EP3739090B1 - Rotor spinning machine and method for identifying a spinning rotor on a rotor spinning machine - Google Patents

Rotor spinning machine and method for identifying a spinning rotor on a rotor spinning machine Download PDF

Info

Publication number
EP3739090B1
EP3739090B1 EP20174588.2A EP20174588A EP3739090B1 EP 3739090 B1 EP3739090 B1 EP 3739090B1 EP 20174588 A EP20174588 A EP 20174588A EP 3739090 B1 EP3739090 B1 EP 3739090B1
Authority
EP
European Patent Office
Prior art keywords
rotor
spinning
bearing
spinning rotor
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20174588.2A
Other languages
German (de)
French (fr)
Other versions
EP3739090A1 (en
Inventor
Peter Dirnberger
Milan Moravec
Andreas Josef Pröll
Jiri Sloupensky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP3739090A1 publication Critical patent/EP3739090A1/en
Application granted granted Critical
Publication of EP3739090B1 publication Critical patent/EP3739090B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/04Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
    • D01H4/08Rotor spinning, i.e. the running surface being provided by a rotor
    • D01H4/10Rotors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/04Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
    • D01H4/08Rotor spinning, i.e. the running surface being provided by a rotor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/04Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
    • D01H4/08Rotor spinning, i.e. the running surface being provided by a rotor
    • D01H4/12Rotor bearings; Arrangements for driving or stopping
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/04Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by contact of fibres with a running surface
    • D01H4/08Rotor spinning, i.e. the running surface being provided by a rotor
    • D01H4/12Rotor bearings; Arrangements for driving or stopping
    • D01H4/14Rotor driven by an electric motor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/42Control of driving or stopping
    • D01H4/44Control of driving or stopping in rotor spinning

Definitions

  • the present invention relates to a method for identifying a spinning rotor on a rotor spinning machine, in which the spinning rotor is mounted in a floating manner in an at least radially acting magnetic bearing and rotates in the bearing during spinning operation, and in which at least one variable system variable is compared with at least one reference value. Furthermore, the invention relates to a rotor spinning machine for using the method.
  • a spinning rotor In a rotor spinning machine, textile fibers are compacted into yarns in a known manner by rotating a spinning rotor at high speed.
  • the spinning rotor usually consists of a rotor cup, in which the yarn is produced, and a rotor shaft, which is used for torque transmission and coupling to a bearing.
  • modern rotor spinning machines have a large number of individual work stations. These machines are able to produce different yarns, for example from different materials.
  • the object of the present invention is to further develop the known methods in such a way that an alternative identification of an installed spinning rotor is made possible.
  • the inventive method is used to identify a spinning rotor on a rotor spinning machine, wherein the spinning rotor is suspended in an at least radially acting electromagnetic bearing and during of a spinning mill rotates in storage. At least one variable system variable is compared with at least one reference value. It is proposed that the at least one variable system variable is an energy absorption of the bearing, a radial position of the spinning rotor and/or a resonant frequency of the spinning rotor.
  • variable system variables mentioned depend directly on the physical properties of the spinning rotor and are therefore particularly suitable for identifying the spinning rotor.
  • the particularly automatic detection of the spinning rotor by the rotor spinning machine can ensure that the spinning machine can only be operated with operating parameters that are adapted to the individual spinning rotor, for example. This restriction can ensure safe and efficient operation of the rotor spinning machine.
  • the at least one reference value is preferably established during a calibration.
  • Various spinning rotors are installed in the rotor spinning machine and the corresponding variable system variables are determined.
  • the calibration can be carried out, for example, by the manufacturer before delivery of the corresponding rotor spinning machine. However, it is also conceivable that the user of the rotor spinning machine carries out any necessary calibration himself.
  • the spinning rotor is suspended in an electromagnetic bearing that acts at least radially, with at least the radial position of the spinning rotor being actively influenced by the bearing.
  • an active electromagnetic bearing can dampen undesired vibrations of the spinning rotor during the spinning operation.
  • the active bearing can also contribute to the identification of the spinning rotor by influencing the radial position of the spinning rotor in a specific way and determining the effects of this influence (see below).
  • prior identification of the spinning rotor is also for control advantageous for storage. For example, if the mass of the spinning rotor is known, the effects of damping interventions in the bearing can be predicted and dosed accordingly. If the bearing also acts axially, it is of course also conceivable that an axial position of the spinning rotor is also actively influenced by the bearing.
  • a radial position of the spinning rotor is detected by at least one sensor and/or by the bearing.
  • the sensor can be used to determine the radial position of the spinning rotor as a variable system variable.
  • the sensor can also detect vibrations of the spinning rotor and thus serve as a basis for dampening interventions in the bearing, for example.
  • the sensor can be designed as an inductive, capacitive, magnetic or optical displacement sensor. An embodiment as an eddy current sensor is also conceivable. By measuring vibrations, it is also possible to determine the resonance frequency of the spinning rotor (see below).
  • At least one change in the position of the spinning rotor can also be detected by a signal induced in the bearing.
  • An additional position sensor can thus possibly be dispensed with, or the accuracy of the position detection can be increased by the shared use of at least one sensor and the bearing. It is also conceivable that an axial position of the spinning rotor is detected by a sensor.
  • the position of the floating spinning rotor is varied in such a way that the energy consumption of the bearing is minimal and the position is then compared with at least one position reference value.
  • a minimized energy consumption of the bearing is advantageous for the energy consumption of the rotor spinning machine.
  • the position, in particular the radial position can allow conclusions to be drawn about the physical properties of the spinning rotor when the energy absorption of the bearing is minimized. This is fundamental to the fact that there is only one position of minimum energy absorption of the bearing for a specific spinning rotor, and this depends, for example, on the mass of the spinning rotor. Varying the position of the spinning rotor and minimizing the energy absorption of the bearing can take place while the spinning rotor is not rotating. On the other hand, it is conceivable to carry out the method with the spinning rotor rotating.
  • the spinning rotor is brought into a defined radial position and the energy consumption of the bearing is then compared with at least one energy consumption reference value.
  • this energy absorption is again characteristic of the respective spinning rotor, since it depends, for example, on its mass.
  • the process preferably takes place with a non-rotating spinning rotor.
  • the spinning rotor is advantageously made to oscillate by the bearing and the resonant frequency of the spinning rotor is determined from a decay behavior of the oscillation. This is then compared with at least one resonant frequency reference value.
  • the resonant frequency of the spinning rotor as a rigid body is also characteristic of a specific shape and mass and is therefore suitable for identification.
  • the active bearing can give the spinning rotor a movement impulse and the decay time of the resulting vibration can be determined with the sensor or via the bearing. The respective spinning rotor can be identified from this vibration behavior.
  • the resonance frequency of the spinning rotor is determined from an increase in an amplitude of an oscillation of the spinning rotor and this is then compared with at least one resonance frequency reference value.
  • the maximum amplitude of vibration occurs when the spinning rotor rotates at a speed equal to its resonant frequency. This speed is also called the critical speed.
  • the spinning rotor does not have to be accelerated to the critical speed for the process.
  • the critical speed can be extrapolated from the increase in the amplitude of the vibration.
  • the amplitude of the vibration can be measured via the sensor already described and/or by signals induced in the bearing.
  • a mass, a shape, a volume and/or a material of the spinning rotor is determined from the comparison of the variable system variable with the reference value.
  • the physical properties mentioned are closely related to each other and directly influence the variable system variables described. It is conceivable that one of the listed physical properties is the same for different spinning rotors. For example, it is conceivable that two spinning rotors have the same mass but not the same shape or the same volume. It can therefore make sense to determine several of the properties in order to arrive at a clear identification.
  • Different spinning rotors can withstand different loads and are particularly suitable for the production of different yarns.
  • the range of functions of the spinning operation means, on the one hand, general operating parameters of the rotor spinning machine. For example, the maximum speed or a maximum torque can be limited during the acceleration of the spinning rotor, depending on the result of the identification. Cleaning or maintenance intervals can also be adapted to the spinning rotor.
  • an operator of the rotor spinning machine preferably in connection with an article management system, is only offered specific yarns for production depending on the installed spinning rotor.
  • An article management system manages rotor spinning machine settings for the production of specific yarns. It is conceivable that when a specific yarn or recipe is selected from the item management system, the installation of a specific spinning rotor will be suggested.
  • the rotor spinning machine has at least one work station.
  • the at least one work station in turn comprises a spinning rotor which is mounted in a floating manner in an at least radially acting electromagnetic bearing and which rotates within the bearing during a spinning operation.
  • the at least one work station includes a controller. It is proposed that the controller be designed to identify the spinning rotor, with at least one variable system variable being compared with at least one reference value, with the at least one variable system variable being an energy absorption of the bearing, a radial position of the spinning rotor and/or a resonance frequency of the spinning rotor is.
  • a preferably automated identification of the built-in spinning rotor based on its physical properties can improve the safety and the efficiency of the operation of the rotor spinning machine.
  • the spinning rotor or at least parts of the spinning rotor of the rotor spinning machine can be exchanged.
  • the rotor cup of the spinning rotor is exchangeable.
  • the rotor spinning machine can have a large number of work stations which, in particular, can be operated at least partially independently of one another. Each job has its own spinning rotor, which is preferably driven by an individual drive. Other features of the workplace of the rotor spinning machine can be, in particular, opening and winding rollers as well as yarn sensors and suction devices.
  • the control of the work station can be connected to controls of other work stations and/or to a higher-level machine control.
  • the controller can be designed as an integrated circuit, for example.
  • the bearing is an electromagnetic bearing with at least one electromagnet.
  • a bearing allows the active regulation of the position of the spinning rotor and thus, for example, an orientation in which the bearing and/or the drive consumes little energy. Vibrations of the spinning rotor can also be dampened by the bearing or minimized by advantageous positioning of the spinning rotor.
  • the active bearing can be used for the method of identifying the spinning rotor, on the one hand by minimizing the energy consumption of the bearing by varying the position of the spinning rotor, or by determining a characteristic energy consumption of the bearing for a given position.
  • the bearing can have several bearing elements, for example bearing rings. In particular, two bearing elements are provided.
  • the position of the spinning rotor can be regulated via the current flowing in a coil of the at least one electromagnet.
  • the storage can have both electromagnets and permanent magnets. In the event of a failure of the bearing, an additional safety bearing is preferably provided.
  • the controller is connected to at least one sensor for detecting a position and/or a movement of the spinning rotor.
  • the sensor can be in the form of an inductive, capacitive, magnetic or optical displacement sensor be.
  • An embodiment as an eddy current sensor is also conceivable.
  • two sensors are provided.
  • the bearing can be used to detect the movement of the spinning rotor as an alternative or in addition. For this purpose, current and/or voltage changes in the coils of the bearing can be evaluated.
  • the bearing also acts axially or an additional axial bearing is provided. If the bearing has an axial effect, at least one additional axial bearing element may be required. Controlling the position of the spinning rotor in the radial and axial directions together can be beneficial by further reducing power consumption and vibration.
  • the additional axial bearing can also be magnetic and, in particular, active.
  • the axial bearing preferably has at least one electromagnet. It is also conceivable that the axial bearing has at least one permanent magnet.
  • An article management system can provide an operator of the rotor spinning machine with a database of yarns to be produced with the associated operating parameters and setting values for the rotor spinning machine.
  • the corresponding operating parameters and setting values can preferably be applied automatically to the rotor spinning machine when a yarn to be produced is selected.
  • the selection of possible yarns can depend on the built-in spinning rotor or a successful identification of the spinning rotor.
  • the article management system can be designed as a central computer, integrated into a controller of the rotor spinning machine, or be available from a central location via the Internet. It is conceivable that the database of the parts management system also contains reference values for the variable system variables.
  • the controller has a memory for position reference values, energy consumption reference values and/or resonant frequency reference values.
  • the reference values can be determined, for example, by the manufacturer of the rotor spinning machine and in particular during initial commissioning and stored in the memory. It is alternatively conceivable for these reference values to be stored in a memory, in particular a central memory, and for the controller to be connected to the memory, or for these reference values to be made available by the manufacturer via the Internet, for example.
  • FIG figure 1 shows a rotor spinning machine 1 according to the invention with several work stations 2, in which textile fibers are spun into yarns 3 in the known rotor spinning process.
  • the yarn 3 is wound onto a spool 4 in each case.
  • the work stations 2 each have a spinning rotor 5 with a magnetic bearing 6 and a control 7 (see FIG figure 2 ).
  • the controller 7 is designed in each case to identify the spinning rotor 5, with at least one energy absorption of the bearing 6, a radial position of the spinning rotor 5 and/or a resonance frequency of the spinning rotor 5 being compared as a variable system variable with at least one corresponding reference value.
  • FIG 2 shows a view of the spinning rotor 5 installed in one of the work stations 2 with the magnetic bearing 6 and the controller 7.
  • the spinning rotor 5 consists of a rotor cup 8 and a rotor shaft 9, with the rotor cup 8 and rotor shaft 9 preferably being detachably connected to one another.
  • yarn production takes place in the rotor cup 8 , the rotor cup 8 having a specific shape that is particularly suitable for the production of specific yarns 3 .
  • the entire spinning rotor 5 or at least the rotor cup 8 can be exchanged, which makes it necessary for the controller 7 to identify the spinning rotor 5 as automatically as possible.
  • the rotor shaft 9 is used for coupling to the bearing 6 and a drive 10.
  • the drive 10 can be designed, for example, as an electric motor, in which case the rotor shaft 9 can be the rotor of the electric motor at the same time.
  • the bearing 6 has two bearing elements 11 which are preferably designed as bearing rings.
  • the storage elements 11 can have electromagnets and possibly permanent magnets and are connected to the controller 7 .
  • the controller 7 can, for example, actively regulate the radial position of the floating spinning rotor 5 and, for example, dampen unwanted vibrations during the spinning operation.
  • the bearing elements 11 can serve as position sensors for the spinning rotor 5 since movements of the spinning rotor 5 lead to changes in the current and/or the voltage in the electromagnets of the bearing elements 11.
  • the position of the spinning rotor 5 can be varied in such a way that the energy absorption of the bearing 6, which is necessary to keep the spinning rotor 5 in suspension, is minimal.
  • the energy absorption of the bearing 6 can be determined at a predetermined position of the spinning rotor 5.
  • the spinning rotor 5 can also be identified based on its resonant frequency.
  • the resonance frequency is characteristic of the mass and the shape of the spinning rotor 5.
  • the resonance frequency can be determined from the increase in the amplitude of the vibration of the spinning rotor 5 during the accelerated rotation.
  • the spinning rotor 5 can also be made to vibrate by the bearing 6 and the resonant frequency can be determined on the basis of the decay behavior, in particular the decay time, of the vibration.
  • a variable system variable is determined which depends on the physical properties of the spinning rotor 5 and which allows the spinning rotor 5 installed in the work station 2 of the rotor spinning machine 1 to be assigned by means of a comparison with known reference values.
  • FIG 3 shows the view of another spinning rotor 5 of the rotor spinning machine 1 according to the invention.
  • the shape of the Spinning rotor 5, in particular the shape of the rotor cup 8 changed.
  • the identification of the spinning rotor 5 according to the method according to the invention will therefore lead to a different result compared to the previous exemplary embodiment.
  • the rotor shaft 9 is connected to an additional axial bearing 12, which is also designed as a magnetic bearing, for example.
  • the axial bearing 12 can be passive, for example.
  • the controller 7 is connected to a sensor 13 for measuring the radial position of the spinning rotor 5 in addition to the bearing elements 11 of the radial bearing 6 .
  • this sensor 13 can only measure the variable system variable of the position of the spinning rotor 5, or on the other hand it can be used together with the position or movement information of the bearing 6. Of course, the sensor 13 can also be used to measure movements, such as vibrations, of the spinning rotor 5 . Other sensors 13 are also conceivable.
  • the controller 7 is also connected to an article management system 14 that contains operating parameters and setting values for the rotor spinning machine 1 for producing different yarns 3 .
  • an article management system 14 that contains operating parameters and setting values for the rotor spinning machine 1 for producing different yarns 3 .
  • a preselection of the recipes provided by the article management system 14 for the production of yarns 3 can be made, for example, depending on the current spinning rotor 5. It is also conceivable for a recipe selected by an operator to be executed only after the spinning rotor 5 has been successfully identified, or for the operator to be prompted to install a different spinning rotor 5 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Identifikation eines Spinnrotors an einer Rotorspinnmaschine, wobei der Spinnrotor in einer zumindest radial wirkenden magnetischen Lagerung schwebend gelagert ist und sich während eines Spinnbetriebs in der Lagerung dreht und wobei wenigstens eine variable Systemgröße mit wenigstens einem Referenzwert verglichen wird. Weiterhin betrifft die Erfindung eine Rotorspinnmaschine zur Anwendung des Verfahrens.The present invention relates to a method for identifying a spinning rotor on a rotor spinning machine, in which the spinning rotor is mounted in a floating manner in an at least radially acting magnetic bearing and rotates in the bearing during spinning operation, and in which at least one variable system variable is compared with at least one reference value. Furthermore, the invention relates to a rotor spinning machine for using the method.

In einer Rotorspinnmaschine werden in bekannter Weise durch das Rotieren eines Spinnrotors bei hoher Drehzahl Textilfasern zu Garnen verdichtet. Der Spinnrotor besteht in der Regel aus einer Rotortasse, in der die Garnerzeugung stattfindet, und einem Rotorschaft, der der Drehmomentübertragung und der Kopplung an eine Lagerung dient. Moderne Rotorspinnmaschinen weisen bekanntermaßen eine Vielzahl von individuellen Arbeitsstellen auf. Diese Maschinen sind in der Lage unterschiedliche Garne beispielsweise aus unterschiedlichen Materialien herzustellen. Es können hierbei verschiedene Anforderungen an die Spinnrotoren bestehen. Deshalb ist es üblich, austauschbare Spinnrotoren mit unterschiedlichen Größen und/oder Formen vorzusehen. Insbesondere Umfang und Form der Rotortasse können variiert werden. Mit dem Wechsel der Spinnrotoren können sich die zulässigen Betriebsparameter der Arbeitsstelle bzw. Spinnmaschine verändern. Um eine gleichbleibende Garnqualität und eine hohe Betriebssicherheit zu gewährleisten, besteht daher ein Bedarf an Verfahren und Vorrichtungen zur automatischen Identifikation des eingebauten Spinnrotors.In a rotor spinning machine, textile fibers are compacted into yarns in a known manner by rotating a spinning rotor at high speed. The spinning rotor usually consists of a rotor cup, in which the yarn is produced, and a rotor shaft, which is used for torque transmission and coupling to a bearing. As is known, modern rotor spinning machines have a large number of individual work stations. These machines are able to produce different yarns, for example from different materials. There can be different requirements for the spinning rotors. Therefore, it is common to provide interchangeable spinning rotors of different sizes and/or shapes. In particular, the size and shape of the rotor cup can be varied. Changing the spinning rotors can change the permissible operating parameters of the work station or spinning machine. In order to ensure consistent yarn quality and high operational reliability, there is therefore a need for methods and devices for automatically identifying the installed spinning rotor.

Aus der DE 10 2007 028 935 A1 ist ein Verfahren zum Erkennen von Verschmutzungen oder Fehlern in einer magnetischen Lagerung eines Rotors einer elektrischen Maschine bekannt, bei dem während eines Abhebens des Rotors aus verschiedenen axialen Endstellungen variable Systemgrößen ermittelt und mit Referenzwerten verglichen werden. Bei zu großer Abweichung wird beispielsweise ein Anlaufen der Maschine verhindert. Einerseits wird bei dem bekannten Verfahren nur ein axialer Bewegungsfreiheitsgrad zum Ermitteln der variablen Systemgröße genutzt. Andererseits werden mit dem Verfahren Fehler oder Verschmutzungen identifiziert und nicht der eingebaute Spinnrotor. Ein ähnliches Verfahren ist aus der DE 44 04 243 A1 bekannt, bei dem zur Verbesserung der Sicherheit einer Offenend-Rotorspinnmaschine die dem Antrieb zugeführte elektrische Energie überwacht wird, wobei bei einer Überschreitung von bestimmten Grenzwerten der Antrieb abgeschaltet wird.From the DE 10 2007 028 935 A1 a method for detecting contamination or faults in a magnetic bearing of a rotor of an electrical machine is known in which during a lifting of the Rotor variable system variables are determined from different axial end positions and compared with reference values. If the deviation is too large, the machine is prevented from starting, for example. On the one hand, in the known method, only one degree of axial freedom of movement is used to determine the variable system size. On the other hand, errors or contamination are identified with the method and not the built-in spinning rotor. A similar procedure is from DE 44 04 243 A1 known in which to improve the safety of an open-end rotor spinning machine, the electrical energy supplied to the drive is monitored, with the drive being switched off when certain limit values are exceeded.

Aus der EP 0 922 797 A2 ist beispielsweise ein Verfahren bekannt, bei dem ein Spinnrotor einer Offenend-Spinnvorrichtung durch das Auslesen einer am Spinnrotor angeordneten Identifikationsmarkierung mittels eines Sensors durchgeführt wird. Ein weiteres Verfahren zur Identifikation eines Spinnrotors ist aus der EP 3 305 952 A1 bekannt. Dort wird eine zum Erreichen einer bestimmten Drehzahl benötigte Beschleunigungszeit oder die in einer bestimmten Beschleunigungszeit erreichte Drehzahl als charakteristische Größe zur Identifikation des Spinnrotors verwendet.From the EP 0 922 797 A2 For example, a method is known in which a spinning rotor of an open-end spinning device is guided through the reading of an identification mark arranged on the spinning rotor by means of a sensor. Another method for identifying a spinning rotor is from EP 3 305 952 A1 known. There, an acceleration time required to reach a specific speed or the speed reached in a specific acceleration time is used as a characteristic variable for identifying the spinning rotor.

Aufgabe der vorliegenden Erfindung ist es, die bekannten Verfahren derart weiterzuentwickeln, dass eine alternative Identifikation eines eingebauten Spinnrotors ermöglicht wird.The object of the present invention is to further develop the known methods in such a way that an alternative identification of an installed spinning rotor is made possible.

Die Aufgabe wird gelöst durch ein Verfahren und eine Rotorspinnmaschine mit den Merkmalen der unabhängigen Patentansprüche.The object is achieved by a method and a rotor spinning machine with the features of the independent patent claims.

Das erfindungsgemäße Verfahren dient zur Identifikation eines Spinnrotors an einer Rotorspinnmaschine, wobei der Spinnrotor in einer zumindest radial wirkenden elektromagnetischen Lagerung schwebend gelagert ist und sich während eines Spinnbetriebs in der Lagerung dreht. Wenigstens eine variable Systemgröße wird mit wenigstens einem Referenzwert verglichen. Es wird vorgeschlagen, dass die wenigstens eine variable Systemgröße eine Energieaufnahme der Lagerung, eine radiale Position des Spinnrotors und/oder eine Resonanzfrequenz des Spinnrotors ist.The inventive method is used to identify a spinning rotor on a rotor spinning machine, wherein the spinning rotor is suspended in an at least radially acting electromagnetic bearing and during of a spinning mill rotates in storage. At least one variable system variable is compared with at least one reference value. It is proposed that the at least one variable system variable is an energy absorption of the bearing, a radial position of the spinning rotor and/or a resonant frequency of the spinning rotor.

Die genannten variablen Systemgrößen hängen direkt von den physikalischen Eigenschaften des Spinnrotors ab und eignen sich daher besonders zur Identifikation des Spinnrotors. Die insbesondere automatische Erkennung des Spinnrotors durch die Rotorspinnmaschine kann sicherstellen, dass die Spinnmaschine beispielsweise nur mit auf den individuellen Spinnrotor angepassten Betriebsparametern betrieben werden kann. Diese Einschränkung kann einen sicheren und effizienten Betrieb der Rotorspinnmaschine sicherstellen.The variable system variables mentioned depend directly on the physical properties of the spinning rotor and are therefore particularly suitable for identifying the spinning rotor. The particularly automatic detection of the spinning rotor by the rotor spinning machine can ensure that the spinning machine can only be operated with operating parameters that are adapted to the individual spinning rotor, for example. This restriction can ensure safe and efficient operation of the rotor spinning machine.

Vorzugsweise wird der wenigstens eine Referenzwert während einer Kalibration festgelegt. Verschiedene Spinnrotoren werden hierbei in die Rotorspinnmaschine eingebaut und die entsprechenden variablen Systemgrößen ermittelt. Die Kalibration kann beispielsweise durch den Hersteller vor Auslieferung der entsprechenden Rotorspinnmaschine erfolgen. Es ist aber ebenfalls denkbar, dass der Anwender der Rotorspinnmaschine die eventuell notwendige Kalibration selbst vornimmt.The at least one reference value is preferably established during a calibration. Various spinning rotors are installed in the rotor spinning machine and the corresponding variable system variables are determined. The calibration can be carried out, for example, by the manufacturer before delivery of the corresponding rotor spinning machine. However, it is also conceivable that the user of the rotor spinning machine carries out any necessary calibration himself.

Der Spinnrotor ist in einer zumindest radial wirkenden elektromagnetischen Lagerung schwebend gelagert, wobei zumindest die radiale Position des Spinnrotors aktiv von der Lagerung beeinflusst wird. Eine aktive elektromagnetische Lagerung kann einerseits unerwünschte Vibrationen des Spinnrotors während des Spinnbetriebs dämpfen. Andererseits kann die aktive Lagerung ebenfalls zur Identifikation des Spinnrotors beitragen, indem die radiale Position des Spinnrotors in bestimmter Weise beeinflusst wird und die Auswirkungen dieser Beeinflussung ermittelt werden (siehe unten). Umgekehrt ist eine vorherige Identifikation des Spinnrotors ebenfalls für eine Steuerung der Lagerung vorteilhaft. So können beispielsweise bei bekannter Masse des Spinnrotors die Auswirkungen dämpfender Eingriffe der Lagerung vorhergesagt und entsprechend dosiert werden. Falls die Lagerung zusätzlich axial wirkt, ist es selbstverständlich ebenfalls denkbar, dass auch eine axiale Position des Spinnrotors aktiv von der Lagerung beeinflusst wird.The spinning rotor is suspended in an electromagnetic bearing that acts at least radially, with at least the radial position of the spinning rotor being actively influenced by the bearing. On the one hand, an active electromagnetic bearing can dampen undesired vibrations of the spinning rotor during the spinning operation. On the other hand, the active bearing can also contribute to the identification of the spinning rotor by influencing the radial position of the spinning rotor in a specific way and determining the effects of this influence (see below). Conversely, prior identification of the spinning rotor is also for control advantageous for storage. For example, if the mass of the spinning rotor is known, the effects of damping interventions in the bearing can be predicted and dosed accordingly. If the bearing also acts axially, it is of course also conceivable that an axial position of the spinning rotor is also actively influenced by the bearing.

Eine radiale Position des Spinnrotors wird durch wenigstens einen Sensor und/oder durch die Lagerung erfasst. Über den Sensor kann die radiale Position des Spinnrotors als variable Systemgröße ermittelt werden. Auch kann der Sensor Vibrationen des Spinnrotors erfassen und damit beispielsweise als Grundlage für dämpfende Eingriffe der Lagerung dienen. Der Sensor kann als induktiver, kapazitiver, magnetischer oder optischer Wegsensor ausgebildet sein. Auch eine Ausführung als Wirbelstromsensor ist denkbar. Durch die Messung von Vibrationen ist es ebenfalls möglich die Resonanzfrequenz des Spinnrotors zu ermitteln (siehe unten).A radial position of the spinning rotor is detected by at least one sensor and/or by the bearing. The sensor can be used to determine the radial position of the spinning rotor as a variable system variable. The sensor can also detect vibrations of the spinning rotor and thus serve as a basis for dampening interventions in the bearing, for example. The sensor can be designed as an inductive, capacitive, magnetic or optical displacement sensor. An embodiment as an eddy current sensor is also conceivable. By measuring vibrations, it is also possible to determine the resonance frequency of the spinning rotor (see below).

Zumindest eine Veränderung der Position des Spinnrotors kann auch durch ein in der Lagerung induziertes Signal erfasst werden. So kann eventuell auf einen zusätzlichen Positionssensor verzichtet werden oder eine Genauigkeit der Positionserfassung kann durch die gemeinsame Nutzung wenigstens eines Sensors und der Lagerung erhöht werden. Es ist ebenfalls denkbar, dass eine axiale Position des Spinnrotors durch einen Sensor erfasst wird.At least one change in the position of the spinning rotor can also be detected by a signal induced in the bearing. An additional position sensor can thus possibly be dispensed with, or the accuracy of the position detection can be increased by the shared use of at least one sensor and the bearing. It is also conceivable that an axial position of the spinning rotor is detected by a sensor.

Weiterhin stellt es einen Vorteil dar, wenn die Position des schwebenden Spinnrotors derart variiert wird, dass die Energieaufnahme der Lagerung minimal wird und die Position anschließend mit wenigstens einem Positionsreferenzwert verglichen wird. Einerseits ist eine minimierte Energieaufnahme der Lagerung an sich für den Energieverbrauch der Rotorspinnmaschine vorteilhaft. Andererseits kann die Position, insbesondere die radiale Position, bei minimierter Energieaufnahme der Lagerung Rückschlüsse auf die physikalischen Eigenschaften des Spinnrotors zulassen. Grundlegend hierfür ist, dass es für einen bestimmten Spinnrotor nur eine Position minimaler Energieaufnahme der Lagerung gibt, und diese beispielsweise von der Masse des Spinnrotors abhängt. Die Variation der Position des Spinnrotors und das Minimieren der Energieaufnahme der Lagerung kann stattfinden während der Spinnrotor nicht rotiert. Andererseits ist es aber denkbar das Verfahren bei rotierendem Spinnrotor durchzuführen.It is also an advantage if the position of the floating spinning rotor is varied in such a way that the energy consumption of the bearing is minimal and the position is then compared with at least one position reference value. On the one hand, a minimized energy consumption of the bearing is advantageous for the energy consumption of the rotor spinning machine. On the other hand, the position, in particular the radial position, can allow conclusions to be drawn about the physical properties of the spinning rotor when the energy absorption of the bearing is minimized. This is fundamental to the fact that there is only one position of minimum energy absorption of the bearing for a specific spinning rotor, and this depends, for example, on the mass of the spinning rotor. Varying the position of the spinning rotor and minimizing the energy absorption of the bearing can take place while the spinning rotor is not rotating. On the other hand, it is conceivable to carry out the method with the spinning rotor rotating.

Es ist vorteilhaft, wenn der Spinnrotor in eine definierte radiale Position gebracht wird und die Energieaufnahme der Lagerung anschließend mit wenigstens einem Energieaufnahmereferenzwert verglichen wird. Im Gegensatz zu der zuvor beschriebenen Vorgehensweise ist es möglich die radiale Position des Spinnrotors festzulegen und die Energieaufnahme der Lagerung bei dieser Position zu bestimmen. Diese Energieaufnahme ist entsprechend wieder charakteristisch für den jeweiligen Spinnrotor, da sie beispielsweise von seiner Masse abhängt. Wie zuvor findet das Verfahren vorzugsweise bei einem nicht in Rotation befindlichen Spinnrotor statt. Es ist aber ebenfalls denkbar bei in einer festgelegten radialen Position rotierendem Spinnrotor die Energieaufnahme der Lagerung zu bestimmen. Diese hängt dann von den Vibrationen bzw. charakteristischen Unwuchten des Spinnrotors ab und kann daher zur Identifikation herangezogen werden.It is advantageous if the spinning rotor is brought into a defined radial position and the energy consumption of the bearing is then compared with at least one energy consumption reference value. In contrast to the procedure described above, it is possible to fix the radial position of the spinning rotor and to determine the energy absorption of the bearing at this position. Accordingly, this energy absorption is again characteristic of the respective spinning rotor, since it depends, for example, on its mass. As before, the process preferably takes place with a non-rotating spinning rotor. However, it is also conceivable to determine the energy absorption of the bearing when the spinning rotor is rotating in a fixed radial position. This then depends on the vibrations or characteristic imbalances of the spinning rotor and can therefore be used for identification.

Vorteilhafterweise wird der Spinnrotor von der Lagerung in Schwingung versetzt und aus einem Abklingverhalten der Schwingung die Resonanzfrequenz des Spinnrotors ermittelt. Anschließend wird diese mit wenigstens einem Resonanzfrequenzreferenzwert verglichen. Auch die Resonanzfrequenz des Spinnrotors als starrer Körper ist charakteristisch für eine bestimmte Form und Masse und daher zur Identifikation geeignet. Die aktive Lagerung kann dem Spinnrotor einen Bewegungsimpuls geben und die Abklingzeit der entstehenden Schwingung kann mit dem Sensor oder über die Lagerung bestimmt werden. Aus diesem Schwingungsverhalten kann der jeweilige Spinnrotor identifiziert werden.The spinning rotor is advantageously made to oscillate by the bearing and the resonant frequency of the spinning rotor is determined from a decay behavior of the oscillation. This is then compared with at least one resonant frequency reference value. The resonant frequency of the spinning rotor as a rigid body is also characteristic of a specific shape and mass and is therefore suitable for identification. The active bearing can give the spinning rotor a movement impulse and the decay time of the resulting vibration can be determined with the sensor or via the bearing. The respective spinning rotor can be identified from this vibration behavior.

Zusätzlich ist es von Vorteil, wenn während einer Beschleunigung des Spinnrotors aus einem Anstieg einer Amplitude einer Schwingung des Spinnrotors die Resonanzfrequenz des Spinnrotors ermittelt wird und diese anschließend mit wenigstens einem Resonanzfrequenzreferenzwert verglichen wird. Hier wird ausgenutzt, dass der Spinnrotor während der Rotation von selbst vibriert. Die maximale Amplitude der Vibration entsteht, wenn der Spinnrotor mit einer Drehzahl rotiert, die seiner Resonanzfrequenz entspricht. Diese Drehzahl wird auch kritische Drehzahl genannt. Für das Verfahren muss der Spinnrotor aber nicht bis zur kritischen Drehzahl beschleunigt werden. Aus dem Anstieg der Amplitude der Vibration kann die kritische Drehzahl extrapoliert werden. Es wäre allerdings denkbar den Spinnrotor bis über die kritische Drehzahl zu beschleunigen und die Resonanzfrequenz direkt zu messen. Eine Extrapolation wäre hierbei dann nicht notwendig. Die Amplitude der Vibration kann in jedem Fall über den bereits beschriebenen Sensor und/oder durch in der Lagerung induzierte Signale gemessen werden.In addition, it is advantageous if, during an acceleration of the spinning rotor, the resonance frequency of the spinning rotor is determined from an increase in an amplitude of an oscillation of the spinning rotor and this is then compared with at least one resonance frequency reference value. This exploits the fact that the spinning rotor vibrates by itself during rotation. The maximum amplitude of vibration occurs when the spinning rotor rotates at a speed equal to its resonant frequency. This speed is also called the critical speed. However, the spinning rotor does not have to be accelerated to the critical speed for the process. The critical speed can be extrapolated from the increase in the amplitude of the vibration. However, it would be conceivable to accelerate the spinning rotor to above the critical speed and to measure the resonance frequency directly. An extrapolation would then not be necessary. In any case, the amplitude of the vibration can be measured via the sensor already described and/or by signals induced in the bearing.

Besonders vorteilhaft ist es, wenn aus dem Vergleich der variablen Systemgröße mit dem Referenzwert eine Masse, eine Form, ein Volumen und/oder ein Material, des Spinnrotors bestimmt wird. Die genannten physikalischen Eigenschaften stehen untereinander in engem Zusammenhang und beeinflussen direkt die beschriebenen variablen Systemgrößen. Es ist denkbar, dass bei unterschiedlichen Spinnrotoren eine der aufgezählten physikalischen Eigenschaften gleich ist. Beispielsweise ist es denkbar, dass zwei Spinnrotoren zwar die gleiche Masse nicht aber die gleiche Form bzw. das gleiche Volumen aufweisen. Es kann deshalb sinnvoll sein mehrere der Eigenschaften zu bestimmen, um zu einer eindeutigen Identifikation zu kommen.It is particularly advantageous if a mass, a shape, a volume and/or a material of the spinning rotor is determined from the comparison of the variable system variable with the reference value. The physical properties mentioned are closely related to each other and directly influence the variable system variables described. It is conceivable that one of the listed physical properties is the same for different spinning rotors. For example, it is conceivable that two spinning rotors have the same mass but not the same shape or the same volume. It can therefore make sense to determine several of the properties in order to arrive at a clear identification.

Für einen sicheren und effizienten Betrieb der Rotorspinnmaschine ist es besonders vorteilhaft, wenn aus dem Vergleich der variablen Systemgröße mit dem Referenzwert ein Funktionsumfang des Spinnbetriebs festgelegt wird.For safe and efficient operation of the rotor spinning machine, it is particularly advantageous if a functional scope of the spinning operation is determined from the comparison of the variable system variable with the reference value.

Unterschiedliche Spinnrotoren sind unterschiedlich belastbar und für die Herstellung unterschiedlicher Garne besonders geeignet. Mit dem Funktionsumfang des Spinnbetriebs sind einerseits allgemeine Betriebsparameter der Rotorspinnmaschine gemeint. Beispielsweise können die maximale Drehzahl oder ein maximales Drehmoment während des Beschleunigens des Spinnrotors beschränkt werden, je nach Ergebnis der Identifikation. Auch Reinigungs- oder Wartungsintervalle können an den Spinnrotor angepasst werden. Andererseits ist es ebenfalls denkbar, dass einem Bediener der Rotorspinnmaschine, vorzugsweise in Verbindung mit einem Artikelverwaltungssystem, nur bestimmte Garne in Abhängigkeit des eingebauten Spinnrotors zur Herstellung angeboten werden. Ein Artikelverwaltungssystem verwaltet Einstellungen der Rotorspinnmaschine zur Herstellung bestimmter Garne. Es ist denkbar, dass bei Auswahl eines bestimmten Garns bzw. Rezepts aus dem Artikelverwaltungssystem der Einbau eines bestimmten Spinnrotors vorgeschlagen wird.Different spinning rotors can withstand different loads and are particularly suitable for the production of different yarns. The range of functions of the spinning operation means, on the one hand, general operating parameters of the rotor spinning machine. For example, the maximum speed or a maximum torque can be limited during the acceleration of the spinning rotor, depending on the result of the identification. Cleaning or maintenance intervals can also be adapted to the spinning rotor. On the other hand, it is also conceivable that an operator of the rotor spinning machine, preferably in connection with an article management system, is only offered specific yarns for production depending on the installed spinning rotor. An article management system manages rotor spinning machine settings for the production of specific yarns. It is conceivable that when a specific yarn or recipe is selected from the item management system, the installation of a specific spinning rotor will be suggested.

Die erfindungsgemäße Rotorspinnmaschine weist wenigstens eine Arbeitsstelle auf. Die wenigstens eine Arbeitsstelle umfasst wiederum einen in einer zumindest radial wirkenden elektromagnetischen Lagerung schwebend gelagerten Spinnrotor, der sich in einem Spinnbetrieb innerhalb der Lagerung dreht. Weiterhin umfasst die wenigstens eine Arbeitsstelle eine Steuerung. Es wird vorgeschlagen, dass die Steuerung ausgebildet ist eine Identifikation des Spinnrotors vorzunehmen, wobei wenigstens eine variable Systemgröße mit wenigstens einem Referenzwert verglichen wird, wobei die wenigstens eine variable Systemgröße eine Energieaufnahme der Lagerung, eine radiale Position des Spinnrotors und/oder eine Resonanzfrequenz des Spinnrotors ist. Wie bereits beschrieben, kann eine vorzugsweise automatisierte Identifikation des eingebauten Spinnrotors anhand seiner physikalischen Eigenschaften die Sicherheit und die Effizienz des Betriebs der Rotorspinnmaschine verbessern. Selbstverständlich ist der Spinnrotor oder sind zumindest Teile des Spinnrotors der Rotorspinnmaschine austauschbar. Insbesondere ist die Rotortasse des Spinnrotors austauschbar.The rotor spinning machine according to the invention has at least one work station. The at least one work station in turn comprises a spinning rotor which is mounted in a floating manner in an at least radially acting electromagnetic bearing and which rotates within the bearing during a spinning operation. Furthermore, the at least one work station includes a controller. It is proposed that the controller be designed to identify the spinning rotor, with at least one variable system variable being compared with at least one reference value, with the at least one variable system variable being an energy absorption of the bearing, a radial position of the spinning rotor and/or a resonance frequency of the spinning rotor is. As already described, a preferably automated identification of the built-in spinning rotor based on its physical properties can improve the safety and the efficiency of the operation of the rotor spinning machine. Of course, the spinning rotor or at least parts of the spinning rotor of the rotor spinning machine can be exchanged. In particular, the rotor cup of the spinning rotor is exchangeable.

Die Rotorspinnmaschine kann eine Vielzahl von Arbeitsstellen aufweisen, die insbesondere zumindest teilweise unabhängig voneinander betrieben werden können. Jede Arbeitsstelle weist einen eigenen Spinnrotor auf, der vorzugsweise von einem Einzelantrieb angetrieben wird. Weitere Merkmale der Arbeitsstelle der Rotorspinnmaschine können insbesondere Auflöse- und Spulwalzen sowie Garnsensoren und Absaugvorrichtungen sein. Die Steuerung der Arbeitsstelle kann mit Steuerungen anderer Arbeitsstellen und/oder mit einer übergeordneten Maschinensteuerung verbunden sein. Die Steuerung kann beispielsweise als integrierter Schaltkreis ausgebildet sein.The rotor spinning machine can have a large number of work stations which, in particular, can be operated at least partially independently of one another. Each job has its own spinning rotor, which is preferably driven by an individual drive. Other features of the workplace of the rotor spinning machine can be, in particular, opening and winding rollers as well as yarn sensors and suction devices. The control of the work station can be connected to controls of other work stations and/or to a higher-level machine control. The controller can be designed as an integrated circuit, for example.

Die Lagerung ist eine elektromagnetische Lagerung mit wenigstens einem Elektromagneten. Eine derartige Lagerung erlaubt das aktive Regulieren der Position des Spinnrotors und damit beispielsweise eine Ausrichtung, in der eine geringe Energieaufnahme der Lagerung und/oder des Antriebs gegeben ist. Auch können Vibrationen des Spinnrotors durch die Lagerung gedämpft oder durch eine vorteilhafte Positionierung des Spinnrotors minimiert werden. Wie bereits beschrieben, kann die aktive Lagerung für das Verfahren zum Identifizieren des Spinnrotors genutzt werden, indem einerseits die Energieaufnahme der Lagerung durch die Variation der Position des Spinnrotors minimiert wird, oder indem bei gegebener Position eine charakteristische Energieaufnahme der Lagerung ermittelt wird. Die Lagerung kann mehrere Lagerelemente, beispielsweise Lagerringe, aufweisen. Insbesondere sind zwei Lagerelemente vorgesehen. Die Position des Spinnrotors kann über den in einer Spule des wenigstens einen Elektromagneten fließenden Strom reguliert werden. Die Lagerung kann sowohl Elektromagnete als auch Permanentmagnete aufweisen. Für den Fall eines Ausfalls des Lagers ist vorzugsweise ein zusätzliches Fanglager vorgesehen.The bearing is an electromagnetic bearing with at least one electromagnet. Such a bearing allows the active regulation of the position of the spinning rotor and thus, for example, an orientation in which the bearing and/or the drive consumes little energy. Vibrations of the spinning rotor can also be dampened by the bearing or minimized by advantageous positioning of the spinning rotor. As already described, the active bearing can be used for the method of identifying the spinning rotor, on the one hand by minimizing the energy consumption of the bearing by varying the position of the spinning rotor, or by determining a characteristic energy consumption of the bearing for a given position. The bearing can have several bearing elements, for example bearing rings. In particular, two bearing elements are provided. The position of the spinning rotor can be regulated via the current flowing in a coil of the at least one electromagnet. The storage can have both electromagnets and permanent magnets. In the event of a failure of the bearing, an additional safety bearing is preferably provided.

Die Steuerung ist mit wenigstens einem Sensor zur Erfassung einer Position und/oder einer Bewegung des Spinnrotors verbunden. Der Sensor kann als induktiver, kapazitiver, magnetischer oder optischer Wegsensor ausgebildet sein. Auch eine Ausführung als Wirbelstromsensor ist denkbar. Insbesondere sind zwei Sensoren vorgesehen. Wie bereits beschrieben, kann alternativ oder zusätzlich das Lager zur Erfassung der Bewegung des Spinnrotors herangezogen werden. Hierzu können Strom- und/oder Spannungsänderungen in Spulen der Lagerung ausgewertet werden.The controller is connected to at least one sensor for detecting a position and/or a movement of the spinning rotor. The sensor can be in the form of an inductive, capacitive, magnetic or optical displacement sensor be. An embodiment as an eddy current sensor is also conceivable. In particular, two sensors are provided. As already described, the bearing can be used to detect the movement of the spinning rotor as an alternative or in addition. For this purpose, current and/or voltage changes in the coils of the bearing can be evaluated.

Insbesondere ist es vorteilhaft, wenn die Lagerung zusätzlich axial wirkt oder eine zusätzliche Axiallagerung vorgesehen ist. Bei einer axialen Wirkung der Lagerung ist gegebenenfalls wenigstens ein zusätzliches axiales Lagerelement erforderlich. Eine gemeinsame Steuerung der Position des Spinnrotors in den radialen und axialen Richtungen kann vorteilhaft sein, indem Energieverbrauch und Vibrationen weiter verringert werden.In particular, it is advantageous if the bearing also acts axially or an additional axial bearing is provided. If the bearing has an axial effect, at least one additional axial bearing element may be required. Controlling the position of the spinning rotor in the radial and axial directions together can be beneficial by further reducing power consumption and vibration.

Die zusätzliche Axiallagerung kann ebenfalls magnetisch und insbesondere aktiv sein. Vorzugsweise weist die Axiallagerung wenigstens einen Elektromagneten auf. Es ist ebenfalls denkbar, dass die Axiallagerung wenigstens einen Permanentmagneten aufweist.The additional axial bearing can also be magnetic and, in particular, active. The axial bearing preferably has at least one electromagnet. It is also conceivable that the axial bearing has at least one permanent magnet.

Ein weiterer Vorteil zeigt sich, wenn die Steuerung mit einem Artikelverwaltungssystem verbunden ist. Ein Artikelverwaltungssystem kann einem Bediener der Rotorspinnmaschine eine Datenbank von herzustellenden Garnen mit den damit verbundenen Betriebsparametern und Einstellwerten für die Rotorspinnmaschine zur Verfügung stellen. Die entsprechenden Betriebsparameter und Einstellwerte können bei Auswahl eines herzustellenden Garns vorzugsweise automatisch an der Rotorspinnmaschine angewendet werden. Die Auswahl an möglichen Garnen kann hierbei von dem eingebauten Spinnrotor bzw. einer erfolgreichen Identifikation des Spinnrotors abhängen. Das Artikelverwaltungssystem kann als zentraler Rechner ausgebildet sein, in eine Steuerung der Rotorspinnmaschine integriert sein, oder über das Internet von zentraler Stelle zur Verfügung stehen. Es ist denkbar, dass die Datenbank des Artikelverwaltungssystems ebenfalls Referenzwerte für die variablen Systemgrößen enthält.A further advantage becomes apparent when the control is connected to an item management system. An article management system can provide an operator of the rotor spinning machine with a database of yarns to be produced with the associated operating parameters and setting values for the rotor spinning machine. The corresponding operating parameters and setting values can preferably be applied automatically to the rotor spinning machine when a yarn to be produced is selected. The selection of possible yarns can depend on the built-in spinning rotor or a successful identification of the spinning rotor. The article management system can be designed as a central computer, integrated into a controller of the rotor spinning machine, or be available from a central location via the Internet. It is conceivable that the database of the parts management system also contains reference values for the variable system variables.

Einen weiteren großen Vorteil stellt es dar, wenn die Steuerung einen Speicher für Positionsreferenzwerte, Energieaufnahmereferenzwerte und/oder Resonanzfrequenzreferenzwerte aufweist. Mittels des Speichers ist es besonders einfach diese Werte für jede Arbeitsstelle individuell zur Verfügung zu stellen und für die erfindungsgemäße Identifikation des Spinnrotors zu verwenden. Die Referenzwerte können beispielsweise beim Hersteller der Rotorspinnmaschine und insbesondere im Rahmen einer Erstinbetriebnahme ermittelt und im Speicher hinterlegt werden. Es ist alternativ denkbar, dass diese Referenzwerte in einem, insbesondere zentralen, Speicher hinterlegt sind und dass die Steuerung mit dem Speicher verbunden ist oder dass diese Referenzwerte beispielsweise über das Internet vom Hersteller zur Verfügung gestellt werden.Another great advantage is when the controller has a memory for position reference values, energy consumption reference values and/or resonant frequency reference values. Using the memory, it is particularly easy to make these values available individually for each work station and to use them for the identification of the spinning rotor according to the invention. The reference values can be determined, for example, by the manufacturer of the rotor spinning machine and in particular during initial commissioning and stored in the memory. It is alternatively conceivable for these reference values to be stored in a memory, in particular a central memory, and for the controller to be connected to the memory, or for these reference values to be made available by the manufacturer via the Internet, for example.

Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigt:

Figur 1
eine Frontansicht einer erfindungsgemäßen Rotorspinnmaschine,
Figur 2
einen Spinnrotor der erfindungsgemäßen Rotorspinnmaschine mit Lagerung und Antrieb, und
Figur 3
ein weiteres Ausführungsbeispiel eines Spinnrotors der erfindungsgemäßen Rotorspinnmaschine.
Further advantages of the invention are described in the following exemplary embodiments. It shows:
figure 1
a front view of a rotor spinning machine according to the invention,
figure 2
a spinning rotor of the rotor spinning machine according to the invention with storage and drive, and
figure 3
another embodiment of a spinning rotor of the rotor spinning machine according to the invention.

Bei der nachfolgenden Beschreibung der Figuren werden für in den verschiedenen Figuren jeweils identische und/oder zumindest vergleichbare Merkmale gleiche Bezugszeichen verwendet. Die einzelnen Merkmale, deren Ausgestaltung und/oder Wirkweise werden meist nur bei ihrer ersten Erwähnung ausführlich erläutert. Werden einzelne Merkmale nicht nochmals detailliert erläutert, so entspricht deren Ausgestaltung und/oder Wirkweise der Ausgestaltung und Wirkweise der bereits beschriebenen gleichwirkenden oder gleichnamigen Merkmale.In the following description of the figures, the same reference symbols are used for features that are identical and/or at least comparable in the various figures. The individual features, their design and/or mode of action are usually only mentioned when they are first mentioned explained in detail. If individual features are not explained in detail again, their design and/or mode of action corresponds to the design and mode of action of the features already described that have the same effect or have the same name.

Figur 1 zeigt eine erfindungsgemäße Rotorspinnmaschine 1 mit mehreren Arbeitsstellen 2, in denen im bekannten Rotorspinnverfahren Textilfasern zu Garnen 3 gesponnen werden. Das Garn 3 wird jeweils auf eine Spule 4 gewickelt. Die Arbeitsstellen 2 weisen jeweils einen Spinnrotor 5 mit einer magnetischen Lagerung 6 und einer Steuerung 7 auf (siehe Figur 2). Die Steuerung 7 ist jeweils ausgebildet eine Identifikation des Spinnrotors 5 vorzunehmen, wobei wenigstens eine Energieaufnahme der Lagerung 6, eine radiale Position des Spinnrotors 5 und/oder eine Resonanzfrequenz des Spinnrotors 5 als variable Systemgröße mit wenigstens einem entsprechenden Referenzwert verglichen wird. figure 1 shows a rotor spinning machine 1 according to the invention with several work stations 2, in which textile fibers are spun into yarns 3 in the known rotor spinning process. The yarn 3 is wound onto a spool 4 in each case. The work stations 2 each have a spinning rotor 5 with a magnetic bearing 6 and a control 7 (see FIG figure 2 ). The controller 7 is designed in each case to identify the spinning rotor 5, with at least one energy absorption of the bearing 6, a radial position of the spinning rotor 5 and/or a resonance frequency of the spinning rotor 5 being compared as a variable system variable with at least one corresponding reference value.

Figur 2 zeigt eine Ansicht des in einer der Arbeitsstellen 2 verbauten Spinnrotors 5 mit der magnetischen Lagerung 6 und der Steuerung 7. Der Spinnrotor 5 setzt sich aus einer Rotortasse 8 und einem Rotorschaft 9 zusammen, wobei Rotortasse 8 und Rotorschaft 9 vorzugsweise lösbar miteinander verbunden sind. In der Rotortasse 8 findet im Spinnbetrieb die Garnerzeugung statt, wobei die Rotortasse 8 eine bestimmte Form hat, die besonders für die Erzeugung bestimmter Garne 3 geeignet ist. Je nach Bedarf kann der ganze Spinnrotor 5 oder zumindest die Rotortasse 8 ausgetauscht werden, was eine möglichst automatische Identifikation des Spinnrotors 5 durch die Steuerung 7 notwendig macht. figure 2 shows a view of the spinning rotor 5 installed in one of the work stations 2 with the magnetic bearing 6 and the controller 7. The spinning rotor 5 consists of a rotor cup 8 and a rotor shaft 9, with the rotor cup 8 and rotor shaft 9 preferably being detachably connected to one another. In the spinning operation, yarn production takes place in the rotor cup 8 , the rotor cup 8 having a specific shape that is particularly suitable for the production of specific yarns 3 . Depending on requirements, the entire spinning rotor 5 or at least the rotor cup 8 can be exchanged, which makes it necessary for the controller 7 to identify the spinning rotor 5 as automatically as possible.

Der Rotorschaft 9 dient der Kopplung an die Lagerung 6 und einen Antrieb 10. Der Antrieb 10 kann beispielsweise als Elektromotor ausgebildet sein, wobei in diesem Fall der Rotorschaft 9 gleichzeitig der Rotor des Elektromotors sein kann. Die Lagerung 6 weist in diesem Beispiel zwei Lagerelemente 11 auf, die vorzugsweise als Lagerringe ausgebildet sind. Die Lagerelemente 11 können Elektromagnete und eventuell Permanentmagnete aufweisen und sind mit der Steuerung 7 verbunden.The rotor shaft 9 is used for coupling to the bearing 6 and a drive 10. The drive 10 can be designed, for example, as an electric motor, in which case the rotor shaft 9 can be the rotor of the electric motor at the same time. In this example, the bearing 6 has two bearing elements 11 which are preferably designed as bearing rings. The storage elements 11 can have electromagnets and possibly permanent magnets and are connected to the controller 7 .

Die Steuerung 7 kann beispielsweise aktiv die radiale Position des schwebenden Spinnrotors 5 regeln und beispielsweise ungewollte Vibrationen während des Spinnbetriebs dämpfen. Die Lagerelemente 11 können als Lagesensoren des Spinnrotors 5 dienen, da Bewegungen des Spinnrotors 5 zu Veränderungen des Stroms und/oder der Spannung in den Elektromagneten der Lagerelemente 11 führen.The controller 7 can, for example, actively regulate the radial position of the floating spinning rotor 5 and, for example, dampen unwanted vibrations during the spinning operation. The bearing elements 11 can serve as position sensors for the spinning rotor 5 since movements of the spinning rotor 5 lead to changes in the current and/or the voltage in the electromagnets of the bearing elements 11.

Zur Identifikation des Spinnrotors 5 sind, wie bereits beschrieben, mehrere Vorgehensweisen denkbar. Beispielsweise kann die Position des Spinnrotors 5 derart variiert werden, dass die Energieaufnahme der Lagerung 6, die notwendig ist um den Spinnrotor 5 in der Schwebe zu halten, minimal wird. Andererseits kann die Energieaufnahme der Lagerung 6 bei einer vorgegebenen Position des Spinnrotors 5 ermittelt werden.As already described, several procedures are conceivable for identifying the spinning rotor 5 . For example, the position of the spinning rotor 5 can be varied in such a way that the energy absorption of the bearing 6, which is necessary to keep the spinning rotor 5 in suspension, is minimal. On the other hand, the energy absorption of the bearing 6 can be determined at a predetermined position of the spinning rotor 5.

Ebenfalls kann der Spinnrotor 5 anhand seiner Resonanzfrequenz identifiziert werden. Die Resonanzfrequenz ist charakteristisch für die Masse und die Form des Spinnrotors 5. Einerseits kann die Resonanzfrequenz anhand des Anstiegs der Amplitude der Vibration des Spinnrotors 5 während der beschleunigten Rotation ermittelt werden. Andererseits kann der Spinnrotor 5 auch von der Lagerung 6 in Schwingung versetzt werden und anhand des Abklingverhaltens, insbesondere der Abklingzeit, der Schwingung die Resonanzfrequenz ermittelt werden. In jedem dieser Fälle wird eine variable Systemgröße ermittelt, die von den physikalischen Eigenschaften des Spinnrotors 5 abhängt und die mittels eines Vergleichs mit bekannten Referenzwerten eine Zuordnung des in die Arbeitsstelle 2 der Rotorspinnmaschine 1 eingebauten Spinnrotors 5 erlaubt.The spinning rotor 5 can also be identified based on its resonant frequency. The resonance frequency is characteristic of the mass and the shape of the spinning rotor 5. On the one hand, the resonance frequency can be determined from the increase in the amplitude of the vibration of the spinning rotor 5 during the accelerated rotation. On the other hand, the spinning rotor 5 can also be made to vibrate by the bearing 6 and the resonant frequency can be determined on the basis of the decay behavior, in particular the decay time, of the vibration. In each of these cases, a variable system variable is determined which depends on the physical properties of the spinning rotor 5 and which allows the spinning rotor 5 installed in the work station 2 of the rotor spinning machine 1 to be assigned by means of a comparison with known reference values.

Figur 3 zeigt die Ansicht eines weiteren Spinnrotors 5 der erfindungsgemäßen Rotorspinnmaschine 1. In diesem Ausführungsbeispiel ist die Form des Spinnrotors 5, insbesondere die Form der Rotortasse 8, verändert. Die Identifikation des Spinnrotors 5 nach dem erfindungsgemäßen Verfahren wird also im Vergleich zu dem vorherigen Ausführungsbeispiel zu einem anderen Ergebnis kommen. Der Rotorschaft 9 ist mit einer zusätzlichen Axiallagerung 12 verbunden, die beispielsweise ebenfalls als magnetisches Lager ausgebildet ist. Im Gegensatz zur vorzugsweise aktiven radialen Lagerung 6, kann die Axiallagerung 12 beispielsweise passiv sein. Die Steuerung 7 ist in diesem Beispiel zusätzlich zu den Lagerelementen 11 der radialen Lagerung 6 mit einem Sensor 13 zur Messung der radialen Position des Spinnrotors 5 verbunden. Dieser Sensor 13 kann einerseits ausschließlich die variable Systemgröße der Position des Spinnrotors 5 messen, oder andererseits zusammen mit den Positions- bzw. Bewegungsinformationen der Lagerung 6 verwendet werden. Selbstverständlich können über den Sensor 13 ebenfalls Bewegungen, wie beispielsweise Vibrationen, des Spinnrotors 5 gemessen werden. Weitere Sensoren 13 sind ebenfalls denkbar. figure 3 shows the view of another spinning rotor 5 of the rotor spinning machine 1 according to the invention. In this embodiment, the shape of the Spinning rotor 5, in particular the shape of the rotor cup 8 changed. The identification of the spinning rotor 5 according to the method according to the invention will therefore lead to a different result compared to the previous exemplary embodiment. The rotor shaft 9 is connected to an additional axial bearing 12, which is also designed as a magnetic bearing, for example. In contrast to the preferably active radial bearing 6, the axial bearing 12 can be passive, for example. In this example, the controller 7 is connected to a sensor 13 for measuring the radial position of the spinning rotor 5 in addition to the bearing elements 11 of the radial bearing 6 . On the one hand, this sensor 13 can only measure the variable system variable of the position of the spinning rotor 5, or on the other hand it can be used together with the position or movement information of the bearing 6. Of course, the sensor 13 can also be used to measure movements, such as vibrations, of the spinning rotor 5 . Other sensors 13 are also conceivable.

Die Steuerung 7 ist weiterhin mit einem Artikelverwaltungssystem 14 verbunden, das Betriebsparameter und Einstellwerte für die Rotorspinnmaschine 1 zur Herstellung verschiedener Garne 3 enthält. Mit dem erfindungsgemäßen Verfahren zur Identifikation des Spinnrotors 5 kann beispielsweise in Abhängigkeit des aktuellen Spinnrotors 5 eine Vorauswahl der vom Artikelverwaltungssystem 14 bereitgestellten Rezepte zur Herstellung von Garnen 3 getroffen werden. Ebenfalls ist es denkbar, dass ein von einem Bediener ausgewähltes Rezept erst nach erfolgreicher Identifikation des Spinnrotors 5 ausgeführt wird oder der Bediener zum Einbau eines anderen Spinnrotors 5 aufgefordert wird.The controller 7 is also connected to an article management system 14 that contains operating parameters and setting values for the rotor spinning machine 1 for producing different yarns 3 . With the method according to the invention for identifying the spinning rotor 5, a preselection of the recipes provided by the article management system 14 for the production of yarns 3 can be made, for example, depending on the current spinning rotor 5. It is also conceivable for a recipe selected by an operator to be executed only after the spinning rotor 5 has been successfully identified, or for the operator to be prompted to install a different spinning rotor 5 .

BezugszeichenlisteReference List

11
Rotorspinnmaschinerotor spinning machine
22
Arbeitsstelleplace of work
33
Garnyarn
44
SpuleKitchen sink
55
Spinnrotorspinning rotor
66
Lagerungstorage
77
Steuerungsteering
88th
Rotortasserotor cup
99
Rotorschaftrotor shaft
1010
Antriebdrive
1111
Lagerelementbearing element
1212
Axiallagerungaxial bearing
1313
Sensorsensor
1414
Artikelverwaltungssystemitem management system

Claims (11)

  1. A method for identifying a spinning rotor (5) on a rotor spinning machine (1), wherein the spinning rotor (5) is mounted in a suspended manner in an at least radially acting electromagnetic bearing (6) and rotates in the bearing (6) during a spinning operation, wherein at least one radial position of the spinning rotor (5) is actively influenced by the bearing (6), and wherein at least one variable system variable is compared to at least one reference value,
    characterized in that
    the at least one variable system variable is an energy consumption of the bearing (6), the radial position of the spinning rotor (5), detected by at least one sensor (13) and/or by the bearing (6) and/or a resonant frequency of the spinning rotor (5).
  2. The method as claimed in claim 1, characterized in that the radial position of the suspended spinning rotor (5) is varied in such a way that the energy consumption of the bearing (6) is minimized and, thereafter, the position is compared to at least one position reference value.
  3. The method as claimed in one of the preceding claims, characterized in that the spinning rotor (5) is brought into a defined radial position and, thereafter, the energy consumption of the bearing (6) is compared to at least one energy consumption reference value.
  4. The method as claimed in one of the preceding claims, characterized in that the spinning rotor (5) is caused, by the bearing (6), to oscillate and the resonant frequency of the spinning rotor (5) is determined from a subsidence behavior of the oscillation and, thereafter, the resonant frequency is compared to at least one resonant frequency reference value.
  5. The method as claimed in one of the preceding claims, characterized in that the resonant frequency of the spinning rotor (5) is determined during an acceleration of the spinning rotor (5) on the basis of an increase of an amplitude of an oscillation of the spinning rotor (5) and, thereafter, the resonant frequency is compared to at least one resonant frequency reference value.
  6. The method as claimed in one of the preceding claims, characterized in that a mass, a shape, a volume, and/or a material of the spinning rotor (5) are/is determined from the comparison of the variable system variable with the reference value.
  7. The method as claimed in one of the preceding claims, characterized in that a functional scope of the spinning operation is determined on the basis of the comparison of the variable system variable with the reference value.
  8. A rotor spinning machine (1) comprising at least one workstation (2) including a spinning rotor (5), which is mounted in a suspended manner in an at least radially acting electromagnetic bearing (6), having at least one electromagnet, which rotates within the bearing (6) during a spinning operation, wherein the workstation (2) also comprises a control system (7), wherein the control system (7) is designed for carrying out an identification of the spinning rotor (5), wherein at least one variable system variable is compared with at least one reference value, characterized in that the at least one variable system variable is an energy consumption of the bearing (6), a radial position of the spinning rotor (5), wherein the control system (7) is connected to at least one sensor (13) for detecting the position and/or a movement of the spinning rotor (5) and/or a resonant frequency of the spinning rotor (5).
  9. The rotor spinning machine (1) as claimed in claim 8, characterized in that the bearing (6) additionally acts in an axial direction or an additional axial bearing (12) is provided.
  10. The rotor spinning machine (1) as claimed in claim 8 or 9, characterized in that the control system (7) is connected to an article management system (14).
  11. The rotor spinning machine (1) as claimed in one of the claims 8, 9 or 10, characterized in that the control system (7) comprises a memory or that the control system (7) is connected to a memory, in particular to a central memory, in order to store position reference values, energy consumption reference values, and/or resonant frequency reference values.
EP20174588.2A 2019-05-15 2020-05-14 Rotor spinning machine and method for identifying a spinning rotor on a rotor spinning machine Active EP3739090B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019112735.1A DE102019112735A1 (en) 2019-05-15 2019-05-15 Method for identifying a spinning rotor on a rotor spinning machine and rotor spinning machine

Publications (2)

Publication Number Publication Date
EP3739090A1 EP3739090A1 (en) 2020-11-18
EP3739090B1 true EP3739090B1 (en) 2022-11-30

Family

ID=70736658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20174588.2A Active EP3739090B1 (en) 2019-05-15 2020-05-14 Rotor spinning machine and method for identifying a spinning rotor on a rotor spinning machine

Country Status (4)

Country Link
US (1) US11479883B2 (en)
EP (1) EP3739090B1 (en)
CN (1) CN111945260B (en)
DE (1) DE102019112735A1 (en)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135410B2 (en) * 1993-04-14 2001-02-13 光洋精工株式会社 Magnetic bearing device
DE4404243B4 (en) * 1994-02-10 2005-08-25 Saurer Gmbh & Co. Kg Method and device for operating an open-end rotor spinning unit with single-motor electrical drive of the spinning rotor
DE4409992A1 (en) * 1994-03-23 1995-09-28 Skf Textilmasch Komponenten Separate motor drive for shaftless rotor of an open end spinner
DE4431810B4 (en) * 1994-09-07 2006-07-06 Rieter Ingolstadt Spinnereimaschinenbau Ag Setting the parameters for optimal piecing of a piecing device during a lot change on a rotor spinning machine
JP3109023B2 (en) * 1996-07-18 2000-11-13 セイコー精機株式会社 Magnetic bearing device
DE19755060A1 (en) * 1997-12-11 1999-06-17 Schlafhorst & Co W Method and device for operating an open-end spinning machine
JP4036567B2 (en) * 1999-01-27 2008-01-23 株式会社荏原製作所 Control type magnetic bearing device
DE10032440A1 (en) * 2000-07-04 2002-01-17 Schlafhorst & Co W Rotor spinning device with a contactless passive radial mounting of the spinning rotor
JP2002122138A (en) * 2000-10-16 2002-04-26 Seiko Instruments Inc Magnetic bearing device
DE10104419A1 (en) * 2001-02-01 2002-08-08 Schlafhorst & Co W Device for position control of a contactlessly mounted high-speed rotor
EP1442164A1 (en) * 2001-10-31 2004-08-04 Holding für Industriebeteiligungen AG Driver for the spinning rotors of a rotor spinning machine
DE102006036051A1 (en) * 2006-08-02 2008-02-07 Schaeffler Kg Rotary table storage and drive device
DE102006053734A1 (en) * 2006-11-15 2008-05-21 Oerlikon Textile Gmbh & Co. Kg Rotor drive of an open-end spinning device
EP1939473B1 (en) * 2006-12-29 2018-05-23 Rieter CZ s.r.o. The method of leviation, centering, stabilization and driving of electromagnetic functional part of radial electromagnetic bearing and electrical ratation drive, electromagnetic bearing and driving system and spinning mechnism of rotor spinning machine
DE102007028935B4 (en) * 2007-06-22 2018-12-27 Saurer Spinning Solutions Gmbh & Co. Kg Method and device for starting an electric machine with a magnetically mounted rotor
CZ2013209A3 (en) * 2013-03-22 2014-08-27 Rieter Cz S.R.O. Method of determining changes in position of open-end spinning machine spinning rotor within a cavity of an active magnetic bearing and spinning unit of the a rotor spinning machine with active magnetic bearing for mounting spindleless spinning rotor
CZ304679B6 (en) * 2013-03-22 2014-08-27 Rieter Cz S.R.O. Deviation correction method of active magnetic bearing components and/or assembly for mounting of a rotating working means
DE102016118708A1 (en) * 2016-10-04 2018-04-05 Saurer Germany Gmbh & Co. Kg A method of operating an open-end rotor spinning device and open-end rotor spinning device
DE102017103622A1 (en) * 2017-02-22 2018-08-23 Rieter Cz S.R.O. Method for supporting a spinning rotor and bearing, spinning rotor and support bearings

Also Published As

Publication number Publication date
EP3739090A1 (en) 2020-11-18
US11479883B2 (en) 2022-10-25
CN111945260B (en) 2023-08-15
CN111945260A (en) 2020-11-17
US20200362480A1 (en) 2020-11-19
DE102019112735A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
EP2006557B1 (en) Method and device for starting an electric machine with a rotor, being magnetically supported
EP1154340B1 (en) Magnetic bearing device for an open-end spinner
DE10302531B4 (en) Measuring device and measuring method for electric motors
DE19680400B4 (en) Yarn winding method and yarn winder therefor
DE60110306T2 (en) Method for limiting the imbalance in a laundry washing machine
EP3802927A1 (en) Ring spinning system and method for operating same
EP2915910B1 (en) Method and device for operating an open-end rotor spinning machine
EP3636385A2 (en) Work spindle with sensors and method for detecting and monitoring its history
DE102014016785A1 (en) Method for operating a textile machine and textile machine
EP0750065A1 (en) Device and method for determining the unbalance in a drum washing machine
DE102014001627B4 (en) Open-end rotor spinning device and method of operating an open-end rotor spinning device
EP3739090B1 (en) Rotor spinning machine and method for identifying a spinning rotor on a rotor spinning machine
EP3060506B1 (en) Godet and method for controlling a godet
EP3179121B1 (en) Electrical propulsion and open-end spinning device with the electrical propulsion
EP2098929B1 (en) Method of operating a machine powered by an electric drive with status recognition by means of frequency analysis
EP3305952B1 (en) Open end rotor spinning device and method for operating an open end rotor spinning device
DE8905566U1 (en) Washing machine with a device for detecting and/or eliminating imbalance phenomena during washing machine spin cycles
WO2019214958A2 (en) Device for rotationally driving a tool and spindle therefor
DE102019112737A1 (en) Method for operating a work station of a rotor spinning machine and rotor spinning machine
CH704805B1 (en) Galette.
EP0429756B1 (en) Device for determining the roving tension
WO2018192804A1 (en) Method and apparatus for monitoring the bearings of a godet
WO2018153870A1 (en) Braiding machine
WO2008116876A1 (en) Electric drive machine, particularly as a drive for a godet
DE102008022672A1 (en) Spinning machine i.e. hopper spinning machine, controlling method for manufacturing thread, involves influencing controller of motors when detecting load change such that spinning conditions or conditions are maintained within tolerances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210506

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220727

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1534746

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002085

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 4

Ref country code: DE

Payment date: 20230525

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230511

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002085

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531