acid), nonanedioic acid (azelaic acid). When the organic compound is a saturated branched dicarboxylic acid, it is preferably chosen from methyl-2-glutaric acid, methyl-3-glutaric acid, dimethyl-3,3-glutaric acid and dimethyl acid. 2,2-glutaric acid, butane-1,2-dicarboxylic acid, in any of their isomeric forms.
Lorsque le composé organique est un acide dicarboxylique saturé cyclique, il est de préférence choisi parmi l’acide cyclohexanedicarboxylique, l’acide pinique, sous l'une quelconque de leurs formes isomères.  When the organic compound is a cyclic saturated dicarboxylic acid, it is preferably selected from cyclohexanedicarboxylic acid, pinic acid, in any of their isomeric forms.
De préférence, ledit composé organique est choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide butanedioïque (acide succinique), l’acide pentanedioïque (acide glutarique). l’acide 1 ,2- cyclohexanedicarboxylique, l’acide 1 ,3-cyclohexanedicarboxylique, sous l'une quelconque de leurs formes isomères. De façon encore plus préférée, ledit composé organique est choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide butanedioïque (acide succinique), l’acide pentanedioïque (acide glutarique).  Preferably, said organic compound is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid) and pentanedioic acid (glutaric acid). 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid) and pentanedioic acid (glutaric acid).
Lorsque le composé organique est un acide dicarboxylique insaturé, linéaire ou ramifié ou cyclique, il est de préférence choisi parmi l’acide (Z)-butènedioïque (acide maléique), l’acide (E)-butènedioïque (acide fumarique), l’acide pent-2-ènedioïque (acide glutaconique), l’acide (2E-4E)-hexa-2,4-diènedioïque (acide muconique), l’acide mésaconique, l’acide citraconique, l’acide acétylènedicarboxylique, l’acide méthylène-2-succinique (acide itaconique), l’acide hexadiène-2,4-dioïque, sous l'une quelconque de leurs formes isomères.  When the organic compound is an unsaturated, linear or branched or cyclic dicarboxylic acid, it is preferably chosen from (Z) -butenedioic acid (maleic acid), (E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid), (2E-4E) -hexa-2,4-dienediioic acid (muconic acid), mesaconic acid, citraconic acid, acetylenedicarboxylic acid, acid methylene-2-succinic acid (itaconic acid), hexadiene-2,4-dioic acid, in any of their isomeric forms.
De préférence, ledit composé organique est choisi parmi l’acide (Z)-butènedioïque (acide maléique), l’acide (E)-butènedioïque (acide fumarique), l’acide pent-2-ènedioïque (acide glutaconique), l’acide mésaconique, l’acide citraconique, l’acide méthylène-2-succinique (acide itaconique), sous l'une quelconque de leurs formes isomères. De façon encore plus préférée, ledit composé organique est choisi parmi l’acide (Z)-butènedioïque (acide maléique), l’acide (E)-butènedioïque (acide fumarique), l’acide pent-2-ènedioïque (acide glutaconique). Preferably, said organic compound is chosen from (Z) -butenedioic acid (maleic acid), (E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid), mesaconic acid, citraconic acid, methylene-2-succinic acid (itaconic acid), in any of their isomeric forms. Even more preferably, said organic compound is chosen from (Z) -butenedioic acid (acid maleic), (E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid).
Dans un mode de réalisation particulier de l’invention, ledit composé organique est un acide dicarboxylique aromatique, de préférence choisi parmi l’acide benzène-1 ,2-dicarboxylique (acide phtalique), l’acide benzène-1 ,3-dicarboxylique (acide isophtalique), l’acide benzène- 1 ,4-dicarboxylique (acide téréphtalique), l’acide phénylsuccinique, sous l'une quelconque de leurs formes isomères. De préférence, ledit composé organique est l’acide benzène-1 ,2- dicarboxylique (acide phtalique). In a particular embodiment of the invention, said organic compound is an aromatic dicarboxylic acid, preferably selected from benzene-1,2-dicarboxylic acid (phthalic acid), benzene-1,3-dicarboxylic acid ( isophthalic acid), benzene-1,4-dicarboxylic acid (terephthalic acid), phenylsuccinic acid, in any of their isomeric forms. Preferably, said organic compound is benzene-1,2-dicarboxylic acid (phthalic acid).
Dans un mode de réalisation particulier de l’invention, ledit composé organique est un acide tricarboxylique aliphatique, saturé ou insaturé, ou aromatique, de préférence choisi parmi l’acide propanetricarboxylique-1 ,2,3 (acide tricarballylique), l’acide butanetricarboxylique- 1 ,2,4, l’acide propène-tricarboxylique-1 ,2,3 (acide aconitique), l’acide benzènetricarboxylique-1 ,3,5 (acide trimésique), l’acide benzènetricarboxylique-1 ,2,4, sous l'une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide propanetricarboxylique-1 ,2,3 (acide tricarballylique), l’acide butanetricarboxylique-1 ,2,4, l’acide propène-tricarboxylique-1 ,2,3 (acide aconitique), l’acide benzènetricarboxylique-1 ,2,4, sous l'une quelconque de leurs formes isomères. In a particular embodiment of the invention, said organic compound is an aliphatic tricarboxylic acid, saturated or unsaturated, or aromatic, preferably selected from propanetricarboxylic acid-1,2,3 (tricarballylic acid), butanetricarboxylic acid 1, 2,4, propene-tricarboxylic acid-1,2,3 (aconitic acid), benzenetricarboxylic acid-1,3,5 (trimesic acid), benzenetricarboxylic acid-1,2,4, in any of their isomeric forms. Preferably, said organic compound is chosen from propanetricarboxylic acid-1,2,3 (tricarballylic acid), butanetricarboxylic acid-1,2,4, propene-tricarboxylic acid-1,2,3 (aconitic acid). ), benzenetricarboxylic acid-1,2,4, in any of their isomeric forms.
Dans un mode de réalisation particulier de l’invention, ledit composé organique est un acide tétracarboxylique aliphatique, saturé ou insaturé, ou aromatique, de préférence choisi parmi l’acide méthanetétracarboxylique, l’acide butanetétracarboxylique-1 ,2,3,4, l’acide éthylènetétracarboxylique, l’acide benzènetétracarboxylique-1 ,2,4,5, sous l'une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide butanetétracarboxylique-1 , 2, 3, 4, l’acide benzènetétracarboxylique-1 , 2, 4, 5, sous l'une quelconque de leurs formes isomères. In a particular embodiment of the invention, said organic compound is a saturated or unsaturated, or aromatic, aliphatic tetracarboxylic acid, preferably selected from methanetetracarboxylic acid, butanetetracarboxylic acid-1, 2,3,4, ethylenetetracarboxylic acid, benzenetetracarboxylic acid-1,2,4,5, in any of their isomeric forms. Preferably, said organic compound is selected from butanetetracarboxylic acid-1, 2, 3, 4, benzenetetracarboxylic acid-1, 2, 4, 5, in any of their isomeric forms.
Dans un autre mode de réalisation selon l’invention, ledit composé organique peut comprendre au moins un deuxième groupe fonctionnel choisi parmi les éthers, les hydroxyles, les cétones, les esters. Avantageusement, ledit composé organique comprend au moins une fonction acide carboxylique et au moins une fonction hydroxyle, ou au moins une fonction acide carboxylique et au moins une fonction éther, ou au moins une fonction acide carboxylique et au moins une fonction cétone. Avantageusement, ledit composé organique peut comprendre au moins trois groupes fonctionnels différents choisis parmi au moins une fonction acide carboxylique, au moins une fonction hydroxyde et au moins un groupe fonctionnel différent des fonctions acide carboxylique et hydroxyle, comme une fonction éther ou une fonction cétone. In another embodiment of the invention, said organic compound may comprise at least one second functional group chosen from ethers, hydroxyls, ketones and esters. Advantageously, said organic compound comprises at least one carboxylic acid function and at least one hydroxyl function, or at least one carboxylic acid function and at least one ether function, or at least one carboxylic acid function and at least one ketone function. Advantageously, said compound organic can comprise at least three different functional groups selected from at least one carboxylic acid function, at least one hydroxide function and at least one functional group different from the carboxylic acid and hydroxyl functions, such as an ether function or a ketone function.
Parmi les composés organiques comprenant au moins une fonction acide carboxylique et au moins une fonction hydroxyle, on peut citer les hydroxyacides des acides monocarboxyliques, les hydroxyacides des acides dicarboxyliques ou des acides polycarboxyliques, les dihydroxyacides des acides monocarboxyliques ou des acides polycarboxyliques, les trihydroxyacides des acides monocarboxyliques ou des acides polycarboxyliques, et plus généralement les polyhydroxyacides des acides monocarboxyliques ou des acides polycarboxyliques, la chaîne carbonée desdits acides pouvant être aliphatique saturée (linéaire, ramifiée ou cyclique), ou aliphatique insaturée (linéaire, ramifiée ou cyclique) ou pouvant contenir au moins un cycle aromatique. De préférence, ledit composé organique est choisi parmi les hydroxyacides ou les dihydroxyacides des acides monocarboxyliques ou des acides dicarboxyliques ou des acides tricarboxyliques. Among the organic compounds comprising at least one carboxylic acid function and at least one hydroxyl group, mention may be made of the hydroxy acids of the monocarboxylic acids, the hydroxy acids of the dicarboxylic acids or of the polycarboxylic acids, the dihydroxy acids of the monocarboxylic acids or of the polycarboxylic acids, the trihydroxy acids of the monocarboxylic acids or polycarboxylic acids, and more generally polyhydroxyacids monocarboxylic acids or polycarboxylic acids, the carbon chain of said acids can be saturated aliphatic (linear, branched or cyclic), or unsaturated aliphatic (linear, branched or cyclic) or may contain at least one aromatic ring. Preferably, said organic compound is chosen from hydroxy acids or dihydroxy acids of monocarboxylic acids or dicarboxylic acids or tricarboxylic acids.
Lorsque le composé organique est un hydroxyacide d’un acide monocarboxylique, il est de préférence choisi parmi l’acide hydroxyacétique (acide glycolique), l’acide 2- hydroxypropanoïque (acide lactique), l’acide hydroxy-2-isobutyrique ou les autres a- hydroxyacides, l’acide 3-hydroxypropanoïque, l’acide hydroxy-3-butyrique, l’acide 3- hydroxypentanoïque, l’acide hydroxy-3-isobutyrique, l’acide 3-hydroxy-3-méthylbutanoïque, ou les autres b-hydroxyacides, l’acide hydroxy-4-butyrique ou les autres g-hydroxyacides, l’acide mandélique, l’acide 3-phényllactique, l’acide tropique, l’acide hydroxybenzoïque, l’acide salicylique, l’acide (hydroxy-2-phényl)-acétique, l’acide (hydroxy-3-phényl)-acétique, l’acide (hydroxy-4-phényl)-acétique, l’acide coumarique, sous l'une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide hydroxyacétique (acide glycolique), l’acide 2-hydroxypropanoïque (acide lactique), l’acide 3- hydroxypropanoïque, l’acide hydroxy-3-butyrique, l’acide hydroxy-3-isobutyrique, l’acide mandélique, l’acide 3-phényllactique, l’acide tropique, l’acide salicylique, sous l'une quelconque de leurs formes isomères. De façon encore plus préférée, ledit composé organique est choisi parmi l’acide hydroxyacétique (acide glycolique), l’acide 2-hydroxypropanoïque (acide lactique), l’acide 3-hydroxypropanoïque, l’acide hydroxy-3-butyrique, l’acide hydroxy-3-isobutyrique. When the organic compound is a hydroxy acid of a monocarboxylic acid, it is preferably chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), hydroxy-2-isobutyric acid or the other α-hydroxy acids, 3-hydroxypropanoic acid, 3-hydroxy-butyric acid, 3-hydroxypentanoic acid, 3-hydroxy-3-isobutyric acid, 3-hydroxy-3-methylbutanoic acid, or the other b-hydroxy acids, 4-hydroxy-butyric acid or other g-hydroxy acids, mandelic acid, 3-phenyllactic acid, tropic acid, hydroxybenzoic acid, salicylic acid, acid ( hydroxy-2-phenyl) -acetic acid, (3-hydroxy-phenyl) -acetic acid, (4-hydroxy-phenyl) -acetic acid, coumaric acid, in any of their isomeric forms. Preferably, said organic compound is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, 3-hydroxy-butyric acid, hydroxy-acid and 3-isobutyric, mandelic acid, 3-phenyllactic acid, tropic acid, salicylic acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, hydroxy-3-butyric acid, hydroxy-3-isobutyric acid.
Lorsque le composé organique est un hydroxyacide d’un acide polycarboxylique, il est de préférence choisi parmi l’acide 2-hydroxypropanedioïque (acide tartronique), l’acide 2- hydroxybutanedioïque (acide malique), l’acide acétolactique ou les autres a-hydroxyacides ou b-hydroxyacides ou g-hydroxyacides des acides dicarboxyliques, l’acide hydroxy-5- isophtalique, l’acide 2-hydroxypropane-1 ,2,3-tricarboxylique (acide citrique), l’acide isocitrique, l’acide homocitrique, l’acide homoisocitrique ou les autres a-hydroxyacides ou b- hydroxyacides ou g-hydroxyacides des acides tricarboxyliques, sous l'une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide 2- hydroxypropanedioïque (acide tartronique), l’acide 2-hydroxybutanedioïque (acide malique), l’acide acétolactique, l’acide 2-hydroxypropane-1 ,2,3-tricarboxylique (acide citrique), l’acide isocitrique, l’acide homocitrique, l’acide homoisocitrique, sous l'une quelconque de leurs formes isomères. De façon encore plus préférée, ledit composé organique est choisi parmi l’acide 2-hydroxypropanedioïque (acide tartronique), l’acide 2-hydroxybutanedioïque (acide malique), l’acide acétolactique, l’acide 2-hydroxypropane-1 ,2,3-tricarboxylique (acide citrique). When the organic compound is a hydroxy acid of a polycarboxylic acid, it is preferably chosen from 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid or the others. hydroxy acids or b-hydroxy acids or g-hydroxy acids of dicarboxylic acids, 5-hydroxy-isophthalic acid, 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), isocitric acid, homocitric acid , the homoisocitric acid or the other α-hydroxy acids or b-hydroxy acids or α-hydroxy acids of the tricarboxylic acids, in any of their isomeric forms. Preferably, said organic compound is chosen from 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid, 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), isocitric acid, homocitric acid, homoisocitric acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid, 2-hydroxypropane-1, 2 acid, 3-tricarboxylic acid (citric acid).
Lorsque le composé organique est un dihydroxyacide d’un acide monocarboxylique, il est de préférence choisi parmi l’acide glycérique, l’acide 2,3-dihydroxy-3-méthylpentanoïque, l’acide pantoïque ou les autres a,a-dihydroxyacides ou a,b-dihydroxyacides ou a,g-dihydroxyacides, l’acide 3,5-dihydroxy-3-méthylpentanoïque (acide mévalonique), ou les autres b,b- dihydroxyacides ou b,g-dihydroxyacides ou g,g-dihydroxyacides, l’acide bis-(hydroxyméthyl)-When the organic compound is a dihydroxy acid of a monocarboxylic acid, it is preferably chosen from glyceric acid, 2,3-dihydroxy-3-methylpentanoic acid, pantoic acid or the other α, α-dihydroxy acids or α, β-dihydroxy acids or α,--dihydroxy acids, 3,5-dihydroxy-3-methylpentanoic acid (mevalonic acid), or the other b, b-dihydroxy acids or b, g-dihydroxy acids or g, g-dihydroxy acids, Bis (hydroxymethyl) acid
2.2-propionique, l’acide 2,3-dihydroxybenzoïque, l’acide a-résorcylique, l’acide b- résorcylique, l’acide g-résorcylique, l’acide gentisique, l’acide protocatéchique, l’acide orsellinique, l’acide homogentisique, l’acide caféique, sous l'une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide glycérique, l’acide2.2-propionic acid, 2,3-dihydroxybenzoic acid, α-resorcylic acid, b-resorcylic acid, g-resorcylic acid, gentisic acid, protocatechic acid, orselinic acid, l homogentisic acid, caffeic acid, in any of their isomeric forms. Preferably, said organic compound is chosen from glycerolic acid,
2.3-dihydroxy-3-méthylpentanoïque, l’acide pantoïque, l’acide 2,3-dihydroxybenzoïque, l’acide b-résorcylique, l’acide g-résorcylique, l’acide gentisique, l’acide orsellinique, sous l'une quelconque de leurs formes isomères. De façon encore plus préférée, ledit composé organique est choisi parmi l’acide glycérique, l’acide 2,3-dihydroxy-3-méthylpentanoïque, l’acide pantoïque. Lorsque le composé organique est un dihydroxyacide d’un acide polycarboxylique, il est de préférence choisi parmi l’acide dihydroxymalonique, l’acide 2,3-dihydroxybutanedioïque (acide tartrique) ou les autres a,a-dihydroxyacides ou a,b-dihydroxyacides ou a,g- dihydroxyacides ou b,b-dihydroxyacides ou b,g-dihydroxyacides ou g,g-dihydroxyacides des acides dicarboxyliques, l’acide hydroxycitrique, sous l'une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide dihydroxymalonique, l’acide 2,3-dihydroxybutanedioïque (acide tartrique), l’acide hydroxycitrique, sous l'une quelconque de leurs formes isomères. De façon encore plus préférée, ledit composé organique est choisi parmi l’acide dihydroxymalonique, l’acide 2,3- dihydroxybutanedioïque (acide tartrique). 2,3-dihydroxy-3-methylpentanoic acid, pantoic acid, 2,3-dihydroxybenzoic acid, b-resorcylic acid, g-resorcylic acid, gentisic acid, orsellinic acid, under one any of their isomeric forms. Even more preferably, said organic compound is chosen from glyceric acid, 2,3-dihydroxy-3-methylpentanoic acid and pantoic acid. When the organic compound is a dihydroxy acid of a polycarboxylic acid, it is preferably chosen from dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid) or the other α, α-dihydroxyacids or α, β-dihydroxyacids or α, β-dihydroxy acids or β, β-dihydroxy acids or β, β-dihydroxy acids or α-dihydroxy acids of the dicarboxylic acids, hydroxycitric acid, in any of their isomeric forms. Preferably, said organic compound is chosen from dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid) and hydroxycitric acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid).
Lorsque le composé organique est un polyhydroxyacide d’un acide monocarboxylique ou d’un acide polycarboxylique, il est de préférence choisi parmi l’acide shikimique, l’acide trihydroxybenzoïque, l’acide gallique, l’acide phloroglucinique, l’acide pyrogallolcarboxylique, l’acide quinique, l’acide gluconique, l’acide mucique, l’acide saccharique, sous l'une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide trihydroxybenzoïque, l’acide quinique, l’acide gluconique, l’acide mucique, l’acide saccharique, sous l'une quelconque de leurs formes isomères. De façon encore plus préférée, ledit composé organique est choisi parmi l’acide quinique, l’acide gluconique, l’acide mucique, l’acide saccharique. When the organic compound is a polyhydroxy acid of a monocarboxylic acid or of a polycarboxylic acid, it is preferably selected from shikimic acid, trihydroxybenzoic acid, gallic acid, phloroglucinic acid, pyrogallol carboxylic acid, quinic acid, gluconic acid, mucic acid, saccharic acid, in any of their isomeric forms. Preferably, said organic compound is chosen from trihydroxybenzoic acid, quinic acid, gluconic acid, mucic acid and saccharic acid, in any of their isomeric forms. Even more preferably, said organic compound is chosen from quinic acid, gluconic acid, mucic acid and saccharic acid.
Parmi les composés organiques comprenant au moins une fonction acide carboxylique et au moins une fonction éther, on peut citer l’acide 2-méthoxyacétique, l’acide 2,2’-oxydiacétique (acide diglycolique), l’acide 4-méthoxybenzoïque, l’acide isopropoxy-4-benzoïque, l’acide méthoxy-3-phénylacétique, l’acide méthoxy-3-cinnamique, l’acide méthoxy-4-cinnamique, l’acide 3,4-diméthoxycinnamique, l’acide vératriquel’acide tétrahydrofuranne-carboxylique-2, l’acide furanne-carboxylique-3, l’acide 2,5-dihydro-3,4-furanne dicarboxylique acide, selon l’une quelconque de leurs formes isomères. De préférence, ledit composé organique est l’acide 2,2’-oxydiacétique (acide diglycolique). Among the organic compounds comprising at least one carboxylic acid function and at least one ether function, mention may be made of 2-methoxyacetic acid, 2,2'-oxydiacetic acid (diglycolic acid), 4-methoxybenzoic acid, isopropoxy-4-benzoic acid, methoxy-3-phenylacetic acid, methoxy-3-cinnamic acid, methoxy-4-cinnamic acid, 3,4-dimethoxycinnamic acid, veratric acid, acid tetrahydrofuran-2-carboxylic acid, furan-3-carboxylic acid, 2,5-dihydro-3,4-furan dicarboxylic acid acid, according to any of their isomeric forms. Preferably, said organic compound is 2,2'-oxydiacetic acid (diglycolic acid).
Parmi les composés organiques comprenant au moins une fonction acide carboxylique et au moins une fonction cétone, on peut citer l’acide glyoxylique, l’acide 2-oxopropanoïque (acide pyruvique), l’acide 2-oxobutanoïque, l’acide 3-oxopentanoïque, l'acide 3-méthyl-2- oxobutanoïque, l’acide 4-méthyl-2-oxopentanoïque, l’acide phénylglyoxylique, l’acide phénylpyruvique, l’acide mésoxalique, l’acide 2-oxoglutarique, l’acide 2-oxohexanedioïque, l’acide oxalosuccinique ou les autres a-cétoacides des acides monocarboxyliques ou des acides polycarboxyliques, l’acide acétylacétique, l’acide acétonedicarboxylique, ou les autres b-cétoacides des acides monocarboxyliques ou des acides polycarboxyliques, l’acide 4- oxopentanoïque (acide lévulinique) ou les autres g-cétoacides des acides monocarboxyliques ou des acides polycarboxyliques, l’acide acétyl-4-benzoïque, l’acide dioxosuccinique, l’acide 4-maléylacétoacétique ou les autres polycétoacides des acides monocarboxyliques ou des acides polycarboxyliques, selon l’une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide glyoxylique, l’acide 2-oxopropanoïque (acide pyruvique), l’acide 2-oxobutanoïque, l'acide 3- méthyl-2-oxobutanoïque, l’acide phénylglyoxylique, l’acide phénylpyruvique, l’acide mésoxalique, l’acide 2-oxoglutarique, l’acide 2-oxohexanedioïque, l’acide oxalosuccinique, l’acide acétylacétique, l’acide acétonedicarboxylique, l’acide 4-oxopentanoïque (acide lévulinique), l’acide dioxosuccinique, selon l’une quelconque de leurs formes isomères. De façon encore plus préférée, ledit composé organique est choisi parmi l’acide glyoxylique, l’acide 2-oxopropanoïque (acide pyruvique), l’acide 2-oxobutanoïque, l'acide 3-méthyl-2- oxobutanoïque, l’acide mésoxalique, l’acide 2-oxoglutarique, l’acide acétylacétique, l’acide acétonedicarboxylique, l’acide 4-oxopentanoïque (acide lévulinique), l’acide dioxosuccinique. Among the organic compounds comprising at least one carboxylic acid function and at least one ketone functional group, mention may be made of glyoxylic acid, 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid and 3-oxopentanoic acid. , 3-methyl-2-oxobutanoic acid, 4-methyl-2-oxopentanoic acid, phenylglyoxylic acid, phenylpyruvic acid, mesoxalic acid, 2-oxoglutaric acid, 2-oxohexanedioic acid, oxalosuccinic acid or the other α-keto acids of monocarboxylic acids or polycarboxylic acids, acetylacetic acid, acetonedicarboxylic acid, or other β-ketoacids of monocarboxylic acids or polycarboxylic acids, 4-oxopentanoic acid (levulinic acid) or the other α-keto acids of monocarboxylic acids or polycarboxylic acids, acetyl-4-benzoic acid, dioxosuccinic acid , 4-maleylacetoacetic acid or the other polyketo acids of monocarboxylic acids or polycarboxylic acids, according to any of their isomeric forms. Preferably, said organic compound is chosen from glyoxylic acid, 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid, phenylglyoxylic acid, phenylpyruvic acid, mesoxalic acid, 2-oxoglutaric acid, 2-oxohexanedioic acid, oxalosuccinic acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid (levulinic acid), dioxosuccinic acid, according to any one of their isomeric forms. Even more preferably, said organic compound is chosen from glyoxylic acid, 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid and mesoxalic acid. , 2-oxoglutaric acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid (levulinic acid), dioxosuccinic acid.
Parmi les composés organiques comprenant au moins une fonction acide carboxylique et au moins une fonction ester, on peut citer l’acide acétylsalicylique. Among the organic compounds comprising at least one carboxylic acid function and at least one ester function, mention may be made of acetylsalicylic acid.
Parmi les composés organiques comprenant au moins une fonction acide carboxylique, au moins une fonction hydroxyde et au moins une fonction éther, on peut citer l’acide 4-hydroxy- 3-méthoxybenzoïque (acide vanillique), l’acide syringique, l’acide glucuronique, l’acide galacturonique, l’acide férulique, l’acide sinapique, selon l’une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide 4-hydroxy-3- méthoxybenzoïque (acide vanillique), l’acide glucuronique, l’acide galacturonique, selon l’une quelconque de leurs formes isomères. Among the organic compounds comprising at least one carboxylic acid function, at least one hydroxide functional group and at least one ether functional group, mention may be made of 4-hydroxy-3-methoxybenzoic acid (vanillic acid), syringic acid and acid. glucuronic acid, galacturonic acid, ferulic acid, sinapic acid, according to any of their isomeric forms. Preferably, said organic compound is chosen from 4-hydroxy-3-methoxybenzoic acid (vanillic acid), glucuronic acid and galacturonic acid, according to any of their isomeric forms.
Parmi les composés organiques comprenant au moins une fonction acide carboxylique, au moins une fonction hydroxyde et au moins une fonction cétone, on peut citer l’acide hydroxypyruvique, l’acide acétolactique, l’acide iduronique, l’acide ulosonique, l’acide méconique, l’acide 4-hydroxyphénylpyruvique, selon l’une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi l’acide hydroxypyruvique, l’acide acétolactique, l’acide iduronique, l’acide méconique, selon l’une quelconque de leurs formes isomères. Among the organic compounds comprising at least one carboxylic acid function, at least one hydroxide functional group and at least one ketone functional group, mention may be made of hydroxypyruvic acid, acetolactic acid, iduronic acid, ulosonic acid and acid. meconic, 4-hydroxyphenylpyruvic acid, according to any of their forms isomers. Preferably, said organic compound is selected from hydroxypyruvic acid, acetolactic acid, iduronic acid, meconic acid, according to any of their isomeric forms.
Parmi tous les modes de réalisation précédents, ledit composé organique comprenant au moins une fonction acide carboxylique est de préférence choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide butanedioïque (acide succinique), l’acide pentanedioïque (acide glutarique). l’acide 1 ,2- cyclohexanedicarboxylique, l’acide 1 ,3-cyclohexanedicarboxylique, l’acide (Z)-butènedioïque (acide maléique), l’acide (E)-butènedioïque (acide fumarique), l’acide pent-2-ènedioïque (acide glutaconique), l’acide mésaconique, l’acide citraconique, l’acide méthylène-2- succinique (acide itaconique), l’acide benzène-1 ,2-dicarboxylique (acide phtalique), l’acide propanetricarboxylique-1 ,2,3 (acide tricarballylique), l’acide butanetricarboxylique-1 ,2,4, l’acide propène-tricarboxylique-1 ,2,3 (acide aconitique), l’acide benzènetricarboxylique-1 ,2,4, l’acide butanetétracarboxylique-1 ,2,3,4, l’acide benzènetétracarboxylique-1 ,2,4,5, l’acide hydroxyacétique (acide glycolique), l’acide 2-hydroxypropanoïque (acide lactique), l’acide 3- hydroxypropanoïque, l’acide hydroxy-3-butyrique, l’acide hydroxy-3-isobutyrique, l’acide mandélique, l’acide 3-phényllactique, l’acide tropique, l’acide salicylique, l’acide glycérique, l’acide 2,3-dihydroxy-3-méthylpentanoïque, l’acide pantoïque, l’acide 2,3- dihydroxybenzoïque, l’acide b-résorcylique, l’acide g-résorcylique, l’acide gentisique, l’acide orsellinique, l’acide dihydroxymalonique, l’acide 2,3-dihydroxybutanedioïque (acide tartrique), l’acide hydroxycitrique, l’acide trihydroxybenzoïque, l’acide quinique, l’acide gluconique, l’acide mucique, l’acide saccharique, l’acide 2,2’-oxydiacétique (acide diglycolique). l’acide glyoxylique, l’acide 2-oxopropanoïque (acide pyruvique), l’acide 2-oxobutanoïque, l'acide 3- méthyl-2-oxobutanoïque, l’acide phénylglyoxylique, l’acide phénylpyruvique, l’acide mésoxalique, l’acide 2-oxoglutarique, l’acide 2-oxohexanedioïque, l’acide oxalosuccinique, l’acide acétylacétique, l’acide acétonedicarboxylique, l’acide 4-oxopentanoïque (acide lévulinique), l’acide dioxosuccinique, l’acide 4-hydroxy-3-méthoxybenzoïque (acide vanillique), l’acide glucuronique, l’acide galacturonique, l’acide hydroxypyruvique, l’acide acétolactique, l’acide iduronique, l’acide méconique, selon l’une quelconque de leurs formes isomères. Among all the preceding embodiments, said organic compound comprising at least one carboxylic acid function is preferably chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid). 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, (Z) -butenedioic acid (maleic acid), (E) -butenedioic acid (fumaric acid), pent-2-acid -enedioic acid (glutaconic acid), mesaconic acid, citraconic acid, methylene-2-succinic acid (itaconic acid), benzene-1, 2-dicarboxylic acid (phthalic acid), propanetricarboxylic acid- 1, 2,3 (tricarballylic acid), butanetricarboxylic acid-1,2,4, propene-tricarboxylic acid-1,2,3 (aconitic acid), benzenetricarboxylic acid-1,2,4,4 1,2,3,4-butanetetracarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid, hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3- hydroxypropanoic acid, 3-hydroxy-butyric acid, 3-hydroxy-isobutyric acid, mandelic acid, 3-phenyllactic acid, tropic acid, salicylic acid, acid glycerol, 2,3-dihydroxy-3-methylpentanoic acid, pantoic acid, 2,3-dihydroxybenzoic acid, b-resorcylic acid, g-resorcylic acid, gentisic acid, orsellinic acid, dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid (tartaric acid), hydroxycitric acid, trihydroxybenzoic acid, quinic acid, gluconic acid, mucic acid, saccharic acid 2,2'-oxydiacetic acid (diglycolic acid). glyoxylic acid, 2-oxopropanoic acid (pyruvic acid), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid, phenylglyoxylic acid, phenylpyruvic acid, mesoxalic acid, 2-oxoglutaric acid, 2-oxohexanedioic acid, oxalosuccinic acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid (levulinic acid), dioxosuccinic acid, 4-hydroxy acid 3-methoxybenzoic acid (vanillic acid), glucuronic acid, galacturonic acid, hydroxypyruvic acid, acetolactic acid, iduronic acid, meconic acid, according to any of their isomeric forms.
Parmi tous les modes de réalisation précédents, ledit composé organique comprenant au moins une fonction acide carboxylique est plus préférentiellement choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide butanedioïque (acide succinique), l’acide pentanedioïque (acide glutarique), l’acide (Z)- butènedioïque (acide maléique), l’acide (E)-butènedioïque (acide fumarique), l’acide pent-2- ènedioïque (acide glutaconique), l’acide hydroxyacétique (acide glycolique), l’acide 2- hydroxypropanoïque (acide lactique), l’acide 3-hydroxypropanoïque, l’acide hydroxy-3- butyrique, l’acide hydroxy-3-isobutyrique, l’acide 2-hydroxypropanedioïque (acide tartronique), l’acide 2-hydroxybutanedioïque (acide malique), l’acide acétolactique, l’acide 2- hydroxypropane-1 ,2,3-tricarboxylique (acide citrique), l’acide glycérique, l’acide 2,3- dihydroxy-3-méthylpentanoïque, l’acide pantoïque, l’acide dihydroxymalonique, l’acide 2,3- dihydroxybutanedioïque (acide tartrique), l’acide quinique, l’acide gluconique, l’acide mucique, l’acide saccharique, l’acide glyoxylique, l’acide 2-oxopropanoïque (acide pyruvique), l’acide 2-oxobutanoïque, l'acide 3-méthyl-2-oxobutanoïque, l’acide mésoxalique, l’acide 2-oxoglutarique, l’acide acétylacétique, l’acide acétonedicarboxylique, l’acide 4- oxopentanoïque (acide lévulinique), l’acide dioxosuccinique. Encore plus préférentiellement, le composé organique comprenant au moins une fonction acide carboxylique est choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide pentanedioïque (acide glutarique), l’acide hydroxyacétique (acide glycolique), l’acide 2-hydroxypropanoïque (acide lactique), l’acide 2-hydroxypropanedioïque (acide tartronique), l’acide 2-hydroxypropane-1 ,2,3-tricarboxylique (acide citrique), l’acide 2,3- dihydroxybutanedioïque (acide tartrique), l’acide 2-oxopropanoïque (acide pyruvique), l’acide 4-oxopentanoïque (acide lévulinique). Among all the preceding embodiments, said organic compound comprising at least one carboxylic acid function is more preferably chosen from acid ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), butanedioic acid (succinic acid), pentanedioic acid (glutaric acid), (Z) - butenedioic acid (maleic acid), acid ( E) -butenedioic acid (fumaric acid), pent-2-enedioic acid (glutaconic acid), hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 3-hydroxypropanoic acid, 3-hydroxy-butyric acid, 3-hydroxy-isobutyric acid, 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), acetolactic acid, 2-hydroxypropane acid 1,2,3-tricarboxylic acid (citric acid), glyceric acid, 2,3-dihydroxy-3-methylpentanoic acid, pantoic acid, dihydroxymalonic acid, 2,3-dihydroxybutanedioic acid ( tartaric acid), quinic acid, gluconic acid, mucic acid, saccharic acid, glyoxylic acid, 2-oxopropanoic acid (pyruvic acid) e), 2-oxobutanoic acid, 3-methyl-2-oxobutanoic acid, mesoxalic acid, 2-oxoglutaric acid, acetylacetic acid, acetonedicarboxylic acid, 4-oxopentanoic acid ( levulinic acid), dioxosuccinic acid. Even more preferentially, the organic compound comprising at least one carboxylic acid function is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), pentanedioic acid (glutaric acid), hydroxyacetic acid (acid glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), 2,3-acid - dihydroxybutanedioic acid (tartaric acid), 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid).
B) Composé organique comprenant au moins une fonction alcool B) Organic compound comprising at least one alcohol function
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins une fonction alcool. Le rapport molaire dudit composé organique comprenant au moins une fonction alcool par rapport à l’élément nickel est compris entre 0,01 et 5,0 mol/mol, de préférence compris entre 0,05 et 1 ,5 mol/mol, plus préférentiellement entre 0,08 et 0,9 mol/mol.  In another embodiment according to the invention, the organic compound comprises at least one alcohol function. The molar ratio of said organic compound comprising at least one alcohol function with respect to the nickel element is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 1.5 mol / mol, more preferably between 0.08 and 0.9 mol / mol.
De préférence, ledit composé organique comprend entre 2 et 20 atomes de carbone, de préférence entre 2 et 12 atomes de carbone, et encore plus préférentiellement entre 2 et 8 atomes de carbone. Dans un mode de réalisation selon l’invention, le composé organique comprend une seule fonction alcool (mono-alcool). De préférence, le composé organique est choisi parmi le méthanol, l’éthanol, le propanol, le butanol, le pentanol, l’hexanol, le 2-propyn-1-ol, le geraniol, le menthol, le phénol, le crésol, sous l’une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi le méthanol, l’éthanol, le phénol. Preferably, said organic compound comprises between 2 and 20 carbon atoms, preferably between 2 and 12 carbon atoms, and even more preferably between 2 and 8 carbon atoms. In one embodiment of the invention, the organic compound comprises a single alcohol function (mono-alcohol). Preferably, the organic compound is chosen from methanol, ethanol, propanol, butanol, pentanol, hexanol, 2-propyn-1-ol, geraniol, menthol, phenol and cresol. in any of their isomeric forms. More preferentially, said organic compound is chosen from methanol, ethanol and phenol.
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins deux fonctions alcools (diol ou plus généralement polyol). De préférence, le composé organique est sélectionné parmi l’éthylène glycol, le propane-1 ,3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l’hexane-1 ,6-diol, l’heptane-1 ,7-diol, l’octane-1 ,8-diol, le propane-1 ,2-diol, le butane-1 ,2-diol, le butane-2,3-diol, le butane-1 ,3-diol, le pentane-1 ,2-diol, le pentane-1 ,3-diol, le pentane-2,3-diol, le pentane-2,4-diol, le 2-éthylhexane-1 ,3-diol (étohexadiol), le p- menthane-3,8-diol, le 2-méthylpentane-2,4-diol, le but-2-yne-1 ,4-diol, le 2,3,4- trihydroxypentane, le 2,2-dihydroxyhexane, le 2,2,4-trihydroxyhexane, le glycérol, l'érythritol, le thréitol, l'arabitol, le xylitol, le ribitol, le mannitol, le sorbitol, le dulcitol, l’allitol, le gluciotol, le tolitol, le fucitol, l'iditol, le volemitol, l'inositol, sous l’une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi l’éthylène glycol, le propane-1 ,3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l’hexane-1 ,6-diol, le glycérol, le xylitol, le mannitol, le sorbitol, sous l’une quelconque de leurs formes isomères. In another embodiment of the invention, the organic compound comprises at least two alcohol functions (diol or more generally polyol). Preferably, the organic compound is selected from ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol , heptane-1,7-diol, octane-1,8-diol, propane-1,2-diol, butane-1,2-diol, butane-2,3-diol, butane 1,3-diol, pentane-1,2-diol, pentane-1,3-diol, pentane-2,3-diol, pentane-2,4-diol, 2-ethylhexane-1, 3-diol (hexhexadiol), p-menthane-3,8-diol, 2-methylpentane-2,4-diol, but-2-yn-1,4-diol, 2,3,4-trihydroxypentane , 2,2-dihydroxyhexane, 2,2,4-trihydroxyhexane, glycerol, erythritol, threitol, arabitol, xylitol, ribitol, mannitol, sorbitol, dulcitol, allitol, gluciotol, tolitol, fucitol, iditol, volemitol, inositol, in any of their isomeric forms. More preferably, said organic compound is chosen from ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol and hexane-1,6-diol. , glycerol, xylitol, mannitol, sorbitol, in any of their isomeric forms.
Dans un autre mode de réalisation selon l’invention, le composé organique est un composé organique aromatique comprenant au moins deux fonctions alcools. De préférence, le composé organique est sélectionné parmi le pyrocatéchol, le résorcinol, l’hydroquinol, le pyrogallol, le phloroglucinol, l'hydroxyquinol, le tétrahydroxybenzène, le benzènehexol, sous l’une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi le pyrocatéchol, le résorcinol, l’hydroquinol. In another embodiment according to the invention, the organic compound is an aromatic organic compound comprising at least two alcohol functional groups. Preferably, the organic compound is selected from pyrocatechol, resorcinol, hydroquinol, pyrogallol, phloroglucinol, hydroxyquinol, tetrahydroxybenzene, benzenehexol, in any of their isomeric forms. More preferably, said organic compound is selected from pyrocatechol, resorcinol, hydroquinol.
Dans un autre mode de réalisation selon l’invention, le composé organique peut être sélectionné parmi le diéthylène glycol, le triéthylène glycol, le tétraéthylène glycol, ou plus généralement les polyéthylène glycol répondant à la formule H(OC2H4)nOH avec n supérieur à 4 et ayant une masse molaire moyenne inférieure à 20000 g/mol. Plus préférentiellement, ledit composé organique est choisi parmi le diéthylène glycol, le triéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol. Dans un autre mode de réalisation selon l’invention, le composé organique est un monosaccharide de formule brute Cn(H20)p avec n compris entre 3 et 12, de préférence entre 3 et 10. De préférence, le composé organique est sélectionné parmi le glycéraldéhyde, le dihydroxyacétone, l'érythrose, le thréose, l’érythrulose, le lyxose, l'arabinose, le xylose, le ribose, le ribulose, le xylulose, le glucose, le mannose, le sorbose, le galactose, le fructose, l’allose, l’altrose, le gulose, l’idose, le talose, le psicose, le tagatose, le sédoheptulose, le mannoheptulose, sous l’une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi le glucose, le mannose, le fructose, sous l’une quelconque de leurs formes isomères. In another embodiment according to the invention, the organic compound may be selected from diethylene glycol, triethylene glycol, tetraethylene glycol, or more generally polyethylene glycol having the formula H (OC 2 H 4 ) n OH with n greater than at 4 and having an average molecular weight of less than 20000 g / mol. More preferably, said organic compound is selected from diethylene glycol, triethylene glycol, polyethylene glycol having an average molecular weight of less than 600 g / mol. In another embodiment according to the invention, the organic compound is a monosaccharide of formula C n (H 2 O) p with n of between 3 and 12, preferably between 3 and 10. Preferably, the organic compound is selected from glyceraldehyde, dihydroxyacetone, erythrose, threose, erythrulose, lyxose, arabinose, xylose, ribose, ribulose, xylulose, glucose, mannose, sorbose, galactose, fructose, allose, altrose, gulose, idose, talose, psicose, tagatose, sedoheptulose, mannoheptulose, in any of their isomeric forms. More preferably, said organic compound is selected from glucose, mannose, fructose, in any of their isomeric forms.
Dans un autre mode de réalisation selon l’invention, le composé organique est un disaccharide ou un trisaccharide, ou un dérivé d’un monosaccharide, sélectionné parmi le sucrose, le maltose, le lactose, le cellobiose, le gentiobiose, l’inulobiose, l’isomaltose, l’isomaltulose, le kojibiose, le lactulose, le laminaribiose, le leucrose, le maltulose, le mélibiose, le nigerose, le robinose, le rutinose, le sophorose, le tréhalose, le tréhalulose, le turanose, l’érlose, le fucosyllactose, le gentianose, l’inulotriose, le kestose, le maltotriose, le mannotriose, le mélézitose, le néokestose, le panose, le raffinose, le rhamninose, le maltitol, le lactitol, l’isomaltitol, l’isomaltulose, sous l’une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi le sucrose, le maltose, le lactose, sous l’une quelconque de leurs formes isomères. In another embodiment of the invention, the organic compound is a disaccharide or a trisaccharide, or a derivative of a monosaccharide, selected from sucrose, maltose, lactose, cellobiose, gentiobiose, inulobiosis, isomaltose, isomaltulose, kojibiose, lactulose, laminaribiose, leucrose, maltulose, melibiose, nigerose, robinose, rutinose, sophorose, trehalose, trehalulose, turanose, erlose , fucosyllactose, gentianose, inulotriose, kestose, maltotriose, mannotriose, melezitose, neokestose, panose, raffinose, rhamninose, maltitol, lactitol, isomaltitol, isomaltulose, any of their isomeric forms. More preferably, said organic compound is selected from sucrose, maltose, lactose, in any of their isomeric forms.
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins une fonction alcool, au moins une fonction cétone et au moins hétérocyclique insaturé, de préférence choisi parmi l’isomaltol, le maltol, l’éthylmaltol, l’acide déhydroacétique, l’acide kojique, l’acide érythorbique, sous l’une quelconque de leurs formes isomères. In another embodiment according to the invention, the organic compound comprises at least one alcohol function, at least one ketone functional group and at least one unsaturated heterocyclic functional group, preferably chosen from isomaltol, maltol, ethylmaltol and the acid. dehydroacetic acid, kojic acid, erythorbic acid, in any of their isomeric forms.
Parmi tous les modes de réalisation précédents, ledit composé organique comprenant au moins une fonction alcool est de préférence choisi parmi le méthanol, l’éthanol, le propanol, le butanol, le pentanol, l’hexanol, le 2-propyn-1-ol, le geraniol, le menthol, le phénol, le crésol, l’éthylène glycol, le propane-1 ,3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l’hexane- 1 ,6-diol, l’heptane-1 ,7-diol, l’octane-1 ,8-diol, le propane-1 ,2-diol, le butane-1 ,2-diol, le butane-2,3-diol, le butane-1 ,3-diol, le pentane-1 ,2-diol, le pentane-1 ,3-diol, le pentane-2,3- diol, le pentane-2,4-diol, le 2-éthylhexane-1 ,3-diol, le p-menthane-3,8-diol, le 2-méthylpentane-2,4-diol, le but-2-yne-1 ,4-diol, le 2,3,4-trihydroxypentane, le 2,2- dihydroxyhexane, le 2,2,4-trihydroxyhexane, le glycérol, l'érythritol, le thréitol, l'arabitol, le xylitol, le ribitol, le mannitol, le sorbitol, le dulcitol, l’allitol, le gluciotol, le tolitol, le fucitol, l'iditol, le volemitol, l'inositol, le pyrocatéchol, le résorcinol, l’hydroquinol, le pyrogallol, le phloroglucinol, l'hydroxyquinol, le tétrahydroxybenzène, le benzènehexol, le diéthylène glycol, le triéthylène glycol, le tétraéthylène glycol, les polyéthylène glycol répondant à la formule H(OC2H4)nOH avec n supérieur à 4 et ayant une masse molaire moyenne inférieure à 20000 g/mol, le glycéraldéhyde, le dihydroxyacétone, l'érythrose, le thréose, l’érythrulose, le lyxose, l'arabinose, le xylose, le ribose, le ribulose, le xylulose, le glucose, le mannose, le sorbose, le galactose, le fructose, l’allose, l’altrose, le gulose, l’idose, le talose, le psicose, le tagatose, le sédoheptulose, le mannoheptulose, le sucrose, le maltose, le lactose, le cellobiose, le gentiobiose, l’inulobiose, l’isomaltose, l’isomaltulose, le kojibiose, le lactulose, le laminaribiose, le leucrose, le maltulose, le mélibiose, le nigerose, le robinose, le rutinose, le sophorose, le tréhalose, le tréhalulose, le turanose, l’érlose, le fucosyllactose, le gentianose, l’inulotriose, le kestose, le maltotriose, le mannotriose, le mélézitose, le néokestose, le panose, le raffinose, le rhamninose, le maltitol, le lactitol, l’isomaltitol, l’isomaltulose, l’isomaltol, le maltol, l’éthylmaltol, l’acide déhydroacétique, l’acide kojique, l’acide érythorbique, sous l’une quelconque de leurs formes isomères. Among all the preceding embodiments, said organic compound comprising at least one alcohol function is preferably chosen from methanol, ethanol, propanol, butanol, pentanol, hexanol and 2-propyn-1-ol. , geraniol, menthol, phenol, cresol, ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1 , 6-diol, heptane-1,7-diol, octane-1,8-diol, propane-1,2-diol, butane-1,2-diol, 2,3-butane diol, butane-1,3-diol, pentane-1,2-diol, pentane-1,3-diol, pentane-2,3-diol, pentane-2,4-diol, 2- ethylhexane-1,3-diol, p-menthane-3,8-diol, 2-methylpentane-2,4-diol, but-2-yn-1,4-diol, 2,3,4-trihydroxypentane, 2,2-dihydroxyhexane, 2,2,4-trihydroxyhexane, glycerol, erythritol, threitol, arabitol, xylitol, ribitol, mannitol, sorbitol, dulcitol, allitol, gluciotol, tolitol, fucitol, iditol, volemitol, inositol, pyrocatechol, resorcinol, hydroquinol, pyrogallol, phloroglucinol, hydroxyquinol, tetrahydroxybenzene, benzenehexol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol having the formula H (OC2H 4 ) n OH with n greater than 4 and having an average molecular weight of less than 20000 g / mol, glyceraldehyde, dihydroxyacetone, erythrose, threose, erythrulose, lyxose, arabinose, xylose, ribose, ribulose, xylulose, glucose, mannose, sorbose, galactose, fructose, allose, altrose, gulose, idose, talose, psicose, t agatose, sedoheptulose, mannoheptulose, sucrose, maltose, lactose, cellobiose, gentiobiose, inulobiosis, isomaltose, isomaltulose, kojibiose, lactulose, laminaribiose, leucrose, maltulose, melibiose, nigerose, robinose, rutinose, sophorose, trehalose, trehalulose, turanose, erlose, fucosyllactose, gentianose, inulotriose, kestose, maltotriose, mannotriose, melezitose, neokestosis, panose, raffinose, rhamninose, maltitol, lactitol, isomaltitol, isomaltulose, isomaltol, maltol, ethylmaltol, dehydroacetic acid, kojic acid, acid erythorbic acid, in any of their isomeric forms.
Plus préférentiellement, ledit composé organique est choisi parmi le méthanol, l’éthanol, le phénol, l’éthylène glycol, le propane-1 ,3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l’hexane-1 ,6-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le pyrocatéchol, le résorcinol, l’hydroquinol, le diéthylène glycol, le triéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol, le glucose, le mannose, le fructose, le sucrose, le maltose, le lactose, sous l’une quelconque de leurs formes isomères. More preferably, said organic compound is selected from methanol, ethanol, phenol, ethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol , hexane-1,6-diol, glycerol, xylitol, mannitol, sorbitol, pyrocatechol, resorcinol, hydroquinol, diethylene glycol, triethylene glycol, polyethylene glycol having a lower average molecular weight at 600 g / mol, glucose, mannose, fructose, sucrose, maltose, lactose, in any of their isomeric forms.
C) Composé organique comprenant au moins une fonction ester C) Organic compound comprising at least one ester function
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins une fonction ester. Le rapport molaire dudit composé organique comprenant au moins une fonction ester par rapport à l’élément nickel est compris entre 0,01 et 5,0 mol/mol, de préférence compris entre 0,05 et 2,0 mol/mol, plus préférentiellement entre 0,1 et 1 ,5 mol/mol et encore plus préférentiellement entre 0,3 et 1 ,2 mol/mol. De préférence, ledit composé organique comprend entre 2 et 20 atomes de carbone, de préférence entre 3 et 14 atomes de carbone, et encore plus préférentiellement entre 3 et 8 atomes de carbone. In another embodiment of the invention, the organic compound comprises at least one ester function. The molar ratio of said organic compound comprising at least one ester function with respect to the nickel element is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 2.0 mol / mol, more preferably between 0.1 and 1.5 mol / mol and even more preferably between 0.3 and 1.2 mol / mol. Preferably, said organic compound comprises between 2 and 20 carbon atoms, preferably between 3 and 14 carbon atoms, and even more preferably between 3 and 8 carbon atoms.
Selon l’invention, ledit composé organique comprend au moins une fonction ester. Il peut être choisi parmi un ester d’acide carboxylique, linéaire ou cyclique ou cyclique insaturé, ou un ester d’acide carbonique, cyclique ou linéaire ou encore un diester d’acide carbonique linéaire. According to the invention, said organic compound comprises at least one ester function. It may be chosen from an unsaturated linear or cyclic or cyclic carboxylic acid ester, or a cyclic or linear carbonic acid ester or a linear carbonic acid diester.
Dans le cas d’un ester cyclique d’acide carboxylique, le composé peut être un ester cyclique saturé. On parle de a-lactone, b-lactone, g-lactone, d-lactone, c-lactone selon le nombre d’atomes de carbone dans l’hétérocycle. Ledit composé peut aussi être substitué par un ou plusieurs groupement(s) alkyle(s) ou aryle(s) ou alkyle(s) contenant des insaturations. De préférence, ledit composé est une lactone contenant entre 4 et 12 atomes de carbone, tel que la g-butyrolactone, la g-valérolactone, la d-valérolactone, la g-caprolactone, la d- caprolactone, Ge-caprolactone, la g-heptalactone, la d-heptalactone, la g-octalactone, la d- octalactone, la d-nonalactone, la c-nonalactone, la d-décalactone, la g-décalactone, la c- décalactone, la d-dodécalactone, la g-dodécalactone, sous l’une quelconque de leurs formes isomères. De façon encore plus préférée, ledit composé est une g-lactone ou une d-lactone contenant entre 4 et 8 atomes de carbone, la g-butyrolactone, la g-valérolactone, la d- valérolactone, la g-caprolactone, la d-caprolactone, la g-heptalactone, la d-heptalactone, la g- octalactone, la d-octalactone, sous l’une quelconque de leurs formes isomères. De préférence, le composé est la g-valérolactone. In the case of a cyclic carboxylic acid ester, the compound may be a saturated cyclic ester. We speak of a-lactone, b-lactone, g-lactone, d-lactone, c-lactone according to the number of carbon atoms in the heterocycle. Said compound may also be substituted by one or more alkyl group (s) or aryl (s) or alkyl (s) containing unsaturations. Preferably, said compound is a lactone containing between 4 and 12 carbon atoms, such as g-butyrolactone, g-valerolactone, d-valerolactone, g-caprolactone, d-caprolactone, Ge-caprolactone, g-caprolactone, -heptalactone, d-heptalactone, g-octalactone, d-octalactone, d-nonalactone, c-nonalactone, d-decalactone, g-decalactone, c-decalactone, d-dodecalactone, g-octalactone, -dodecalactone, in any of their isomeric forms. Even more preferably, said compound is a g-lactone or a d-lactone containing between 4 and 8 carbon atoms, g-butyrolactone, g-valerolactone, d-valerolactone, g-caprolactone, d-valerolactone, caprolactone, g-heptalactone, d-heptalactone, g-octalactone, d-octalactone, in any of their isomeric forms. Preferably, the compound is g-valerolactone.
Dans le cas d’un ester cyclique insaturé (contenant des insaturations dans le cycle) d’acide carboxylique, le composé peut être le furane ou la pyrone ou l’un quelconque de leurs dérivés, tel que la 6-pentyl-a-pyrone. In the case of an unsaturated cyclic ester (containing unsaturations in the ring) of carboxylic acid, the compound may be furan or pyrone or any of their derivatives, such as 6-pentyl-a-pyrone .
Dans le cas d’un ester linéaire d’acide carboxylique, le composé peut être un composé comportant une seule fonction d’ester répondant à la formule brute RCOOR’, dans laquelle R et R’ sont des groupements alkyles, linéaires, ramifiés, ou cycliques, ou des groupements alkyles contenant des insaturations, ou des groupements alkyles substitués par un ou plusieurs cycles aromatiques, ou des groupements aryles, contenant chacun entre 1 et 15 atomes de carbone, et pouvant être identiques ou différents. Le groupement R peut aussi être l’atome d’hydrogène H. De préférence, le groupement R’ (de la fonction alkoxy COR’) contient un nombre d’atomes de carbone inférieur ou égal à celui du groupement R, de façon encore plus préférée le nombre d’atomes de carbone dudit groupement R’ est compris entre 1 et 6, de façon encore plus préférée entre 1 et 4. Ledit composé organique est de préférence choisi parmi le méthanoate de méthyle, l’acétate de méthyle, le propanoate de méthyle, le butanoate de méthyle, le pentanoate de méthyle, l’hexanoate de méthyle, l’octanoate de méthyle, le décanoate de méthyle, le laurate de méthyle, le dodécanoate de méthyle, l’acétate d’éthyle, le propanoate d’éthyle, le butanoate d’éthyle, le pentanoate d’éthyle, l’hexanoate d’éthyle. De préférence, le composé organique est le laurate de méthyle. In the case of a linear carboxylic acid ester, the compound may be a compound having a single ester function corresponding to the empirical formula RCOOR ', in which R and R' are alkyl, linear, branched, or cyclic, or alkyl groups containing unsaturations, or alkyl groups substituted with one or more aromatic rings, or aryl groups, each containing between 1 and 15 carbon atoms, and which may be the same or different. The group R may also be the hydrogen atom H. Preferably, the group R '(of the alkoxy function COR') contains a number of carbon atoms less than or equal to that of the group R, more preferably the number of carbon atoms of said group R 'is between 1 and 6, even more preferably between 1 and 4. Said organic compound is preferably chosen from methyl methanoate, methyl acetate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl hexanoate, methyl octanoate and methyl decanoate. methyl laurate, methyl dodecanoate, ethyl acetate, ethyl propanoate, ethyl butanoate, ethyl pentanoate, ethyl hexanoate. Preferably, the organic compound is methyl laurate.
Dans un autre mode de réalisation selon l’invention, le composé organique peut être un composé comportant au moins deux fonctions esters d’acide carboxylique. In another embodiment according to the invention, the organic compound may be a compound comprising at least two carboxylic acid ester functions.
Avantageusement, la chaîne carbonée dans laquelle s’insère ces fonctions ester d’acide carboxylique est une chaîne carbonée aliphatique linéaire ou ramifiée ou cyclique, saturée ou pouvant contenir des insaturations, et contient entre 2 et 15 atomes de carbone et chaque groupement R’ (de chacune des fonctions alkoxy COR’) peut être un groupement alkyle, linéaire, ramifié, ou cyclique, ou un groupement alkyle contenant des insaturations, ou un groupement alkyle substitué par un ou plusieurs cycles aromatiques, ou un groupement aryle, et contenant entre 1 et 15 atomes de carbone, de préférence entre 1 et 6 atomes de carbone, de façon encore plus préférée entre 1 et 4 atomes de carbone. Les différentes groupements R’ peuvent être identiques ou différents. De préférence, ledit composé est choisi parmi l’oxalate de diméthyle, le malonate de diméthyle, le succinate de diméthyle, le glutarate de diméthyle, l’adipate de diméthyle, l’oxalate de diéthyle, le malonate de diéthyle, le succinate de diéthyle, le glutarate de diéthyle, l’adipate de diéthyle, le méthylsuccinate de diméthyle, le 3-méthylglutarate de diméthyle, sous l’une quelconque de leur forme isomère. Plus préférentiellement, le composé est le succinate de diméthyle.  Advantageously, the carbon chain in which these carboxylic acid ester functions are inserted is a linear or branched or cyclic aliphatic carbon chain, saturated or possibly containing unsaturations, and contains between 2 and 15 carbon atoms and each R 'group ( each of the alkoxy functions COR ') may be a linear, branched or cyclic alkyl group, or an alkyl group containing unsaturations, or an alkyl group substituted with one or more aromatic rings, or an aryl group, and containing between 1 and 15 carbon atoms, preferably between 1 and 6 carbon atoms, even more preferably between 1 and 4 carbon atoms. The different groups R 'may be identical or different. Preferably, said compound is chosen from dimethyl oxalate, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, diethyl oxalate, diethyl malonate and diethyl succinate. diethyl glutarate, diethyl adipate, dimethyl methyl succinate, dimethyl 3-methylglutarate, in any of their isomeric forms. More preferably, the compound is dimethyl succinate.
Dans un autre mode de réalisation selon l’invention, le composé organique peut être un composé comportant au moins une fonction ester d’acide carboxylique et au moins un deuxième groupe fonctionnel choisi parmi les alcools, les éthers, les cétones, les aldéhydes. Avantageusement, ledit composé organique comprend au moins une fonction ester d’acide carboxylique et au moins une fonction alcool. In another embodiment according to the invention, the organic compound may be a compound comprising at least one carboxylic acid ester function and at least one second functional group chosen from alcohols, ethers, ketones and aldehydes. Advantageously, said organic compound comprises at least one carboxylic acid ester function and at least one alcohol function.
De préférence, la chaîne carbonée dans laquelle s’insère la ou les fonction(s) ester d’acide carboxylique est une chaîne carbonée aliphatique linéaire ou ramifiée ou cyclique, saturée ou pouvant contenir des insaturations, et contient entre 2 et et 15 atomes de carbone et chaque groupement R’ (de chacune des fonctions alkoxy COR’) peut être un groupement alkyle, linéaire, ramifié, ou cyclique, ou un groupement alkyle contenant des insaturations, ou un groupement alkyle substitué par un ou plusieurs cycles aromatiques, ou un groupement aryle, et contenant entre 1 et 15 atomes de carbone, de préférence entre 1 et 6 atomes de carbone, de façon encore plus préférée entre 1 et 4 atomes de carbone, les différentes groupements R’ pouvant être identiques ou différents. Cette chaîne carbonée contient au moins un groupement hydroxyle, de préférence entre 1 et 6 groupements hydroxyles. Preferably, the carbon chain in which the carboxylic acid ester function (s) is inserted is a linear or branched or cyclic aliphatic carbon chain, which is saturated or may contain unsaturations, and contains between 2 and 15 carbon atoms. carbon and each R 'group (of each of the alkoxy functions COR') may be a linear, branched, or cyclic alkyl group, or an alkyl group containing unsaturations, or an alkyl group substituted by one or more aromatic rings, or an aryl group and containing between 1 and 15 carbon atoms, preferably between 1 and 6 carbon atoms, more preferably between 1 and 4 carbon atoms, the different groups R 'may be identical or different. This carbon chain contains at least one hydroxyl group, preferably between 1 and 6 hydroxyl groups.
De préférence, ledit composé est choisi parmi le glycolate de méthyle, le glycolate d’éthyle, le glycolate de butyle, le glycolate de benzyle, le lactate de méthyle, le lactate d’éthyle, le lactate de butyle, le lactate de tert-butyle, le 3-hydroxybutyrate d’éthyle, le mandélate d’éthyle, le malate de diméthyle, le malate de diéthyle, le malate de diisopropyle, le tartrate de diméthyle, le tartrate de diéthyle, le tartrate de diisopropyle, le citrate de triméthyle, le citrate de triéthyle, sous l’une quelconque de leur forme isomère. Plus préférentiellement, ledit composé est le malate de diméthyle.  Preferably, said compound is chosen from methyl glycolate, ethyl glycolate, butyl glycolate, benzyl glycolate, methyl lactate, ethyl lactate, butyl lactate, tert-lactate and butyl, ethyl 3-hydroxybutyrate, ethyl mandelate, dimethyl malate, diethyl malate, diisopropyl malate, dimethyl tartrate, diethyl tartrate, diisopropyl tartrate, trimethyl citrate triethyl citrate, in any of their isomeric form. More preferentially, said compound is dimethyl malate.
Avantageusement, ledit composé organique comprend au moins une fonction ester d’acide carboxylique et au moins une fonction cétone ou aldéhyde. De préférence, la chaîne carbonée dans laquelle s’insère la ou les fonction(s) ester d’acide carboxylique est une chaîne carbonée aliphatique linéaire ou ramifiée ou cyclique, saturée ou pouvant contenir des insaturations, et contient entre 2 et et 15 atomes de carbone et chaque groupement R’ (de chacune des fonctions alkoxy COR’) peut être un groupement alkyle, linéaire, ramifié, ou cyclique, ou un groupement alkyle contenant des insaturations, ou un groupement alkyle substitué par un ou plusieurs cycles aromatiques, ou un groupement aryle, et contenant entre 1 et 15 atomes de carbone, de préférence entre 1 et 6 atomes de carbone, de façon encore plus préférée entre 1 et 4 atomes de carbone, les différentes groupements R’ pouvant être identiques ou différents. Cette chaîne carbonée contient au moins une fonction cétone ou aldéhyde, de préférence entre 1 et 3 fonction(s) cétone ou aldéhyde. De préférence, le composé organique est un acétoacide. Advantageously, said organic compound comprises at least one carboxylic acid ester function and at least one ketone or aldehyde function. Preferably, the carbon chain in which the carboxylic acid ester function (s) is inserted is a linear or branched or cyclic aliphatic carbon chain, which is saturated or may contain unsaturations, and contains between 2 and 15 carbon atoms. carbon and each R 'group (of each of the alkoxy functions COR') can be a linear, branched, or cyclic alkyl group, or an alkyl group containing unsaturations, or an alkyl group substituted by one or more aromatic rings, or a aryl group, and containing between 1 and 15 carbon atoms, preferably between 1 and 6 carbon atoms, even more preferably between 1 and 4 carbon atoms, the different groups R 'may be identical or different. This carbon chain contains at least one ketone or aldehyde function, preferably between 1 and 3 ketone or aldehyde function (s). Preferably, the organic compound is an acetoacid.
Dans le cas d’un ester cyclique d’acide carbonique, le composé peut être le carbonate de d’éthylène, le carbonate de propylène ou le carbonate de triméthylène. De préférence, le composé est le carbonate de propylène. In the case of a cyclic carbonic acid ester, the compound may be ethylene carbonate, propylene carbonate or trimethylene carbonate. Preferably, the compound is propylene carbonate.
Dans le cas d’un ester linéaire d’acide carbonique, le composé peut être le carbonate de diméthyle, le carbonate de diéthyle ou le carbonate de diphényle. Dans le cas d’un diester linéaire d’acide carbonique, le composé peut être le dicarbonate de diméthyle, le dicarbonate de diéthyle, le dicarbonate de di-tert-butyle. In the case of a linear ester of carbonic acid, the compound may be dimethyl carbonate, diethyl carbonate or diphenyl carbonate. In the case of a linear diester of carbonic acid, the compound may be dimethyl dicarbonate, diethyl dicarbonate, di-tert-butyl dicarbonate.
Avantageusement, ledit composé organique peut comprendre au moins trois groupes fonctionnels différents choisis parmi au moins une fonction ester, au moins une fonction acide carboxylique et au moins un groupe fonctionnel différent des fonctions ester et acide carboxylique, comme une fonction éther ou une fonction cétone. Advantageously, said organic compound may comprise at least three different functional groups chosen from at least one ester function, at least one carboxylic acid function and at least one functional group other than the ester and carboxylic acid functions, such as an ether function or a ketone function.
Parmi tous les modes de réalisation précédents, ledit composé organique comprenant au moins une fonction ester est préférentiellement choisi parmi une g-lactone ou une d-lactone contenant entre 4 et 8 atomes de carbone, la g-butyrolactone, la g-valérolactone, la d- valérolactone, la g-caprolactone, la d-caprolactone, la g-heptalactone, la d-heptalactone, la g- octalactone, la d-octalactone, le méthanoate de méthyle, l’acétate de méthyle, le propanoate de méthyle, le butanoate de méthyle, le pentanoate de méthyle, l’hexanoate de méthyle, l’octanoate de méthyle, le décanoate de méthyle, le laurate de méthyle, le dodécanoate de méthyle, l’acétate d’éthyle, le propanoate d’éthyle, le butanoate d’éthyle, le pentanoate d’éthyle, l’hexanoate d’éthyle, l’oxalate de diméthyle, le malonate de diméthyle, le succinate de diméthyle, le glutarate de diméthyle, l’adipate de diméthyle, l’oxalate de diéthyle, le malonate de diéthyle, le succinate de diéthyle, le glutarate de diéthyle, l’adipate de diéthyle, le méthylsuccinate de diméthyle, le 3-méthylglutarate de diméthyle, le glycolate de méthyle, le glycolate d’éthyle, le glycolate de butyle, le glycolate de benzyle, le lactate de méthyle, le lactate d’éthyle, le lactate de butyle, le lactate de tert-butyle, le 3-hydroxybutyrate d’éthyle, le mandélate d’éthyle, le malate de diméthyle, le malate de diéthyle, le malate de diisopropyle, le tartrate de diméthyle, le tartrate de diéthyle, le tartrate de diisopropyle, le citrate de triméthyle, le citrate de triéthyle, le carbonate de d’éthylène, le carbonate de propylène, le carbonate de triméthylène, le carbonate de diéthyle, le carbonate de diphényle, le dicarbonate de diméthyle, le dicarbonate de diéthyle, le dicarbonate de di-tert-butyle, sous l’une quelconque de leur forme isomère. Among all the preceding embodiments, said organic compound comprising at least one ester function is preferably chosen from a g-lactone or a d-lactone containing between 4 and 8 carbon atoms, g-butyrolactone, g-valerolactone, d-valerolactone, ε-caprolactone, ε-caprolactone, β-heptalactone, d-heptalactone, β-octalactone, d-octalactone, methyl methanoate, methyl acetate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl hexanoate, methyl octanoate, methyl decanoate, methyl laurate, methyl dodecanoate, ethyl acetate, ethyl propanoate, ethyl butanoate, ethyl pentanoate, ethyl hexanoate, dimethyl oxalate, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, sodium oxalate and the like. diethyl, diethyl malonate, succinate diethyl nate, diethyl glutarate, diethyl adipate, dimethyl methyl succinate, dimethyl 3-methylglutarate, methyl glycolate, ethyl glycolate, butyl glycolate, benzyl glycolate, lactate methyl lactate, ethyl lactate, butyl lactate, tert-butyl lactate, ethyl 3-hydroxybutyrate, ethyl mandelate, dimethyl malate, diethyl malate, diisopropyl malate, dimethyl tartrate, diethyl tartrate, diisopropyl tartrate, trimethyl citrate, triethyl citrate, ethylene carbonate, propylene carbonate, trimethylene carbonate, diethyl carbonate, diphenyl, dimethyl dicarbonate, diethyl dicarbonate, di-tert-butyl dicarbonate, in any of their isomeric form.
D) Composé organique comprenant au moins une fonction amide D) Organic compound comprising at least one amide function
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins une fonction amide, choisie parmi une fonction amide acyclique ou une fonction amide cyclique, comprenant éventuellement des substituants alkyles ou aryles ou alkyles contenant des insaturations. Les fonctions amides peuvent être choisies parmi les amides primaires, secondaires ou tertiaires. Le rapport molaire dudit composé organique comprenant au moins une fonction amide par rapport à l’élément nickel est compris entre 0,01 et 1 ,5 mol/mol, de préférence compris entre 0,05 et 1 ,0 mol/mol, plus préférentiellement entre 0,08 et 0,9 mol/mol. In another embodiment according to the invention, the organic compound comprises at least one amide function, chosen from an acyclic amide function or a cyclic amide function, optionally comprising alkyl or aryl or alkyl substituents containing unsaturations. The amide functions may be chosen from primary, secondary or tertiary amides. The molar ratio of said organic compound comprising at least one amide function relative to the nickel element is between 0.01 and 1.5 mol / mol, preferably between 0.05 and 1.0 mol / mol, more preferably between 0.08 and 0.9 mol / mol.
Selon une première variante, le composé organique comprend au moins une fonction amide acyclique. According to a first variant, the organic compound comprises at least one acyclic amide function.
Ledit composé organique peut comprendre une seule fonction amide et ne contient pas d’autre groupement fonctionnel, tels que la formamide, la N-méthylformamide, la N,N- diméthylformamide, la N-éthylformamide, la N,N-diéthylformamide, la N,N-dibutylformamide, la N,N-diisopropylformamide, la N,N-diphénylformamide, l’acétamide, la N-méthylacétamide, la N,N-diméthylméthanamide, la N,N-diéthylacétamide, la N,N-diméthylpropionamide, la propanamide, la N-éthyl-N-méthylpropanamide, la benzamide, l’acétanilide, selon l’une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi la formamide, la N-méthylformamide, la N,N-diméthylformamide, la N-éthylformamide, la N,N-diéthylformamide, l’acétamide, la N-méthylacétamide, la N,N-diméthylméthanamide, la N,N-diéthylacétamide, la N,N-diméthylpropionamide, la propanamide,  Said organic compound may comprise a single amide function and does not contain any other functional group, such as formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N N, N-dibutylformamide, N, N-diisopropylformamide, N, N-diphenylformamide, acetamide, N-methylacetamide, N, N-dimethylmethanamide, N, N-diethylacetamide, N, N-dimethylpropionamide, propanamide, N-ethyl-N-methylpropanamide, benzamide, acetanilide, according to any of their isomeric forms. Preferably, said organic compound is chosen from formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N- dimethylmethanamide, N, N-diethylacetamide, N, N-dimethylpropionamide, propanamide,
Ledit composé organique peut comprendre deux fonctions amide et ne contient pas d’autre groupement fonctionnel, tel que le tétraacétyléthylènediamine.  Said organic compound may comprise two amide functions and contains no other functional group, such as tetraacetylethylenediamine.
Selon une deuxième variante, le composé organique comprend au moins une fonction amide cyclique, tels que la 1-formylpyrrolidine, la 1-formylpiperidine, ou une fonction lactame. De préférence, ledit composé organique est choisi parmi le b-lactame, le g-lactame, le d-lactame et le e-lactame et leurs dérivés, selon l’une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi la 2-pyrrolidone, la N-méthyl-2- pyrrolidone, la g-lactame, la caprolactame, selon l’une quelconque de leurs formes isomères. According to a second variant, the organic compound comprises at least one cyclic amide function, such as 1-formylpyrrolidine, 1-formylpiperidine, or a lactam function. Preferably, said organic compound is selected from β-lactam, β-lactam, β-lactam and ε-lactam and their derivatives, according to any of their isomeric forms. More preferably, said organic compound is selected from 2-pyrrolidone, N-methyl-2-pyrrolidone, β-lactam, caprolactam, according to any of their isomeric forms.
Selon une troisième variante, ledit composé organique peut comprendre au moins une fonction amide et au moins une autre fonction différente de la fonction amide. Préférentiellement, ledit composé organique comprend au moins une fonction amide et au moins une fonction acide carboxylique, tels que l'acétylleucine, l’acide N-acétylaspartique, l'acide aminohippurique, l’acide N-acétylglutamique, l’acide 4-acétamidobenzoïque, selon l’une quelconque de leurs formes isomères. Préférentiellement, ledit composé organique comprend au moins une fonction amide et au moins une fonction alcool, tels que la glycolamide, la lactamide, la N,N-diéthyl-2- hydroxyacétamide, la 2-hydroxy-N-méthylacétamide, la 3-hydroxypropionamide, la mandelamide, l’acide acétohydroxamique, l’acide butyrylhydroxamique, le bucetin, selon l’une quelconque de leurs formes isomères. De préférence, ledit composé organique est choisi parmi la lactamide et la glycolamide. According to a third variant, said organic compound may comprise at least one amide function and at least one other function different from the amide function. Preferably, said organic compound comprises at least one amide functional group and at least one carboxylic acid functional group, such as acetylleucine, N-acetylaspartic acid, aminohippuric acid, N-acetylglutamic acid and 4-acetamidobenzoic acid. according to any of their isomeric forms. Preferably, said organic compound comprises at least one amide function and at least one alcohol function, such as glycolamide, lactamide, N, N-diethyl-2-hydroxyacetamide, 2-hydroxy-N-methylacetamide and 3-hydroxypropionamide. mandelamide, acetohydroxamic acid, butyrylhydroxamic acid, bucetin, according to any of their isomeric forms. Preferably, said organic compound is chosen from lactamide and glycolamide.
Selon une quatrième variante,, le composé organique comprend au moins une fonction amide et au moins un hétéroatome d’azote supplémentaire, préférentiellement choisi parmi l’urée, la N-méthylurée, la N,N'-diméthylurée, la 1 ,1-diméthylurée, la tétraméthylurée, selon l’une quelconque de leurs formes isomères. According to a fourth variant, the organic compound comprises at least one amide functional group and at least one additional nitrogen heteroatom, preferably chosen from urea, N-methylurea, N, N'-dimethylurea, 1,1 dimethylurea, tetramethylurea, according to any of their isomeric forms.
Parmi tous les composés organiques comprenant au moins une fonction amide ci-avant, on préfère plus particulièrement la formamide, la N-méthylformamide, la N,N- diméthylformamide, la N-éthylformamide, la N,N-diéthylformamide, l’acétamide, la N- méthylacétamide, la N,N-diméthylméthanamide, la N,N-diéthylacétamide, la N,N- diméthylpropionamide, la propanamide, la 2-pyrrolidone, la N-méthyl-2-pyrrolidone, la y- lactame, la caprolactame, l'acétylleucine, l’acide N-acétylaspartique, l'acide aminohippurique, l’acide N-acétylglutamique, l’acide 4-acétamidobenzoïque, la lactamide et la glycolamide, l’urée, la N-méthylurée, la N,N'-diméthylurée, la 1 ,1-diméthylurée, la tétraméthylurée selon l’une quelconque de leurs formes isomères. Among all the organic compounds comprising at least one amide function above, formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, are more particularly preferred. N-methylacetamide, N, N-dimethylmethanamide, N, N-diethylacetamide, N, N-dimethylpropionamide, propanamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, γ-lactam, caprolactam Acetylleucine, N-acetylaspartic acid, aminohippuric acid, N-acetylglutamic acid, 4-acetamidobenzoic acid, lactamide and glycolamide, urea, N-methylurea, N, N 1-dimethylurea, 1,1-dimethylurea, tetramethylurea according to any of their isomeric forms.
E) Composé organique comprenant au moins une fonction amine E) Organic compound comprising at least one amine function
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins une fonction amine. Le rapport molaire dudit composé organique comprenant au moins une fonction amine par rapport à l’élément nickel est compris entre 0,01 et 1 ,5 mol/mol, de préférence compris entre 0,05 et 1 ,0 mol/mol, plus préférentiellement entre 0,08 et 0,9 mol/mol. In another embodiment of the invention, the organic compound comprises at least one amine function. The molar ratio of said organic compound comprising at least one amine function with respect to the nickel element is between 0.01 and 1.5 mol / mol, preferably between 0.05 and 1.0 mol / mol, more preferably between 0.08 and 0.9 mol / mol.
Ledit composé organique comprend entre 1 et 20 atomes de carbone, de préférence entre 1 et 14 atomes de carbone, et encore plus préférentiellement entre 2 et 8 atomes de carbone. Said organic compound comprises between 1 and 20 carbon atoms, preferably between 1 and 14 carbon atoms, and even more preferably between 2 and 8 carbon atoms.
Dans un mode de réalisation selon l’invention, le composé organique comprend au moins une fonction amine répondant à la formule brute CxNyHz dans laquelle x est compris entre 1 et 20, y=1-x et z=2-(2x+2). Ledit composé organique peut être choisi parmi une amine aliphatique, cyclique, alicyclique, aromatique ou hétérocyclique saturé ou insaturé, comprenant éventuellement des substituants alkyles ou aryles ou alkyles contenant des insaturations. Les fonctions amines peuvent être choisies parmi les amines primaires, secondaires ou tertiaires. In one embodiment according to the invention, the organic compound comprises at least one amine function corresponding to the empirical formula C x N y H z in which x is between 1 and 20, y = 1-x and z = 2- (2x + 2). Said organic compound may be chosen from a saturated or unsaturated aliphatic, cyclic, alicyclic, aromatic or heterocyclic amine, optionally comprising alkyl or aryl or alkyl substituents containing unsaturations. The amine functions can be chosen from primary, secondary or tertiary amines.
Selon une première variante, le composé organique comprend une seule fonction amine et ne contient pas d’autre groupement fonctionnel.  According to a first variant, the organic compound comprises a single amine function and does not contain any other functional group.
Plus particulièrement, ledit composé organique comprenant une seule fonction amine est choisi parmi les composés aliphatiques, tels que la propylamine, l’éthylméthylamine, la butylamine, la diméthylisopropylamine, la dipropylamine, la diisopropylamine, l’octylamine, les composés cycliques ou alicycliques, tels que la cyclobutylamine, la cyclohexylamine, les composés aromatiques, tels que l’aniline, la N,N-diméthylaniline, les xylidines, les composés hétérocycliques saturés, tels que la pipéridine, la pyrrolidine, la morpholine, ou les composés hétérocycliques insaturés tels que le pyrrole, la pyridine, l’indole, la quinoléine, lesdits composés pouvant être substitués par un ou plusieurs groupement(s) alkyle(s) ou aryle(s) ou alkyle(s) contenant des insaturations.  More particularly, said organic compound comprising a single amine function is chosen from aliphatic compounds, such as propylamine, ethylmethylamine, butylamine, dimethylisopropylamine, dipropylamine, diisopropylamine, octylamine, cyclic or alicyclic compounds, such as cyclobutylamine, cyclohexylamine, aromatic compounds, such as aniline, N, N-dimethylaniline, xylidines, saturated heterocyclic compounds, such as piperidine, pyrrolidine, morpholine, or unsaturated heterocyclic compounds such as pyrrole, pyridine, indole, quinoline, said compounds may be substituted by one or more alkyl group (s) or aryl (s) or alkyl (s) containing unsaturations.
Selon une deuxième variante, le composé organique comprend deux fonctions amines et ne contient pas d’autre groupement fonctionnel.  According to a second variant, the organic compound comprises two amine functional groups and does not contain any other functional group.
Plus particulièrement, ledit composé organique comprenant deux fonctions amines est choisi parmi les composés aliphatiques, tels que l’éthylènediamine, le 1 ,3-diaminopropane, le 1 ,2- diaminopropane, le diaminohexane, la tétraméthylènediamine, l’hexaméthylènediamine, la tétraméthyléthylènediamine, la tétraéthyléthylènediamine, la benzathine, les xylylènediamines, le diphényléthylènediamine, les composés cycliques ou alicycliques, tel que le 1 ,2-diaminocyclohexane, les composés aromatiques, tels que les phénylènediamines et leurs dérivés, le 4,4’-diaminobiphényle, le 1 ,8-diaminonaphtalène, ou les composés hétérocycliques tels que la pipérazine, l’imidazole, la pyrimidine, la purine, lesdits composés pouvant être substitués par un ou plusieurs groupement(s) alkyle(s) ou aryle(s) ou alkyle(s) contenant des insaturations. De préférence, ledit composé organique est choisi parmi l’éthylènediamine, le diaminohexane, la tétraméthylènediamine, l’hexaméthylènediamine, la tétraméthyléthylènediamine, la tétraéthyléthylènediamine  More particularly, said organic compound comprising two amine functional groups is chosen from aliphatic compounds, such as ethylenediamine, 1,3-diaminopropane, 1,2-diaminopropane, diaminohexane, tetramethylenediamine, hexamethylenediamine and tetramethylethylenediamine. tetraethylethylenediamine, benzathine, xylylenediamines, diphenylethylenediamine, cyclic or alicyclic compounds, such as 1,2-diaminocyclohexane, aromatic compounds, such as phenylenediamines and their derivatives, 4,4'-diaminobiphenyl, 1, 8-diaminonaphthalene, or heterocyclic compounds such as piperazine, imidazole, pyrimidine, purine, said compounds may be substituted with one or more alkyl group (s) or aryl group (s) or alkyl group (s) containing unsaturations. Preferably, said organic compound is chosen from ethylenediamine, diaminohexane, tetramethylenediamine, hexamethylenediamine, tetramethylethylenediamine and tetraethylethylenediamine.
Selon une troisième variante, le composé organique comprend au moins trois fonctions amines et ne contient pas d’autre groupement fonctionnel. Plus particulièrement, ledit composé est choisi parmi la diéthylènetriamine, la triéthylènetétramine. Parmi tous les composés organiques comprenant au moins une fonction amine répondant à la formule brute CxNyHz dans laquelle 1 < x < 20, 1 < y £ x, 2 < z < 2x+2cités ci-avant, on préfère plus particulièrement l’éthylènediamine, le diaminohexane, la tétraméthylènediamine, l’hexaméthylènediamine, la tétraméthyléthylènediamine, la tétraéthyléthylènediamine, la diéthylènetriamine, la triéthylènetétramine. According to a third variant, the organic compound comprises at least three amine functional groups and does not contain any other functional group. More particularly, said compound is chosen from diethylenetriamine and triethylenetetramine. Among all the organic compounds comprising at least one amine function corresponding to the empirical formula C x N y H z in which 1 <x <20, 1 <y <x, 2 <z <2x + 2 are cited above, it is more preferable to especially ethylenediamine, diaminohexane, tetramethylenediamine, hexamethylenediamine, tetramethylethylenediamine, tetraethylethylenediamine, diethylenetriamine, triethylenetetramine.
Dans un mode de réalisation selon l’invention, ledit composé organique comprend au moins une fonction amine et au moins une fonction acide carboxylique (acide aminé). Parmi les acides aminés, ledit composé organique peut être choisi parmi les composés suivants : alanine, arginine, asparagine, acide pyroglutamique, citrulline, gabapentine, glutamine, histidine, isoleucine, isoglutamine, leucine, lysine, norvaline, ornithine, phénylalanine, proline, saccharopine, sarcosine, sérine, thréonine, tryptophane, tyrosine, valine, pyrrolysine, acide 2-aminoisobutyrique, acide éthylène diamine tétraacétique (EDTA), selon l’une quelconque de leurs formes isomères. Lorsque le composé est un acide aminé, il est de préférence choisi parmi l’alanine, l’arginine, la lysine, la proline, la sérine, la thréonine, l’EDTA. In one embodiment of the invention, said organic compound comprises at least one amine function and at least one carboxylic acid function (amino acid). Among the amino acids, said organic compound may be chosen from the following compounds: alanine, arginine, asparagine, pyroglutamic acid, citrulline, gabapentin, glutamine, histidine, isoleucine, isoglutamine, leucine, lysine, norvaline, ornithine, phenylalanine, proline, saccharopine sarcosine, serine, threonine, tryptophan, tyrosine, valine, pyrrolysine, 2-aminoisobutyric acid, ethylene diamine tetraacetic acid (EDTA), according to any of their isomeric forms. When the compound is an amino acid, it is preferably chosen from alanine, arginine, lysine, proline, serine, threonine and EDTA.
Etape cl Mise en forme Step c Formatting
La pâte obtenue à l’issue de l’étape de comalaxage b) est ensuite mise en forme selon toute technique connue de l’Homme du métier, par exemple les méthodes de mise en forme par extrusion, par pastillage, par la méthode de la goutte d'huile (égouttage) ou par granulation au plateau tournant.  The paste obtained at the end of the comalaxing step b) is then shaped according to any technique known to those skilled in the art, for example extrusion forming methods, pelletizing, by the method of the invention. drop of oil (dripping) or by granulation at the turntable.
De préférence, la pâte est mise en forme par extrusion sous forme d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence 0,8 et 3,2 mm, et de manière très préférée entre 1 ,0 et 2,5 mm. Celui-ci peut être avantageusement présenté sous la forme d'extrudés cylindriques, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. Preferably, the paste is shaped by extrusion in the form of extrudates of diameter generally between 0.5 and 10 mm, preferably 0.8 and 3.2 mm, and very preferably between 1, 0 and 2 , 5 mm. This may advantageously be in the form of cylindrical, trilobed or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed.
De manière très préférée, ladite étape b) de comalaxage et ladite étape c) de mise en forme sont réunies en une seule étape de malaxage-extrusion. Dans ce cas, la pâte obtenue à l’issue du malaxage peut être introduite dans une extrudeuse piston au travers d'une filière ayant le diamètre souhaité, typiquement entre 0,5 et 10 mm. Very preferably, said comalling step b) and said forming step c) are combined in a single kneading-extrusion step. In this case, the paste obtained after the mixing can be introduced into a piston extruder through a die having the desired diameter, typically between 0.5 and 10 mm.
Etape dl Séchage de la pâte mise en forme Conformément à l'invention, la pâte mise en forme subit un séchage d) à une température inférieure à 250°C, de préférence comprise entre 15 et 240°C, plus préférentiellement entre 30 et 220°C, encore plus préférentiellement entre 50 et 200°C, et de manière encore plus préférentielle entre 70 et 180°C, pendant une durée typiquement comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration. Step dl Drying the shaped dough According to the invention, the shaped dough undergoes drying d) at a temperature below 250 ° C, preferably between 15 and 240 ° C, more preferably between 30 and 220 ° C, still more preferably between 50 and 200 ° C, and even more preferably between 70 and 180 ° C, for a period of time typically between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily improve.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène ou sous un mélange de gaz inerte et d’oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d’air ou d’azote.  The drying step may be performed by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or under reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
Etape e) Traitement thermique du catalyseur séché (optionnelle) Step e) Heat treatment of the dried catalyst (optional)
Le catalyseur ainsi séché peut ensuite subir une étape complémentaire de traitement thermique ou hydrothermique e) à une température comprise entre 250 et 1000°C et de préférence entre 250 et 750°C, pendant une durée typiquement comprise entre 15 minutes et 10 heures, sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène, en présence d’eau ou non. Des durées de traitement plus longues ne sont pas exclues, mais n’apportent pas nécessaire d’amélioration. Plusieurs cycles combinés de traitements thermiques ou hydrothermiques peuvent être réalisés. Après ce ou ces traitement(s), le précurseur de catalyseur comprend du nickel sous forme oxyde, c’est-à-dire sous forme NiO.  The catalyst thus dried can then undergo a complementary step of heat or hydrothermal treatment e) at a temperature of between 250 and 1000 ° C. and preferably between 250 and 750 ° C., for a duration of typically between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer treatment times are not excluded, but do not require improvement. Several combined cycles of thermal or hydrothermal treatments can be carried out. After this or these treatment (s), the catalyst precursor comprises nickel in oxide form, that is to say in NiO form.
Dans le cas où de l'eau serait ajoutée, le contact avec la vapeur d'eau peut se dérouler à pression atmosphérique ou en pression autogène. La teneur en eau est de préférence comprise entre 150 et 900 grammes par kilogramme d'air sec, et de manière encore plus préférée, entre 250 et 650 grammes par kilogramme d'air sec. In the case where water is added, the contact with the water vapor can take place at atmospheric pressure or autogenous pressure. The water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably between 250 and 650 grams per kilogram of dry air.
Etape fl Réduction par un gaz réducteur (optionnelle! Step fl Reduction by a reducing gas (optional!
Préalablement à l’utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d’un procédé d'hydrogénation, on effectue avantageusement au moins une étape de traitement réducteur f) en présence d’un gaz réducteur après les étapes d) ou e) de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique.  Prior to the use of the catalyst in the catalytic reactor and the implementation of a hydrogenation process, advantageously at least one reducing treatment step f) is carried out in the presence of a reducing gas after steps d) or e ) to obtain a catalyst comprising nickel at least partially in metallic form.
Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du nickel à l'état zéro valent. Ledit traitement réducteur peut être réalisé in-situ ou ex-situ c'est-à-dire après ou avant le chargement du catalyseur dans le réacteur d'hydrogénation. This treatment makes it possible to activate the said catalyst and to form metal particles, in particular nickel in the zero state. Said reducing treatment can be carried out in situ or ex-situ, that is to say after or before the loading of the catalyst into the hydrogenation reactor.
Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène/azote, hydrogène/argon, hydrogène/méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables. The reducing gas is preferably hydrogen. The hydrogen can be used pure or as a mixture (for example a hydrogen / nitrogen mixture, hydrogen / argon, hydrogen / methane). In the case where the hydrogen is used as a mixture, all proportions are possible.
Ledit traitement réducteur est réalisé à une température comprise entre 120 et 500°C, de préférence entre 150 et 450°C. Lorsque le catalyseur ne subit pas de passivation, ou subit un traitement réducteur avant passivation, le traitement réducteur est effectué à une température comprise entre 350 et 500°C, de préférence entre 350 et 450 °C. Lorsque le catalyseur a subi au préalable une passivation, le traitement réducteur est généralement effectué à une température comprise entre 120 et 350°C, de préférence entre 150 et 350°C. La durée du traitement réducteur est généralement comprise entre 2 et 40 heures, de préférence entre 3 et 30 heures. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1 et 10°C/min, de préférence entre 0,3 et 7°C/min.  Said reducing treatment is carried out at a temperature between 120 and 500 ° C, preferably between 150 and 450 ° C. When the catalyst is not passivated, or undergoes a reducing treatment before passivation, the reducing treatment is carried out at a temperature between 350 and 500 ° C, preferably between 350 and 450 ° C. When the catalyst has been previously passivated, the reducing treatment is generally carried out at a temperature between 120 and 350 ° C, preferably between 150 and 350 ° C. The duration of the reducing treatment is generally between 2 and 40 hours, preferably between 3 and 30 hours. The rise in temperature to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
Le débit d'hydrogène, exprimé en L/heure/gramme de catalyseur est compris entre 0,1 et 100 L/heure/gramme de catalyseur, de préférence entre 0,5 et 10 L/heure/gramme de catalyseur, de façon encore plus préférée entre 0,7 et 5 L/heure/gramme de catalyseur.  The flow rate of hydrogen, expressed in L / hour / g of catalyst is between 0.1 and 100 L / hour / g of catalyst, preferably between 0.5 and 10 L / hour / g of catalyst, still more preferred between 0.7 and 5 L / hour / gram of catalyst.
Etape al Passivation (optionnelle') Step al Passivation (optional ')
Préalablement à sa mise en œuvre dans le réacteur catalytique, le catalyseur selon l'invention peut éventuellement subir une étape de passivation (étape g) par un composé soufré ou oxygéné ou par le C02 avant ou après l'étape de traitement réducteur f). Cette étape de passivation peut être effectuée ex-situ ou in-situ. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier. Prior to its implementation in the catalytic reactor, the catalyst according to the invention may optionally undergo a passivation step (step g) with a sulfur or oxygenated compound or with CO 2 before or after the reducing treatment step f) . This passivation step may be performed ex situ or in situ. The passivation step is carried out by the implementation of methods known to those skilled in the art.
L'étape de passivation par le soufre permet d'améliorer la sélectivité des catalyseurs et d'éviter les emballements thermiques lors des démarrages de catalyseurs neufs (« run away » selon la terminologie anglo-saxonne). La passivation consiste généralement à empoisonner irréversiblement par le composé soufré les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf et donc à atténuer l’activité du catalyseur en faveur de sa sélectivité. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier et notamment, à titre d'exemple par la mise en œuvre de l'une des méthodes décrites dans les documents de brevets EP0466567, US5153163, FR2676184, W02004/098774, EP0707890. Le composé soufré est par exemple choisi parmi les composés suivants: thiophène, thiophane, alkylmonosulfures tels que diméthylsulfure, diéthylsulfure, dipropylsulfure et propylméthylsulfure ou encore un disulfure organique de formule HO-R1-S-S-R2-OH tel que le di-thio-di-éthanol de formule HO-C2H4-S-S-C2H4-OH (appelé souvent DEODS). La teneur en soufre est généralement comprise entre 0,1 et 2 % poids dudit élément par rapport à la masse du catalyseur. The sulfur passivation step makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways when starting new catalysts ("run away" according to the English terminology). Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites of the nickel which exist on the new catalyst and thus in attenuating the activity of the catalyst in favor of its selectivity. The passivation step is carried out by the implementation of methods known to those skilled in the art and in particular, for example by the implementation of one of the methods described in patent documents EP0466567, US5153163, FR2676184, WO2004 / 098774, EP0707890. The sulfur compound is, for example, chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulfide and propylmethylsulphide or an organic disulphide of formula HO-R1-SS-R2-OH such as di-thio-di -ethanol of formula HO-C2H4-SS-C2H4-OH (often called DEODS). The sulfur content is generally between 0.1 and 2% by weight of said element relative to the mass of the catalyst.
L'étape de passivation par un composé oxygéné ou par le C02 est généralement effectuée après un traitement réducteur au préalable à température élevée, généralement comprise entre 350 et 500°C, et permet de préserver la phase métallique du catalyseur en présence d’air. Un deuxième traitement réducteur à température plus basse généralement entre 120 et 350°C, est ensuite généralement effectué. Le composé oxygéné est généralement l’air ou tout autre flux contenant de l’oxygène. The passivation step with an oxygenated compound or with CO 2 is generally carried out after a reducing treatment beforehand at elevated temperature, generally between 350 and 500 ° C., and makes it possible to preserve the metallic phase of the catalyst in the presence of air. . A second reducing treatment at a lower temperature, generally between 120 and 350 ° C., is then generally carried out. The oxygenated compound is generally air or any other stream containing oxygen.
Caractéristiques du catalyseur Catalyst characteristics
Le catalyseur obtenu par le procédé de préparation selon l’invention se présente sous la forme d’un composite comprenant une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, au sein duquel est réparti la phase active comprenant du nickel, de préférence constituée de nickel. Les caractéristiques du gel ayant conduit à l'obtention de l'alumine contenue dans ladite matrice oxyde, ainsi que les propriétés texturales obtenues avec la phase active confèrent au catalyseur ses propriétés spécifiques. The catalyst obtained by the preparation process according to the invention is in the form of a composite comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, in which is distributed the active phase comprising nickel, preferably consisting of nickel. The characteristics of the gel which has led to obtaining the alumina contained in said oxide matrix, as well as the textural properties obtained with the active phase, give the catalyst its specific properties.
Plus particulièrement, ledit catalyseur comprenant une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, et une phase active comprenant du nickel, de préférence constituée de nickel, ladite phase active ne comprenant pas de métal du groupe VI B (Cr, Mo, W), la teneur en nickel étant comprise entre 1 et 65% en poids dudit élément par rapport au poids total du catalyseur, ladite phase active se présentant sous la forme de particules de nickel ayant un diamètre inférieur ou égal à 18 nm, ledit catalyseur comprenant un volume poreux total mesuré par porosimétrie au mercure supérieur à 0,10 mL/g, un volume mésoporeux mesuré par porosimétrie au mercure supérieur à 0,10 mL/g, un volume macroporeux mesuré par porosimétrie au mercure inférieur ou égal à 0,6 mL/g, un diamètre médian mésoporeux compris entre 3 et 25 nm, un diamètre médian macroporeux compris entre 50 et 1500 nm, et une surface spécifique SBET compris entre 20 et 400 m2/g. Toutes les propriétés texturales (volume poreux total, volume mésoporeux, volume macroporeux, diamètre médian mésoporeux, diamètre médian macroporeux, surface spécifique) sont mesurées sur le catalyseur séché (si le procédé de préparation du catalyseur ne prévoit l’étape optionnelle e) de traitement thermique après l’étape d) de séchage) ou sur le catalyseur obtenu après l’étape e) de traitement thermique (si cette étape est réalisée). More particularly, said catalyst comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, and an active phase comprising nickel, preferably consisting of nickel, said active phase not comprising no group VI B metal (Cr, Mo, W), the nickel content being between 1 and 65% by weight of said element relative to the total weight of the catalyst, said active phase being in the form of nickel particles having a diameter of less than or equal to 18 nm, said catalyst comprising a total pore volume measured by mercury porosimetry greater than 0.10 ml / g, a mesoporous volume measured by mercury porosimetry greater than 0.10 ml / g, a volume macroporous measured by mercury porosimetry less than or equal to 0.6 ml / g, a median mesoporous diameter of between 3 and 25 nm, a macroporous median diameter of between 50 and 1500 nm, and an SBET surface area of between 20 and 400 m 2 / g. All textural properties (total pore volume, mesoporous volume, macroporous volume, mesoporous median diameter, macroporous median diameter, specific surface area) are measured on the dried catalyst (if the catalyst preparation process does not provide the optional step e) of treatment after drying step d)) or on the catalyst obtained after step e) of heat treatment (if this step is carried out).
La teneur en nickel est comprise entre 1 et 65 % poids, de préférence comprise entre 5 et 55 % poids, de manière préférée comprise entre 8 et 40 % poids, et de manière particulièrement préférée comprise entre 10 et 35 % poids, de manière encore plus préférée entre 12 et 35 % poids, de manière encore plus préférée entre 15 et 35 % en poids, et de manière plus particulièrement préférée entre 18 et 32% en poids dudit élément par rapport à la masse totale du catalyseur. La teneur en Ni est mesurée par fluorescence X. The nickel content is between 1 and 65% by weight, preferably between 5 and 55% by weight, preferably between 8 and 40% by weight, and particularly preferably between 10 and 35% by weight, so that more preferably between 12 and 35% by weight, more preferably between 15 and 35% by weight, and more preferably between 18 and 32% by weight of said element relative to the total mass of the catalyst. The Ni content is measured by X-ray fluorescence.
La taille des particules de nickel dans le catalyseur selon l’invention, mesurée sous leur forme oxyde, est inférieure à 18 nm, de préférence inférieure à 15 nm, plus préférentiellement comprise entre 0,5 et 12 nm, de manière préférée comprise entre 1 et 8 nm, de manière encore plus préférée entre 1 et 6 nm, et encore plus préférentiellement entre 1 ,5 et 5 nm. La phase active du catalyseur ne comprend pas de métal du groupe VIB. Elle ne comprend notamment pas de molybdène ou de tungstène. The size of the nickel particles in the catalyst according to the invention, measured in their oxide form, is less than 18 nm, preferably less than 15 nm, more preferably between 0.5 and 12 nm, more preferably between 1 and 8 nm, even more preferably between 1 and 6 nm, and even more preferably between 1, 5 and 5 nm. The active phase of the catalyst does not include a Group VIB metal. It does not include molybdenum or tungsten.
Sans vouloir se lier à aucune théorie, il semble que le catalyseur obtenu par le procédé de préparation tel que décrit ci-avant, présente lorsque ce dernier est utilisé dans le cadre du procédé d’hydrogénation sélective de composés polyinsaturés ou d’hydrogénation des aromatiques selon l’invention un bon compromis entre un volume poreux élevé, un volume mésoporeux et un diamètre médian mésoporeux élevés, une teneur en Ni élevée, une petite taille de particules de nickel permettant ainsi d’avoir des performances en hydrogénation en terme d'activité au moins aussi bonnes que les catalyseurs connus de l’état de l’art antérieur. Without wishing to be bound by any theory, it seems that the catalyst obtained by the method of preparation as described above, present when the latter is used in the context of the process for the selective hydrogenation of polyunsaturated compounds or hydrogenation of aromatics according to the invention a good compromise between a high pore volume, a high mesoporous volume and a mesoporous median diameter, a high Ni content, a small size of nickel particles thus making it possible to have hydrogenation performance in terms of activity at least as good as the catalysts known from the state of the prior art.
Le catalyseur comprend en outre une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, éventuellement complétée par de la silice et/ou du phosphore à une teneur totale d’au plus 10% poids en équivalent Si02 et/ou P205, de préférence inférieure à 5% poids, et de manière très préférée inférieure à 2% poids par rapport au poids total de ladite matrice. La silice et/ou le phosphore peuvent être introduits par toute technique connue de l’Homme du métier, lors de la synthèse du gel d’alumine ou lors du comalaxage. The catalyst further comprises an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, optionally supplemented with silica and / or phosphorus to a total content of at most 10 % equivalent weight Si0 2 and / or P 2 0 5 , preferably less than 5% by weight, and very preferably less than 2% by weight relative to the total weight of said matrix. Silica and / or phosphorus can be introduced by any technique known to those skilled in the art, during the synthesis of the alumina gel or during the comalaxing.
De manière encore plus préférée, la matrice oxyde est constituée d’alumine. Even more preferably, the oxide matrix consists of alumina.
De manière préférée, l’alumine présente dans ladite matrice est une alumine de transition telle qu’une alumine gamma, delta, thêta, chi, rho ou êta, seule ou en mélange. De manière plus préférée, l’alumine est une alumine de transition gamma, delta ou thêta, seule ou en mélange. Preferably, the alumina present in said matrix is a transition alumina such as gamma, delta, theta, chi, rho or eta alumina, alone or as a mixture. More preferably, the alumina is a gamma, delta or theta transition alumina, alone or as a mixture.
Ledit catalyseur est généralement présenté sous toutes les formes connues de l'Homme du métier, par exemple sous forme de billes (ayant généralement un diamètre compris entre 1 et 8 mm), d’extrudés, de tablettes, de cylindres creux. De préférence, il est constitué d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1 ,0 et 2,5 mm et de longueur moyenne comprise entre 0,5 et 20 mm. On entend par « diamètre moyen » des extrudés le diamètre moyen du cercle circonscrit à la section droite de ces extrudés. Le catalyseur peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur. Said catalyst is generally presented in all the forms known to those skilled in the art, for example in the form of beads (generally having a diameter of between 1 and 8 mm), extrudates, tablets, hollow cylinders. Preferably, it consists of extrudates of diameter generally between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and of average length. between 0.5 and 20 mm. The term "mean diameter" of the extrudates means the average diameter of the circle circumscribed in the cross-section of these extrusions. The catalyst may advantageously be in the form of cylindrical, multilobed, trilobed or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all known methods of the prior art.
Le catalyseur présente un volume poreux total d'au moins 0,10 mL/g, de préférence d’au moins 0,30 mL/g, de manière préférée compris entre 0,35 et 1 ,2 mL/g, plus préférentiellement entre 0,4 et 1 mL/g et encore plus préférentiellement entre 0,45 et 0,9 mL/g. The catalyst has a total pore volume of at least 0.10 ml / g, preferably at least 0.30 ml / g, preferably between 0.35 and 1.2 ml / g, more preferentially between 0.4 and 1 mL / g and even more preferably between 0.45 and 0.9 mL / g.
Le catalyseur présente avantageusement un volume macroporeux inférieur ou égal à 0,6 mL/g, de préférence inférieur ou égal à 0,5 mL/g, plus préférentiellement inférieur ou égal à 0,4 mL/g, et encore plus préférentiellement entre 0,02 et 0,3 mL/g. The catalyst advantageously has a macroporous volume less than or equal to 0.6 mL / g, preferably less than or equal to 0.5 mL / g, more preferably less than or equal to 0.4 mL / g, and even more preferably between 0 , 02 and 0.3 mL / g.
Le volume mésoporeux du catalyseur est d'au moins 0,10 mL/g, de préférence d’au moins 0,20 mL/g, de manière préférée compris entre 0,25 mL/g et 0,80 mL/g, de manière plus préférée entre 0,30 et 0,65 mL/g, et encore plus préférentiellement entre 0,35 et 0,55 mL/g. The mesoporous volume of the catalyst is at least 0.10 ml / g, preferably at least 0.20 ml / g, preferably between 0.25 ml / g and 0.80 ml / g, more preferably between 0.30 and 0.65 mL / g, and even more preferably between 0.35 and 0.55 mL / g.
Le diamètre médian mésoporeux est compris entre 3 nm et 25 nm, et de préférence entre 6 et 20 nm, et de manière particulièrement préférée compris entre 8 et 18 nm. Le catalyseur présente un diamètre médian macroporeux compris entre 50 et 1500 nm, de préférence entre 80 et 1000 nm, de manière encore plus préférée compris entre 250 et 800 nm. The median mesoporous diameter is between 3 nm and 25 nm, and preferably between 6 and 20 nm, and particularly preferably between 8 and 18 nm. The catalyst has a macroporous median diameter of between 50 and 1500 nm, preferably between 80 and 1000 nm, even more preferably between 250 and 800 nm.
Le catalyseur présente une surface spécifique B.E.T. comprise entre 20 et 400 m2/g, et de manière plus préférée entre 30 et 350 m2/g, et de manière encore plus préférée entre 40 et 250 m2/g. La surface spécifique est mesurée sur le catalyseur séché (si le procédé de préparation du catalyseur ne prévoit l’étape optionnelle e) de traitement thermique après l’étape d) de séchage) ou sur le catalyseur obtenu après l’étape e) de traitement thermique (si cette étape est réalisée). The catalyst has a BET specific surface area of between 20 and 400 m 2 / g, and more preferably between 30 and 350 m 2 / g, and even more preferably between 40 and 250 m 2 / g. The specific surface area is measured on the dried catalyst (if the catalyst preparation process does not provide the optional step e) of heat treatment after step d) of drying) or on the catalyst obtained after the treatment step e) thermal (if this step is performed).
De préférence, le catalyseur présente une faible microporosité, de manière très préférée il ne présente aucune microporosité. Preferably, the catalyst has a low microporosity, very preferably it has no microporosity.
Description du procédé d’hydrogénation sélective de composés polvinsaturés Description of the process for the selective hydrogenation of polyunsaturated compounds
La présente invention a également pour objet un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0, 1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0, 1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu par le procédé de préparation tel que décrit ci- avant dans la description. The subject of the present invention is also a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatiques, also known as styrenics, contained in a polyunsaturated charge. hydrocarbons having a final boiling point less than or equal to 300 ° C, which process is carried out at a temperature of between 0 and 300 ° C, at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen to (polyunsaturated compounds to be hydrogenated) between 0.1 and 10 and at an hourly space velocity of between 0, 1 and 200 h 1 when the process is carried out in the liquid phase, or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) between 0.5 and 1000 and at an hourly space velocity between 100 and 40000 h 1 when the process is carried out in the gaseous phase, in the presence of a catalyst obtained by the process of preparation as described above in the description.
Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1-2-butadiène et le 1-3- butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes. Monounsaturated organic compounds such as, for example, ethylene and propylene, are at the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes. These processes are operated at high temperature and produce, in addition to the desired monounsaturated compounds, polyunsaturated organic compounds such as acetylene, propadiene and methylacetylene (or propyne), 1-2-butadiene and 1-3 butadiene, vinylacetylene and ethylacetylene, and other polyunsaturated compounds whose boiling point corresponds to the C5 + cut (hydrocarbon compounds having at least 5 carbon atoms), in particular diolefinic or styrenic or indenic compounds. These polyunsaturated compounds are very reactive and lead to spurious reactions in the polymerization units. It is therefore necessary to eliminate them before valuing these cuts.
L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l’hydrogénation des noyaux aromatiques. Selective hydrogenation is the main treatment developed to specifically remove undesired polyunsaturated compounds from these hydrocarbon feeds. It allows the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics, avoiding their total saturation and thus the formation of the corresponding alkanes or naphthenes. In the case of steam cracking gasolines used as a filler, the selective hydrogenation also makes it possible to selectively hydrogenate alkenyl aromatics to aromatics by avoiding the hydrogenation of the aromatic rings.
La charge d'hydrocarbures traitée dans le procédé d’hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique. The hydrocarbon feedstock treated in the selective hydrogenation process has a final boiling point less than or equal to 300 ° C and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound. The term "polyunsaturated compounds" means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function.
Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+. More particularly, the filler is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a steam cracking C3 cut, a steam cracking C4 cut, a steam cracking C5 cut and a still called steam cracking gasoline. pyrolysis gasoline or C5 + cut.
La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent. The steam cracking section C2, advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane. In certain steam cracking sections, between 0.1 and 1% by weight of C 3 compounds may also be present.
La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l’ordre de 90 % poids de propylène, de l’ordre de 1 à 8 % poids de propadiène et de méthylacétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent. Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l’ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l’ordre de 30 % poids d'éthylène, de l’ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l’éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4. The C3 steam-cracking cut, advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C 2 compounds and C 4 compounds may also be present. A C2 - C3 cut can also be advantageously used for the implementation of the selective hydrogenation process according to the invention. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane. This filler may also contain between 0.1 and 2% by weight of C4 compounds.
La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1 ,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent. The C4 steam-cracking cut, advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average mass composition: 1% weight of butane, 46.5% weight of butene, 51% by weight butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds may also be present.
La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes. The C5 steam-cracking cut, advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following composition: 21% by weight of pentanes, 45% by weight of pentenes and 34% by weight of pentadienes.
L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10 et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre. The steam cracking gasoline or pyrolysis gasoline, advantageously used for carrying out the selective hydrogenation process according to the invention, corresponds to a hydrocarbon fraction whose boiling point is generally between 0 and 300 ° C., preferably between 10 and 250 ° C. The polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are, in particular, diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrenic compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene). ). Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts). For example, a charge formed of pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulfur, preferably from 0 to 500 ppm by weight of sulfur.
De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage. Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière à ce que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l’hydrogénation des noyaux aromatiques. Preferably, the polyunsaturated hydrocarbon feedstock treated according to the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a steam cracking gasoline. The selective hydrogenation process according to the invention aims at eliminating said polyunsaturated hydrocarbons present in said feedstock to be hydrogenated without hydrogenating the monounsaturated hydrocarbons. For example, when said feed is a C2 cut, the selective hydrogenation process aims to selectively hydrogenate acetylene. When said feedstock is a C3 cut, the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene. In the case of a C4 cut, it is intended to remove butadiene, vinylacetylene (VAC) and butyne, in the case of a C5 cut, it is intended to eliminate pentadienes. When said feed is a steam cracking gasoline, the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefinic compounds are partially hydrogenated to mono-olefins and that the styrenic and indene compounds are partially hydrogenated to corresponding aromatic compounds by avoiding the hydrogenation of aromatic rings.
La mise en œuvre technologique du procédé d’hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré- injection^) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur. The technological implementation of the selective hydrogenation process is carried out, for example, by injection, in ascending or descending current, of the polyunsaturated hydrocarbon feedstock and hydrogen in at least one fixed bed reactor. Said reactor may be of the isothermal or adiabatic type. An adiabatic reactor is preferred. The polyunsaturated hydrocarbon feed may advantageously be diluted by one or more re-injection of the effluent from said reactor, where the selective hydrogenation reaction occurs, at various points in the reactor, located between the inlet and the outlet. reactor outlet to limit the temperature gradient in the reactor. The technological implementation of the selective hydrogenation process according to the invention may also be advantageously carried out by implanting at least one of said supported catalyst in a reactive distillation column or in reactor-exchangers or in a slurry-type reactor. . The flow of hydrogen can be introduced at the same time as the feedstock to be hydrogenated and / or at one or more different points of the reactor.
L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d’abaisser le coût énergétique et d’augmenter la durée de cycle du catalyseur. The selective hydrogenation of the steam-cracking cuts C2, C2-C3, C3, C4, C5 and C5 + can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the phase gaseous for C2 and C2-C3 cuts. A reaction in the liquid phase makes it possible to lower the energy cost and to increase the catalyst cycle time.
D'une manière générale, l'hydrogénation sélective d’une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0 et 300°C, à une pression comprise entre 0, 1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0, 1 et 10 et à une vitesse volumique horaire V.V.H. (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0, 1 et 200 h 1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 100 et 40000 h 1 pour un procédé réalisé en phase gazeuse. In general, the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point of less than or equal to 300 ° C. is carried out at a temperature of between 0 and 300 ° C., at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) ) between 0, 1 and 10 and at an hourly space velocity VVH (defined as the ratio of the volume flow rate of charge to the volume of the catalyst) of between 0, 1 and 200 h 1 for a process carried out in the liquid phase, or a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.5 and 1000 and at a hourly space velocity VVH of between 100 and 40,000 h 1 for a process carried out in the gas phase.
Dans un mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1 ,0 et 2,0, la température est comprise entre 0 et 200°C, de préférence entre 20 et 200 °C et de manière encore plus préférée entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 et 100 h 1, de préférence entre 1 et 50 h 1 et la pression est généralement comprise entre 0,3 et 8,0 MPa, de préférence entre 1 ,0 et 7,0 MPa et de manière encore plus préférée entre 1 ,5 et 4,0 MPa. In one embodiment according to the invention, when a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline containing polyunsaturated compounds, the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally understood. between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0, the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C, the hourly volume velocity (VVH) is generally between 0.5 and 100 h 1 , preferably between 1 and 50 h 1 and the pressure is generally between 0, 3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa.
Plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20 et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1 ,0 et 7,0 MPa. More preferably, a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline comprising polyunsaturated compounds, the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0, the temperature is between 20 and 200 ° C, the hourly volume velocity (VVH) is generally between 1 and 50 h 1 and the pressure is between 1.0 and 7.0 MPa.
Encore plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 1 ,0 et 2,0, la température est comprise entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1 ,5 et 4,0 MPa. Even more preferentially, a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline comprising polyunsaturated compounds, the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 1.0 and 2.0, the temperature is between 30 and 180 ° C, the hourly volume velocity (VVH) is generally between 1 and 50 h 1 and the pressure is between 1, 5 and 4.0 MPa.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés polyinsaturés et de maintenir un excès d’hydrogène en sortie de réacteur. The hydrogen flow rate is adjusted in order to dispose of it in sufficient quantity to theoretically hydrogenate all of the polyunsaturated compounds and to maintain an excess of hydrogen at the outlet of the reactor.
Dans un autre mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0 et 300°C, de préférence entre 15 et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 et 40000 h 1, de préférence entre 500 et 30000 h 1 et la pression est généralement comprise entre 0,1 et 6,0 MPa, de préférence entre 0,2 et 5,0 MPa. In another embodiment according to the invention, when a selective hydrogenation process is carried out in which the feedstock is a C2 steam cracking cut and / or a C2-C3 steam cracking section comprising polyunsaturated compounds, the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800, the temperature is between 0 and and 300 ° C, preferably between 15 and 280 ° C, the hourly volume velocity (VVH) is generally between 100 and 40000 h 1 , preferably between 500 and 30000 h 1 and the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa.
Description du des aromatiques Description of aromatics
La présente invention a également pour objet un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, généralement entre 20 et 650°C, et de préférence entre 20 et 450°C. Ladite charge d’hydrocarbures contenant au moins un composé aromatique ou polyaromatique peut être choisi parmi les coupes pétrolières ou pétrochimiques suivantes : le reformat du reformage catalytique, le kérosène, le gazole léger, le gazole lourd, les distillais de craquage, tels que l’huile de recyclage de FCC, le gazole d’unité de cokéfaction, les distillais d’hydrocraquage. The subject of the present invention is also a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650 ° C., generally between 20 and 650 ° C. and preferably between 20 and 450 ° C. Said hydrocarbon feedstock containing at least one aromatic or polyaromatic compound may be chosen from the following petroleum or petrochemical cuts: catalytic reforming reformate, kerosene, light gas oil, heavy gas oil, cracking distillates, such as FCC recycling oil, coker unit diesel, hydrocracking distillates.
La teneur en composés aromatiques ou polyaromatiques contenus dans la charge d’hydrocarbures traitée dans le procédé d’hydrogénation selon l’invention est généralement compris entre 0,1 et 80% en poids, de préférence entre 1 et 50% en poids, et de manière particulièrement préférée entre 2 et 35% en poids, le pourcentage étant basé sur le poids total de la charge d’hydrocarbures. Les composés aromatiques présents dans ladite charge d’hydrocarbures sont par exemple le benzène ou des alkylaromatiques tels que le toluène, l'éthylbenzène, l'o-xylène, le m-xylène, ou le p-xylène, ou encore des aromatiques ayant plusieurs noyaux aromatiques (polyaromatiques) tels que le naphtalène.  The content of aromatic or polyaromatic compounds contained in the hydrocarbon feedstock treated in the hydrogenation process according to the invention is generally between 0.1 and 80% by weight, preferably between 1 and 50% by weight, and particularly preferably between 2 and 35% by weight, the percentage being based on the total weight of the hydrocarbon feed. The aromatic compounds present in said hydrocarbon feedstock are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, o-xylene, m-xylene or p-xylene, or else aromatics having several aromatic (polyaromatic) rings such as naphthalene.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 5000 ppm poids de soufre ou de chlore, de préférence inférieure à 100 ppm poids, et de manière particulièrement préférée inférieure à 10 ppm poids. The sulfur or chlorine content of the feedstock is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and particularly preferably less than 10 ppm by weight.
La mise en œuvre technologique du procédé d’hydrogénation des composés aromatiques ou polyaromatiques est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures peut avantageusement être diluée par une ou plusieurs ré-injection(s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation des aromatiques, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation des aromatiques selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur. The technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is for example carried out by injection, in ascending or descending current, of the hydrocarbon feedstock and hydrogen in at least one fixed bed reactor. Said reactor may be of the isothermal or adiabatic type. An adiabatic reactor is preferred. The hydrocarbon feedstock can advantageously be diluted by one or more re-injection (s) of the effluent, from said reactor where the aromatic hydrogenation reaction occurs, at various points of the reactor, situated between the inlet and the outlet of the reactor in order to limit the gradient of temperature in the reactor. The technological implementation of the process for the hydrogenation of aromatics according to the invention can also be advantageously carried out by implanting at least one of said supported catalyst in a reactive distillation column or in reactor-exchangers or in a reactor of the following type slurry. The flow of hydrogen can be introduced at the same time as the feedstock to be hydrogenated and / or at one or more different points of the reactor.
L'hydrogénation des composés aromatiques ou polyaromatiques peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. D'une manière générale, l'hydrogénation des composés aromatiques ou polyaromatiques s'effectue à une température comprise entre 30 et 350°C, de préférence entre 50 et 325°C, à une pression comprise entre 0,1 et 20 MPa, de préférence entre 0,5 et 10 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h 1, de préférence entre 0,1 et 10 h 1 d’une charge d'hydrocarbures contenant des composés aromatiques ou polyaromatiques et ayant un point d'ébullition final inférieur ou égal à 650°C, généralement entre 20 et 650°C, et de préférence entre 20 et 450°C. The hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase. In general, the hydrogenation of the aromatic or polyaromatic compounds is carried out at a temperature of between 30 and 350 ° C., preferably between 50 and 325 ° C., at a pressure of between 0.1 and 20 MPa, preferably between 0.5 and 10 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at a hourly volume velocity VVH between 0.05 and 50 h 1 , preferably between 0.1 and 10 h 1 of a hydrocarbon feedstock containing aromatic or polyaromatic compounds and having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C, and preferably between 20 and 450 ° C .
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés aromatiques et de maintenir un excès d’hydrogène en sortie de réacteur.  The hydrogen flow rate is adjusted in order to dispose of it in sufficient quantity to theoretically hydrogenate all the aromatic compounds and to maintain an excess of hydrogen at the outlet of the reactor.
La conversion des composés aromatiques ou polyaromatiques est généralement supérieure à 20% en mole, de préférence supérieure à 40% en mole, de manière plus préférée supérieure à 80% en mole, et de manière particulièrement préférée supérieure à 90 % en mole des composés aromatiques ou polyaromatiques contenus dans la charge hydrocarbonée. La conversion se calcule en divisant la différence entre les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures et dans le produit par les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures.  The conversion of the aromatic or polyaromatic compounds is generally greater than 20 mol%, preferably greater than 40 mol%, more preferably greater than 80 mol%, and particularly preferably greater than 90 mol% of the aromatic compounds. or polyaromatic content contained in the hydrocarbon feedstock. The conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feedstock and the product by the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feedstock.
Selon une variante particulière du procédé selon l’invention, on réalise un procédé d’hydrogénation du benzène d’une charge d’hydrocarbures, tel que le reformat issu d’une unité de reformage catalytique. La teneur en benzène dans ladite charge d’hydrocarbures est généralement comprise entre 0,1 et 40% poids, de préférence entre 0,5 et 35% poids, et de manière particulièrement préférée entre 2 et 30% poids, le pourcentage en poids étant basé sur le poids total de la charge d’hydrocarbures. According to a particular variant of the process according to the invention, a process is carried out for the hydrogenation of benzene from a hydrocarbon feedstock, such as the reformate resulting from a catalytic reforming unit. The benzene content in said hydrocarbon feedstock is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the hydrocarbon feed.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 10 ppm poids de soufre ou chlore respectivement, et de préférence inférieure à 2 ppm poids.  The sulfur or chlorine content of the feedstock is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
L'hydrogénation du benzène contenu dans la charge d’hydrocarbures peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. Lorsqu’elle est réalisée en phase liquide, un solvant peut être présent, tel que le cyclohexane, l’heptane, l’octane. D'une manière générale, l'hydrogénation du benzène s'effectue à une température comprise entre 30 et 250°C, de préférence entre 50 et 200°C, et de manière plus préférée entre 80 et 180°C, à une pression comprise entre 0,1 et 10 MPa, de préférence entre 0,5 et 4 MPa, à un ratio molaire hydrogène/(benzène) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h 1, de préférence entre 0,5 et 10 h 1. The hydrogenation of the benzene contained in the hydrocarbon feed can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase. When carried out in the liquid phase, a solvent may be present, such as cyclohexane, heptane or octane. In general, the hydrogenation of benzene is carried out at a temperature of between 30 and 250 ° C., preferably between 50 and 200 ° C., and more preferably between 80 and 180 ° C., at a pressure comprised between between 0.1 and 10 MPa, preferably between 0.5 and 4 MPa, at a hydrogen / (benzene) molar ratio between 0.1 and 10 and at a hourly volume velocity VVH between 0.05 and 50 h 1 , preferably between 0.5 and 10 h 1 .
La conversion du benzène est généralement supérieure à 50% en mole, de préférence supérieure à 80% en mole, de manière plus préférée supérieure à 90% en mole et de manière particulièrement préférée supérieure à 98 % en mole.  The conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
L'invention est illustrée par les exemples qui suivent. The invention is illustrated by the following examples.
Exemple 1 : Préparation d’une solution aqueuse de précurseurs de Ni Example 1 Preparation of an aqueous solution of Ni precursors
La solution aqueuse de précurseurs de Ni (solution S) utilisée pour la préparation des catalyseurs B et C est préparée en dissolvant 46,1 g de nitrate de nickel (Ni(N03)2.6H20, fournisseur Strem Chemicals®) dans un volume de 13 mL d’eau distillée. On obtient la solution S dont la concentration en NiO est de 20,1 % pds (par rapport à la masse de la solution). The aqueous solution of Ni precursors (solution S) used for the preparation of catalysts B and C is prepared by dissolving 46.1 g of nickel nitrate (Ni (NO 3 ) 2 .6H 2 O, supplier Strem Chemicals®) in a volume of 13 mL of distilled water. Solution S is obtained whose NiO concentration is 20.1% by weight (relative to the mass of the solution).
Exemple 2 : Préparation d’un oxyde poreux aluminiaue calciné (selon le mode de réalisation 2) Example 2: Preparation of a calcined aluminous porous oxide (according to embodiment 2)
La synthèse de l’alumine A est réalisée dans un réacteur de laboratoire d'une capacité de 7000 mL environ. La synthèse se déroule à 70°C et sous agitation, en six étapes, nommées ci-dessous a1’) à a6’). On cherche à préparer 5 L de solution à une concentration fixée à 27 g/L en alumine dans la suspension finale (obtenue à l’issue de l’étape a3’) et avec un taux de contribution de la première étape (a1’) à 2,1 % de l’alumine totale.  The synthesis of alumina A is carried out in a laboratory reactor with a capacity of about 7000 ml. The synthesis is carried out at 70 ° C with stirring in six steps, named below (a1 ') to a6'). It is sought to prepare 5 L of solution at a concentration of 27 g / L of alumina in the final suspension (obtained at the end of step a3 ') and with a contribution rate of the first step (a1') at 2.1% of the total alumina.
a1’) Mise en solution : On introduit en une fois 70 mL de sulfate d'aluminium AI2(S04)3 dans le réacteur contenant un pied d’eau de 1679 mL. L’évolution du pH, qui reste compris entre 2,5 et 3, est suivie pendant 10 minutes. Cette étape contribue à l’introduction de 2,1 % d’alumine par rapport à la masse totale d’alumine formée à l’issue de la synthèse du gel. La solution est laissée sous agitation pendant une durée de 10 minutes. a1 ') Dissolving: 70 ml of aluminum sulphate Al 2 (SO 4 ) 3 are introduced in one go into the reactor containing a foot of water of 1679 ml. The evolution of the pH, which remains between 2.5 and 3, is followed for 10 minutes. This step contributes to the introduction of 2.1% of alumina relative to the total mass of alumina formed at the end of the synthesis of the gel. The solution is stirred for a period of 10 minutes.
A2’) Ajustement du pH : On ajoute progressivement environ 70 mL d'aluminate de sodium NaAlOO. L'objectif est d'atteindre un pH compris entre 7 et 10 en une durée de 5 à 15 minutes.  A2 ') pH adjustment: About 70 ml of NaAlOO sodium aluminate are gradually added. The goal is to reach a pH between 7 and 10 in a period of 5 to 15 minutes.
a3’) Coprécipitation : Dans la suspension obtenue à l’issue de l’étape a2’) on ajoute en 30 minutes, a3 ') Coprecipitation: In the suspension obtained at the end of step a2') is added in 30 minutes,
- 1020 mL de sulfate d'aluminium AI2(S04)3, soit un débit de 34 mL/min, 1020 ml of aluminum sulfate AI 2 (SO 4 ) 3 , ie a flow rate of 34 ml / min,
- 1020 mL d'aluminate de sodium NaAlOO, soit un débit de 34 mL/min,  1020 mL of NaAlOO sodium aluminate, a flow rate of 34 mL / min,
- 1150 mL d'eau distillée, soit un débit de 38,3 mL/min.  - 1150 mL of distilled water, a flow rate of 38.3 mL / min.
Le pH est compris entre 8,7 et 9,9.  The pH is between 8.7 and 9.9.
a4’) Filtration : La suspension obtenue à l’issue de l’étape a3’) est filtrée par déplacement sur un outil de type Buchner fritté P4 et lavée plusieurs fois avec de l’eau distillée. On obtient un gel d’alumine. a4 ') Filtration: The suspension obtained at the end of step a3') is filtered by displacement on a sintered Buchner tool P4 and washed several times with distilled water. An alumina gel is obtained.
a5’) Séchage : Le gel d’alumine obtenu à l’issue de l’étape a4’) est séché à l'étuve pendant 16 heures à 200 °C. a5 ') Drying: The alumina gel obtained at the end of step a4') is dried in an oven for 16 hours at 200 ° C.
a6’) Traitement thermique : La poudre obtenue à l’issue de l’étape a5’) est ensuite calcinée sous flux d’air de 1 L/h/g de gel d’alumine à 750 °C pendant 2 heures pour obtenir la transition de la boehmite vers l’alumine. On obtient alors l’alumine A. a6 ') Heat treatment: The powder obtained at the end of step a5') is then calcined under a flow of air of 1 L / h / g of alumina gel at 750 ° C. for 2 hours to obtain the transition from boehmite to alumina. Alumina A is then obtained.
Exemple 3 (comparatif) : Préparation d'un catalyseur B par imprégnation de nitrate de nickel sans additif Example 3 (Comparative) Preparation of a catalyst B by impregnation of nickel nitrate without additive
Le catalyseur B est préparé par imprégnation à sec de l’alumine A décrite dans l’exemple 2, avec la solution S de précurseurs de Ni.  Catalyst B is prepared by dry impregnation of alumina A described in Example 2 with solution S of Ni precursors.
La synthèse de l’alumine A est réalisée en suivant les six étapes, étapes aT) à a6’), de l’exemple 2 décrit ci-dessus. Les conditions opératoires sont strictement identiques. Cependant, une étape de mise en forme du gel d’alumine séché issu de l’étape a5’) est insérée entre les étapes a5’) et a6’) : La mise en forme de cette poudre est réalisée sur malaxeur de type "Brabender" avec un taux d'acide de 1 % (taux d’acide total, exprimé par rapport à l'alumine sèche), un taux de neutralisation de 20 % et des pertes au feu acide et basique respectivement de 62 % et 64 %. Puis l’extrusion est effectuée sur une extrudeuse piston à travers une filière de diamètre 2,1 mm. Après extrusion, les extrudés sont séchés pendant 16 heures à 80 °C. A l’issue de l’étape a6’) de calcination, on obtient des extrudés de l’alumine A. The synthesis of alumina A is carried out by following the six steps, steps aT) to a6 '), of Example 2 described above. The operating conditions are strictly identical. However, a shaping step of the dried alumina gel from step a5 ') is inserted between steps a5') and a6 '): The shaping of this powder is carried out on a Brabender type kneader. with an acid content of 1% (total acid level, expressed relative to dry alumina), a neutralization rate of 20% and acid and basic fire losses of 62% and 64% respectively. The extrusion is then carried out on a piston extruder through a 2.1 mm diameter die. After extrusion, the extrusions are dried for 16 hours at 80 ° C. At the end of step a6 ') of calcination, extrudates of alumina A are obtained.
La solution S préparée à l’exemple 1 est imprégnée à sec sur 10 g d'alumine A. Le solide ainsi obtenu est ensuite séché en étuve pendant 16 heures à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.  The solution S prepared in Example 1 is impregnated dry with 10 g of alumina A. The solid thus obtained is then dried in an oven for 16 hours at 120 ° C. and then calcined under a flow of air of 1 L / h / g catalyst at 450 ° C for 2 hours.
Le catalyseur calciné B ainsi préparé contient 23,2 % en poids de l'élément nickel par rapport au poids total du catalyseur supporté sur alumine et il présente des cristallites d’oxyde de nickel dont le diamètre moyen (déterminé par diffraction des rayons X à partir de la largeur de la raie de diffraction située à l’angle 2thêta=43°) est de 15,6 nm. Les autres caractéristiques structurelles du catalyseur B sont répertoriées dans le tableau 1 ci-après. The calcined catalyst B thus prepared contains 23.2% by weight of the nickel element relative to the total weight of the catalyst supported on alumina and it has crystallites of nickel oxide whose average diameter (determined by X-ray diffraction at from the width of the diffraction line at the angle 2theta = 43 °) is 15.6 nm. The other structural characteristics of catalyst B are listed in Table 1 below.
Exemple 4 (comparatif) : Préparation d'un catalyseur C par comalaxaae sans additif Example 4 (Comparative) Preparation of a catalyst C by comalaxaae without additive
Le catalyseur C est préparé à partir de l’alumine A et de la solution S de précurseur de Ni, préparées ci-dessus, selon les quatre étapes suivantes : Catalyst C is prepared from alumina A and Ni precursor solution S, prepared above, according to the following four steps:
Comalaxage : On utilise un malaxeur "Brabender" avec une cuve de 80 mL et une vitesse de malaxage de 30 tr/min. La poudre d'alumine A est placée dans la cuve du malaxeur. Puis la solution S de précurseurs de Ni est ajoutée au fur et à mesure à la seringue pendant environ 10 minutes à 15 tr/min tout en chauffant pour évacuer l’eau. Après l'obtention d'une pâte, le malaxage est maintenu 15 minutes à 50 tr/min.  Comalaxing: A "Brabender" mixer is used with a bowl of 80 mL and a mixing speed of 30 rpm. Alumina powder A is placed in the bowl of the kneader. Then solution S of Ni precursors is added gradually to the syringe for about 10 minutes at 15 rpm while heating to evacuate the water. After obtaining a paste, the kneading is maintained for 15 minutes at 50 rpm.
Extrusion : La pâte ainsi obtenue est introduite dans une extrudeuse piston et est extrudée au travers d'une filière de diamètre 2,1 mm.  Extrusion: The paste thus obtained is introduced into a piston extruder and is extruded through a 2.1 mm diameter die.
Séchage : Les extrudés ainsi obtenus sont ensuite séchés à l'étuve à 80 °C pendant 16 heures. On obtient un catalyseur séché.  Drying: The extrudates thus obtained are then dried in an oven at 80 ° C. for 16 hours. A dried catalyst is obtained.
Traitement thermique : Le catalyseur séché est ensuite calciné en four tubulaire, sous un flux d’air de 1 L/h/g de catalyseur, à 450 °C pendant 2 heures (rampe de montée en température de 5 °C/min).  Heat treatment: The dried catalyst is then calcined in a tubular furnace, under a flow of air of 1 L / h / g of catalyst, at 450 ° C for 2 hours (ramp temperature rise of 5 ° C / min).
On obtient alors le catalyseur calciné C qui contient 24,3% poids de l'élément nickel par rapport au poids total du catalyseur comalaxé et présente des cristallites d’oxyde de nickel dont le diamètre moyen est de 9,5 nm. Les autres caractéristiques structurelles du catalyseur C sont répertoriées dans le tableau 1 ci-après. de nitrate de nickel et d’acide propanedioïque (acide malonique) The calcined catalyst C, which contains 24.3% by weight of the nickel element relative to the total weight of the comalaxed catalyst, is then obtained and has nickel oxide crystallites with an average diameter of 9.5 nm. The other structural characteristics of catalyst C are listed in Table 1 below. nickel nitrate and propanedioic acid (malonic acid)
Le catalyseur D est préparé par co-imprégnation à sec de nitrate de nickel et d’acide malonique sur l’alumine A en utilisant un ratio molaire {acide malonique / nickel} égal à 0,6. Pour ce faire, une solution aqueuse S’ est préparée en dissolvant 89,0 g de nitrate de nickel Ni(N03)2.6H20 (fournisseur Strem Chemicals®) et 19,1 g d’acide malonique (CAS 141-82-2, fournisseur Fluka®) dans 20 mL d'eau déminéralisée. Cette solution S’ est ensuite imprégnée à sec sur 10 g d’alumine A préalablement mise en forme sous forme d’extrudés comme décrit ci-dessus à l’exemple 3. Le solide ainsi obtenu est ensuite séché en étuve pendant 16 heures à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Catalyst D is prepared by dry co-impregnation of nickel nitrate and malonic acid on alumina A using a molar ratio {malonic acid / nickel} equal to 0.6. For this purpose, an aqueous solution S 'is prepared by dissolving 89.0 g of nickel nitrate Ni (N0 3 ) 2 .6H 2 O (supplier Strem Chemicals®) and 19.1 g of malonic acid (CAS 141- 82-2, Fluka® supplier) in 20 mL of demineralized water. This solution S 'is then impregnated dry on 10 g of alumina A previously shaped in the form of extrudates as described above in Example 3. The solid thus obtained is then dried in an oven for 16 hours at 120.degree. ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
Le catalyseur calciné D ainsi préparé contient 22,9 % poids de l'élément nickel par rapport au poids total du catalyseur supporté sur alumine et il présente des cristallites d’oxyde de nickel dont le diamètre moyen est de 4,8 nm. Les autres caractéristiques structurelles du catalyseur D sont répertoriées dans le tableau 1 ci-après. The calcined catalyst D thus prepared contains 22.9% by weight of the nickel element relative to the total weight of the catalyst supported on alumina and has nickel oxide crystallites with an average diameter of 4.8 nm. The other structural characteristics of the catalyst D are listed in Table 1 below.
Exemple 6 d'un catalyseur E en presence d’acide prc Example 6 a catalyst E in the presence of prc acid
Le catalyseur E est préparé à partir de l’alumine A et de la solution S’ contenant le précurseur de Ni et l’acide propanedioïque, préparées ci-dessus, selon les quatre étapes suivantes : Catalyst E is prepared from alumina A and solution S 'containing the precursor of Ni and propanedioic acid, prepared above, according to the following four steps:
Comalaxage : On utilise un malaxeur "Brabender" avec une cuve de 80 mL et une vitesse de malaxage de 30 tr/min. La poudre d'alumine A est placée dans la cuve du malaxeur. Puis la solution S’ de précurseur de Ni et d’acide propanedioïque est ajoutée au fur et à mesure à la seringue pendant environ 10 minutes à 15 tr/min tout en chauffant pour évacuer l’eau. Après l'obtention d'une pâte, le malaxage est maintenu 15 minutes à 50 tr/min.  Comalaxing: A "Brabender" mixer is used with a bowl of 80 mL and a mixing speed of 30 rpm. Alumina powder A is placed in the bowl of the kneader. Then the precursor solution S 'of Ni and propanedioic acid is added gradually to the syringe for about 10 minutes at 15 rpm while heating to evacuate the water. After obtaining a paste, the kneading is maintained for 15 minutes at 50 rpm.
Extrusion : La pâte ainsi obtenue est introduite dans une extrudeuse piston et est extrudée au travers d'une filière de diamètre 2,1 mm. Extrusion: The paste thus obtained is introduced into a piston extruder and is extruded through a 2.1 mm diameter die.
Séchage : Les extrudés ainsi obtenus sont ensuite séchés à l'étuve à 80°C pendant 16 heures. On obtient un catalyseur séché.  Drying: The extrudates thus obtained are then dried in an oven at 80 ° C. for 16 hours. A dried catalyst is obtained.
Traitement thermique : Le catalyseur séché est ensuite calciné en four tubulaire, sous un flux d’air de 1 L/h/g de catalyseur, à 450°C pendant 2 heures (rampe de montée en température de 5 °C/min). On obtient alors le catalyseur calciné E qui contient TI ,7 % poids de l'élément nickel par rapport au poids total du catalyseur comalaxé et présente des cristallites d’oxyde de nickel dont le diamètre moyen est de 4,2 nm. Les autres caractéristiques structurelles du catalyseur E sont répertoriées dans le tableau 1 ci-après. Heat treatment: The dried catalyst is then calcined in a tubular furnace, under a flow of air of 1 L / h / g of catalyst, at 450 ° C for 2 hours (ramp temperature rise of 5 ° C / min). The calcined catalyst E which contains TI, 7% by weight of the nickel element relative to the total weight of the comalaxed catalyst is then obtained and has crystallites of nickel oxide whose average diameter is 4.2 nm. The other structural characteristics of catalyst E are listed in Table 1 below.
Tableau 1 : Propriétés des catalyseurs B, C, D (non conforme au procédé de Table 1: Properties of catalysts B, C, D (not in accordance with the method of
préparation selon l’invention), et E (conforme)  preparation according to the invention), and E (compliant)
Exemple 7 : Évaluation des propriétés catalytiques des catalyseurs B. C, D et E en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène Example 7 Evaluation of the Catalytic Properties of Catalysts B. C, D and E in Selective Hydrogenation of a Mixture Containing Styrene and Isoprene
Les catalyseurs B, C, D et E décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation sélective d'un mélange contenant du styrène et de l’isoprène. Catalysts B, C, D and E described in the examples above are tested for the selective hydrogenation reaction of a mixture containing styrene and isoprene.
La composition de la charge à hydrogéner sélectivement est la suivante : 8 % pds styrène (fournisseur Sigma Aldrich®, pureté 99%), 8 % pds isoprène (fournisseur Sigma Aldrich®, pureté 99%), 84 % pds n-heptane (solvant) (fournisseur VWR®, pureté > 99% chromanorm HPLC). Cette charge contient également des composés soufrés en très faible teneur : 10 ppm pds de soufre introduits sous forme de pentanethiol (fournisseur Fluka®, pureté > 97%) et 100 ppm pds de soufre introduits sous forme de thiophène (fournisseur Merck®, pureté 99%). Cette composition correspond à la composition initiale du mélange réactionnel. Ce mélange de molécules modèles est représentatif d’une essence de pyrolyse. The composition of the filler to be selectively hydrogenated is as follows: 8% by weight styrene (supplier Sigma Aldrich®, purity 99%), 8% by weight isoprene (supplier Sigma Aldrich®, purity 99%), 84% by weight n-heptane (solvent ) (VWR® supplier, purity> 99% chromanorm HPLC). This feed also contains sulfur compounds in very low content: 10 ppm wt of sulfur introduced in the form of pentanethiol (supplier Fluka®, purity> 97%) and 100 ppm wt of sulfur introduced in the form of thiophene (Merck® supplier, purity 99 %). This composition corresponds to the initial composition of the reaction mixture. This mixture of model molecules is representative of a pyrolysis species.
La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d’une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C. The selective hydrogenation reaction is carried out in a 500 ml autoclave made of stainless steel, equipped with magnetic stirring mechanical stirring and capable of operating at a maximum pressure of 100 bar (10 MPa) and temperatures of between 5 ° C. and 5 ° C. 200 ° C.
Préalablement à son introduction dans l’autoclave, une quantité de 3 mL de catalyseur est réduite ex situ sous un flux d'hydrogène de 1 L/h/g de catalyseur, à 400 °C pendant 16 heures (rampe de montée en température de 1 °C/min), puis elle est transvasée dans l’autoclave, à l'abri de l'air. Après ajout de 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l’autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d’hydrogène, et porté à la température du test égale à 30°C. Au temps t=0, environ 30 g d'un mélange contenant du styrène, de l’isoprène, du n-heptane, du pentanethiol et du thiophène sont introduits dans l’autoclave. Le mélange réactionnel a alors la composition décrite ci-dessus et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur. Prior to its introduction into the autoclave, a quantity of 3 mL of catalyst is reduced ex situ under a flow of hydrogen of 1 L / h / g of catalyst, at 400 ° C. for 16 hours (temperature rise ramp of 1 ° C / min), then it is transferred to the autoclave, protected from the air. After addition of 214 mL of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC), the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to temperature. test equal to 30 ° C. At time t = 0, about 30 g of a mixture containing styrene, isoprene, n-heptane, pentanethiol and thiophene are introduced into the autoclave. The reaction mixture then has the composition described above and stirring is started at 1600 rpm. The pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le styrène est hydrogéné en éthylbenzène, sans hydrogénation du cycle aromatique, et l’isoprène est hydrogéné en méthyl-butènes. Si la réaction est prolongée plus longtemps que nécessaire, les méthyl-butènes sont à leur tour hydrogénés en isopentane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni. The progress of the reaction is monitored by taking samples of the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and the isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane. Hydrogen consumption is also monitored during time by reducing the pressure in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
Les activités catalytiques mesurées pour les catalyseurs B, C, D et E sont reportées dans le Tableau 2 ci-dessous. Elles sont rapportées à l’activité catalytique mesurée pour le catalyseur B (AHYDI )· The catalytic activities measured for catalysts B, C, D and E are reported in Table 2 below. They are related to the catalytic activity measured for catalyst B (A H YDI) ·
Tableau 2 : Comparaison des performances en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène (AHYDI) et en hydrogénation du toluène (AHYD2) Ceci montre bien les performances améliorées du catalyseur E préparé selon l’invention et en particulier l’impact du recours à une étape de malaxage de la phase active en présence d’un additif organique plutôt qu’une étape d’imprégnation. En effet, le catalyseur D, bien qu’ayant des cristallites de NiO de taille sensiblement égales à celles du catalyseur E, a des performances catalytiques moins bonnes. De plus, l’ajout d’un composé organique spécifique lors de l’étape de malaxage permet d’obtenir des performances améliorées (par rapport à l’activité du catalyseur C non conforme étant préparé par un procédé sans ajout d’acide malonique lors de l’étape de malaxage). On note également la teneur élevée en élément nickel et les particules de Ni de très petite taille présentes sur le catalyseur E préparé selon l’invention par malaxage de la phase active en présence d’un additif organique. Exemple 8 : Évaluation des propriétés catalytiques des catalyseurs B, C, D et E en hydrogénation du toluène Table 2: Comparison of the performances in selective hydrogenation of a mixture containing styrene and isoprene (A H YDI) and hydrogenation of toluene (A H YD2) This shows the improved performance of the catalyst E prepared according to the invention and in particular the impact of the use of a step of mixing the active phase in the presence of an organic additive rather than an impregnation step. Indeed, the catalyst D, although having NiO crystallites of size substantially equal to those of the catalyst E, has poorer catalytic performance. In addition, the addition of a specific organic compound during the kneading step makes it possible to obtain improved performances (relative to the activity of the non-conforming catalyst C being prepared by a process without the addition of malonic acid during of the mixing step). The high content of nickel element and the very small Ni particles present on the catalyst E prepared according to the invention are also noted by mixing the active phase in the presence of an organic additive. Example 8 Evaluation of the Catalytic Properties of Catalysts B, C, D and E in Hydrogenation of Toluene
Les catalyseurs B, C, D et E décrits dans les exemples ci-dessus sont également testés vis- à-vis de la réaction d'hydrogénation du toluène. Catalysts B, C, D and E described in the above examples are also tested against the hydrogenation reaction of toluene.
La réaction d'hydrogénation sélective est opérée dans le même autoclave que celui décrit à l’exemple 6. The selective hydrogenation reaction is carried out in the same autoclave as that described in Example 6.
Préalablement à son introduction dans l’autoclave, une quantité de 2 mL de catalyseur est réduite ex situ sous un flux d'hydrogène de 1 L/h/g de catalyseur, à 400°C pendant 16 heures (rampe de montée en température de 1 °C/min), puis elle est transvasée dans l’autoclave, à l'abri de l'air. Après ajout de 216 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l’autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d’hydrogène, et porté à la température du test égale à 80°C. Au temps t=0, environ 26 g de toluène (fournisseur SDS®, pureté > 99,8%) sont introduits dans l’autoclave (la composition initiale du mélange réactionnel est alors toluène 6 % pds / n-heptane 94 % pds) et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur. Prior to its introduction into the autoclave, a quantity of 2 mL of catalyst is reduced ex situ under a flow of hydrogen of 1 L / h / g of catalyst, at 400 ° C. for 16 hours (temperature rise ramp of 1 ° C / min), then it is transferred to the autoclave, protected from the air. After addition of 216 ml of n-heptane (supplier VWR®, purity> 99% chromanorm HPLC), the autoclave is closed, purged and then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to temperature. test equal to 80 ° C. At time t = 0, about 26 g of toluene (supplier SDS®, purity> 99.8%) are introduced into the autoclave (the initial composition of the reaction mixture is then toluene 6% w / n-heptane 94% wt) and stirring is started at 1600 rpm. The pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le toluène est totalement hydrogéné en méthylcyclohexane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni. The progress of the reaction is monitored by taking samples of the reaction medium at regular time intervals: toluene is completely hydrogenated to methylcyclohexane. Hydrogen consumption is also monitored over time by the pressure decrease in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
Les activités catalytiques mesurées pour les catalyseurs B, C, D et E sont reportées dans le tableau 2 ci-avant. Elles sont rapportées à l’activité catalytique mesurée pour le catalyseur B (AHYD2)· The catalytic activities measured for catalysts B, C, D and E are reported in Table 2 above. They are related to the catalytic activity measured for catalyst B (AHYD2) ·
Ceci montre bien les performances améliorées du catalyseur E préparé selon l’invention et en particulier l’impact du recours à une étape de malaxage de la phase active en présence d’un additif organique plutôt qu’une étape d’imprégnation. En effet, le catalyseur D, bien qu’ayant des cristallites de NiO de taille sensiblement égales à celles du catalyseur E, a des performances catalytiques moins bonnes. De plus, l’ajout d’un composé organique spécifique lors de l’étape de malaxage permet d’obtenir des performances améliorées (par rapport à l’activité du catalyseur C non conforme étant préparé par un procédé sans ajout d’acide malonique lors de l’étape de malaxage). On note également la teneur élevée en élément nickel et les particules de Ni de très petite taille présentes sur le catalyseur E préparé selon l’invention par malaxage de la phase active en présence d’un additif organique. This shows the improved performance of the catalyst E prepared according to the invention and in particular the impact of the use of a step of mixing the active phase in the presence of an organic additive rather than an impregnation step. Indeed, the catalyst D, although having NiO crystallites of size substantially equal to those of the catalyst E, has poorer catalytic performance. In addition, the addition of a specific organic compound during the kneading step makes it possible to obtain improved performances (relative to the activity of the non-conforming catalyst C being prepared by a process without adding malonic acid during the kneading step). The high content of nickel element and the very small Ni particles present on the catalyst E prepared according to the invention are also noted by mixing the active phase in the presence of an organic additive.

Claims

REVENDICATIONS
1. Procédé de préparation d’un catalyseur comprenant une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, et une phase active comprenant du nickel, ladite phase active ne comprenant pas de métal du groupe VIB, la teneur en nickel étant comprise entre 1 et 65% en poids dudit élément par rapport au poids total du catalyseur, ladite phase active se présentant sous la forme de particules de nickel ayant un diamètre inférieur ou égal à 18 nm, ledit catalyseur comprenant un volume poreux total mesuré par porosimétrie au mercure supérieur à 0,10 ml_/g, un volume mésoporeux mesuré par porosimétrie au mercure supérieur à 0,10 ml_/g, un volume macroporeux mesuré par porosimétrie au mercure inférieur ou égal à 0,6 ml/g, un diamètre médian mésoporeux compris entre 3 et 25 nm, un diamètre médian macroporeux compris entre 50 et 1500 nm, et une surface spécifique SBET compris entre 20 et 400 m2/g, lequel procédé comprend les étapes suivantes : A process for preparing a catalyst comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight relative to the total weight of said matrix, and an active phase comprising nickel, said active phase not comprising any group VIB metal, the nickel content being between 1 and 65% by weight of said element relative to the total weight of the catalyst, said active phase being in the form of nickel particles having a diameter of less than or equal to 18 nm, said catalyst comprising a total pore volume measured by mercury porosimetry greater than 0.10 ml / g, a mesoporous volume measured by mercury porosimetry greater than 0.10 ml / g, a macroporous volume measured by mercury porosimetry less than or equal to 0.6 ml / g, a median mesoporous diameter of between 3 and 25 nm, a macroporous median diameter of between 50 and 1500 nm, and a SBET specific surface area of between 20 and 20 nm. t 400 m 2 / g, which process comprises the following steps:
a) on prépare un oxyde poreux aluminique calciné ;  a) a calcined aluminous porous oxide is prepared;
b) on malaxe l’oxyde poreux aluminique calciné obtenu à l’étape a) avec une solution résultant d’un mélange d’une ou plusieurs solution(s) comprenant au moins un précurseur de nickel et au moins une solution comprenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amine, ou au moins une fonction amide pour obtenir une pâte, le rapport molaire entre ledit composé organique et l’élément nickel étant compris entre 0,01 et 5,0 mol/mol ;  b) the aluminized calcined porous oxide obtained in step a) is kneaded with a solution resulting from a mixture of one or more solution (s) comprising at least one nickel precursor and at least one solution comprising at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amine function, or at least one amide function to obtain a paste, the molar ratio between said organic compound and the nickel element being between 0.01 and 5.0 mol / mol;
c) on met en forme la pâte obtenue à l’étape b) ;  c) shaping the paste obtained in step b);
d) on sèche la pâte mise en forme obtenue à l’étape c) à une température inférieure à 250°C pour obtenir un catalyseur séché ;  d) the shaped dough obtained in step c) is dried at a temperature below 250 ° C to obtain a dried catalyst;
e) éventuellement, on réalise un traitement thermique du catalyseur séché obtenu à l’étape d) à une température comprise entre 250 et 1000°C, en présence ou non d’eau.  e) optionally, a heat treatment of the dried catalyst obtained in step d) is carried out at a temperature of between 250 and 1000 ° C, in the presence or absence of water.
2. Procédé selon la revendication 1 , caractérisé en ce que ledit composé organique comprend au moins une fonction acide carboxylique. 2. Method according to claim 1, characterized in that said organic compound comprises at least one carboxylic acid function.
3. Procédé selon la revendication 2, caractérisé en ce que ledit composé organique est choisi parmi les acides monocarboxyliques, les acides dicarboxyliques, les acides tricarboxyliques, les acides tétracarboxyliques. 3. Method according to claim 2, characterized in that said organic compound is selected from monocarboxylic acids, dicarboxylic acids, tricarboxylic acids, tetracarboxylic acids.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que ledit composé organique comprend au moins une fonction alcool. 4. Method according to any one of claims 1 to 3, characterized in that said organic compound comprises at least one alcohol function.
5. Procédé selon la revendication 4, dans lequel ledit composé organique est choisi parmi : The method of claim 4, wherein said organic compound is selected from:
les composés organiques comprenant une seule fonction alcool ;  organic compounds comprising a single alcohol function;
les composés organiques comprenant deux fonctions alcools ;  organic compounds comprising two alcohol functions;
les composés organiques choisis parmi le diéthylène glycol, le triéthylène glycol, le tétraéthylène glycol, ou un polyéthylène glycol répondant à la formule H(OC2H4)nOH avec n supérieur à 4 et ayant une masse molaire moyenne inférieure à 20000 g/mol ; les monosaccharides de formule brute Cn(H20)p avec n compris entre 3 et 12 ; organic compounds chosen from diethylene glycol, triethylene glycol, tetraethylene glycol, or a polyethylene glycol having the formula H (OC 2 H 4 ) n OH with n greater than 4 and having an average molecular weight of less than 20000 g / mol; monosaccharides of formula C n (H 2 0) p with n between 3 and 12;
les disaccharides, les trisaccharides, ou les dérivés de monosaccharide.  disaccharides, trisaccharides, or monosaccharide derivatives.
6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que ledit composé organique comprend au moins une fonction ester. 6. Method according to any one of claims 1 to 5, characterized in that said organic compound comprises at least one ester function.
7. Procédé selon la revendication 6, dans lequel ledit composé organique est choisi parmi : The method of claim 6, wherein said organic compound is selected from:
les esters linéaires ou cycliques ou cycliques insaturés d’acide carboxylique ;  linear or cyclic or cyclic unsaturated esters of carboxylic acid;
les composés organiques comprenant au moins deux fonctions esters d’acide carboxylique ;  organic compounds comprising at least two carboxylic acid ester functions;
les composés organiques comprenant au moins une fonction ester d’acide carboxylique et au moins un deuxième groupe fonctionnel choisi parmi les alcools, les éthers, les cétones, les aldéhydes ;  organic compounds comprising at least one carboxylic acid ester function and at least one second functional group chosen from alcohols, ethers, ketones and aldehydes;
les esters cycliques ou linéaires d’acide carbonique ;  cyclic or linear esters of carbonic acid;
les diesters linéaires d’acide carbonique.  linear diesters of carbonic acid.
8. Procédé selon l’une quelconque des revendications 1 à 7, caractérisé en ce que ledit composé organique comprend au moins une fonction amide. 8. Method according to any one of claims 1 to 7, characterized in that said organic compound comprises at least one amide function.
9. Procédé selon la revendication 8, dans lequel ledit composé organique est choisi parmi : The process of claim 8, wherein said organic compound is selected from:
les amides acycliques comprenant une ou deux fonction amides ;  acyclic amides comprising one or two amide functions;
les amides cycliques ou les lactames ;  cyclic amides or lactams;
les composés organiques comprenant au moins une fonction amide et une fonction acide carboxylique ou une fonction alcool ;  organic compounds comprising at least one amide function and a carboxylic acid function or an alcohol function;
les composés organiques comprenant au moins une fonction amide et un hétéroatome supplémentaire d’azote.  organic compounds comprising at least one amide function and an additional nitrogen heteroatom.
10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel ledit composé organique comprend au moins une fonction amine répondant à la formule brute CxNyHz dans laquelle x est compris entre 1 et 20, y=1-x et z=2-(2x+2). The process according to any one of claims 1 to 9, wherein said organic compound comprises at least one amine function having the empirical formula C x N y H z wherein x is from 1 to 20, y = 1- x and z = 2- (2x + 2).
11. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel ledit oxyde poreux aluminique calciné selon l’étape a) est obtenu par les étapes suivantes : a1 ) une première étape de précipitation, en milieu réactionnel aqueux, d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, dans lequel au moins un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de la première étape compris entre 5 et 13%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite première étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape a3) du procédé de préparation, ladite étape opérant à une température comprise entre 20 et 90°C et pendant une durée comprise entre 2 minutes et 30 minutes; 11. A process according to any one of claims 1 to 10, wherein said calcined aluminous porous oxide according to step a) is obtained by the following steps: a1) a first precipitation step, in an aqueous reaction medium, from at least one basic precursor selected from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, in which at least one of the basic or acidic precursors comprises aluminum, the relative flow of acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the acidic and basic precursor (s) containing aluminum is adjusted so as to obtain a degree of progress of the first stage between 5 and 13%, the rate of progress being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said first precipitation step relative to the total amount of alumina formed at the end of step a3) of the process of preparation, said step operating at a temperature between 20 and 90 ° C and for a period of between 2 minutes and 30 minutes;
a2) une étape de chauffage de la suspension à une température comprise entre 40 et 90°C pendant une durée comprise entre 7 minutes et 45 minutes, a3) une deuxième étape de précipitation de la suspension obtenue à l'issue de l'étape de chauffage a2) par ajout dans la suspension d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, dans lequel au moins un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de la deuxième étape compris entre 87 et 95 %, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite deuxième étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape a3) du procédé de préparation, ladite étape opérant à une température comprise entre 40 et 90 °C et pendant une durée comprise entre 2 minutes et 50 minutes ; a2) a step of heating the suspension at a temperature between 40 and 90 ° C for a period of between 7 minutes and 45 minutes, a3) a second step of precipitating the suspension obtained at the end of the heating step a2) by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, acid hydrochloric acid and nitric acid, wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10, And the flow rate of the aluminum-containing acidic and basic precursor (s) is adjusted so as to obtain a progress rate of the second step of between 87 and 95%, the rate of progress being defined as the proportion of alumina formed in Al 2 0 3 equivalent during said second precipitation step relative to the total amount of alumina formed at the end of step a3) of the preparation process, said step operating at a temperature between 40 and 90 ° C and for a period of time between 2 minutes and 50 minutes;
a4) une étape de filtration de la suspension obtenue à l'issue de l'étape a3) de deuxième précipitation pour obtenir un gel d'alumine ;  a4) a filtration step of the suspension obtained at the end of the second precipitation step a3) to obtain an alumina gel;
a5) une étape de séchage dudit gel d'alumine obtenu à l'étape a4) pour obtenir une poudre ;  a5) a step of drying said alumina gel obtained in step a4) to obtain a powder;
a6) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape a5) entre 500 et 1000°C, pendant une durée comprise entre 2 et 10 h, en présence ou non d'un flux d'air contenant jusqu'à 60% volume d’eau pour obtenir un oxyde poreux aluminique calciné.  a6) a step of heat treatment of the powder obtained at the end of step a5) between 500 and 1000 ° C, for a duration of between 2 and 10 h, in the presence or absence of a flow of air containing up to 60% water volume to obtain a calcined aluminous porous oxide.
12. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel ledit oxyde poreux aluminique calciné selon l’étape a) est obtenu par les étapes suivantes : The process according to any one of claims 1 to 10, wherein said calcined aluminous porous oxide according to step a) is obtained by the following steps:
a1’) une étape de mise en solution d'un précurseur acide d'aluminium choisi parmi le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium dans l'eau, à une température comprise entre 20 et 90°C, à un pH compris entre 0,5 et 5, pendant une durée comprise entre 2 et 60 minutes,  a1 ') a step of dissolving an aluminum acid precursor chosen from aluminum sulphate, aluminum chloride and aluminum nitrate in water, at a temperature of between 20 and 90 ° C, at a pH of between 0.5 and 5, for a period of between 2 and 60 minutes,
a2’) une étape d’ajustement du pH par ajout dans la suspension obtenue à l'étape a1’) d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium, à une température comprise entre 20 et 90°C, et à un pH compris entre 7 et 10, pendant une durée comprise entre 5 et 30 minutes, a2 ') a step of adjusting the pH by adding to the suspension obtained in step a1') at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide, to a temperature between 20 and 90 ° C, and at a pH between 7 and 10, for a period of between 5 and 30 minutes,
a3’) une étape de coprécipitation de la suspension obtenue à l'issue de l'étape a2’) par ajout dans la suspension d’au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d’au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique et l'acide nitrique, au moins un des précurseurs basique ou acide comprenant de l'aluminium, le débit relatif des précurseurs acide et basique étant choisi de manière à obtenir un pH du milieu réactionnel compris entre 7 et 10 et le débit du ou des précurseurs acide et basique contenant de l'aluminium étant réglé de manière à obtenir une concentration en alumine finale dans la suspension comprise entre 10 et 38 g/L,  a3 ') a step of coprecipitation of the suspension obtained at the end of step a2') by adding to the suspension at least one basic precursor chosen from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid and nitric acid, at least one of the basic or acidic precursors comprising aluminum, the relative flow rate of the acidic and basic precursors being chosen so as to obtain a pH of the reaction medium of between 7 and 10 and the flow rate of the aluminum-containing acidic and basic precursors being adjusted so as to obtain a final alumina concentration in the suspension of between 10 and 38 g / l,
a4’) une étape de filtration de la suspension obtenue à l'issue de l'étape a3’) de coprécipitation pour obtenir un gel d'alumine,  a4 ') a filtration step of the suspension obtained at the end of the coprecipitation step a3') to obtain an alumina gel,
a5’) une étape de séchage dudit gel d'alumine obtenu à l'étape a4’) pour obtenir une poudre,  a5 ') a step of drying said alumina gel obtained in step a4') to obtain a powder,
a6’) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape a5’) à une température comprise entre 500 et 1000°C, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pendant une durée comprise entre 2 et 10 heures, pour obtenir un oxyde poreux aluminique calciné.  a6 ') a step of heat treatment of the powder obtained at the end of step a5') at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, for a period of between 2 and 10 hours, to obtain a calcined aluminous porous oxide.
13. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel ledit oxyde poreux aluminique calciné selon l’étape a) est obtenu par les étapes suivantes : The process according to any one of claims 1 to 10, wherein said calcined aluminous porous oxide according to step a) is obtained by the following steps:
a1”) au moins une première étape de précipitation d'alumine, en milieu réactionnel aqueux, d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de ladite première étape compris entre 40 et 100%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent AI203 lors de ladite première étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape c) du procédé de préparation, ladite première étape de précipitation opérant à une température comprise entre 10 et 50 °C, et pendant une durée comprise entre 2 minutes et 30 minutes ; a1 ") at least a first step of precipitating alumina, in aqueous reaction medium, of at least one basic precursor chosen from sodium aluminate, potassium aluminate, aqueous ammonia, sodium hydroxide and potassium hydroxide and at least one acidic precursor selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid, and nitric acid, in wherein at least one of the basic or acidic precursors comprises aluminum, the relative flow rate of the acidic and basic precursors is chosen so as to obtain a pH of the reaction medium of between 8.5 and 10.5 and the flow rate of the acidic and basic precursors containing aluminum are set so as to obtain an advancement rate of said first stage of between 40 and 100%, the advancement rate being defined as the proportion of alumina formed in equivalent AI203 during said first precipitation step relative to the total amount of alumina formed at the end of step c) of the process of preparation, said first precipitation step operating at a temperature between 10 and 50 ° C, and for a time between 2 minutes and 30 minutes;
a2”) une étape de traitement thermique de la suspension chauffée à une température comprise entre 50 et 200°C pendant une durée comprise entre 30 minutes et 5 heures permettant l'obtention d'un gel d'alumine ;  a2 ") a heat treatment step of the suspension heated to a temperature between 50 and 200 ° C for a period of between 30 minutes and 5 hours to obtain an alumina gel;
a3”) une étape de filtration de la suspension obtenue à l'issue de l'étape a2”) de traitement thermique, suivie d'au moins une étape de lavage du gel obtenu ;  a3 ") a filtration step of the suspension obtained at the end of step a2") of heat treatment, followed by at least one washing step of the gel obtained;
a4”) une étape de séchage du gel d'alumine obtenu à l'issue de l'étape a3”) pour obtenir une poudre ;  a4 ") a step of drying the alumina gel obtained at the end of step a3") to obtain a powder;
a5”) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape a4”) à une température comprise entre 500 et 1000°C, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pour obtenir un oxyde poreux aluminique calciné.  a5 ") a step of heat treatment of the powder obtained at the end of step a4") at a temperature of between 500 and 1000 ° C., with or without a flow of air containing up to 60 % by volume of water, to obtain a calcined aluminous porous oxide.
14. Procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu selon l’une quelconque des revendications 1 à 13. 14. Process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenes and / or alkenylaromates, contained in a hydrocarbon feed having a lower final boiling point or equal to 300 ° C., which process is carried out at a temperature of between 0 and 300 ° C., at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0, 1 and 10 and at a hourly space velocity of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.5 and 1000 and at a temperature of hourly volume velocity between 100 and 40000 h 1 when the process is carried out in the gaseous phase, in the presence of a catalyst obtained according to any one of claims 1 to 13.
15. Procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, ledit procédé étant réalisé en phase gazeuse ou en phase liquide, à une température comprise entre 30 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h 1, en présence d’un catalyseur obtenu selon l’une quelconque des revendications 1 à 13. 15. A process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point of less than or equal to 650 ° C., said process being carried out in the gas phase or in the liquid phase, a temperature between 30 and 350 ° C, at a pressure of between 0.1 and 20 MPa, at a molar ratio of hydrogen / (aromatic compounds to be hydrogenated) between 0.1 and 10 and at a hourly volume velocity VVH of between 0.05 and 50 h 1 , in the presence of a catalyst obtained according to any one of Claims 1 to 13.
EP19700010.2A 2018-01-15 2019-01-02 Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading Active EP3740309B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1850280A FR3076747B1 (en) 2018-01-15 2018-01-15 METHOD FOR PREPARING A PARTICULAR CATALYST FOR SELECTIVE HYDROGENATION AND HYDROGENATION OF AROMATICS BY MIXING
PCT/EP2019/050025 WO2019137836A1 (en) 2018-01-15 2019-01-02 Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading

Publications (2)

Publication Number Publication Date
EP3740309A1 true EP3740309A1 (en) 2020-11-25
EP3740309B1 EP3740309B1 (en) 2023-03-15

Family

ID=62067664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19700010.2A Active EP3740309B1 (en) 2018-01-15 2019-01-02 Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading

Country Status (4)

Country Link
US (1) US20200338531A1 (en)
EP (1) EP3740309B1 (en)
FR (1) FR3076747B1 (en)
WO (1) WO2019137836A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104602A1 (en) * 2019-12-17 2021-06-18 IFP Energies Nouvelles Finishing hydrodesulfurization process in the presence of a catalyst obtained by the molten salt route
FR3104462B1 (en) * 2019-12-17 2022-06-10 Ifp Energies Now CATALYST FOR THE HYDROGENATION OF AROMATIC COMPOUNDS OBTAINED FROM MOLTEN SALTS AND AN ORGANIC ADDITIVE
FR3104461B1 (en) * 2019-12-17 2022-06-17 Ifp Energies Now SELECTIVE HYDROGENATION CATALYST OBTAINED FROM MOLTEN SALTS AND AN ORGANIC ADDITIVE
FR3104463B1 (en) * 2019-12-17 2021-12-17 Ifp Energies Now HYDROGENOLYSIS CATALYST OBTAINED FROM MOLTEN SALTS AND AN ORGANIC ADDITIVE
JP2024533624A (en) * 2021-09-16 2024-09-12 サーク、エルエルシー Method for forming polyesters from regenerated diacids formed by depolymerization of waste materials
TW202330759A (en) * 2021-09-16 2023-08-01 美商賽克股份有限公司 Method of aging regenerated diacid crystals

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273680A (en) 1979-11-06 1981-06-16 Exxon Research & Engineering Co. Supported non-ferrous group VIII aluminate coprecipitated hydrogenation catalysts and process for their preparation
GB9010075D0 (en) * 1990-05-04 1990-06-27 Shell Int Research Process for the preparation of alumina based extrudates
FR2664507B1 (en) 1990-07-13 1995-04-14 Eurecat Europ Retrait Catalys PROCESS FOR PRETREATING A CATALYST WITH A MIXTURE OF A SULFUR AGENT AND AN ORGANIC REDUCING AGENT.
FR2664610A1 (en) 1990-07-13 1992-01-17 Inst Francais Du Petrole SELECTIVE HYDROGENATION OF VAPOCRACKING SPECIES ON CATALYSTS BASED ON A SUPPORTED METAL IN WHICH AN ORGANIC COMPOUND HAS BEEN INCORPORATED BEFORE LOADING INTO THE REACTOR.
FR2676184B1 (en) 1991-05-06 1995-04-14 Eurecat Europ Retrait Catalys PROCESS FOR PRETREATING A CATALYST WITH A MIXTURE OF A SULFUR AGENT AND AN ORGANIC REDUCING AGENT.
KR100297939B1 (en) * 1993-02-15 2001-10-22 다께우찌 야스오끼 METHOD FOR PREPARING CATALYST COMPOSITION AND METHOD FOR HYDROGEN SULFURING SULFUR-CONTAINING HYDROCARBONES USING THE SAME
DE4310971A1 (en) 1993-04-03 1994-10-06 Huels Chemische Werke Ag Nickel / alumina catalyst, process for its preparation, its use and process for the hydrogenation of aromatic hydrocarbons with the aid of the catalyst
FR2725381B1 (en) 1994-10-07 1996-12-13 Eurecat Europ Retrait Catalys OFF-SITE PRETREATMENT PROCESS FOR A HYDROCARBON TREATMENT CATALYST
GB0227086D0 (en) 2002-11-20 2002-12-24 Exxonmobil Res & Eng Co Hydrogenation processes
FR2854335B1 (en) 2003-04-30 2009-03-20 Eurecat Sa OFF-SITE TREATMENT OF HYDROGENATION CATALYSTS
DE102007012812A1 (en) 2007-03-16 2008-09-18 Süd-Chemie AG Method for the desulphurisation of fuels and suitable high-activity nickel-supported catalyst based on alumina
WO2009050292A2 (en) 2007-10-19 2009-04-23 Shell Internationale Research Maatschappij B.V. Catalyst for the hydrogenation of unsaturated hydrocarbons and process for its preparation
GB201000045D0 (en) 2010-01-04 2010-02-17 Johnson Matthey Plc Catalyst and method of catalyst manufacture
FR2963344B1 (en) * 2010-07-29 2012-07-27 IFP Energies Nouvelles METHOD OF SELECTIVE HYDROGENATION IN THE PRESENCE OF A CATALYST BASED ON A GROUP VIII METAL PREPARED BY MEANS OF AT LEAST ONE CYCLIC OLIGOSACCHARIDE
FR2984761B1 (en) * 2011-12-21 2014-12-26 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A CATALYST BASED ON A GROUP VIII METAL PREPARED USING AT LEAST ONE ORGANIC ADDITIVE AND METHOD OF SELECTIVE HYDROGENATION USING SAID CATALYST
WO2015046323A1 (en) * 2013-09-27 2015-04-02 コスモ石油株式会社 Hydrogenation treatment catalyst for heavy hydrocarbon oil, and method for hydrogenation treatment of heavy hydrocarbon oil
CN104549286B (en) * 2013-10-23 2017-05-17 中国石油化工股份有限公司 Hydrorefining catalyst as well as preparation method thereof and application thereof
FR3022160B1 (en) * 2014-06-13 2021-05-07 Ifp Energies Now ACTIVE PHASE CATALYST OF MESOPOREOUS AND MACROPOREOUS COMALAXED NICKEL WITH A MEDIAN MACROPOREOUS DIAMETER BETWEEN 50 AND 300 NM AND ITS USE IN HYDROGENATION
FR3022161B1 (en) * 2014-06-13 2021-05-07 Ifp Energies Now ACTIVE PHASE CATALYST OF MESOPOREOUS AND MACROPOREOUS COMALAXED NICKEL WITH A MEDIAN MACROPOREOUS DIAMETER GREATER THAN 300 NM AND ITS USE IN HYDROGENATION
FR3022162B1 (en) * 2014-06-13 2021-05-07 Ifp Energies Now MESOPOREOUS AND MACROPOROUS NICKEL BASED CATALYST WITH A MEDIAN MACROPOROUS DIAMETER BETWEEN 50 NM AND 200 NM AND ITS USE IN HYDROGENATION
CN106140315B (en) * 2015-04-15 2018-11-30 中国石油化工股份有限公司 A kind of hydrogenation catalyst and its application in hydrocarbon oil hydrogenation

Also Published As

Publication number Publication date
FR3076747B1 (en) 2022-06-10
WO2019137836A1 (en) 2019-07-18
US20200338531A1 (en) 2020-10-29
EP3740309B1 (en) 2023-03-15
FR3076747A1 (en) 2019-07-19

Similar Documents

Publication Publication Date Title
FR3076746A1 (en) PROCESS FOR THE PREPARATION OF A PARTICULAR CATALYST OF SELECTIVE HYDROGENATION BY MIXING AND IMPREGNATION
WO2019137836A1 (en) Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading
FR3061198B1 (en) HYDROGENATION PROCESS FOR AROMATICS USING A NICKEL CATALYST
EP3559165B1 (en) Selective hydrogenation process with a nickel based catalyst prepared by an additive having a carboxylic acid function
EP4003587B1 (en) Catalyst comprising an active nickel phase in the form of small particles distributed in a shell and a nickel-copper alloy
EP4003591A1 (en) Catalyst comprising an active nickel phase in the form of small particles and a nickel-copper alloy
WO2021018602A1 (en) Catalyst comprising an active nickel phase in the form of small particles distributed in a shell
WO2020083714A1 (en) Hydrogenation process comprising a catalyst prepared by addition of an organic compound in the gas phase
FR3099387A1 (en) CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST
FR3061197A1 (en) SELECTIVE HYDROGENATION PROCESS USING A NICKEL CATALYST PREPARED USING AN ADDITIVE COMPRISING AN ESTER FUNCTION
WO2018114398A1 (en) Selective hydrogenation method using a nickel-based catalyst produced using an additive comprising an alcohol function
FR3099389A1 (en) CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL SULFUR DISTRIBUTED IN CRUST
FR3068983A1 (en) SELECTIVE HYDROGENATION PROCESS USING A CATALYST OBTAINED BY IMPREGNATION COMPRISING A SPECIFIC SUPPORT
FR3061195A1 (en) SELECTIVE HYDROGENATION PROCESS USING A PREPARED NICKEL CATALYST USING AN ADDITIVE COMPRISING AMINO ACID, AMIDE FUNCTION OR AN AMINO ACID
WO2024017703A1 (en) Method for preparing a catalyst containing an active nickel phase and a nickel-copper alloy
EP4373611A1 (en) Method for preparing a catalyst comprising an active nickel phase distributed in a shell via hexanol impregnation
EP4373612A1 (en) Method for preparing a catalyst comprising a nickel active phase distributed in a crust via impregnation of heptanol
WO2021197845A1 (en) Method for preparing a palladium catalyst comprising a carrier prepared from an aluminium material and a polyol
FR3068982A1 (en) SELECTIVE HYDROGENATION PROCESS USING A CATALYST OBTAINED BY COMALAXING COMPRISING A SPECIFIC SUPPORT

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210709

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 45/48 20060101ALN20220824BHEP

Ipc: C10G 45/36 20060101ALN20220824BHEP

Ipc: C10G 45/32 20060101ALN20220824BHEP

Ipc: C10G 45/60 20060101ALN20220824BHEP

Ipc: B01J 37/04 20060101ALI20220824BHEP

Ipc: B01J 35/10 20060101ALI20220824BHEP

Ipc: B01J 23/755 20060101AFI20220824BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019026387

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1553665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1553665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230717

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019026387

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

26N No opposition filed

Effective date: 20231218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240125

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 6

Ref country code: GB

Payment date: 20240123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240125

Year of fee payment: 6

Ref country code: BE

Payment date: 20240125

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240102