EP3727758B1 - Setting method for threaded connection by means of impact wrench - Google Patents

Setting method for threaded connection by means of impact wrench Download PDF

Info

Publication number
EP3727758B1
EP3727758B1 EP18822091.7A EP18822091A EP3727758B1 EP 3727758 B1 EP3727758 B1 EP 3727758B1 EP 18822091 A EP18822091 A EP 18822091A EP 3727758 B1 EP3727758 B1 EP 3727758B1
Authority
EP
European Patent Office
Prior art keywords
phase
rotation
angle
impact wrench
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18822091.7A
Other languages
German (de)
French (fr)
Other versions
EP3727758A1 (en
Inventor
Matthaeus ALBERDING
Dario BRALLA
Antonio Orvieto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Publication of EP3727758A1 publication Critical patent/EP3727758A1/en
Application granted granted Critical
Publication of EP3727758B1 publication Critical patent/EP3727758B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • B25B23/1475Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers for impact wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/175Phase shift of tool components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/195Regulation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/195Regulation means
    • B25D2250/201Regulation means for speed, e.g. drilling or percussion speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/195Regulation means
    • B25D2250/205Regulation means for torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools

Definitions

  • the present invention relates to a setting method for expansion anchors, which as
  • a control method of an impact wrench for tightening a screw connection which, in response to an actuation of a button, executes a sequence with successive phases: a first phase in which an impact mechanism of the impact wrench exerts a predetermined number N1 of rotary impacts on the screw connection, a second phase, in which further rotary impacts are exerted on the screw connection, and a third phase in which rotary impacts are exerted again on the screw connection until an angle of rotation corresponds to the final angle of rotation or a speed is reached over a predetermined period of time.
  • a control method of an impact wrench (1) for tightening a screw connection (52) executes a sequence with the successive phases in response to actuation of a button (9).
  • an impact mechanism (3) of the impact wrench (1) exerts a predetermined number N1 of rotary impacts on the screw connection (52).
  • N1 a course of a rotation angle ⁇ over time (t) is estimated.
  • a pattern is adapted to the curve and, based on the pattern, a target torque M0 is determined for a second phase S2 and a final angle of rotation or a final number of strokes is determined for a third phase S3.
  • rotary impacts are exerted until an estimated torque M reaches the setpoint torque M0.
  • rotary impacts are exerted on the screw connection until a number of rotary impacts corresponds to the final number N3 or a rotation angle corresponds to the final rotation angle.
  • Fig. 1 schematically illustrates the impact wrench 1.
  • the impact wrench 1 has an electric motor 2, an impact mechanism 3 and an output spindle 4.
  • the impact mechanism 3 is continuously driven by the electric motor 2.
  • the percussion mechanism 3 repeatedly exerts rotary impulses (rotary impacts) on the output spindle 4 with a brief but very high torque.
  • the output spindle 4 accordingly rotates continuously or step by step around a working axis 5.
  • the electric motor 2 can be fed via a battery 6 or can be mains-fed.
  • the impact wrench 1 has a handle 7 by means of which the user can hold and guide the impact wrench 1 during operation.
  • the handle 7 can be fixed to a machine housing 8 in a rigid manner or by means of damping elements.
  • the electric motor 2 and the hammer mechanism 3 are arranged in the machine housing 8 .
  • the electric motor 2 can be switched on and off by means of a button 9.
  • the button 9 is arranged, for example, directly on the handle 7 and can be actuated by the hand surrounding the handle.
  • the hammer mechanism 3 has a hammer 10 and an anvil 11.
  • the hammer 10 has claws 12 which rest against claws 13 of the anvil 11 in the direction of rotation.
  • the hammer 10 can transmit a continuous torque or brief rotary impulses to the anvil 11 via the claws 12 .
  • a coil spring 14 biases the hammer 10 toward the anvil 11 , thereby keeping the hammer 10 engaged with the anvil 11 . If the torque exceeds the threshold value, the hammer 10 moves against the force of the helical spring until the claws 12 are no longer in engagement with the anvil 11 .
  • the electric motor 2 can accelerate the hammer 10 in the direction of rotation until the hammer 10 is again forced into engagement with the anvil 11 by the helical spring 14. The meanwhile gained kinetic energy is transmitted by the hammer 10 to the anvil 11 in a short pulse.
  • One embodiment provides that the hammer 10 is positively guided on a drive spindle 15 along a spiral path 16 .
  • the forced guidance can be implemented, for example, as a spiral recess in the drive spindle 15 and a pin of the hammer 10 engaging in the recess.
  • the drive spindle 15 is driven by the electric motor 2 .
  • the output spindle 4 protrudes from the machine housing 8 .
  • the protruding end forms a tool holder 17.
  • the exemplary tool holder 17 has a square cross section.
  • a socket 18 or a similar tool can be plugged onto the tool holder 17 .
  • the socket 18 has a socket 19 with a square, hollow cross-section, the dimensions of which essentially correspond to the tool holder 17.
  • the socket 18 has a mouth 20 for receiving the screw head 21, ie the hexagonal nut 22 or an analogous screw.
  • the socket 18 can be secured on the output spindle 4 by means of a tool lock 23.
  • the tool lock 23 is based, for example, on a pin which is inserted both through a bore in the output spindle 4 and in the socket 18.
  • the impact wrench 1 has a control unit 24.
  • the control unit 24 can be implemented, for example, by a microprocessor and an external or integrated memory 25 . Instead of a microprocessor, the control unit can be implemented from equivalent discrete components, an ASIC, an ASSP, etc.
  • the impact wrench 1 has an input element 26 via which the user can select an operating mode.
  • the control unit 24 then controls the impact wrench 1 in accordance with the selected operating mode.
  • the control sequences of the various operating modes can be stored in the memory 25.
  • the input element 26 can include, for example, a display 27 and one or more input buttons 28.
  • the control unit 24 can display the various operating modes stored in the memory 25 and possibly associated connection types. The user can select the operating mode by means of the input buttons 28. In addition, the user can enter specifications such as size, diameter, length, target torque, load capacity or manufacturer designation of a connection type.
  • the impact wrench 1 has a communication interface 29 which communicates with an external input element 30 .
  • the external input element 30 can be, for example, a mobile phone, a laptop or an analog mobile device.
  • the input element can be an additional module which can be arranged as an adapter between the impact wrench 1 and the battery 6 .
  • connection types are stored in an application executed on input element 30 , or the application can query them from a server via a mobile radio interface.
  • the external input element 30 can contain the expansion anchor or relevant information of the connection type on a display 31 .
  • the user selects a connection type via an input button 32 or a touch-sensitive display 31 .
  • the external input element 30 transmits the type designation or parameters relevant to the control method of the selected connection type to the impact wrench 1 via a communication interface 33 to the communication interface 29 of the impact wrench 1.
  • the communication interface 29 is preferably radio-based, e.g. using a Bluetooth standard.
  • the internal input element 28 or the external input element 30 can be provided with a camera 34 which can capture a bar code on a packaging of the connection type.
  • the input element 28 determines the connection type based on the detected bar code and the bar codes stored in the memory 25.
  • a camera 34 a laser-based bar code reader, an RFID reader, etc. can be used to detect a label on the packaging or on the connection type.
  • image processing in the input element 28 can recognize the connection type on the basis of an image recorded by the camera 34 , or at least limit a selection of connection types presented to the user based on the image.
  • Fig. 3 shows schematically a screw connection of two construction elements 50, 51 for steel construction in civil engineering.
  • the two construction elements 50, 51 are to be connected in a load-bearing manner by means of one or more screw connections 52.
  • the construction elements 50, 51 can include, for example, beams, plates, tubes, flanges, etc.
  • the construction elements are made of steel or other metallic materials.
  • the construction elements 50, 51 are reduced to their touching plate-shaped sections in the illustration.
  • One or more eyes 53 are provided in the sections. The eyes 53 of the two construction elements are aligned with one another by the user.
  • the screw connections 52 can have a typical structure with a screw head 54 on a threaded rod 55 and a screw nut 56 . While the threaded rod 55 has a smaller diameter than the eyes 53 , the screw head 54 and the screw nut 56 have a larger diameter than the eye 53.
  • the threaded rods can already be connected to the first structural element 50 with other screw connections.
  • the user inserts the threaded rods 55 through the aligned eyes 53.
  • the screw nut 56 is then put on.
  • a manual fastening pulls the user turns the screw nut 56 with a torque wrench until a target torque specified for the screw connection is reached.
  • the specification is given by the manufacturer of the screw connection or is specified in the relevant standards for steel construction.
  • the target torque ensures that the screw connection cannot loosen under load, in particular vibrations.
  • the threaded rod 55 should not be unnecessarily stressed or, in the worst case, be permanently damaged while the screw nut 56 is being tightened.
  • the construction elements 50, 51 occasionally do not lie flat on top of one another, as exemplified in FIG Fig. 4 illustrated.
  • the construction elements 51 deform.
  • the retroactive torque of the screw connection 52 is therefore not only dependent on the screw type, but also on the construction elements 51 and their current pretension. In the case of manual tightening, this generally does not result in any additional difficulties, since the user can see whether the construction elements 50, 51 are already lying flat on one another.
  • Tightening the screw connections 52 with a torque wrench is a reliable and robust method, but the method is labor intensive. Especially since the screw connection 52 typically contains many screws. The screw connections 52 could in principle be tightened with a conventional electric screwdriver and a corresponding switch-off until the target torque is reached. However, the user cannot apply the necessary holding force for the target torque and there is a considerable risk of injury to the user.
  • the impact wrench 1 implements a robust setting method for the screw connection 52.
  • the user aligns the structural elements 51 with one another, inserts the threaded rods 55 through the second structural element 51 and puts the screw nuts 56 on.
  • the user can tighten the screw connections 52 with the impact wrench 1.
  • the user selects the “steel construction” operating mode and specifies the type of screw connections 52.
  • the setting process makes do with a three-phase tightening of the screw connection 52.
  • a first phase S1 is used to analyze the screw connection 52 and the structural elements 51, 52. Based on the analysis, a target torque M0 and a final angle of rotation ⁇ are determined.
  • the impact wrench 1 exerts blows on the screw connection 52 until an estimated torque M reaches the setpoint torque M.
  • a final third phase S3 the screw connection 52 is tightened by the final angle of rotation ⁇ .
  • Each type of screw connection 52 is assigned a number of control parameters which are necessary for the subsequent proper sequence of the setting process.
  • the control parameters are stored in the memory 25 for the type.
  • the control unit 24 reads out the corresponding control parameters.
  • the control parameters are preferably retained until the user selects a different type of screw connection 52. It is not necessary to select the screw connection 52 before each individual setting.
  • the electric motor 2 When the button 9 is not actuated, the electric motor 2 is disconnected from the power supply, for example the battery 6, and does not rotate.
  • the impact wrench 1 preferably falls into a standby mode when the button 9 is released.
  • the setting process begins when the button 9 is pressed. In a preparatory phase, it can be checked whether the user has previously selected the type of screw connection 52 by means of one of the input elements 28 . If a corresponding selection has not yet been made and the control parameters are not set, the user is stopped and the impact wrench 1 remains inactive. Otherwise, the electric motor 2 is connected to the power supply.
  • the drive spindle 15 is accelerated.
  • the spindle is accelerated to a target speed Do.
  • the retroactive torque of the screw connection 52 can be so small that the hammer mechanism 3 is not activated. This pre-phase is not described further below.
  • a first phase S1 of the setting method begins with the first impact of the impact mechanism 3.
  • the impact wrench 1 exerts a predetermined number N1 of impacts.
  • the specified number N1 can be specified by the selected type of screw connection 52 .
  • the screw connection 52 is tightened by the blows by an angle of rotation ⁇ .
  • the screw nut 56 is rotated relative to the threaded rod 55 by the angle of rotation ⁇ .
  • the angle of rotation ⁇ is not only dependent on the screw connection 52 but also on the construction elements 50, 51.
  • An estimation routine S4 compares the course 59 of the angle of rotation ⁇ over the time t with a pattern 60 ( Fig. 5 ).
  • the pattern 60 is a typical course of the angle of rotation determined from series of tests. The test series are carried out under different boundary conditions, eg different fastening elements, different pretensioning of the fastening elements, etc .. The pattern 60 has four to six degrees of freedom, which prove to be sufficient for classifying the different boundary conditions in steel construction.
  • the patterns 60 can be stored as control parameters for the screw connection 52.
  • a preselection of the possible patterns 60 or a restriction of the degrees of freedom or the values of the parameters for the degrees of freedom depending on the type of screw connection 52 selected in advance can increase the reliability in the selection of the pattern 60 or adaptation of the pattern 60 and the associated computational effort to reduce.
  • Fig. 5 shows an example of a course 59 in which the construction elements 51 lie flat on top of one another.
  • the estimation routine determines the current boundary condition by adapting the pattern 60 to the previous course 59 of the angle of rotation during the current setting process.
  • the preferred pattern 60 has three sections: a beginning 60, a middle 61 and an end 62.
  • the beginning is linear with a first slope.
  • the end has a linear course with a second slope, which is less than the first slope.
  • the center 61 is described, for example, by an exponential function with a monotonically decreasing slope. Alternatively, the center can be described by other functions with a continuously monotonically decreasing slope, e.g. exponential function, hyperbola.
  • the transitions between the sections are preferably smooth.
  • the pattern has four to six degrees of freedom.
  • the degrees of freedom are or describe, among other things, the slope of the beginning, the slope of the end, the duration of the beginning and the duration of the middle.
  • the comparison of the course with the pattern can be done with a compensation calculation (Fit) in which the numerical values for the degrees of freedom are varied, for example using the least squares method. Since the computing power of the impact wrench 1 is limited, for each type of screw connection 52 value ranges for the two slopes or their associated degrees of freedom. The value ranges are determined by test series and are stored in the specified parameters.
  • the estimation routine S4 preferably records the angle of rotation ⁇ over time, beginning with the first beat t0 , in order to obtain measurement points for the comparison.
  • a measuring point contains the measured angle of rotation ⁇ and the associated time t.
  • the angle of rotation ⁇ can be estimated based on the angle of rotation of the drive spindle 15 between successive rotary strokes.
  • the angle of rotation ⁇ of the socket 18 differs from the angle of rotation of the drive spindle 15 by the angle between the claws 12 of the hammer 10 multiplied by the number of blows.
  • Time recording can be approximated by chronological recording of the angle of rotation ⁇ .
  • the measuring points can be stored in a buffer.
  • the estimation routine S4 adapts the pattern 60 according to the predetermined number N1 of rotary strokes. The number is large enough to maintain a good fit.
  • the estimation routine S4 is terminated when a deviation of the pattern 60 from the measuring points lies within a predetermined tolerance. If, after the specified number of rotary strokes or specified duration, a deviation in the pattern is outside a tolerance or if the minimum number of measuring points for the end of the pattern has not been reached, an error message is issued and the setting process is aborted.
  • a target torque M0 and a final angle of rotation ⁇ are assigned to each of the patterns 60.
  • the target torque M0 and the final angle of rotation ⁇ can be stored as a value or can be calculated from the sample 60.
  • the threshold value M0 is typically less than the target torque M9 for the screw connection 52 when this is tightened by hand.
  • the electric motor 2 rotates the drive spindle 15 preferably at the specified speed Do.
  • the control unit 24 can, for example, determine the speed D of the drive spindle 15 directly with a rotation sensor 45 on the drive spindle 15 or indirectly via a rotation sensor on the electric motor 2 .
  • the rotational speed Do is one of the control parameters assigned to the screw connection 52. The speed has an influence on the torque output by the impact wrench 1.
  • the hammer 10 is released from the anvil 11 after a rotary stroke and is accelerated by the drive spindle 15 up to the next rotary stroke on the anvil 11. The next rotary stroke occurs when the hammer 10 is again aligned with the anvil 11.
  • a higher speed of the drive spindle 15 results in a higher angular speed and a higher angular momentum of the hammer 10 in the rotary impact.
  • a large part of the angular momentum is transmitted to the anvil 11 and the output spindle 4 in the event of a rotary impact.
  • the angular momentum or a variable describing the angular momentum can be determined for different speeds and stored in a family of characteristics.
  • an angle of rotation ⁇ by which the output spindle 4 rotates due to the rotary shock is determined.
  • the output torque M corresponds to the transmitted angular momentum and the angle of rotation ⁇ by which the output spindle 4 rotates due to the rotary impact. Based on the determined angle of rotation ⁇ and the approximate correlation of angular momentum and speed D , the output torque M is estimated.
  • a family of characteristics can be stored in the memory 25 , for example, which assigns a torque M or a variable describing the torque to a pairing of speed D and angle of rotation ⁇ .
  • the angle of rotation ⁇ is determined by a sensor system 46 in the impact wrench 1 .
  • the sensor system 46 can, for example, directly detect the rotary movement of the output spindle 4 with a rotary sensor 47.
  • the rotation sensor 47 can scan markings on the output spindle 4 inductively or optically.
  • the sensor system 46 can estimate the angle of rotation ⁇ of the output spindle 4 based on the rotary movement of the drive spindle 15 between two successive rotary strokes.
  • the drive spindle 15 rotates between the two rotary shock to the angular spacing of the claws 12, for example, 180 degrees, and the output spindle is provided the anvil 11 has rotated, in addition to the rotation angle ⁇ 4.
  • the rotational impacts are detected by a rotary impact sensor 48th
  • the sensor system 46 detects the angle of rotation of the drive spindle 15 in the time span between two immediately successive rotary strokes.
  • the beginning and the end of the period of time are detected by detecting the rotary impacts by means of a rotary impact sensor 48.
  • the rotary impact sensor 48 can, for example, detect the increased short-term vibration in the impact wrench 1 associated with the rotary impact.
  • the vibration is compared, for example, with a threshold value; the beginning or the end corresponds to the point in time when the threshold value is exceeded.
  • the twist sensor 48 can also be based on an acoustic microphone or infrasound microphone that detects a spike in volume.
  • a rotary shock sensor 48 detects the power consumption or a fluctuation in speed of the electric motor 2.
  • the power consumption increases briefly during the rotary shock.
  • the angle of rotation of the drive spindle 15 can, for example, from the speed D or the signals of the Rotation sensor 45 and the time span are calculated.
  • the angle of rotation ⁇ of the output spindle 4 is determined as the angle of rotation of the drive spindle 15 minus the angular spacing of the claws 12 .
  • the second phase S2 ends when the estimated torque M exceeds the setpoint torque M0 previously determined using the pattern 60.
  • the second phase S2 is followed by a third phase S3 in which the screw connection 52 is still rotated by the final angle of rotation ⁇ .
  • the progress of the angle of rotation during the third phase S3 can be estimated.
  • the impact wrench 1 stops tightening when the estimated angle of rotation has reached the final angle of rotation ⁇ during the third phase S3.
  • a final number N2 of strokes can also be carried out during the third phase S3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Description

GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung betrifft ein Setzverfahren für Spreizanker, welches alsThe present invention relates to a setting method for expansion anchors, which as

Steuerungsverfahren für einen Schlagschrauber implementiert ist.Control method for an impact wrench is implemented.

Aus der EP 2 985 118 A1 ist ein Steuerungsverfahren eines Schlagschraubers zum Anziehen einer Schraubverbindung bekannt, welches ansprechend auf ein Betätigen eines Tasters eine Sequenz mit aufeinanderfolgenden Phasen ausführt: eine erste Phase, in welcher ein Schlagwerk des Schlagschraubers eine vorgegebene Anzahl N1 von Drehschlägen auf die Schraubverbindung ausübt, eine zweite Phase, in welcher auf die Schraubverbindung weitere Drehschläge ausgeübt werden, und eine dritte Phase, in welcher auf die Schraubverbindung nochmals Drehschläge ausgeübt werden, bis ein Drehwinkel dem abschließenden Drehwinkel entspricht bzw. eine Drehzahl über eine vorbestimmte Zeitdauer erreicht wird.From the EP 2 985 118 A1 A control method of an impact wrench for tightening a screw connection is known which, in response to an actuation of a button, executes a sequence with successive phases: a first phase in which an impact mechanism of the impact wrench exerts a predetermined number N1 of rotary impacts on the screw connection, a second phase, in which further rotary impacts are exerted on the screw connection, and a third phase in which rotary impacts are exerted again on the screw connection until an angle of rotation corresponds to the final angle of rotation or a speed is reached over a predetermined period of time.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION

Ein Steuerungsverfahren eines Schlagschraubers (1) zum Anziehen einer Schraubverbindung (52) führt ansprechend auf ein Betätigen eines Tasters (9) eine Sequenz mit den aufeinanderfolgenden Phasen aus. In einer ersten Phase übt ein Schlagwerk (3) des Schlagschraubers (1) eine vorgegebene Anzahl N1 von Drehschlägen auf die Schraubverbindung (52) aus. Während der ersten Phase S1 wird ein Verlauf eines Drehwinkels Φ über die Zeit (t) geschätzt. Ein Muster wird an den Verlauf angepasst und basierend auf dem Muster wird für eine zweite Phase S2 ein Soll-Drehmoment M0 und für eine dritte Phase S3 ein abschließender Drehwinkel oder eine abschließende Anzahl von Schlägen ermittelt. Während der zweiten Phase (S2) werden Drehschläge ausgeübt, bis ein geschätztes Drehmoment M das Soll-Drehmoment M0 erreicht. Während der dritten Phase S3 werden auf die Schraubverbindung Drehschläge ausgeübt, bis eine Anzahl der Drehschläge der abschließenden Anzahl N3 oder ein Drehwinkel dem abschließenden Drehwinkel entspricht.A control method of an impact wrench (1) for tightening a screw connection (52) executes a sequence with the successive phases in response to actuation of a button (9). In a first phase, an impact mechanism (3) of the impact wrench (1) exerts a predetermined number N1 of rotary impacts on the screw connection (52). During the first phase S1, a course of a rotation angle Φ over time (t) is estimated. A pattern is adapted to the curve and, based on the pattern, a target torque M0 is determined for a second phase S2 and a final angle of rotation or a final number of strokes is determined for a third phase S3. During the second phase (S2), rotary impacts are exerted until an estimated torque M reaches the setpoint torque M0. During the third phase S3, rotary impacts are exerted on the screw connection until a number of rotary impacts corresponds to the final number N3 or a rotation angle corresponds to the final rotation angle.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Die nachfolgende Beschreibung erläutert die Erfindung anhand von exemplarischen Ausführungsformen und Figuren. In den Figuren zeigen:

Fig. 1
einen Schlagschrauber
Fig. 2
ein Eingabeelement
Fig. 3
eine Schraubverbindung von zwei Stahlplatten
Fig. 4
eine Schraubverbindung von zwei Stahlplatten
Fig. 5
einen Verlauf eines Drehwinkels
Fig. 6
ein Ablaufdiagramm zu dem Betriebsmodus "Stahlbau"
The following description explains the invention on the basis of exemplary embodiments and figures. In the figures show:
Fig. 1
an impact wrench
Fig. 2
an input element
Fig. 3
a screw connection of two steel plates
Fig. 4
a screw connection of two steel plates
Fig. 5
a course of an angle of rotation
Fig. 6
a flowchart for the "steel construction" operating mode

Gleiche oder funktionsgleiche Elemente werden durch gleiche Bezugszeichen in den Figuren indiziert, soweit nicht anders angegeben.Identical or functionally identical elements are indicated by the same reference symbols in the figures, unless stated otherwise.

AUSFÜHRUNGSFORMEN DER ERFINDUNGEMBODIMENTS OF THE INVENTION

Fig. 1 illustriert schematisch den Schlagschrauber 1. Der Schlagschrauber 1 hat einen Elektromotor 2, ein Schlagwerk 3 und eine Abtriebsspindel 4. Das Schlagwerk 3 wird von dem Elektromotor 2 kontinuierlich angetrieben. Sobald ein rückwirkendes Drehmoment der Abtriebsspindel 4 einen Schwellwert überschreitet, übt das Schlagwerk 3 wiederholt Drehimpulse (Drehschläge) mit einem zwar kurzzeitigen aber dafür mit einem sehr hohen Drehmoment auf die Abtriebsspindel 4 aus. Die Abtriebsspindel 4 dreht sich entsprechend kontinuierlich oder schrittweise um eine Arbeitsachse 5. Der Elektromotor 2 kann über eine Batterie 6 gespeist oder netzgespeist sein. Fig. 1 schematically illustrates the impact wrench 1. The impact wrench 1 has an electric motor 2, an impact mechanism 3 and an output spindle 4. The impact mechanism 3 is continuously driven by the electric motor 2. As soon as a retroactive torque of the output spindle 4 exceeds a threshold value, the percussion mechanism 3 repeatedly exerts rotary impulses (rotary impacts) on the output spindle 4 with a brief but very high torque. The output spindle 4 accordingly rotates continuously or step by step around a working axis 5. The electric motor 2 can be fed via a battery 6 or can be mains-fed.

Der Schlagschrauber 1 hat einen Handgriff 7, mittels welchem der Anwender den Schlagschrauber 1 während des Betriebs halten und führen kann. Der Handgriff 7 kann steif oder mittels Dämpfungselementen an einem Maschinengehäuse 8 befestigt sein. Der Elektromotor 2 und das Schlagwerk 3 sind in dem Maschinengehäuse 8 angeordnet. Der Elektromotor 2 ist mittels eines Tasters 9 ein- und ausschaltbar. Der Taster 9 ist beispielsweise unmittelbar an dem Handgriff 7 angeordnet und durch die den Handgriff umschließende Hand betätigbar.The impact wrench 1 has a handle 7 by means of which the user can hold and guide the impact wrench 1 during operation. The handle 7 can be fixed to a machine housing 8 in a rigid manner or by means of damping elements. The electric motor 2 and the hammer mechanism 3 are arranged in the machine housing 8 . The electric motor 2 can be switched on and off by means of a button 9. The button 9 is arranged, for example, directly on the handle 7 and can be actuated by the hand surrounding the handle.

Das beispielhafte Schlagwerk 3 hat einen Hammer 10 und einen Amboss 11. Der Hammer 10 hat Klauen 12, welche in Drehrichtung an Klauen 13 des Amboss 11 anliegen. Der Hammer 10 kann über die Klauen 12 ein kontinuierliches Drehmoment oder kurzzeitige Drehimpulse auf den Amboss 11 übertragen. Eine Schraubenfeder 14 spannt den Hammer 10 in Richtung zu dem Amboss 11 vor, wodurch der Hammer 10 mit dem Amboss 11 in Eingriff gehalten wird. Falls das Drehmoment den Schwellwert überschreitet, verschiebt sich der Hammer 10 soweit gegen die Kraft der Schraubenfeder, bis die Klauen 12 nicht mehr in Eingriff mit dem Amboss 11 sind. Der Elektromotor 2 kann den Hammer 10 in Drehrichtung beschleunigen, bis der Hammer 10 durch die Schraubenfeder 14 erneut in Eingriff mit dem Amboss 11 gezwungen wird. Die zwischenzeitlich gewonnene kinetische Energie überträgt der Hammer 10 in einem kurzen Impuls auf den Amboss 11. Eine Ausgestaltung sieht vor, dass der Hammer 10 auf einer Antriebsspindel 15 entlang einer spiralförmigen Bahn 16 zwangsgeführt ist. Die Zwangsführung kann beispielsweise als spiralförmige Vertiefung in der Antriebsspindel 15 und einen in die Vertiefung eingreifenden Zapfen des Hammers 10 realisiert sein. Die Antriebsspindel 15 ist durch den Elektromotor 2 angetrieben. The hammer mechanism 3 , for example, has a hammer 10 and an anvil 11. The hammer 10 has claws 12 which rest against claws 13 of the anvil 11 in the direction of rotation. The hammer 10 can transmit a continuous torque or brief rotary impulses to the anvil 11 via the claws 12 . A coil spring 14 biases the hammer 10 toward the anvil 11 , thereby keeping the hammer 10 engaged with the anvil 11 . If the torque exceeds the threshold value, the hammer 10 moves against the force of the helical spring until the claws 12 are no longer in engagement with the anvil 11 . The electric motor 2 can accelerate the hammer 10 in the direction of rotation until the hammer 10 is again forced into engagement with the anvil 11 by the helical spring 14. The meanwhile gained kinetic energy is transmitted by the hammer 10 to the anvil 11 in a short pulse. One embodiment provides that the hammer 10 is positively guided on a drive spindle 15 along a spiral path 16 . The forced guidance can be implemented, for example, as a spiral recess in the drive spindle 15 and a pin of the hammer 10 engaging in the recess. The drive spindle 15 is driven by the electric motor 2 .

Die Abtriebsspindel 4 steht aus dem Maschinengehäuse 8 hervor. Das herausstehende Ende bildet einen Werkzeughalter 17. Der beispielhafte Werkzeughalter 17 hat einen quadratischen Querschnitt. Eine Stecknuss 18 oder ähnliches Werkzeug kann auf den Werkzeughalter 17 aufgesteckt werden. Die Stecknuss 18 hat eine Buchse 19 mit einem quadratischen hohlen Querschnitt, der in seinen Maßen im Wesentlichen dem Werkzeughalter 17 entspricht. Der Buchse 19 gegenüberliegend hat die Stecknuss 18 ein Maul 20 zum Aufnehmen des Schraubkopfs 21, d.h. der sechskantigen Mutter 22 oder einer analogen Schraube. Die Stecknuss 18 kann mittels eines Werkzeugverriegelung 23 an der Abtriebsspindel 4 gesichert sein. Die Werkzeugverriegelung 23 basiert beispielsweise auf einem Stift, welcher sowohl durch eine Bohrung in der Abtriebsspindel 4 als auch in der Stecknuss 18 gesteckt wird.The output spindle 4 protrudes from the machine housing 8 . The protruding end forms a tool holder 17. The exemplary tool holder 17 has a square cross section. A socket 18 or a similar tool can be plugged onto the tool holder 17 . The socket 18 has a socket 19 with a square, hollow cross-section, the dimensions of which essentially correspond to the tool holder 17. Opposite the socket 19 , the socket 18 has a mouth 20 for receiving the screw head 21, ie the hexagonal nut 22 or an analogous screw. The socket 18 can be secured on the output spindle 4 by means of a tool lock 23. The tool lock 23 is based, for example, on a pin which is inserted both through a bore in the output spindle 4 and in the socket 18.

Der Schlagschrauber 1 hat eine Steuerungseinheit 24. Die Steuerungseinheit 24 kann beispielsweise durch einen Mikroprozessor und einen externen oder integrierten Speicher 25 realisiert sein. Anstelle eines Mikroprozessors kann die Steuerungseinheit aus äquivalenten diskreten Bauelementen, einen ASIC, ein ASSP, etc. realisiert sein.The impact wrench 1 has a control unit 24. The control unit 24 can be implemented, for example, by a microprocessor and an external or integrated memory 25 . Instead of a microprocessor, the control unit can be implemented from equivalent discrete components, an ASIC, an ASSP, etc.

Der Schlagschrauber 1 hat ein Eingabeelement 26, über welches der Anwender einen Betriebsmodus auswählen kann. Die Steuerungseinheit 24 steuert daraufhin den Schlagschrauber 1 entsprechend dem gewählten Betriebsmodus an. Die Steuerungssequenzen der verschiedenen Betriebsmodi können in dem Speicher 25 hinterlegt sein.The impact wrench 1 has an input element 26 via which the user can select an operating mode. The control unit 24 then controls the impact wrench 1 in accordance with the selected operating mode. The control sequences of the various operating modes can be stored in the memory 25.

Das Eingabeelement 26 kann beispielsweise eine Anzeige 27 und ein oder mehrere Eingabetaster 28 beinhalten. Die Steuerungseinheit 24 kann die verschiedenen in dem Speicher 25 hinterlegten Betriebsmodi und ggf. damit assoziierten Verbindungstypen anzeigen. Der Anwender kann mittels der Eingabetaster 28 den Betriebsmodus auswählen. Zudem kann der Anwender Spezifikationen, wie Größe, Durchmesser, Länge, Soll-Drehmoment, Belastbarkeit oder Herstellerbezeichnung eines Verbindungstyps eingegeben. In einer alternativen Ausgestaltung hat der Schlagschrauber 1 eine Kommunikationsschnittstelle 29, welche mit einem externen Eingabeelement 30 kommuniziert. Das externe Eingabeelement 30 kann beispielsweise ein Mobiltelefon, ein Laptop oder analoges Mobilgerät sein. Ferner kann das Eingabeelement ein Zusatzmodul sein, welches sich als Adapter zwischen Schlagschrauber 1 und Batterie 6 anordnen lässt. In einer auf dem Eingabeelement 30 ausgeführten Applikation sind mehrere Verbindungstypen hinterlegt oder die Applikation kann diese über eine Mobilfunkschnittstelle von einem Server abfragen. Das externe Eingabeelement 30 kann die Spreizanker oder relevante Informationen des Verbindungstyps auf einer Anzeige 31 darstellen. Der Anwender wählt einen Verbindungstyp über einen Eingabetaster 32 oder eine berührungsempfindliche Anzeige 31 aus. Das externe Eingabeelement 30 übermittelt die Typenbezeichnung oder für das Steuerungsverfahren relevanten Parameter des ausgewählten Verbindungstyps an den Schlagschrauber 1 via einer Kommunikationsschnittstelle 33 an die Kommunikationsschnittstelle 29 des Schlagschraubers 1. Die Kommunikationsschnittstelle 29 ist vorzugsweise funkbasiert, z.B. unter Verwendung eines Bluetooth Standards. In einer Ergänzung oder Alternative kann das interne Eingabeelement 28 oder das externe Eingabeelement 30 mit einer Kamera 34 versehen sein, welche einen Strichkode auf einer Verpackung des Verbindungstyps erfassen kann. Das Eingabeelement 28 ermittelt den Verbindungstyp basierend auf dem erfassten Strichkode und den in dem Speicher 25 hinterlegten Strichkodes. Anstelle einer Kamera 34 kann ein Laser-basierter Strichkode-Leser, ein RFID-Lesegerät, etc. verwendet werden, um ein Label an der Verpackung oder an dem Verbindungstyp zu erfassen. In einer weiteren Ausgestaltung kann eine Bildverarbeitung in dem Eingabeelement 28 den Verbindungstyp anhand eines von der Kamera 34 aufgenommenen Bildes erkennen, oder zumindest eine dem Anwender präsentierte Auswahl an Verbindungstypen basierend auf dem Bild eingrenzen.The input element 26 can include, for example, a display 27 and one or more input buttons 28. The control unit 24 can display the various operating modes stored in the memory 25 and possibly associated connection types. The user can select the operating mode by means of the input buttons 28. In addition, the user can enter specifications such as size, diameter, length, target torque, load capacity or manufacturer designation of a connection type. In an alternative embodiment, the impact wrench 1 has a communication interface 29 which communicates with an external input element 30 . The external input element 30 can be, for example, a mobile phone, a laptop or an analog mobile device. Furthermore, the input element can be an additional module which can be arranged as an adapter between the impact wrench 1 and the battery 6 . Several connection types are stored in an application executed on input element 30 , or the application can query them from a server via a mobile radio interface. The external input element 30 can contain the expansion anchor or relevant information of the connection type on a display 31 . The user selects a connection type via an input button 32 or a touch-sensitive display 31 . The external input element 30 transmits the type designation or parameters relevant to the control method of the selected connection type to the impact wrench 1 via a communication interface 33 to the communication interface 29 of the impact wrench 1. The communication interface 29 is preferably radio-based, e.g. using a Bluetooth standard. As a supplement or alternative, the internal input element 28 or the external input element 30 can be provided with a camera 34 which can capture a bar code on a packaging of the connection type. The input element 28 determines the connection type based on the detected bar code and the bar codes stored in the memory 25. Instead of a camera 34 , a laser-based bar code reader, an RFID reader, etc. can be used to detect a label on the packaging or on the connection type. In a further embodiment, image processing in the input element 28 can recognize the connection type on the basis of an image recorded by the camera 34 , or at least limit a selection of connection types presented to the user based on the image.

Fig. 3 zeigt schematisch eine Schraubverbindung von zwei Konstruktionselementen 50, 51 für den Stahlbau im Bauingenieurwesen. Die beiden Konstruktionselemente 50, 51 sollen belastbar mittels ein oder mehreren Schraubverbindungen 52 verbunden werden. Die Konstruktionselemente 50, 51 können beispielsweise Träger, Platten, Rohre, Flansche, etc. umfassen. Die Konstruktionselemente sind aus Stahl oder anderen metallischen Materialien. Die Konstruktionselemente 50, 51 sind in der Darstellung auf ihre sich berührenden plattenförmigen Abschnitte reduziert. In den Abschnitten sind ein oder mehrere Augen 53 vorgesehen. Die Augen 53 der beiden Konstruktionselemente werden durch den Anwender aneinander ausgerichtet. Fig. 3 shows schematically a screw connection of two construction elements 50, 51 for steel construction in civil engineering. The two construction elements 50, 51 are to be connected in a load-bearing manner by means of one or more screw connections 52. The construction elements 50, 51 can include, for example, beams, plates, tubes, flanges, etc. The construction elements are made of steel or other metallic materials. The construction elements 50, 51 are reduced to their touching plate-shaped sections in the illustration. One or more eyes 53 are provided in the sections. The eyes 53 of the two construction elements are aligned with one another by the user.

Die Schraubverbindungen 52 können einen typischen Aufbau mit einem Schraubenkopf 54 an einer Gewindestange 55 und einer Schraubenmutter 56 aufweisen. Während die Gewindestange 55 einen geringeren Durchmesser als die Augen 53 aufweist, haben der Schraubenkopf 54 und die Schraubenmutter 56 einen größeren Durchmesser als das Auge 53. Die Gewindestangen können bei anderen Schraubverbindung bereits mit dem ersten Konstruktionselement 50 verbunden sein.The screw connections 52 can have a typical structure with a screw head 54 on a threaded rod 55 and a screw nut 56 . While the threaded rod 55 has a smaller diameter than the eyes 53 , the screw head 54 and the screw nut 56 have a larger diameter than the eye 53. The threaded rods can already be connected to the first structural element 50 with other screw connections.

Der Anwender steckt die Gewindestangen 55 durch die ausgerichteten Augen 53. Anschließend wird die Schraubenmutter 56 aufgesetzt. Bei einer manuellen Befestigung zieht der Anwender die Schraubenmutter 56 mit einem Drehmomentschlüssel an, bis ein für die Schraubverbindung spezifiziertes Soll-Drehmoment erreicht ist. Die Spezifikation wird von dem Hersteller der Schraubverbindung angegeben oder ist in einschlägigen Normen für das Stahlbauwesen spezifiziert. Das Soll-Drehmoment gewährleistet, dass sich die Schraubverbindung unter Belastung, insbesondere Vibrationen, nicht lösen kann. Andererseits soll die Gewindestange 55 nicht unnötig belastet werden, oder im schlimmsten Fall während des Anziehens der Schraubenmutter 56 dauerhaft beschädigt werden.The user inserts the threaded rods 55 through the aligned eyes 53. The screw nut 56 is then put on. With a manual fastening pulls the user turns the screw nut 56 with a torque wrench until a target torque specified for the screw connection is reached. The specification is given by the manufacturer of the screw connection or is specified in the relevant standards for steel construction. The target torque ensures that the screw connection cannot loosen under load, in particular vibrations. On the other hand, the threaded rod 55 should not be unnecessarily stressed or, in the worst case, be permanently damaged while the screw nut 56 is being tightened.

Die Konstruktionselemente 50, 51 liegen gelegentlich nicht plan aufeinander, wie beispielhaft in Fig. 4 illustriert. Während des Anziehens der Schraubverbindung 52 verformen sich die Konstruktionselemente 51. Das rückwirkende Drehmoment der Schraubverbindung 52 ist somit nicht nur von dem Schraubentyp, sondern auch von den Konstruktionselementen 51 und deren aktuellen Vorspannung abhängig. Bei einem manuellen Anziehen ergeben sich hierdurch in der Regel keine zusätzlichen Schwierigkeiten, da der Anwender sieht, ob die Konstruktionselemente 50, 51 schon plan aufeinander liegen.The construction elements 50, 51 occasionally do not lie flat on top of one another, as exemplified in FIG Fig. 4 illustrated. During the tightening of the screw connection 52 , the construction elements 51 deform. The retroactive torque of the screw connection 52 is therefore not only dependent on the screw type, but also on the construction elements 51 and their current pretension. In the case of manual tightening, this generally does not result in any additional difficulties, since the user can see whether the construction elements 50, 51 are already lying flat on one another.

Ein Anziehen der Schraubverbindungen 52 mit einem Drehmomentschlüssel ist verlässliches und robustes Verfahren, allerdings ist das Verfahren arbeitsintensiv. Zumal häufig die Schraubverbindung 52 typischerweise viele Schrauben beinhaltet. Die Schraubverbindungen 52 könnten grundsätzlich mit einem klassischen Elektroschrauber und einer entsprechenden Abschaltung bis Erreichen des Soll-Drehmoments angezogen werden. Allerdings kann der Anwender die notwendige Haltekraft für das Soll-Drehmoment nicht aufbringen und es besteht ein erhebliches Verletzungsrisiko für den Anwender.Tightening the screw connections 52 with a torque wrench is a reliable and robust method, but the method is labor intensive. Especially since the screw connection 52 typically contains many screws. The screw connections 52 could in principle be tightened with a conventional electric screwdriver and a corresponding switch-off until the target torque is reached. However, the user cannot apply the necessary holding force for the target torque and there is a considerable risk of injury to the user.

Der Schlagschrauber 1 implementiert ein robustes Setzverfahren für die Schraubverbindung 52. Der Anwender richtet die Konstruktionselemente 51 aneinander aus, steckt die Gewindestangen 55 durch das zweite Konstruktionselemente 51 und setzt die Schraubenmuttern 56 auf. Der Anwender kann die Schraubverbindungen 52 mit dem Schlagschrauber 1 anziehen. Der Anwender wählt hierzu den Betriebsmodus "Stahlbau" aus und spezifiziert den Typ der Schraubverbindungen 52. The impact wrench 1 implements a robust setting method for the screw connection 52. The user aligns the structural elements 51 with one another, inserts the threaded rods 55 through the second structural element 51 and puts the screw nuts 56 on. The user can tighten the screw connections 52 with the impact wrench 1. For this purpose, the user selects the “steel construction” operating mode and specifies the type of screw connections 52.

Während bei einem kontinuierlich drehenden Schrauber das abgegebene Drehmoment recht einfach über die Leistungsaufnahme des Elektromotors und die Drehzahl der Abtriebsspindel gemessen werden kann, ist dies aufgrund der mechanischen Entkopplung zwischen der Abtriebsspindel 4 und dem Elektromotor 2 bei dem Schlagschrauber 1 nicht möglich. Eine unmittelbare Messung des abgegebenen Drehmoments mittels eines Sensors an der Abtriebsspindel ist aufgrund der hohen mechanischen Belastungen technisch sehr anspruchsvoll und nicht für den Schlagschrauber geeignet. Eine weitere Problematik ergibt sich durch die während des Anziehens verformenden Konstruktionselemente 50, 51. Deren Einfluss auf das Drehmoment, den Drehfortschritt etc., ist a priori nicht bekannt.While the torque output of a continuously rotating screwdriver can be measured quite easily via the power consumption of the electric motor and the speed of the output spindle, this is not possible in the impact wrench 1 due to the mechanical decoupling between the output spindle 4 and the electric motor 2. A direct measurement of the output torque by means of a sensor on the output spindle is technically very good due to the high mechanical loads demanding and not suitable for the impact wrench. A further problem arises from the construction elements 50, 51 which deform during the tightening. Their influence on the torque, the rotation progress, etc. is not known a priori.

Das Setzverfahren behilft sich mit einem drei-phasigen Anziehen der Schraubverbindung 52. Eine erste Phase S1 dient einer Analyse der Schraubverbindung 52 und der Konstruktionselemente 51, 52. Basierend auf der Analyse werden ein Soll-Drehmoment M0 und ein abschließender Drehwinkel ϕ festgelegt. Während einer anschließenden zweiten Phase S2 übt der Schlagschrauber 1 solange Schläge auf die Schraubverbindung 52 aus, bis ein geschätztes Drehmoment M das Soll-Drehmoment M erreicht. In einer abschließenden dritten Phase S3 wird die Schraubverbindung 52 noch um den abschließenden Drehwinkel ϕ angezogen.The setting process makes do with a three-phase tightening of the screw connection 52. A first phase S1 is used to analyze the screw connection 52 and the structural elements 51, 52. Based on the analysis, a target torque M0 and a final angle of rotation ϕ are determined. During a subsequent second phase S2 , the impact wrench 1 exerts blows on the screw connection 52 until an estimated torque M reaches the setpoint torque M. In a final third phase S3 , the screw connection 52 is tightened by the final angle of rotation ϕ.

Jedem Typus von Schraubverbindung 52 sind mehrere Steuerungsparameter zugeordnet, welche für den nachfolgenden ordnungsgemäßen Ablauf des Setzverfahrens notwendig sind. Die Steuerungsparameter sind in dem Speicher 25 zu dem Typus hinterlegt. Ansprechend auf die Eingabe oder Auswahl der Schraubverbindung 52 liest die Steuerungseinheit 24 die entsprechenden Steuerungsparameter aus. Die Steuerungsparameter werden vorzugweise solange beibehalten, bis der Anwender einen anderen Typus von Schraubverbindung 52 auswählt. Ein Auswählen der Schraubverbindung 52 vor jedem einzelnen Setzen ist nicht notwendig.Each type of screw connection 52 is assigned a number of control parameters which are necessary for the subsequent proper sequence of the setting process. The control parameters are stored in the memory 25 for the type. In response to the input or selection of the screw connection 52 , the control unit 24 reads out the corresponding control parameters. The control parameters are preferably retained until the user selects a different type of screw connection 52. It is not necessary to select the screw connection 52 before each individual setting.

Bei einem unbetätigten Taster 9 ist der Elektromotor 2 von der Stromversorgung, z.B. der Batterie 6, getrennt und dreht nicht. Der Schlagschrauber 1 fällt vorzugsweise beim Lösen des Tasters 9 in einen Bereitschaftsmodus. Mit Betätigen des Tasters 9 beginnt das Setzverfahren. In einer vorbereitenden Phase kann geprüft werden, ob der Anwender zuvor den Typ der Schraubverbindung 52 mittels eines der Eingabeelemente 28 ausgewählt hat. Falls eine entsprechende Auswahl bisher nicht vorgenommen wurde und die Steuerungsparameter nicht gesetzt sind, wird der Anwender dazu angehalten und der Schlagschrauber 1 bleibt inaktiv. Andernfalls wird der Elektromotor 2 mit der Stromversorgung verbunden.When the button 9 is not actuated, the electric motor 2 is disconnected from the power supply, for example the battery 6, and does not rotate. The impact wrench 1 preferably falls into a standby mode when the button 9 is released. The setting process begins when the button 9 is pressed. In a preparatory phase, it can be checked whether the user has previously selected the type of screw connection 52 by means of one of the input elements 28 . If a corresponding selection has not yet been made and the control parameters are not set, the user is stopped and the impact wrench 1 remains inactive. Otherwise, the electric motor 2 is connected to the power supply.

Ansprechend auf ein Betätigen des Tasters 9 wird die Antriebsspindel 15 beschleunigt. Die Spindel wird auf eine Soll-Drehzahl Do beschleunigt. Anfangs kann das rückwirkende Drehmoment der Schraubverbindung 52 so gering sein, dass das Schlagwerk 3 nicht aktiviert wird. Diese Vor-Phase wird nachfolgend nicht weiter beschrieben.In response to actuation of the button 9 , the drive spindle 15 is accelerated. The spindle is accelerated to a target speed Do. Initially, the retroactive torque of the screw connection 52 can be so small that the hammer mechanism 3 is not activated. This pre-phase is not described further below.

Eine erste Phase S1 des Setzverfahrens beginnt dem ersten Schlag des Schlagwerks 3. Während der ersten Phase S1 übt der Schlagschrauber 1 eine vorgegebene Anzahl N1 von Schlägen aus. Die vorgegebene Anzahl N1 kann durch den ausgewählten Typus der Schraubverbindung 52 vorgegeben sein. Die Schraubverbindung 52 wird durch die Schläge um einen Drehwinkel Φ angezogen. In dem obigen Beispiel wird die Schraubenmutter 56 gegenüber der Gewindestange 55 um den Drehwinkel Φ gedreht. Der Drehwinkel Φ ist neben der Schraubverbindung 52 auch von den Konstruktionselementen 50, 51 abhängig.A first phase S1 of the setting method begins with the first impact of the impact mechanism 3. During the first phase S1 , the impact wrench 1 exerts a predetermined number N1 of impacts. The specified number N1 can be specified by the selected type of screw connection 52 . The screw connection 52 is tightened by the blows by an angle of rotation Φ. In the above example, the screw nut 56 is rotated relative to the threaded rod 55 by the angle of rotation Φ. The angle of rotation Φ is not only dependent on the screw connection 52 but also on the construction elements 50, 51.

Eine Schätzroutine S4 vergleicht den Verlauf 59 des Drehwinkels φ über die Zeit t mit einem Muster 60 (Fig. 5). Das Muster 60 ist ein aus Versuchsreihen ermittelter typischer Verlauf des Drehwinkels. Die Versuchsreihen sind unter verschiedenen Randbedingungen durchgeführt, z.B. unterschiedliche Befestigungselemente, unterschiedliche Vorspannung der Bestigungselemente, etc.. Das Muster 60 hat vier bis sechs Freiheitsgrade, welche sich als ausreichend zum Klassifizieren der unterschiedlichen Randbedingungen im Stahlbau erweisen. Die Muster 60 können zu der Schraubverbindung 52 als Steuerungsparameter hinterlegt sein. Eine Vorauswahl der möglichen Muster 60 bzw. eine Beschränkung der Freiheitsgrade bzw. der Werte der Parameter für die Freiheitsgrade in Abhängigkeit des vorab ausgewählten Typus der Schraubverbindung 52 kann die Zuverlässigkeit in der Auswahl des Musters 60 bzw. Anpassung des Musters 60 erhöhen und den zugehörigen Rechenaufwand reduzieren.An estimation routine S4 compares the course 59 of the angle of rotation φ over the time t with a pattern 60 ( Fig. 5 ). The pattern 60 is a typical course of the angle of rotation determined from series of tests. The test series are carried out under different boundary conditions, eg different fastening elements, different pretensioning of the fastening elements, etc .. The pattern 60 has four to six degrees of freedom, which prove to be sufficient for classifying the different boundary conditions in steel construction. The patterns 60 can be stored as control parameters for the screw connection 52. A preselection of the possible patterns 60 or a restriction of the degrees of freedom or the values of the parameters for the degrees of freedom depending on the type of screw connection 52 selected in advance can increase the reliability in the selection of the pattern 60 or adaptation of the pattern 60 and the associated computational effort to reduce.

Fig. 5 zeigt beispielhaft einen Verlauf 59 bei welchem die Konstruktionselemente 51 plan aufeinanderliegen. Die Schätzroutine ermittelt die aktuelle Randbedingung durch Anpassen des Musters 60 an den bisherigen Verlauf 59 des Drehwinkels während des laufenden Setzvorgangs. Das bevorzugte Muster 60 hat drei Abschnitte: einen Anfang 60, eine Mitte 61 und ein Ende 62. Der Anfang hat einen linearen Verlauf mit einer ersten Steigung. Das Ende hat einen linearen Verlauf mit einer zweiten Steigung, welche geringer als die erste Steigung ist. Die Mitte 61 wird beispielsweise durch eine Exponentialfunktion mit monoton abnehmender Steigung beschrieben. Alternativ kann die Mitte durch andere Funktionen mit durchgehend monoton abnehmender Steigung beschrieben werden, z.B. Exponentialfunktion, Hyperbel. Die Übergänge zwischen den Abschnitten sind vorzugsweise glatt. Das Muster hat vier bis sechs Freiheitsgrade. Die Freiheitsgrade sind oder beschreiben unter Anderem die Steigung des Anfangs, die Steigung des Endes, die Dauer des Anfangs und die Dauer der Mitte. Der Vergleich des Verlaufs mit dem Muster kann mit einer Ausgleichsrechnung (Fit) erfolgen, in welcher die Zahlenwerte für die Freiheitsgrade variiert werden, z.B. unter Verwendung der Methode kleinster Quadrate. Da die Rechenleistung des Schlagschraubers 1 begrenzt ist, können für jeden Typ von Schraubverbindungen 52 Wertebereiche für die beiden Steigungen bzw. deren zugehörigen Freiheitsgrade, vorgegeben sein. Die Wertebereiche werden durch Versuchsreihen ermittelt und sind in den vorgegebenen Parametern hinterlegt. Fig. 5 shows an example of a course 59 in which the construction elements 51 lie flat on top of one another. The estimation routine determines the current boundary condition by adapting the pattern 60 to the previous course 59 of the angle of rotation during the current setting process. The preferred pattern 60 has three sections: a beginning 60, a middle 61 and an end 62. The beginning is linear with a first slope. The end has a linear course with a second slope, which is less than the first slope. The center 61 is described, for example, by an exponential function with a monotonically decreasing slope. Alternatively, the center can be described by other functions with a continuously monotonically decreasing slope, e.g. exponential function, hyperbola. The transitions between the sections are preferably smooth. The pattern has four to six degrees of freedom. The degrees of freedom are or describe, among other things, the slope of the beginning, the slope of the end, the duration of the beginning and the duration of the middle. The comparison of the course with the pattern can be done with a compensation calculation (Fit) in which the numerical values for the degrees of freedom are varied, for example using the least squares method. Since the computing power of the impact wrench 1 is limited, for each type of screw connection 52 value ranges for the two slopes or their associated degrees of freedom. The value ranges are determined by test series and are stored in the specified parameters.

Die Schätzroutine S4 zeichnet vorzugsweise beginnend mit dem ersten Schlag t0 den Drehwinkel φ über die Zeit auf, um Messpunkte für den Vergleich zu erhalten. Ein Messpunkt beinhaltet den gemessenen Drehwinkel φ und den zugehörigen Zeitpunkt t. Der Drehwinkel φ kann basierend auf dem Drehwinkel der Antriebsspindel 15 zwischen aufeinanderfolgenden Drehschlägen geschätzt werden. Der Drehwinkel φ der Stecknuss 18 unterscheidet sich von dem Drehwinkel der Antriebsspindel 15 um den Winkel zwischen den Klauen 12 des Hammers 10 multipliziert mit der Anzahl der Schläge. Eine Zeiterfassung kann durch eine chronologische Aufzeichnung der Drehwinkel φ approximiert werden. Die Messpunkte können in einem Zwischenspeicher abgelegt werden.The estimation routine S4 preferably records the angle of rotation φ over time, beginning with the first beat t0 , in order to obtain measurement points for the comparison. A measuring point contains the measured angle of rotation φ and the associated time t. The angle of rotation φ can be estimated based on the angle of rotation of the drive spindle 15 between successive rotary strokes. The angle of rotation φ of the socket 18 differs from the angle of rotation of the drive spindle 15 by the angle between the claws 12 of the hammer 10 multiplied by the number of blows. Time recording can be approximated by chronological recording of the angle of rotation φ. The measuring points can be stored in a buffer.

Die Schätzroutine S4 passt das Muster 60 nach der vorgegebenen Anzahl N1 von Drehschlägen an. Die Anzahl ist ausreichend groß bemessen, um eine guten Fit zu erhalten. Die Schätzroutine S4 wird abgeschlossen, wenn eine Abweichung des Musters 60 von den Messpunkten innerhalb einer vorgegebenen Toleranz liegt. Falls nach der vorgegebenen Anzahl von Drehschlägen bzw. vorgegebenen Dauer eine Abweichung des Musters außerhalb einer Toleranz liegt oder die Mindestzahl von Messpunkten für das Ende des Musters unterschritten ist, wird eine Fehlermeldung ausgegeben und das Setzverfahren wird abgebrochen.The estimation routine S4 adapts the pattern 60 according to the predetermined number N1 of rotary strokes. The number is large enough to maintain a good fit. The estimation routine S4 is terminated when a deviation of the pattern 60 from the measuring points lies within a predetermined tolerance. If, after the specified number of rotary strokes or specified duration, a deviation in the pattern is outside a tolerance or if the minimum number of measuring points for the end of the pattern has not been reached, an error message is issued and the setting process is aborted.

Jedem der Muster 60 ist ein Soll-Drehmoment M0 und ein abschließender Drehwinkel φ zugeordnet. Das Soll-Drehmoment M0 und der abschließende Drehwinkel ϕ können als Wert hinterlegt sein oder aus dem Muster 60 berechnet werden. Der Schwellwert M0 ist typischerweise geringer als das Soll-Drehmoment M9 für die Schraubverbindung 52, wenn diese per Hand angezogen wird.A target torque M0 and a final angle of rotation φ are assigned to each of the patterns 60. The target torque M0 and the final angle of rotation ϕ can be stored as a value or can be calculated from the sample 60. The threshold value M0 is typically less than the target torque M9 for the screw connection 52 when this is tightened by hand.

Während der zweiten Phase S2 dreht der Elektromotor 2 die Antriebsspindel 15 vorzugsweise mit der vorgegebenen Drehzahl Do. Die Steuerungseinheit 24 kann beispielsweise die Drehzahl D der Antriebsspindel 15 unmittelbar mit einem Drehsensor 45 an der Antriebsspindel 15 oder mittelbar über einen Drehsensor an dem Elektromotor 2 bestimmen. Die Drehzahl Do ist einer der Schraubverbindung 52 zugeordneten Steuerungsparameter. Die Drehzahl hat einen Einfluss auf das von dem Schlagschrauber 1 abgegebenen Drehmoment. Der Hammer 10 löst sich nach einem Drehschlag von dem Amboss 11 und wird durch die Antriebsspindel 15 bis zu dem nächsten Drehschlag auf den Amboss 11 beschleunigt. Der nächste Drehschlag erfolgt, wenn Hammer 10 wieder entsprechend zu dem Amboss 11 ausgerichtet ist. Bedingt durch die weitgehend vorgegebene Beschleunigungsstrecke resultiert eine höhere Drehzahl der Antriebsspindel 15 in einer höheren Winkelgeschwindigkeit und einem höheren Drehimpuls des Hammers 10 im Drehschlag. In einer groben Näherung wird angenommen, dass ein Großteil des Drehimpulses bei einem Drehschlag auf den Amboss 11 und die Abtriebsspindel 4 übertragen wird. In Versuchsreihen kann für verschiedene Drehzahlen der Drehimpuls oder eine den Drehimpuls beschreibende Größe ermittelt und in einem Kennlinienfeld abgelegt werden.During the second phase S2 , the electric motor 2 rotates the drive spindle 15 preferably at the specified speed Do. The control unit 24 can, for example, determine the speed D of the drive spindle 15 directly with a rotation sensor 45 on the drive spindle 15 or indirectly via a rotation sensor on the electric motor 2 . The rotational speed Do is one of the control parameters assigned to the screw connection 52. The speed has an influence on the torque output by the impact wrench 1. The hammer 10 is released from the anvil 11 after a rotary stroke and is accelerated by the drive spindle 15 up to the next rotary stroke on the anvil 11. The next rotary stroke occurs when the hammer 10 is again aligned with the anvil 11. Due to the largely specified acceleration distance a higher speed of the drive spindle 15 results in a higher angular speed and a higher angular momentum of the hammer 10 in the rotary impact. As a rough approximation, it is assumed that a large part of the angular momentum is transmitted to the anvil 11 and the output spindle 4 in the event of a rotary impact. In a series of tests, the angular momentum or a variable describing the angular momentum can be determined for different speeds and stored in a family of characteristics.

Während der zweiten Phase S2 wird ein Drehwinkel δΦ, um welchen sich die Abtriebsspindel 4 aufgrund des Drehschlags dreht ermittelt. Das abgegebene Drehmoment M entspricht dem übertragenen Drehimpuls und dem Drehwinkel δΦ, um welchen sich die Abtriebsspindel 4 aufgrund des Drehschlags dreht. Basierend auf dem ermittelten Drehwinkel δΦ und der näherungsweisen Korrelation von Drehimpuls und Drehzahl D wird das abgegebene Drehmoment M geschätzt. In dem Speicher 25 kann beispielsweise ein Kennlinienfeld hinterlegt sein, welches einer Paarung aus Drehzahl D und Drehwinkel δΦ ein Drehmoment M oder eine das Drehmoment beschreibende Größe zuordnet.During the second phase S2 , an angle of rotation δΦ by which the output spindle 4 rotates due to the rotary shock is determined. The output torque M corresponds to the transmitted angular momentum and the angle of rotation δΦ by which the output spindle 4 rotates due to the rotary impact. Based on the determined angle of rotation δΦ and the approximate correlation of angular momentum and speed D , the output torque M is estimated. A family of characteristics can be stored in the memory 25 , for example, which assigns a torque M or a variable describing the torque to a pairing of speed D and angle of rotation δΦ.

Der Drehwinkel δΦ wird durch eine Sensorik 46 in dem Schlagschrauber 1 ermittelt. Die Sensorik 46 kann beispielsweise unmittelbar die Drehbewegung des Abtriebsspindel 4 mit einem Drehsensor 47 erfassen. Der Drehsensor 47 kann Markierungen an der Abtriebsspindel 4 induktiv oder optisch abtasten. Alternativ oder ergänzend kann die Sensorik 46 den Drehwinkel δΦ der Abtriebsspindel 4 basierend auf der Drehbewegung der Antriebsspindel 15 zwischen zwei aufeinanderfolgenden Drehschlägen schätzen. Die Antriebsspindel 15 dreht sich zwischen den zwei Drehschlägen um den Winkelabstand der Klauen 12, z.B. 180 Grad, und sofern sich der Amboss 11 gedreht hat, zusätzlich um den Drehwinkel δΦ der Abtriebsspindel 4. Die Drehschläge werden durch einen Drehschlagsensor 48 erfasst. Die Sensorik 46 erfasst dazu den Drehwinkel der Antriebsspindel 15 in der Zeitspanne zwischen zwei unmittelbar aufeinanderfolgenden Drehschlägen. Der Anfang und das Ende der Zeitspanne wird durch das Erfassen der Drehschläge mittels eines Drehschlagsensors 48 erfasst. Der Drehschlagsensor 48 kann beispielsweise die mit dem Drehschlag einhergehende erhöhte kurzzeitige Vibration in dem Schlagschrauber 1 erfassen. Die Vibration wird beispielsweise mit einem Schwellwert verglichen, der Anfang bzw. das Ende entspricht dem Zeitpunkt des Überschreitens des Schwellwerts. Der Drehschlagsensor 48 kann ebenso auf einem akustischen Mikrophon oder Infraschall-Mikrophon basieren, das eine Spitze in der Lautstärke erfasst. Eine weitere Variante eines Drehschlagsensors 48 erfasst die Leistungsaufnahme oder eine Drehzahlschwankung des Elektromotors 2. Die Leistungsaufnahme steigt kurzzeitig während des Drehschlages an. Der Drehwinkel der Antriebsspindel 15 kann beispielsweise aus der Drehzahl D oder den Signalen des Drehsensors 45 und der Zeitspanne errechnet werden. Der Drehwinkel δΦ der Abtriebsspindel 4 wird als der Drehwinkel der Antriebsspindel 15 abzüglich dem Winkelabstand der Klauen 12 bestimmt.The angle of rotation δΦ is determined by a sensor system 46 in the impact wrench 1 . The sensor system 46 can, for example, directly detect the rotary movement of the output spindle 4 with a rotary sensor 47. The rotation sensor 47 can scan markings on the output spindle 4 inductively or optically. As an alternative or in addition, the sensor system 46 can estimate the angle of rotation δΦ of the output spindle 4 based on the rotary movement of the drive spindle 15 between two successive rotary strokes. The drive spindle 15 rotates between the two rotary shock to the angular spacing of the claws 12, for example, 180 degrees, and the output spindle is provided the anvil 11 has rotated, in addition to the rotation angle δΦ 4. The rotational impacts are detected by a rotary impact sensor 48th For this purpose, the sensor system 46 detects the angle of rotation of the drive spindle 15 in the time span between two immediately successive rotary strokes. The beginning and the end of the period of time are detected by detecting the rotary impacts by means of a rotary impact sensor 48. The rotary impact sensor 48 can, for example, detect the increased short-term vibration in the impact wrench 1 associated with the rotary impact. The vibration is compared, for example, with a threshold value; the beginning or the end corresponds to the point in time when the threshold value is exceeded. The twist sensor 48 can also be based on an acoustic microphone or infrasound microphone that detects a spike in volume. Another variant of a rotary shock sensor 48 detects the power consumption or a fluctuation in speed of the electric motor 2. The power consumption increases briefly during the rotary shock. The angle of rotation of the drive spindle 15 can, for example, from the speed D or the signals of the Rotation sensor 45 and the time span are calculated. The angle of rotation δΦ of the output spindle 4 is determined as the angle of rotation of the drive spindle 15 minus the angular spacing of the claws 12 .

Die zweite Phase S2 wird beendet, wenn das geschätzte Drehmoment M den zuvor über das Muster 60 ermittelte Soll-Drehmoment M0 überschreitet.The second phase S2 ends when the estimated torque M exceeds the setpoint torque M0 previously determined using the pattern 60.

An die zweite Phase S2 schließt sich eine dritte Phase S3 an, in welcher die Schraubverbindung 52 noch um den abschließenden Drehwinkel ϕ gedreht wird. Der Fortschritt des Drehwinkels während der dritten Phase S3 kann geschätzt werden. Die Schlagschrauber 1 beendet das Anziehen, wenn der geschätzte Drehwinkel während der dritten Phase S3 den abschließende Drehwinkel ϕ erreicht hat. Alternativ kann statt einem abschließenden Drehwinkel auch eine abschließende Anzahl N2 von Schlägen während der dritten Phase S3 ausgeführt werden.The second phase S2 is followed by a third phase S3 in which the screw connection 52 is still rotated by the final angle of rotation ϕ. The progress of the angle of rotation during the third phase S3 can be estimated. The impact wrench 1 stops tightening when the estimated angle of rotation has reached the final angle of rotation ϕ during the third phase S3. Alternatively, instead of a final angle of rotation, a final number N2 of strokes can also be carried out during the third phase S3.

Claims (3)

  1. Control method of an impact wrench (1) for tightening a threaded connection (52), which, in response to actuation of a pushbutton key (9), executes a sequence with the consecutive phases:
    a first phase (S1) in which an impact mechanism (3) of the impact wrench (1) exerts a predefined number (N1) of rotary impacts on the threaded connection (52), and during the first phase (S1) a profile (59) of a rotational angle Φ over time (t) is estimated and a pattern (60) is adapted to the profile (59), and on the basis of the pattern (60) a setpoint torque (M0) is determined for a second phase (S2) and a final rotation angle or a final number of impacts is determined for a third phase (S3),
    the second phase (S2) in which rotary impacts are exerted on the threaded connection (52) until an estimated torque (M) reaches the setpoint torque (M0), and
    the third phase (S3) in which rotary impacts are exerted on the threaded connection (52) until a number of the rotary impacts corresponds to the final number (N3), or a rotational angle corresponds to the final rotational angle.
  2. Control method according to Claim 1, characterized in that the pattern (60) has a first section (61) with a first gradient and a second section (63) which follows the first section (61) and has a second gradient, wherein the second gradient is lower than the first gradient.
  3. Control method according to Claim 2, characterized in that the pattern (60) has a third section (62) with a continuously decreasing gradient, wherein the third section (62) is arranged between the first section (61) and the second section (63).
EP18822091.7A 2017-12-20 2018-12-20 Setting method for threaded connection by means of impact wrench Active EP3727758B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17208763.7A EP3501740A1 (en) 2017-12-20 2017-12-20 Setting method for threaded connection by means of impact wrench
PCT/EP2018/086300 WO2019122189A1 (en) 2017-12-20 2018-12-20 Setting method for screw connections using an impact screwdriver

Publications (2)

Publication Number Publication Date
EP3727758A1 EP3727758A1 (en) 2020-10-28
EP3727758B1 true EP3727758B1 (en) 2021-11-17

Family

ID=60702313

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17208763.7A Withdrawn EP3501740A1 (en) 2017-12-20 2017-12-20 Setting method for threaded connection by means of impact wrench
EP18822091.7A Active EP3727758B1 (en) 2017-12-20 2018-12-20 Setting method for threaded connection by means of impact wrench

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17208763.7A Withdrawn EP3501740A1 (en) 2017-12-20 2017-12-20 Setting method for threaded connection by means of impact wrench

Country Status (3)

Country Link
US (1) US11426848B2 (en)
EP (2) EP3501740A1 (en)
WO (2) WO2019121837A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7178591B2 (en) * 2019-11-15 2022-11-28 パナソニックIpマネジメント株式会社 Impact tool, impact tool control method and program
EP4438230A1 (en) * 2023-03-30 2024-10-02 Hilti Aktiengesellschaft Impact wrench and method of controlling same

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1478807A1 (en) * 1962-07-03 1969-03-13 Bosch Gmbh Robert Motor-driven rotary impact device
US4733049A (en) * 1963-01-11 1988-03-22 Lemelson Jerome H Machining method and apparatus
US4095325A (en) * 1974-12-24 1978-06-20 Sanyo Machine Works, Ltd. Method for tightening bolts
US4173059A (en) * 1974-12-24 1979-11-06 Sanyo Machine Works, Ltd. Device for tightening bolts
US4037282A (en) * 1976-03-08 1977-07-26 Dahl Norman C Process for creating overload protection against yielding in bolts
SE423344B (en) * 1976-11-22 1982-05-03 Atlas Copco Ab PROCEDURE AND DEVICE FOR REGULATED TIGHTENING OF SCREW TAPES
US4358735A (en) * 1977-07-25 1982-11-09 Sps Technologies, Inc. Bidirectional incremental encoding system for measuring maximum forward angular displacement of a bidirectionally rotatable rotating shaft
US5105519A (en) * 1985-06-19 1992-04-21 Daiichi Dentsu Kabushiki Kaisha Tension control method for nutrunner
US5065494A (en) * 1988-03-28 1991-11-19 Nissan Motor Company, Ltd. Method of securing fastener
JPH01246026A (en) * 1988-03-28 1989-10-02 Nissan Motor Co Ltd Thread member tightening device
US5277261A (en) * 1992-01-23 1994-01-11 Makita Corporation Tightening tool
JP3188507B2 (en) * 1992-01-23 2001-07-16 株式会社マキタ Tightening tool
JP3000185B2 (en) * 1993-04-21 2000-01-17 株式会社山崎歯車製作所 Bolt fastening method using impact wrench
DE4429282A1 (en) * 1994-08-18 1996-02-22 Cooper Ind Inc Hydro impulse wrench especially for tightening screw connections
US5899915A (en) * 1996-12-02 1999-05-04 Angiotrax, Inc. Apparatus and method for intraoperatively performing surgery
US5848655A (en) * 1997-05-29 1998-12-15 Ingersoll-Rand Company Oscillating mass-based tool with dual stiffness spring
DE19804459C1 (en) * 1998-02-05 1999-07-15 Daimler Chrysler Ag Threaded joint tightening technique for mass assembly processes
EP1208946B1 (en) * 1999-03-16 2006-02-01 Kuken Co. Ltd Reading method of screw rotation angle of hand-held impact wrench, hand-vibration detection method, tightening evaluation method and control method of hand-held power screw loosening tool
US6536536B1 (en) * 1999-04-29 2003-03-25 Stephen F. Gass Power tools
JP3906606B2 (en) * 1999-06-11 2007-04-18 松下電工株式会社 Impact rotary tool
JP3456949B2 (en) * 2000-06-19 2003-10-14 株式会社エスティック Method and apparatus for controlling screw tightening device
US6516896B1 (en) * 2001-07-30 2003-02-11 The Stanley Works Torque-applying tool and control therefor
US7090030B2 (en) * 2002-09-03 2006-08-15 Microtorq L.L.C. Tranducerized torque wrench
DE10241682B4 (en) * 2002-09-09 2006-01-19 BSH Bosch und Siemens Hausgeräte GmbH Method for operating a programmable washing machine
US6968908B2 (en) * 2003-02-05 2005-11-29 Makita Corporation Power tools
JP4093145B2 (en) * 2003-08-26 2008-06-04 松下電工株式会社 Tightening tool
JP2005118910A (en) * 2003-10-14 2005-05-12 Matsushita Electric Works Ltd Impact rotary tool
JP4906236B2 (en) * 2004-03-12 2012-03-28 株式会社マキタ Tightening tool
DE102005015900B4 (en) * 2004-04-10 2020-07-09 Marquardt Gmbh Power tools, in particular impact wrenches
JP4400303B2 (en) * 2004-05-12 2010-01-20 パナソニック電工株式会社 Impact rotary tool
JP4211744B2 (en) * 2005-02-23 2009-01-21 パナソニック電工株式会社 Impact tightening tool
DE102006017193A1 (en) * 2006-04-12 2007-10-25 Robert Bosch Gmbh Method for tightening a screw connection and screwing tool
US8196673B2 (en) * 2006-08-02 2012-06-12 Paul William Wallace Method and apparatus for determining when a threaded fastener has been tightened to a predetermined tightness
US7562720B2 (en) * 2006-10-26 2009-07-21 Ingersoll-Rand Company Electric motor impact tool
US20080319570A1 (en) * 2007-06-25 2008-12-25 Van Schoiack Michael M System and method for fastener installation
JP4412377B2 (en) * 2007-09-28 2010-02-10 パナソニック電工株式会社 Impact rotary tool
SE533215C2 (en) * 2008-05-08 2010-07-20 Atlas Copco Tools Ab Method and apparatus for tightening joints
JP5126515B2 (en) * 2008-05-08 2013-01-23 日立工機株式会社 Oil pulse tool
CN101771379B (en) * 2009-01-04 2015-02-04 苏州宝时得电动工具有限公司 Control method of electric tool and electric tool executing same
JP5300970B2 (en) * 2009-03-13 2013-09-25 株式会社牧野フライス製作所 Spindle rotation control method and machine tool control device
CN102481686B (en) * 2009-07-29 2015-10-14 日立工机株式会社 Percussion tool
KR101458286B1 (en) * 2009-07-29 2014-11-04 히다치 고키 가부시키가이샤 Impact tool
JP5441003B2 (en) 2009-10-01 2014-03-12 日立工機株式会社 Rotating hammer tool
US8875804B2 (en) * 2010-01-07 2014-11-04 Black & Decker Inc. Screwdriving tool having a driving tool with a removable contact trip assembly
JP5686236B2 (en) * 2010-07-30 2015-03-18 日立工機株式会社 Electric tools and electric tools for screw tightening
JP2012035358A (en) 2010-08-05 2012-02-23 Toyota Motor Corp Impact type fastening tool
JP5486435B2 (en) * 2010-08-17 2014-05-07 パナソニック株式会社 Impact rotary tool
DE102011055874A1 (en) * 2010-11-30 2012-05-31 Hitachi Koki Co., Ltd. Hammer drill controls predetermined sizes of turn of hammer based on angle of rotation of hammer which is obtained according to rotational position output of rotor
DE102011122212B4 (en) * 2010-12-29 2022-04-21 Robert Bosch Gmbh Battery-powered screwing system with reduced radio-transmitted data volume
EP2535139B1 (en) * 2011-06-17 2016-04-06 Dino Paoli S.r.l. Impact tool
JP2013184266A (en) * 2012-03-09 2013-09-19 Hitachi Koki Co Ltd Power tool and power tool system
JP5935983B2 (en) * 2012-03-29 2016-06-15 日立工機株式会社 Electric tool
US9375828B2 (en) * 2012-04-06 2016-06-28 Christopher V. Beckman Non-damaging connection techniques
JP5841011B2 (en) * 2012-06-05 2016-01-06 株式会社マキタ Rotating hammer tool
JP6107385B2 (en) * 2013-04-26 2017-04-05 日立工機株式会社 Electric tool
EP2826601A1 (en) * 2013-07-16 2015-01-21 HILTI Aktiengesellschaft Control method and hand tool machine
CN104608099B (en) * 2013-11-04 2017-04-19 南京德朔实业有限公司 Electric tool for outputting torque
JP6297854B2 (en) * 2014-02-18 2018-03-20 株式会社マキタ Rotating hammer tool
JP6304533B2 (en) * 2014-03-04 2018-04-04 パナソニックIpマネジメント株式会社 Impact rotary tool
DE102015211119A1 (en) * 2014-06-20 2015-12-24 Robert Bosch Gmbh Method for controlling an electric motor of a power tool
EP2985118A1 (en) 2014-08-12 2016-02-17 HILTI Aktiengesellschaft Optimised setting procedure for an expansible anchor
EP2985117A1 (en) 2014-08-12 2016-02-17 HILTI Aktiengesellschaft Optimised setting procedure for an expansible anchor
DE102014116032B4 (en) * 2014-11-04 2022-05-25 C. & E. Fein Gmbh impact wrench
WO2016121462A1 (en) * 2015-01-30 2016-08-04 日立工機株式会社 Impact work machine
WO2016196984A1 (en) * 2015-06-05 2016-12-08 Ingersoll-Rand Company Power tools with user-selectable operational modes
JP6638522B2 (en) * 2015-08-07 2020-01-29 工機ホールディングス株式会社 Electric tool
JP6523101B2 (en) * 2015-08-24 2019-05-29 株式会社マキタ Rotary impact tool
SE539838C2 (en) * 2015-10-15 2017-12-19 Atlas Copco Ind Technique Ab Electric handheld pulse tool
TWI671170B (en) * 2015-12-17 2019-09-11 美商米沃奇電子工具公司 System and method for configuring a power tool with an impact mechanism
JP6706681B2 (en) * 2016-02-25 2020-06-10 ミルウォーキー エレクトリック ツール コーポレイション Power tool including output position sensor
US11465263B2 (en) * 2016-04-04 2022-10-11 Hilti Aktiengesellschaft Control method for an impact wrench
WO2018137928A1 (en) * 2017-01-24 2018-08-02 Atlas Copco Industrial Technique Ab Electric pulse tool
JP6868851B2 (en) * 2017-01-31 2021-05-12 パナソニックIpマネジメント株式会社 Impact rotary tool
KR102429488B1 (en) * 2017-06-08 2022-08-05 현대자동차주식회사 Design of an electric screwdriver with torque limit based on the controller, torue limit apparatus, and method thereof
US10940577B2 (en) * 2017-07-19 2021-03-09 China Pneumatic Corporation Torque control system and torque control method for power impact torque tool
EP3501742A1 (en) * 2017-12-20 2019-06-26 HILTI Aktiengesellschaft Setting method for expansion dowell using impact wrench
EP3501743A1 (en) * 2017-12-20 2019-06-26 HILTI Aktiengesellschaft Setting method for expansion dowell using impact wrench
EP3743246A1 (en) * 2018-01-24 2020-12-02 Milwaukee Electric Tool Corporation Power tool including a machine learning block
US11497490B2 (en) * 2018-07-09 2022-11-15 Covidien Lp Powered surgical devices including predictive motor control
DE102018216702A1 (en) * 2018-09-28 2020-04-02 Robert Bosch Gmbh Method for controlling or regulating a hand machine tool
FR3105750B1 (en) * 2019-12-27 2022-08-19 Renault Georges Ets Method for assisting in the maintenance of an industrial tool, corresponding tool and system, and program implementing the method.
WO2021257835A1 (en) * 2020-06-17 2021-12-23 Milwaukee Electric Tool Corporation Systems and methods for detecting anvil position using a relief feature
TWI781422B (en) * 2020-07-08 2022-10-21 車王電子股份有限公司 Control method of impact power tool

Also Published As

Publication number Publication date
WO2019121837A1 (en) 2019-06-27
EP3501740A1 (en) 2019-06-26
US20210008698A1 (en) 2021-01-14
US11426848B2 (en) 2022-08-30
WO2019122189A1 (en) 2019-06-27
EP3727758A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
EP3439830B1 (en) Control method of an impact wrench
EP2495076B1 (en) Method for setting a split anchor and screwdriver for setting a split anchor
EP3180166B1 (en) Optimised setting procedure for an expansible anchor
EP2225057B1 (en) Method for placing rivet elements by means of a portable riveting device driven by an electric motor, and riveting device
EP3157711B1 (en) Method for operating a power tool
EP3180165B1 (en) Optimised setting procedure for an expansible anchor
EP3727758B1 (en) Setting method for threaded connection by means of impact wrench
EP3727757B1 (en) Setting method for expansion dowell using impact wrench
EP3727756B1 (en) Setting method for expansion dowell using impact wrench
DE112010005996T5 (en) Drive unit for a power tool
EP3507509A1 (en) Distance sensor at anchor tip
EP0652080A1 (en) Impuls or impact screwing method
WO2020058031A1 (en) Portable power tool and method for operating a portable power tool
EP3501741A1 (en) Setting method for threaded connection by means of impact wrench
EP4197695A1 (en) Hand-held power tool device with torque nut device and method
DE102023200523A1 (en) Method for operating a hand-held power tool
WO2023169756A1 (en) Method for operating a hand-held power tool
DE102023200526A1 (en) Method for operating a hand-held power tool
EP3833510A1 (en) Hand-held machine tool and method for operating a hand-held machine tool

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210825

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007926

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1447673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007926

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

26N No opposition filed

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 6

Ref country code: DE

Payment date: 20231214

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117