EP3726031B1 - Reducteur mecanique de turbomachine d aeronef - Google Patents

Reducteur mecanique de turbomachine d aeronef Download PDF

Info

Publication number
EP3726031B1
EP3726031B1 EP20169893.3A EP20169893A EP3726031B1 EP 3726031 B1 EP3726031 B1 EP 3726031B1 EP 20169893 A EP20169893 A EP 20169893A EP 3726031 B1 EP3726031 B1 EP 3726031B1
Authority
EP
European Patent Office
Prior art keywords
teeth
toothing
gear
carrier
planet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20169893.3A
Other languages
German (de)
English (en)
Other versions
EP3726031A1 (fr
Inventor
Adrien Louis Simon
Simon Loïc Clément LEFEBVRE
Guillaume Pierre MOULY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Transmission Systems SAS
Original Assignee
Safran Transmission Systems SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Transmission Systems SAS filed Critical Safran Transmission Systems SAS
Publication of EP3726031A1 publication Critical patent/EP3726031A1/fr
Application granted granted Critical
Publication of EP3726031B1 publication Critical patent/EP3726031B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H2001/2881Toothed gearings for conveying rotary motion with gears having orbital motion comprising two axially spaced central gears, i.e. ring or sun gear, engaged by at least one common orbital gear wherein one of the central gears is forming the output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H2001/289Toothed gearings for conveying rotary motion with gears having orbital motion comprising two or more coaxial and identical sets of orbital gears, e.g. for distributing torque between the coaxial sets

Definitions

  • the present invention relates to the field of mechanical reduction gears for turbomachines, in particular aircraft.
  • the state of the art includes in particular the documents WO-A1-2010/092263 , FR-A1 -2 987 416 , FR-A1 -3 008 462 , FR-A1-3 008 462 , FR-A1 -3 041 054 and US-A-3188888 .
  • the role of a mechanical gearbox is to modify the speed and torque ratio between the input axis and the output axis of a mechanical system.
  • the new generations of dual-flow turbomachines include a mechanical reduction gear to drive the shaft of a fan (also called a "fan").
  • a mechanical reduction gear to drive the shaft of a fan (also called a "fan").
  • the purpose of the reducer is to transform the so-called fast rotational speed of the shaft of a power turbine into a slower rotational speed for the shaft driving the fan.
  • Such a reducer comprises a central pinion, called sun gear, a crown and pinions called satellites, which are engaged between the sun gear and the crown.
  • the satellites are held by a frame called the planet carrier.
  • the sun gear, the crown and the planet carrier are planetary because their axes of revolution coincide with the longitudinal axis X of the turbomachine.
  • the satellites each have a different axis of revolution evenly distributed over the same operating diameter around the axis of the planetary gears. These axes are parallel to the longitudinal axis X.
  • the toothing of a satellite which cooperates with the sun is different from the toothing of the satellite which cooperates with the crown.
  • the teeth of a satellite which cooperate respectively with the solar and the crown have different average diameters.
  • the helical teeth generate significant axial forces at the interfaces between the reducer and the motor.
  • herringbone teeth could solve these problems of axial force. However, this does not solve the bearing moments and complicates the assembly and manufacture of the reducer.
  • the present invention proposes an improvement to this technology which is simple, efficient and economical.
  • the use of satellites with symmetrical teeth makes it possible to solve the aforementioned problem of moments at the bearings of the satellites.
  • the teeth of the satellites are herringbone to optimize the compactness and meshing of the reducer.
  • a toothing with herringbone teeth is understood to mean a toothing comprising two series of teeth oriented in different directions.
  • the teeth of the first series are inclined with respect to the axis around which extends this first series, and the teeth of the second series are inclined differently with respect to its axis.
  • the teeth of the two series are thus inclined relative to each other to form chevrons.
  • the invention further relates to a turbomachine, in particular for an aircraft, comprising a mechanical reduction gear as described above.
  • the figure 1 describes a turbomachine 1 which comprises, in a conventional manner, a fan S, a low pressure compressor 1a, a high pressure compressor 1b, an annular combustion chamber 1c, a high pressure turbine 1d, a low pressure turbine 1e and a nozzle of 1 hour exhaust.
  • the high pressure compressor 1b and the high pressure turbine 1d are connected by a high pressure shaft 2 and form with it a high pressure body (HP).
  • the low pressure compressor 1a and the low pressure turbine 1e are connected by a low pressure shaft 3 and form with it a low pressure body (LP).
  • the fan S is driven by a fan shaft 4 which is driven by the LP shaft 3 by means of a reducer 6.
  • This reducer 6 is generally of the planetary or planetary type.
  • the description which follows relates to a reducer of the planetary type, of which the planet carrier and the solar are mobile in rotation, the crown of the reducer being fixed in the frame of the motor.
  • the reducer 6 is positioned in the upstream part of the turbomachine.
  • a fixed structure comprising schematically, here, an upstream part 5a and a downstream part 5b which makes up the motor casing or stator 5 is arranged so as to form an enclosure E surrounding the reducer 6.
  • This enclosure E is here closed upstream by seals at the level of a bearing allowing the crossing of the fan shaft 4, and downstream by seals at the level of the crossing of the LP shaft 3.
  • the picture 2 shows an epicyclic reducer 6.
  • the reducer 6 is connected to the BP shaft 3, for example via internal splines 7a.
  • the BP shaft 3 drives a planet gear called the sun gear 7.
  • the sun gear 7, whose axis of rotation coincides with that of the turbomachine X drives a series of gears called satellites 8, which are evenly distributed over the same diameter around the axis of rotation X. This diameter is equal to twice the operating center distance between the solar 7 and the satellites 8.
  • the number of satellites 8 is generally defined between three and seven for this type of application.
  • the set of satellites 8 is held by a frame called the planet carrier 10.
  • Each satellite 8 rotates around its own Y axis, and meshes with crown 9.
  • Each satellite 8 is mounted free to rotate using a bearing 11, for example of the bearing or hydrodynamic bearing type.
  • Each bearing 11 is mounted on one of the axes 10b of the planet carrier 10 and all the axes are positioned relative to each other using one or more structural frames 10a of the planet carrier 10.
  • the axles 10b and the frame 10a can be separated into several parts.
  • the helix widths vary between the solar 7, the satellites 8 and the crown 9 because of the toothing overlaps, they are all centered on a median plane P for the upstream teeth and on another median plane P' for the teeth downstream.
  • the picture 2 thus illustrates the case of a reduction gear with a single meshing stage, that is to say that the same toothing 8d of each satellite 8 cooperates both with the sun gear 7 and the ring gear 9. Even if the toothing 8d comprises two series of teeth, these teeth have the same average diameter and form a single and same set of teeth called a chevron.
  • the fixing half-flange 9ab of the upstream crown 9a and the fixing half-flange 9bb of the downstream crown 9b form the fixing flange 9c of the crown.
  • the crown 9 is fixed to a crown holder by assembling the fixing flange 9c of the crown and the fixing flange 12a of the crown holder using a bolted assembly for example.
  • the arrows of the picture 2 describe the routing of the oil in the reducer 6.
  • the oil arrives in the reducer 6 from the stator part 5 in a distributor 13 by various means which will not be specified in this view because they are specific to one or more types of architecture.
  • Distributor 13 includes injectors 13a and arms 13b.
  • the injectors 13a have the function of lubricating the teeth and the arms 13b have the function of lubricating the bearings.
  • the oil is brought to the injector 13a to exit through the end 13c in order to lubricate the teeth.
  • the oil is also brought to the arm 13b and circulates via the supply port 13d of the bearing.
  • the oil then circulates through the axle in one or more buffer zones 10c and then exits through the orifices 10d in order to lubricate the bearings of the satellites.
  • the picture 3 shows another example of gear architecture, called a double gearing stage, in which each planet gear 8 comprises two separate toothings 8d1, 8d2 configured to cooperate respectively with crown 9 and sun gear 7.
  • the gearing 8d1 for meshing with the crown 9 has an average diameter noted D2 and is located in a median plane P.
  • the gearing 8d2 for meshing with the sun gear 7 has an average diameter noted D1 and is located in another median plane P '.
  • the median planes P, P' are parallel to each other and perpendicular to the axis X.
  • the diameter D2 is less than the diameter D1.
  • each toothing 8d1, 8d2 here comprises a single helix.
  • the present invention proposes to solve this problem by means of double-stage satellites with symmetrical teeth, a preferred embodiment of the invention being represented in figures 4 and 5 .
  • the plane H is defined as being a median plane perpendicular to the axis X and passing substantially in the middle of the reducer 60 ( figure 5 ).
  • the solar 70 comprises internal splines 70a for coupling with the BP shaft 30 as well as an external toothing 70b for meshing with the satellites 80.
  • the toothing 70b has two series of adjacent herringbone teeth, separated from each other by an annular groove 72 oriented radially outwards.
  • the toothing 70b is symmetrical with respect to the plane H, its teeth being located on either side of the plane H which passes through the groove 72.
  • the crown 90 is formed by two independent rings 90a, 90b and comprises a set of teeth which is separated into two series of chevron teeth 90d1, 90d2 carried respectively by the two rings.
  • the rings 90a, 90b are arranged symmetrically with respect to the plane H which therefore extends between these rings.
  • the rings are connected and fixed to a crown holder 120 by means of annular connecting flanges 122.
  • the flanges 122 are independent of each other, each flange having in axial half-section a general S-shape giving it a certain radial flexibility by elastic deformation in operation.
  • Each ring 90a, 90b extends around the X axis and is fixed to the corresponding flange 122 by its outer periphery. Its inner periphery includes one of the teeth 90d1, 90d2.
  • the crown holder 120 has a generally annular shape around the axis X and more particularly biconical. It thus comprises a first section upstream or on the left in the drawing, with an upstream end of smaller diameter, and a downstream end of larger diameter which is connected to the upstream end of larger diameter of the other section, downstream or right on the drawing.
  • the larger diameter ends of the sections are therefore interconnected, and their smaller diameter ends form the axial ends of the crown carrier.
  • the upstream end of the crown gear carrier 120 extends around the planet gear carrier 100 or a shaft connected to this planet gear carrier, and is centered and guided in rotation on the planet gear carrier or the shaft via at least one bearing 124.
  • the downstream end of the crown carrier 120 extends around the carrier 100 or a shaft connected to this carrier, and is centered and guided in rotation on the carrier or the shaft via at least one other bearing 126.
  • each satellite 80 comprises a first toothing 82 of average diameter D1 for meshing with the sun gear 70, and a second toothing 84 of average diameter D2, different from D1 and in particular less than D1, for meshing with the ring gear 90.
  • the average diameters are measured from the Y axis of each satellite and represent the average between the maximum diameter and the minimum diameter of a toothing of this satellite.
  • Each satellite 80 comprises a cylindrical body 86 and an annular web 88 extending substantially radially outwards from the middle of this body 86.
  • the toothing 84 is separated into two series of chevron teeth 84d1, 84d2 which are located respectively on the axial ends of the body 86.
  • the toothing 82 comprises two series of chevron teeth 82d1, 82d2 which are located at the outer periphery of the veil 88 and which are separated from each other by an annular groove 89 opening radially towards the outside of the Y axis.
  • the toothing 82 is crossed in its middle by the plane H which passes through the groove 89, the teeth 82d1, 82d2 therefore being arranged on either side of the plane H.
  • the teeth 84d1, 84d2 are also arranged symmetrically with respect to at the H plane.
  • the toothing 82 and the outer periphery of the veil 88 have an axial dimension which is less than the axial distance between the rings 90a, 90b, as well as between the flanges 122, so that each satellite 80 can freely rotate in the holder. -crown 120 and between the rings 90a, 90b and the flanges 122.
  • the solution thus proposes to "symmetrize" the teeth of the satellites of the reducer in order to symmetrize the axial forces as well as the moments to which the satellites are subjected in operation.
  • This solution also makes it possible to gain in length or axial dimension with respect to a herringbone toothing by the disappearance of the inter-toothing groove of the meshing stage with the ring gear.

Description

    Domaine technique de l'invention
  • La présente invention concerne le domaine des réducteurs mécaniques pour des turbomachines en particulier d'aéronef.
  • Arrière-plan technique
  • L'état de l'art comprend notamment les documents WO-A1-2010/092263 , FR-A1 -2 987 416 , FR-A1 -3 008 462 , FR-A1-3 008 462 , FR-A1 -3 041 054 et US-A-3188888 .
  • Le rôle d'un réducteur mécanique est de modifier le rapport de vitesse et de couple entre l'axe d'entrée et l'axe de sortie d'un système mécanique.
  • Les nouvelles générations de turbomachines à double flux, notamment celles ayant un haut taux de dilution, comportent un réducteur mécanique pour entraîner l'arbre d'une soufflante (aussi appelé « fan »). De manière usuelle, le réducteur a pour but de transformer la vitesse de rotation dite rapide de l'arbre d'une turbine de puissance en une vitesse de rotation plus lente pour l'arbre entraînant la soufflante.
  • Un tel réducteur comprend un pignon central, appelé solaire, une couronne et des pignons appelés satellites, qui sont en prise entre le solaire et la couronne. Les satellites sont maintenus par un châssis appelé porte-satellites. Le solaire, la couronne et le porte-satellites sont des planétaires car leurs axes de révolution coïncident avec l'axe longitudinal X de la turbomachine. Les satellites ont chacun un axe de révolution différents équirépartis sur le même diamètre de fonctionnement autour de l'axe des planétaires. Ces axes sont parallèles à l'axe longitudinal X.
  • Il existe plusieurs architectures de réducteur. Dans l'état de l'art des turbomachines à double flux, les réducteurs sont de type planétaire ou épicycloïdal. Il existe dans d'autres applications similaires, des architectures dites différentielles ou « compound ».
    • Sur un réducteur planétaire, le porte-satellites est fixe et la couronne constitue l'arbre de sortie du dispositif qui tourne dans le sens inverse du solaire.
    • Sur un réducteur épicycloïdal, la couronne est fixe et le porte-satellites constitue l'arbre de sortie du dispositif qui tourne dans le même sens que le solaire.
    • Sur un réducteur différentiel, aucun élément n'est fixé en rotation. La couronne tourne dans le sens contraire du solaire et du porte-satellites. Les réducteurs peuvent être composés de un ou plusieurs étages d'engrènement. Cet engrènement est assuré de différentes façons comme par contact, par friction ou encore par champs magnétique. Il existe plusieurs types d'engrènement par contact comme avec des dentures droites, hélicoïdales ou en chevron.
  • L'augmentation des rapports de réduction des architectures des moteurs cibles pousse à utiliser des réducteurs dits « double étage ». En effet, au-delà d'un rapport de l'ordre de 7, la technologie dite « simple étage » perd son intérêt car n'est plus assez compacte. Il faut alors utiliser des réducteurs dits « double étage ».
  • Dans une technologie simple étage, c'est la même denture d'un satellite qui coopère avec le solaire et la couronne. Dans une technologie double étage, la denture du satellite qui coopère avec le solaire est différente de la denture du satellite qui coopère avec la couronne. En général, les dentures d'un satellite qui coopèrent respectivement avec le solaire et la couronne ont des diamètres moyens différents.
  • La principale problématique des réducteurs double étage réside dans le fait qu'ils sont asymétriques par rapport à un plan perpendiculaire à l'axe X. Ainsi, la puissance rentrant à l'aval par l'intérieur et ressortant à l'amont par l'extérieur génère des moments non négligeables au niveau des satellites (les expressions « amont » et « aval » faisant référence à l'écoulement général des gaz dans la turbomachine). Egalement, pour gagner en compacité et en qualité d'engrènement, il est préférable d'utiliser des dentures hélicoïdales.
  • Les dentures hélicoïdales génèrent des efforts axiaux non négligeables, au niveau des interfaces entre le réducteur et le moteur.
  • L'utilisation de dentures en chevron pourrait résoudre ces problématiques d'effort axial. Cependant, cela ne résout pas les moments aux paliers et complexifie le montage et la fabrication du réducteur.
  • La présente invention propose un perfectionnement à cette technologie qui est simple, efficace et économique.
  • Résumé de l'invention
  • L'invention concerne un réducteur mécanique de turbomachine, en particulier d'aéronef, ce réducteur comportant :
    • un solaire ayant un axe de rotation,
    • une couronne qui s'étend autour du solaire,
    • des satellites qui sont engrenés avec le solaire et la couronne et qui sont maintenus par un porte-satellites, chaque satellite comportant une première denture de diamètre moyen D1 pour l'engrènement avec le solaire, et une seconde denture de diamètre moyen D2, inférieur à D1, pour l'engrènement avec la couronne,
    caractérisé en ce que les première et seconde dentures de chaque satellite présentent une symétrie par rapport à un plan perpendiculaire audit axe et passant sensiblement au milieu du satellite,
    et en ce que chacune des première et seconde dentures comprend des dents en chevron, le chevron de la première denture étant formé par des dents amont de la première denture séparées de dents aval de la première denture en étant disposées de part et d'autre du plan, et les dents amont de la seconde denture étant séparées des dents aval de la seconde denture par la première denture.
  • L'utilisation de satellites à dentures symétriques permet de résoudre le problème précité de moments aux paliers des satellites. Par ailleurs, les dentures des satellites sont en chevron pour optimiser la compacité et l'engrènement du réducteur.
  • Dans la présente demande, on entend par une denture à dents en chevron, une denture comportant deux séries de dents orientées dans des directions différentes. Les dents de la première série sont inclinées par rapport à l'axe autour duquel s'étend cette première série, et les dents de la seconde série sont inclinées différemment par rapport à son axe. Les dents des deux séries sont ainsi inclinées les unes par rapport aux autres pour former des chevrons.
  • Le réducteur selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres, ou en combinaison les unes avec les autres :
    • les dents amont de la première denture sont séparées par une rainure annulaire des dents aval de cette première denture ;
    • chaque satellite comprend un corps cylindrique et un voile annulaire s'étendant sensiblement radialement vers l'extérieur depuis le milieu de ce corps, les dents de la seconde denture étant situées aux extrémités axiales du corps, et les dents de la première denture étant situées à la périphérie externe du voile ;
    • le solaire comprend une denture à dents en chevron et comportant des dents amont et aval situées respectivement de part et d'autre dudit plan ;
    • la couronne comprend une denture à dents en chevron et comportant des dents amont et aval situées respectivement de part et d'autre dudit plan et séparées l'une de l'autre par la seconde denture ;
    • les dents de la couronne sont portées respectivement par deux anneaux fixés l'un et l'autre sur un porte-couronne ;
    • le porte-couronne a une forme générale biconique et sensiblement symétrique par rapport audit plan qui passe par le milieu de plus grand diamètre du porte-couronne ;
    • le porte-couronne comprend à ses extrémités des paliers pour guider le porte-satellites ou un arbre d'entraînement du porte-satellites ;
    • la couronne est configurée pour être immobile en rotation autour dudit axe, et le porte-satellites est configuré pour être mobile en rotation autour de cet axe.
  • L'invention concerne en outre une turbomachine, en particulier d'aéronef, comportant un réducteur mécanique tel que décrit ci-dessus.
  • Brève description des figures
  • D'autres caractéristiques et avantages ressortiront de la description qui suit d'un mode de réalisation non limitatif de l'invention en référence aux dessins annexés sur lesquels :
    • [Fig.1] la figure 1 est une vue schématique en coupe axiale d'une turbomachine utilisant l'invention,
    • [Fig.2] la figure 2 est une vue partielle en coupe axiale d'un réducteur mécanique,
    • [Fig.3] la figure 3 est une autre vue partielle en coupe axiale d'un réducteur mécanique, et illustre la technique antérieure à la présente invention,
    • [Fig.4] la figure 4 est une vue schématique en coupe axiale et en perspective d'un réducteur selon l'invention, et
    • [Fig.5] la figure 5 est une autre vue schématique en coupe axiale du réducteur de la figure 4.
    Description détaillée de l'invention
  • La figure 1 décrit une turbomachine 1 qui comporte, de manière classique, une soufflante S, un compresseur basse pression 1a, un compresseur haute pression 1b, une chambre annulaire de combustion 1c, une turbine haute pression 1d, une turbine basse pression 1e et une tuyère d'échappement 1h. Le compresseur haute pression 1b et la turbine haute pression 1d sont reliés par un arbre haute pression 2 et forment avec lui un corps haute pression (HP). Le compresseur basse pression 1a et la turbine basse pression 1e sont reliés par un arbre basse pression 3 et forment avec lui un corps basse pression (BP).
  • La soufflante S est entraînée par un arbre de soufflante 4 qui est entrainé par l'arbre BP 3 au moyen d'un réducteur 6. Ce réducteur 6 est généralement de type planétaire ou épicycloïdal.
  • La description qui suit concerne un réducteur du type épicycloïdal, dont le porte-satellites et le solaire sont mobiles en rotation, la couronne du réducteur étant fixe dans le repère du moteur.
  • Le réducteur 6 est positionné dans la partie amont de la turbomachine. Une structure fixe comportant schématiquement, ici, une partie amont 5a et une partie aval 5b qui compose le carter moteur ou stator 5 est agencée de manière à former une enceinte E entourant le réducteur 6. Cette enceinte E est ici fermée en amont par des joints au niveau d'un palier permettant la traversée de l'arbre de soufflante 4, et en aval par des joints au niveau de la traversée de l'arbre BP 3.
  • La figure 2 montre un réducteur épicycloïdal 6. En entrée, le réducteur 6 est relié à l'arbre BP 3, par exemple par l'intermédiaire de cannelures internes 7a. Ainsi, l'arbre BP 3 entraîne un pignon planétaire appelé le solaire 7. Classiquement, le solaire 7, dont l'axe de rotation est confondu avec celui de la turbomachine X, entraîne une série de pignons appelés satellites 8, qui sont équirépartis sur le même diamètre autour de l'axe de rotation X. Ce diamètre est égal au double de l'entraxe de fonctionnement entre le solaire 7 et les satellites 8. Le nombre de satellites 8 est généralement défini entre trois et sept pour ce type d'application.
  • L'ensemble des satellites 8 est maintenu par un châssis appelé porte-satellites 10. Chaque satellite 8 tourne autour de son propre axe Y, et engrène avec la couronne 9.
  • En sortie nous avons :
    • ▪ Dans cette configuration épicycloïdale, l'ensemble des satellites 8 entraine en rotation le porte-satellite 10 autour de l'axe X de la turbomachine. La couronne est fixée au carter moteur ou stator 5 via un porte-couronne 12 et le porte-satellites 10 est fixé à l'arbre de soufflante 4.
    • ▪ Dans une autre configuration planétaire, l'ensemble des satellites 8 est maintenu par un porte-satellites 10 qui est fixé au carter moteur ou stator 5. Chaque satellite entraine la couronne qui est rapportée à l'arbre de soufflante 4 via un porte-couronne 12.
    • ▪ Dans une autre configuration différentielle, l'ensemble des satellites 8 est maintenu par un porte-satellites 10 qui est relié à un premier arbre de soufflante 5. Chaque satellite entraine la couronne qui est rapportée à un second arbre de soufflante contrarotatif 4 via un porte-couronne 12.
  • Chaque satellite 8 est monté libre en rotation à l'aide d'un palier 11, par exemple de type roulement ou palier hydrodynamique. Chaque palier 11 est monté sur un des axes 10b du porte-satellites 10 et tous les axes sont positionnés les uns par rapport aux autres à l'aide d'un ou plusieurs châssis structurels 10a du porte-satellites 10. Il existe un nombre d'axes 10b et de paliers 11 égal au nombre de satellites. Pour des raisons de fonctionnement, de montage, de fabrication, de contrôle, de réparation ou de rechange, les axes 10b et le châssis 10a peuvent être séparés en plusieurs pièces.
  • Pour les mêmes raisons citées précédemment, la denture d'un satellite peut être séparée en plusieurs hélices ou dents présentant chacun un plan médian P, P'. Dans notre exemple, nous détaillons le fonctionnement d'un réducteur dont chaque satellite comprend deux séries de dents en chevron coopérant avec une couronne séparée en deux demi-couronnes:
    • ▪ Une demi-couronne amont 9a constituée d'une jante 9aa et d'une demi-bride de fixation 9ab. Sur la jante 9aa se trouve l'hélice avant engrenée avec une hélice de la denture 8d de chaque satellite 8. L'hélice de la denture 8d engrène également avec celle du solaire 7.
    • ▪ Une demi-couronne aval 9b constituée d'une jante 9ba et d'une demi-bride de fixation 9bb. Sur la jante 9ba se trouve l'hélice arrière engrenée avec une hélice de la denture 8d de chaque satellite 8. L'hélice de la denture 8d engrène également avec celle du solaire 7.
  • Si les largeurs d'hélice varient entre le solaire 7, les satellites 8 et la couronne 9 à cause des recouvrements de denture, elles sont toutes centrées sur un plan médian P pour les dents amont et sur un autre plan médian P' pour les dents aval.
  • La figure 2 illustre ainsi le cas d'un réducteur à simple étage d'engrènement, c'est-à-dire qu'une même denture 8d de chaque satellite 8 coopère à la fois avec le solaire 7 et la couronne 9. Même si la denture 8d comprend deux séries de dents, ces dents ont le même diamètre moyen et forment une seule et même denture appelée chevron.
  • La demi-bride de fixation 9ab de la couronne amont 9a et la demi-bride de fixation 9bb de la couronne aval 9b forment la bride de fixation 9c de la couronne. La couronne 9 est fixée à un porte-couronne en assemblant la bride de fixation 9c de la couronne et la bride de fixation 12a du porte-couronne à l'aide d'un montage boulonné par exemple.
  • Les flèches de la figure 2 décrivent l'acheminement de l'huile dans le réducteur 6. L'huile arrive dans le réducteur 6 depuis la partie stator 5 dans un distributeur 13 par différents moyens qui ne seront pas précisés dans cette vue car ils sont spécifiques à un ou plusieurs types d'architecture. Le distributeur 13 comprend des injecteurs 13a et des bras 13b. Les injecteurs 13a ont pour fonction de lubrifier les dentures et les bras 13b ont pour fonction de lubrifier les paliers. L'huile est amenée vers l'injecteur 13a pour ressortir par l'extrémité 13c afin de lubrifier les dentures. L'huile est également amenée vers le bras 13b et circule via la bouche d'alimentation 13d du palier. L'huile circule ensuite à travers l'axe dans une ou des zones tampons 10c pour ensuite ressortir par les orifices 10d afin de lubrifier les paliers des satellites.
  • La figure 3 montre un autre exemple d'architecture de réducteur, dit à double étage d'engrènement, dans lequel chaque satellite 8 comprend deux dentures 8d1, 8d2 distinctes configurées pour coopérer respectivement avec la couronne 9 et le solaire 7.
  • Dans cette figure 3, les éléments déjà décrits dans ce qui précède sont désignés par les mêmes références.
  • La denture 8d1 d'engrènement avec la couronne 9 a un diamètre moyen noté D2 et est situé dans un plan médian P. La denture 8d2 d'engrènement avec le solaire 7 a un diamètre moyen noté D1 et est situé dans un autre plan médian P'. Les plans médians P, P' sont parallèles entre eux et perpendiculaires à l'axe X. Le diamètre D2 est inférieur au diamètre D1. Enfin, chaque denture 8d1, 8d2 comprend ici une seule hélice.
  • Comme évoqué dans ce qui précède, cette architecture « double étage » génère des moments non négligeables au niveau des satellites 8.
  • La présente invention propose de résoudre ce problème grâce à des satellites à double étage et à dentures symétriques, un mode préféré de réalisation de l'invention étant représenté aux figures 4 et 5.
  • Le réducteur 60 des figures 4 et 5 comprend :
    • un solaire 70 ayant un axe de rotation X,
    • une couronne 90 qui s'étend autour du solaire et qui est configurée pour être immobile en rotation autour de l'axe X, et
    • des satellites 80 qui sont engrenés avec le solaire 70 et la couronne 90 et qui sont maintenus par un porte-satellites 100 qui est configuré pour être mobile en rotation autour de l'axe X.
  • On définit le plan H comme étant un plan médian perpendiculaire à l'axe X et passant sensiblement au milieu du réducteur 60 (figure 5).
  • Le solaire 70 comprend des cannelures internes 70a d'accouplement avec l'arbre BP 30 ainsi qu'une denture externe 70b d'engrènement avec les satellites 80. La denture 70b présente deux séries de dents adjacentes en chevron, séparées l'une de l'autre par une rainure annulaire 72 orientée radialement vers l'extérieur. La denture 70b est symétrique par rapport au plan H, ses dents étant situées de part et d'autre du plan H qui passe par la rainure 72.
  • La couronne 90 est formée par deux anneaux indépendants 90a, 90b et comprend une denture qui est séparée en deux séries de dents 90d1, 90d2 en chevron portées respectivement par les deux anneaux.
  • Les anneaux 90a, 90b sont disposés de manière symétrique par rapport au plan H qui s'étend donc entre ces anneaux. Les anneaux sont reliés et fixés à un porte-couronne 120 par l'intermédiaire de flasques annulaires 122 de liaison. Les flasques 122 sont indépendants l'un de l'autre, chaque flasque ayant en demi section axiale une forme générale en S lui procurant une certaine souplesse radiale par déformation élastique en fonctionnement. Chaque anneau 90a, 90b s'étend autour de l'axe X et est fixé au flasque 122 correspondant par sa périphérie externe. Sa périphérie interne comprend une des dents 90d1, 90d2.
  • Dans l'exemple représenté qui n'est pas limitatif, le porte couronne 120 a une forme générale annulaire autour de l'axe X et plus particulièrement biconique. Il comprend ainsi un premier tronçon amont ou à gauche sur le dessin, avec une extrémité amont de plus petit diamètre, et une extrémité aval de plus grand diamètre qui est reliée à l'extrémité amont de plus grand diamètre de l'autre tronçon, aval ou à droite sur le dessin. Les extrémités de plus grand diamètre des tronçons sont donc reliées entre elles, et leurs extrémités de plus petits diamètres forment les extrémités axiales du porte-couronne.
  • L'extrémité amont du porte-couronne 120 s'étend autour du porte-satellites 100 ou d'un arbre relié à ce porte-satellites, et est centré et guidé en rotation sur le porte-satellite ou l'arbre par l'intermédiaire d'au moins un palier 124. De la même façon, l'extrémité aval du porte-couronne 120 s'étend autour du porte-satellites 100 ou d'un arbre relié à ce porte-satellites, et est centré et guidé en rotation sur le porte-satellite ou l'arbre par l'intermédiaire d'au moins un autre palier 126.
  • Comme c'est le cas de la couronne 90, le porte-couronne 120 présente une symétrie par rapport au plan H qui coupe le porte-couronne en son milieu et passe donc par les extrémités de plus grand diamètre des tronçons précités. Chaque satellite 80 comporte une première denture 82 de diamètre moyen D1 pour l'engrènement avec le solaire 70, et une seconde denture 84 de diamètre moyen D2, différent de D1 et en particulier inférieur à D1, pour l'engrènement avec la couronne 90. Les diamètres moyens sont mesurés depuis l'axe Y de chaque satellite et représente la moyenne entre le diamètre maximal et le diamètre minimal d'une denture de ce satellite.
  • Chaque satellite 80 comprend un corps cylindrique 86 et un voile annulaire 88 s'étendant sensiblement radialement vers l'extérieur depuis le milieu de ce corps 86. La denture 84 est séparée en deux séries de dents 84d1, 84d2 en chevron qui sont situées respectivement sur les extrémités axiales du corps 86. La denture 82 comprend deux séries de dents 82d1, 82d2 en chevron qui sont situées à la périphérie externe du voile 88 et qui sont séparées l'une de l'autre par une rainure annulaire 89 débouchant radialement vers l'extérieur par rapport à l'axe Y.
  • La denture 82 est traversée en son milieu par le plan H qui passe par la rainure 89, les dents 82d1, 82d2 étant donc disposées de part et d'autre du plan H. Les dents 84d1, 84d2 sont également disposées de manière symétrique par rapport au plan H.
  • La denture 82 et la périphérie externe du voile 88 ont une dimension axiale qui est inférieure à la distance axiale entre les anneaux 90a, 90b, ainsi qu'entre les flasques 122, de façon à ce que chaque satellite 80 puisse librement tourner dans le porte-couronne 120 et entre les anneaux 90a, 90b et les flasques 122.
  • La solution propose ainsi de « symétriser » des dentures des satellites du réducteur afin de symétriser les efforts axiaux ainsi que les moments auxquels les satellites sont soumis en fonctionnement. Cette solution permet en outre de gagner en longueur ou dimension axiale vis-à-vis d'une denture chevron par disparition de la gorge inter-denture de l'étage d'engrènement avec la couronne.
  • Cette solution est notamment compatible :
    • d'une utilisation « épicycloïdale » à porte-satellites tournant et couronne fixe ;
    • d'une utilisation « planétaire » à couronne tournante et porte-satellites fixe
    • d'une utilisation « différentiel » à couronne et porte-satellites tournants.
    • de paliers à éléments roulants et également de paliers hydrodynamiques
    • d'un porte-satellite monobloc ou en plusieurs parties.

Claims (10)

  1. Réducteur mécanique (60) de turbomachine (1), en particulier d'aéronef, ce réducteur comportant :
    - un solaire (70) ayant un axe (X) de rotation,
    - une couronne (90) qui s'étend autour du solaire (70),
    - des satellites (80) qui sont engrenés avec le solaire (70) et la couronne (90) et qui sont maintenus par un porte-satellites (100), chaque satellite (80) comportant une première denture (82) de diamètre moyen D1 pour l'engrènement avec le solaire (70), et une seconde denture (84) de diamètre moyen D2, différent de D1, pour l'engrènement avec la couronne (90), chacune des première et seconde dentures (82, 84) comportant des dents (82d1, 82d2, 84d1, 84d2) en chevron,
    caractérisé en ce que les première et seconde dentures (82, 84) de chaque satellite (80) présentent une symétrie par rapport à un plan (H) perpendiculaire audit axe (X) et passant au milieu du satellite (80),
    et en ce que le chevron de la première denture est formé par des dents amont (82d1) de la première denture (82) séparées de dents aval (82d2) de la première denture (82) en étant disposées de part et d'autre du plan (H), et les dents amont (84d1) de la seconde denture (84) sont séparées des dents aval (84d2) de la seconde denture (84) par la première denture (82).
  2. Réducteur mécanique (60) selon la revendication précédente, dans lequel les dents amont (82d1) de la première denture (82) sont séparées par une rainure annulaire (89) des dents aval (82d2) de cette première denture (82).
  3. Réducteur mécanique (60) selon l'une des revendications précédentes, dans lequel chaque satellite (80) comprend un corps (86) cylindrique et un voile (88) annulaire s'étendant radialement vers l'extérieur depuis le milieu de ce corps (86), les dents (84d1, 84d2) de la seconde denture (84) étant situées aux extrémités axiales du corps, et les dents (82d1, 82d2) de la première denture (82) étant situées à la périphérie externe du voile (88).
  4. Réducteur mécanique (60) selon l'une des revendications précédentes, dans lequel le solaire (70) comprend une denture à dents en chevron et comportant des dents (70a, 70b) amont et aval situées respectivement de part et d'autre dudit plan (H).
  5. Réducteur mécanique (60) selon l'une des revendications précédentes, dans lequel la couronne (90) comprend une denture à dents en chevron et comportant des dents (90d1, 90d2) amont et aval situées respectivement de part et d'autre dudit plan (H) et séparées l'une de l'autre par la seconde denture (84).
  6. Réducteur mécanique (60) selon la revendication précédente, dans lequel les dents (90d1, 90d2) de la couronne (90) sont portées respectivement par deux anneaux (90a, 90b) fixés l'un et l'autre sur un porte-couronne (120).
  7. Réducteur mécanique (60) selon la revendication précédente, dans lequel le porte-couronne (120) a une forme générale biconique et symétrique par rapport audit plan (H) qui passe par le milieu de plus grand diamètre du porte-couronne.
  8. Réducteur mécanique (60) selon la revendication précédente, dans lequel le porte-couronne (120) comprend à ses extrémités des paliers (124, 126) pour guider le porte-satellites (100) ou un arbre d'entraînement du porte-satellites.
  9. Réducteur mécanique (60) selon l'une des revendications précédentes, dans lequel la couronne (90) est configurée pour être immobile en rotation autour dudit axe (X), et le porte-satellites (100) est configuré pour être mobile en rotation autour de cet axe.
  10. Turbomachine (1), en particulier d'aéronef, comportant un réducteur mécanique (60) selon l'une des revendications précédentes.
EP20169893.3A 2019-04-16 2020-04-16 Reducteur mecanique de turbomachine d aeronef Active EP3726031B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1904052A FR3095251B1 (fr) 2019-04-16 2019-04-16 Reducteur mecanique de turbomachine d’aeronef

Publications (2)

Publication Number Publication Date
EP3726031A1 EP3726031A1 (fr) 2020-10-21
EP3726031B1 true EP3726031B1 (fr) 2022-01-12

Family

ID=67262735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20169893.3A Active EP3726031B1 (fr) 2019-04-16 2020-04-16 Reducteur mecanique de turbomachine d aeronef

Country Status (5)

Country Link
US (1) US11339725B2 (fr)
EP (1) EP3726031B1 (fr)
JP (1) JP2020176721A (fr)
CN (1) CN111828174B (fr)
FR (1) FR3095251B1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215122B2 (en) * 2019-11-20 2022-01-04 Raytheon Technologies Corporation Geared architecture for gas turbine engine
US11415064B2 (en) * 2019-11-20 2022-08-16 Raytheon Technologies Corporation Geared architecture for gas turbine engine
IT202000002272A1 (it) * 2020-02-05 2021-08-05 Ge Avio Srl Scatola ingranaggi per un motore
US11542829B2 (en) * 2020-05-06 2023-01-03 Ge Avio S.R.L. Turbomachines and epicyclic gear assemblies with axially offset sun and ring gears
FR3111390B1 (fr) * 2020-06-11 2022-05-13 Safran Trans Systems Reducteur mecanique de turbomachine d’aeronef
FR3111400B1 (fr) * 2020-06-11 2022-05-13 Safran Trans Systems Reducteur mecanique de turbomachine d’aeronef
US11643972B2 (en) * 2020-06-15 2023-05-09 Ge Avio S.R.L. Turbomachines and epicyclic gear assemblies with symmetrical compound arrangement
IT202000014206A1 (it) * 2020-06-15 2021-12-15 Ge Avio Srl Turbomacchine e gruppi ad ingranaggi epicicloidali con disposizione composta simmetrica
FR3116095B1 (fr) * 2020-11-10 2023-04-21 Safran Trans Systems Reducteur mecanique de turbomachine d’aeronef
FR3116096B1 (fr) 2020-11-12 2023-06-30 Safran Trans Systems Reducteur mecanique de turbomachine d’aeronef
IT202100015386A1 (it) * 2021-06-11 2022-12-11 Ge Avio Srl Turbomacchine e gruppi ad ingranaggi epicicloidali con canali di lubrificazione
US11873767B2 (en) * 2021-10-22 2024-01-16 Ge Avio S.R.L. Gearbox configurations for clockwise and counterclockwise propeller rotation
IT202100028244A1 (it) * 2021-11-05 2023-05-05 Ge Avio Srl Scatola ad ingranaggi simmetrici composti per una turbomacchina
FR3134867A1 (fr) 2022-04-22 2023-10-27 Safran Transmission Systems Reducteur mecanique de turbomachine d’aeronef
FR3136532A1 (fr) 2022-06-13 2023-12-15 Safran Transmission Systems Train d’engrenages compact pour réducteur de turbomachine
FR3136531A1 (fr) 2022-06-13 2023-12-15 Safran Transmission Systems Train d’engrenages compact pour réducteur de turbomachine
US11787551B1 (en) * 2022-10-06 2023-10-17 Archer Aviation, Inc. Vertical takeoff and landing aircraft electric engine configuration

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE814981C (de) * 1949-05-01 1951-09-27 Wilhelm Dipl-Ing Stoeckicht Planetenradgetriebe mit Pfeilverzahnung
DE1132772B (de) * 1958-01-31 1962-07-05 Renk Ag Zahnraeder Doppelschraegverzahntes Planetenradgetriebe mit Lastdruckausgleich
US3307433A (en) * 1963-12-02 1967-03-07 Curtiss Wright Corp Compound planetary speed reducer with adjustable gearing
US3640150A (en) * 1970-06-25 1972-02-08 Curtiss Wright Corp Power driven actuator of the compound planetary gear type
US4742730A (en) * 1982-09-30 1988-05-10 The Boeing Company Failsafe rotary actuator
DE10254527A1 (de) * 2002-11-22 2004-06-09 Multibrid Entwicklungsges. Mbh Verfahren zur verlustarmen Drehmomentüberleitung in Planetengetrieben
FR2942284B1 (fr) 2009-02-16 2011-03-04 Snecma Lubrification et refroidissement d'un reducteur a train d'engrenages epicycloidal
US8622869B2 (en) * 2011-12-28 2014-01-07 George Dimitri Mourani Drive train transmission
EP2610461B1 (fr) * 2011-12-30 2019-10-23 United Technologies Corporation Moteur à turbine
US8720306B2 (en) * 2012-01-31 2014-05-13 United Technologies Corporation Turbine engine gearbox
FR2987416B1 (fr) 2012-02-23 2015-09-04 Snecma Dispositif de lubrification d'un reducteur epicycloidal.
FR2987417B1 (fr) * 2012-02-23 2014-03-28 Snecma Dispositif de recuperation de l'huile de lubrification d'un reducteur epicycloidal.
FR3008462B1 (fr) 2013-07-10 2016-12-23 Hispano Suiza Sa Integration d'un train d'engrenages dans un voile de pignon de boitier d'entrainement pour turbomachine
FR3041054B1 (fr) 2015-09-15 2017-09-15 Hispano-Suiza Dispositif d'alimentation en huile pour un reducteur a train epicycloidal.
US11156285B2 (en) * 2016-08-16 2021-10-26 Sikorsky Aircraft Corporation Asymmetric gear teeth
US11174782B2 (en) * 2017-02-10 2021-11-16 Pratt & Whitney Canada Corp. Planetary gearbox for gas turbine engine

Also Published As

Publication number Publication date
CN111828174A (zh) 2020-10-27
US20200332721A1 (en) 2020-10-22
JP2020176721A (ja) 2020-10-29
US11339725B2 (en) 2022-05-24
FR3095251B1 (fr) 2021-05-07
EP3726031A1 (fr) 2020-10-21
CN111828174B (zh) 2023-11-21
FR3095251A1 (fr) 2020-10-23

Similar Documents

Publication Publication Date Title
EP3726031B1 (fr) Reducteur mecanique de turbomachine d aeronef
EP3922886B1 (fr) Reducteur mecanique de turbomachine d'aeronef
EP4001619B1 (fr) Réducteur mécanique de turbomachine d'aéronef
EP3922831B1 (fr) Réducteur mécanique de turbomachine d'aéronef
EP3995681A1 (fr) Reducteur mecanique de turbomachine d'aeronef
EP4108899A1 (fr) Porte-satellites pour un reducteur de vitesse de turbomachine d'aeronef
EP3892895A1 (fr) Reducteur mecanique de turbomachine d'aeronef
EP3992494B1 (fr) Reducteur mecanique de turbomachine d'aeronef
EP3982009B1 (fr) Réducteur mécanique pour turbomachine d'aéronef
EP4033086B1 (fr) Turbomachine d'aeronef a triple flux equipe d'un module de transmission de puissance
EP4336070A1 (fr) Ensemble d'entrainement pour un reducteur mecanique de turbomachine d'aeronef
FR3139602A1 (fr) Turbomachine d’aeronef a reducteur mecanique
EP4265940A1 (fr) Reducteur mecanique pour une turbomachine d'aeronef
WO2021148736A1 (fr) Porte-satellites pour un reducteur mecanique de turbomachine d'aeronef
EP4242489A1 (fr) Reducteur mecanique de turbomachine d'aeronef
EP4151846A1 (fr) Turbomachine d'aeronef
EP4290097A1 (fr) Porte-satellites pour un reducteur mecanique de turbomachine d'aeronef
EP4339098A1 (fr) Dispositif d'entrainement d'au moins une roue d'un train d'atterrissage d'aeronef
FR3139870A1 (fr) Ensemble de transmission pour un reducteur mecanique de turbomachine d’aeronef
EP4303468A1 (fr) Solaire pour un reducteur mecanique de turbomachine d'aeronef
EP4123190A1 (fr) Réducteur mécanique pour turbomachine à gaz d'axe longitudinal
EP3974677A1 (fr) Réducteur amélioré pour le maintien de couronne
FR3097269A1 (fr) Integration d’un reservoir d’huile a un reducteur mecanique de turbomachine d’aeronef

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02C 7/36 20060101AFI20210719BHEP

Ipc: F16H 1/28 20060101ALN20210719BHEP

INTG Intention to grant announced

Effective date: 20210812

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020001583

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1462538

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220112

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1462538

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020001583

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

26N No opposition filed

Effective date: 20221013

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430