EP3721543A1 - Dc-dc converter with pre-charging of a first electrical grid from a second electrical grid - Google Patents

Dc-dc converter with pre-charging of a first electrical grid from a second electrical grid

Info

Publication number
EP3721543A1
EP3721543A1 EP18800998.9A EP18800998A EP3721543A1 EP 3721543 A1 EP3721543 A1 EP 3721543A1 EP 18800998 A EP18800998 A EP 18800998A EP 3721543 A1 EP3721543 A1 EP 3721543A1
Authority
EP
European Patent Office
Prior art keywords
electrical network
additional
branch
converter
inductive coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18800998.9A
Other languages
German (de)
French (fr)
Inventor
Massourang DIALLO
Mimoun ASKEUR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo eAutomotive France SAS
Original Assignee
Valeo Siemens eAutomotive France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens eAutomotive France SAS filed Critical Valeo Siemens eAutomotive France SAS
Publication of EP3721543A1 publication Critical patent/EP3721543A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a DC voltage converter, in particular for electric or hybrid vehicle.
  • the present invention relates in particular to the field of electric or hybrid vehicles.
  • the present invention relates to a DC-DC converter disposed between a high-voltage electrical network and a low-voltage electrical network, said converter being particularly suitable, at the start of the high-voltage electrical network, to pre-charge said network.
  • high voltage electrical via energy delivered by the low voltage power grid.
  • the low voltage and high voltage networks are embedded in a vehicle.
  • an electric or hybrid motor vehicle comprises an electric drive system powered by a high voltage power supply battery via a high voltage on-board electrical network and a plurality of auxiliary electrical equipment powered by a battery of electric power.
  • low voltage supply via a low voltage on-board electrical network.
  • the high voltage power supply battery provides a power supply function of the electric drive system for propelling the vehicle.
  • the low-voltage battery pack powers auxiliary electrical equipment, such as on-board computers, window motors, a multimedia system, and so on.
  • the high voltage power supply battery typically delivers a voltage of between 100 V and 900 V, preferably between 100 V and 500 V, while the low voltage supply battery typically delivers a voltage of the order of 12 V. V or 48 V.
  • the electric power recharge of the high voltage power supply battery can be carried out in a known manner by connecting it, via the high voltage electrical network of the vehicle, to an external electrical network, for example the domestic AC mains.
  • the high voltage battery is connected to the low battery voltage via a dc voltage converter, commonly referred to as a dc-to-dc converter, galvanically isolated.
  • FIG. 1 represents a functional block diagram of an on-board electrical system of the state of the art.
  • a system comprises an electric charger OBC charged with supplying a high-voltage power supply battery HB, typically dedicated to the propulsion of an electric or hybrid vehicle, and further comprises a low-voltage battery LB ensuring the supply of equipment said vehicle.
  • an INV inverter for converting the DC current supplied by the high voltage power supply battery HB into one or more alternating control currents, for example sinusoidal.
  • the electric charger OBC receives the current from a an alternative G1 external power supply network, such as a domestic AC power supply, for supplying the high voltage power supply battery HB.
  • the system comprises for this purpose an isolated DC-DC converter, connected between the high voltage power supply battery HB and the low voltage battery LB.
  • inrush currents also known currents "in rush” according to the terminology in English known to those skilled in the art, potentially high intensity, detrimental to the electronic components of said high voltage on-board electrical network because overcurrent ultimately leads to a reduction in the service life of the electronic components, in particular the capacitors, which are on the high voltage on-board electrical network.
  • circuits dedicated to the pre-charge of the high voltage on-board electrical network are implemented.
  • Such pre-charging circuits comprise relays and resistors specially configured to perform the pre-charging of the capacitive components of the high voltage on-board electrical network, so as to reach a respective voltage at their terminals making it possible to avoid appearance of damaging currents of appeal.
  • the present invention aims to overcome at least in part these disadvantages, by proposing an alternative solution to the implementation of a pre-charge circuit, in the context presented above.
  • an isolated DC-DC converter adapted to perform, according to a particular mode of operation, the pre-charge of a first electrical network, including embedded high voltage, from a second network electrical, including embedded low voltage.
  • a galvanically isolated DC-DC converter is modified comprising a first circuit and a second circuit, with each of the inductive coils controlled by switches.
  • each inductive coil of the first circuit - or primary circuit - is coupled to a coil of the second circuit - or secondary circuit - forming at least one transformer producing a magnetic circuit by which energy is transferred from the first power grid to the second power grid.
  • the high voltage on-board electrical network in an electric or hybrid vehicle, is connected to a high-voltage battery providing a power supply function of the electric motorization system of said vehicle.
  • the low voltage on-board electrical network still in a vehicle, supplies a plurality of onboard equipment of said vehicle.
  • the isolated DC-DC converter further comprises an additional branch comprising an additional inductive coil sized for, by producing a magnetic circuit with at least one inductive coil of the second circuit of said converter, transferring energy. from the first power grid to the second power grid so as to pre-charge said first power grid.
  • the invention relates to an isolated DC-DC converter, particularly for a motor vehicle, comprising:
  • a first interface terminal intended to be connected to a first electrical network
  • a second interface terminal intended to be connected to a second electrical network, a first circuit, connected to the first interface terminal, and comprising at least one primary branch comprising at least one inductive coil,
  • a second circuit connected to the second interface terminal, and comprising a secondary branch comprising at least one inductive coil
  • each inductive coil of said at least one primary branch being coupled to an inductive coil of the secondary branch to form at least one transformer, so that, in a first mode of operation, the isolated DC-DC converter is configured to transfer the energy from the first electrical network to the second electrical network, via the first and second circuits, via the magnetic circuit (s) formed by the coupled inductive coils of the primary branch and of the secondary branch.
  • Said isolated DC-DC converter is remarkable in that it comprises at least one additional branch comprising at least one additional inductive coil, said at least one additional branch being connected to the first interface terminal, and said at least one inductive coil further being coupled to an inductive coil of the secondary branch so that, in a second mode of operation, the converter is configured to transfer energy from the second power grid to the first power grid through the second circuit. and the additional branch, via said at least one inductive coil of the secondary branch and said at least one additional inductance of the additional branch.
  • the isolated DC-DC converter according to the invention provides a pre-charge function of the first electrical network, in particular a high voltage on-board electrical network.
  • the additional branch is configured to inhibit any energy transfer from the second power grid to the first power grid when the first operating mode is active.
  • the additional branch comprises a unidirectional or bidirectional switch so as to open the additional branch when the first mode of operation is active.
  • the first circuit and the second circuit comprise switches for controlling each inductive coil.
  • the first circuit comprises two primary branches each comprising two inductive coils and the second circuit comprises a secondary branch comprising two inductive coils, the inductive coils of each branch. primary are coupled in pairs and respectively with an inductive coil of the secondary branch, so as to form two transformers each having three inductive coils.
  • the DC-DC converter according to the invention comprises a single additional branch having an additional inductive coil coupled with the inductive coil of the secondary branch of the second circuit belonging to the first transformer, or with the inductive coil. of the secondary branch belonging to the second transformer, or comprising two additional branches each having an additional inductive coil, the additional inductive coil of one of the additional branches being coupled with one of the inductive coils of the secondary branch and the other of said additional inductive coils being coupled with the other of said inductive coils of the secondary branch.
  • the first power grid is a high voltage electrical network and the second power grid is a low voltage electrical network.
  • a high voltage battery is connected to the high voltage power grid and a low voltage battery is connected to the low voltage grid.
  • the present invention also aims at a method of pre-charging a first power grid from energy from a second power grid, when starting said first power grid, by means of the implementation of an isolated DC-DC converter as briefly described above, whose first interface terminal is connected to the first electrical network and whose second interface terminal is connected to the second electrical network, the isolated DC-DC converter being implemented in the second mode of operation.
  • the present invention also aims at a method of discharging a first electrical network during a disconnection of said first electrical network, said first electrical network comprising, during said disconnection, at least one charged capacity, said discharge comprising the setting of an isolated DC-DC converter as briefly described above, whose first interface terminal is connected to the first electrical network and whose second interface terminal is connected to the second electrical network, the DC-DC converter continuous isolated, and wherein the switch of the additional branch is bidirectional, the isolated DC-DC converter being implemented according to a third mode of operation in which the energy stored in said at least one charged capacity is transferred to the second network electrical through said at least one additional transformer formed of ladit e at least one additional inductive coil and an inductive coil of the secondary branch, for discharging said at least one loaded capacitor.
  • the energy transferred to the second circuit during the discharge of said at least one capacitor is used to charge a battery connected to said second electrical network.
  • the present invention also provides an electric or hybrid motor vehicle, comprising a first electrical network and a second electrical network, a high voltage battery connected to said first power grid and a low voltage battery connected to said second power grid, said vehicle comprising moreover, an isolated DC-DC converter as briefly described above, connected between said first electrical network and said second electrical network.
  • Such an electric or hybrid vehicle comprises an electric drive system powered by the high voltage power supply battery via the first power grid, a plurality of auxiliary electrical equipment powered by the low voltage power supply battery via the second network. electric.
  • FIG. 1 illustrates a functional block diagram of a known electrical system, embedded in an electric or hybrid vehicle
  • FIG. 2 illustrates an isolated DC-DC converter according to the state of the art
  • FIG. 3 illustrates a first embodiment of an isolated DC-DC converter according to the invention
  • FIG. 4 illustrates a second embodiment of an isolated DC-DC converter according to the invention
  • FIG. 5 shows a third embodiment of a DC-DC converter according to the invention
  • Figure 6 shows another example of a DC-DC converter according to the invention.
  • An electric or hybrid vehicle comprises a high voltage power supply battery, an electric drive system, a high voltage on-board electrical network, a low voltage power supply battery, a low voltage on-board electrical network and a plurality of equipment. auxiliary electric.
  • the on-board high voltage electrical network connects the high voltage power supply battery and the electric drive system so that the high voltage power supply battery provides a power supply function of the electric drive system for propelling the vehicle.
  • the high voltage power supply battery typically delivers a voltage of between 100 V and 900 V, preferably between 100 V and 500 V.
  • the low voltage on-board electrical network connects the low voltage power supply battery and the plurality of auxiliary electrical equipment so that the low voltage power supply battery supplies the auxiliary electrical equipment, such as on-board computers, drive motors. screens, a multimedia system, etc.
  • the low voltage supply battery typically delivers a voltage of the order of 12 V, 24 V or 48 V.
  • the electric power recharge of the high-voltage power supply battery can be achieved by connecting it, via a high-voltage electrical network of the vehicle, to an external electrical network, for example the domestic alternating electric network.
  • the charging of the low voltage battery is performed directly from the high voltage battery.
  • the high voltage battery is connected to the low voltage battery via a DC-DC converter.
  • Figures 2 to 5 show different electronic diagrams corresponding to an isolated DC-DC converter 1, 10, 1 1, 12 connected between a first on-board HV electrical network, high voltage, and a second on-board LV electrical network, low voltage .
  • Figure 2 corresponds to the electronic diagram of a DC-DC converter isolated according to the state of the art while Figures 3 to 5 show different embodiments of the DC-DC converter isolated according to the invention.
  • the DC-DC converter 1, 10, 1 1, 12 has the function of converting, possibly reversible, a high DC voltage into a low DC voltage.
  • the high voltage typically between 10 V and 500 V, is delivered to or from the terminals of the HV high voltage on-board electrical network.
  • the low voltage typically equal to approximately 12 V, 24 V or 48 V, is delivered to or from the terminals of the on-line LV low-voltage electrical network.
  • the conversion ratio between an input voltage and an output voltage of the transformers constituted by the coupled inductive coils L1, L3 and L5 is formed on the one hand, forming a first transformer T1. , and coupled inductive coils L2, L4 and L6, on the other hand, forming a second transformer T2, the inductive coils L1 and L2 being connected in series on a first branch of the first circuit - or primary circuit - the inductive coils L3 and L4 being connected in series on a second branch of the first circuit, and the inductive coils L5 and L6 being connected in series on a branch of the second circuit- or secondary circuit.
  • the primary circuit comprises the inductive coils L1, L2, L3, L4 and switches Q3, Q4 which contribute to the control of the energy exchanged between the primary circuit and the secondary circuit.
  • the switch Q6 is connected between an electrical ground and a terminal of the inductive coil L6 to control the energy flowing in the coil L6.
  • the switch Q5 is connected between an electrical ground and a terminal of the inductive coil L5 in order to control the energy flowing in the coil L5.
  • the switches Q5, Q6 of the secondary circuit thus form a synchronous rectifier circuit.
  • a capacitor C3 is connected between the first branch and the second branch of the first circuit.
  • the capacitor C3 is connected between two respective terminals of the switches Q3, Q4 controlling the energies of the inductive coils L1, L2 of the first branch of the first circuit and L3, L4 of the second branch of the first circuit, respectively.
  • the other terminal of the switch Q3 is further connected to another capacitor C2.
  • the capacitor C2 has a voltage source function for the primary circuit of the first circuit.
  • the capacitor C2 is connected on the one hand to the terminal of the switch Q3 and on the other hand to a ground, in particular the ground of the first circuit.
  • An inductance L0 is furthermore connected between a node to which the capacitance C3 and the switch Q4 are connected and a midpoint to which are connected two respective terminals of switches Q1, Q2 connected to the input of the isolated DC-DC converter 1, 10,
  • the other terminal of the input switch Q1 is furthermore connected to a first interface terminal of the isolated DC-DC converter 10, 1 1, 12.
  • the first interface terminal is connected to the HV high voltage on-board electrical network.
  • the other terminal of the input switch Q2 is also connected to an electrical ground, in particular an electric ground of the first circuit of the isolated DC-DC converter 10, 1 1, 12.
  • the inductance LO, the capacitors C3, C2, the switches Q1, Q2, Q3, Q4, Q5, Q6 and the inductive coils of the primary and secondary circuits thus form a voltage converter circuit.
  • the switches Q1, Q2 form an H half-bridge to provide the first and second transformers with a voltage lower than the voltage delivered by the HV high voltage on-board electrical network at its interface terminals.
  • the inductance L0 could be connected between the node to which the capacitor C2 and the switch Q3 are connected and the midpoint to which the switches Q1, Q2 connected to the input of the isolated DC-DC converter 1, 10 are connected. , 1 1, 12, for example as illustrated in Figure 6, similarly also in the example of Figure 3. In Figures 4 and 5, the inductance L0 could also be connected in this way.
  • said switches Q1 to Q6 are MOSFETS, including MOSFETS soft switch, that is to say, able to switch to zero voltage, otherwise designated ZVS for "Zero Voltage Switching".
  • a control module controls the switches Q1, Q2, Q3, Q4 so as alternately to store energy in the inductive coils L1 and L3 and in the inductive coils L2 and L4, for a part of the corresponding period.
  • the control module controls the switches Q1, Q2, Q3, Q4 by delivering PWM signals ("Pulse Width Modulation").
  • PWM signals Pulse Width Modulation
  • the signals delivered to the switches Q1, Q2 have a variable duty cycle and the signals delivered to the switches Q3, Q4 have constant duty cycles.
  • the converter converts the voltage of the high voltage network HV to the low voltage network LV by varying the duty cycle of the switches Q1, Q2 while maintaining constant the duty cycle of the switches Q3, Q4.
  • the converter could operate differently, for example by varying all the duty cycles.
  • an input capacitor C1 of the HV network is charged at startup of the HV high voltage on-board electrical network.
  • the present invention makes it possible to ensure the pre-charge of said input capacitor C1 during the start of the HV high voltage on-board electrical network, making it possible to avoid the flow of inrush currents.
  • An input capacitor C4 of the LV low-voltage on-board electrical network is also provided, connected between a second isolated DC-DC converter interface terminal 10, 1 1, 12 and an electrical ground, in particular an electrical ground of second circuit of the isolated DC-DC converter 10, 1 1, 12.
  • the energy transferred from the HV high voltage on-board electrical network to the LV low voltage on-board electrical network notably enables the charging of a low voltage battery (not shown) connected to said LV low voltage on-board electrical network.
  • the DC-DC isolated converter according to the invention allows the implementation of a second mode of operation, or even a third mode of operation.
  • Three embodiments of the isolated DC-DC converter according to the invention are shown in Figures 3 to 5.
  • the isolated DC-DC converter 10, 1 1, 12 comprises at least one additional branch comprising an additional inductive coil L7, L8.
  • Said at least one additional branch extends between an electrical ground and the first interface terminal of the isolated DC-DC converter 10, 1 1, 12.
  • Said at least one additional inductive coil L7, L8 is respectively coupled to a coil of second circuit L5, L6, able to transfer energy from the LV low voltage on-board electrical network to the HV high voltage on-board electrical network.
  • a control module controls the switches Q5, Q6, in particular by a fixed frequency PWM signal, so as to store energy in the inductive coils L5 and / or L6 over a part of the corresponding period, to transfer it to said at least one additional inductive coil L7, L8, and thus to the HV high voltage on-board electrical network, on a complementary part of the period.
  • the transformation ratio of the additional transformer in other words the ratio between the input voltage, corresponding to the voltage delivered by the LV low voltage on-board electrical network, and the output voltage, corresponding to the voltage delivered to the on-board electrical network.
  • HV high voltage in particular at the terminals of the input capacitance C1 of said HV high voltage on-board electrical network, is configured to enable the loading of said input capacitor C1 of the HV high voltage on-board electrical network in a predefined maximum time.
  • the additional transformer is configured to pre-charge the HV high voltage on-board electrical network, in particular in a predefined maximum time.
  • the capacity of the high voltage on-board electrical network to pre-charge has a value of approximately 2 mF to be loaded in less than 200 ms. Thanks to this pre-charge, it avoids the inrush current flow at the start of the HV high voltage on-board electrical network.
  • the additional branch is configured to inhibit any transfer of energy by said at least one additional branch when the first mode of operation is active, that is to say when energy is transferred via the continuous converter.
  • the transformation ratio between the inductive coil L5 and the additional inductive coil L7 and / or, respectively, between the inductive coil L6 and the additional inductive coil L8, is chosen so as to prevent the second mode of operation from being possible. active when the first mode of operation is already active.
  • the transformation ratio between the inductive coil L5 and the additional inductive coil L7 is equal to 10.
  • the voltage across the additional inductance L7 is equal to 160 V. If the voltage of the high-voltage mains HV is between 210V and 500V, then this voltage is higher than the voltage across the additional inductive coil L7, the intrinsic diode of the switch Q7 is blocking, switch Q7 itself being open. Thus, there is no energy transfer from the secondary circuit to the additional inductive coil L7.
  • the additional branch can also comprise, in the embodiments shown in FIGS. 3 to 5, a switch Q7, Q8 connected between one terminal of each additional inductive coil L7, L8 and an electrical ground or between a terminal of each additional inductive coil L7, L8 and the first interface terminal of the isolated DC-DC converter.
  • Each switch may be unidirectional, for example a diode (not shown), or a bidirectional switch, such as a transistor Q7, Q8, for example a MOSFET transistor.
  • the isolated DC-DC converter 10 thus comprises two additional branches respectively comprising an additional inductive coil L7, L8.
  • Each additional branch connects an HV high voltage on-board electrical system interface terminal and an electrical ground.
  • the inductive coils L7, L8 can operate in an interlaced manner with the two inductive coils L5, L6 of the secondary circuit.
  • an inductive coil L7, L8 has a terminal connected to an interface terminal of the HV high voltage on-board electrical network and a terminal connected to a terminal of a switch Q7, Q8 which controls it. another terminal of said switch Q7, Q8 being connected to an electrical ground.
  • Each additional inductive coil L7, L8 is coupled to a respective inductive coil L5, L6 of the second circuit, forming two additional transformers controlled respectively by the switches Q5, Q6, Q7, Q8 and providing two additional magnetic circuits capable of transferring the LV low voltage on-board electrical network energy to the HV high voltage on-board electrical network, in particular for pre-charge purposes, in particular C1 capacity.
  • the isolated DC-DC converter 1 1 comprises a single additional branch comprising an additional inductive coil L7 coupled to the inductive coil L5 of the second circuit also belonging to the first transformer. Coupled inductive coils L5, L7 form an additional transformer providing an additional magnetic circuit capable of transferring energy from the LV low voltage on-board electrical network to the HV high voltage on-board electrical network, in particular for pre-charging purposes, particularly for C1 capacity.
  • the isolated DC-DC converter 12 comprises a single additional branch comprising an additional inductive coil L8 coupled to the inductive coil L6 of the second circuit belonging to the second circuit. transformer. Coupled inductive coils L6, L8 form an additional transformer providing an additional magnetic circuit capable of transferring energy from the LV low voltage on-board electrical network to the HV high voltage on-board electrical network, in particular for pre-charging purposes.
  • switches Q7 and / or Q8 are replaced by diodes (not shown) providing the function of unidirectional switch respectively connected between a terminal of the inductive coil L7, L8 and an HV high voltage on-board electrical network interface terminal.
  • diodes have the function of inhibiting any energy transfer, via the additional branch (s), of the HV high voltage on-board electrical network to the LV low voltage on-board electrical network.
  • These diodes have in particular their cathode terminal oriented towards the first interface terminal of the isolated DC-DC converter.
  • switches Q7, Q8 bidirectional type MOSFETs advantageously allows the implementation of a third mode of operation of the isolated DC-DC converter 10, 1 1, 12 according to the invention.
  • this third mode of operation at the disconnection of the HV high voltage on-board electrical network, the first mode of operation becoming inactive, said switches Q7, Q8 are controlled in the on state in the direction of a transfer of energy of the network.
  • HV high voltage on-board electrical system in the process of being extinguished
  • This energy transfer allows the passive or active discharge of the capacitances of the HV high voltage on-board electrical network, in particular of the input capacitance C1, during the disconnection of said HV high voltage on-board electrical network.
  • the second circuit comprising the inductive coils L5, L6 and bidirectional switches Q5, Q6 and on the other hand said at least one additional branch respectively comprising an additional inductive coil L7, L8 and a bidirectional switch Q7, Q8 then form a bidirectional DC voltage DC converter.
  • the energy thus recovered by the LV low-voltage on-board electrical network can enable the charging of a low-voltage battery connected to said LV low voltage on-board electrical network.

Abstract

The invention relates to an insulated DC-DC converter (10), in particular for a motor vehicle, comprising - a first circuit, connected to a first electrical grid (HV), and including a primary branch comprising at least one induction coil (L1, L2, L3, L4), - a second circuit, connected to a second electrical grid (LV), and comprising a secondary branch comprising at least one induction coil (L5, L6), each induction coil (L1, L2, L3, L4) of the primary branch being coupled with an induction coil (L5, L6) of the secondary branch in order to form a transformer. According to the invention, said converter comprises at least one additional branch comprising at least one additional induction coil (L7, L8), said at least one additional branch being connected to the electrical grid (HV), and said at least one additional induction coil (L7, L8) being coupled with an induction coil (L5, L6) of the secondary branch so that, according to one operating mode, the insulated DC-DC converter (10) transfers energy from the low-voltage vehicle electrical grid (LV) to the electrical grid (HV), in particular for pre-charging purposes.

Description

CONVERTISSEUR CONTINU-CONTINU AVEC PRE-CHARGE D’UN PREMIER RESEAU CONTINUOUS-CONTINUOUS CONVERTER WITH PRE-CHARGE OF A FIRST NETWORK
ELECTRIQUE A PARTIR D’UN DEUXIEME RESEAU ELECTRIQUE ELECTRICAL FROM A SECOND ELECTRICAL NETWORK
DOMAINE TECHNIQUE ET OBJET DE L’INVENTION TECHNICAL FIELD AND OBJECT OF THE INVENTION
[0001] La présente invention concerne un convertisseur de tension continue, en particulier pour véhicule électrique ou hybride. La présente invention se rapporte notamment au domaine des véhicules électriques ou hybrides. The present invention relates to a DC voltage converter, in particular for electric or hybrid vehicle. The present invention relates in particular to the field of electric or hybrid vehicles.
[0002] Plus précisément, la présente invention a trait à un convertisseur continu-continu disposé entre un réseau électrique haute tension et un réseau électrique basse tension, ledit convertisseur étant notamment apte, au démarrage du réseau électrique haute tension, à pré charger ledit réseau électrique haute tension par l’intermédiaire d’énergie délivrée par le réseau électrique basse tension. Notamment, les réseaux basse tension et haute tension sont embarqués dans un véhicule. More specifically, the present invention relates to a DC-DC converter disposed between a high-voltage electrical network and a low-voltage electrical network, said converter being particularly suitable, at the start of the high-voltage electrical network, to pre-charge said network. high voltage electrical via energy delivered by the low voltage power grid. In particular, the low voltage and high voltage networks are embedded in a vehicle.
ETAT DE LA TECHNIQUE STATE OF THE ART
[0003] Comme cela est connu, un véhicule automobile électrique ou hybride comprend un système de motorisation électrique alimenté par une batterie d’alimentation haute tension via un réseau électrique embarqué haute tension et une pluralité d’équipements électriques auxiliaires alimentés par une batterie d’alimentation basse tension via un réseau électrique embarqué basse tension. Ainsi, la batterie d’alimentation haute tension assure une fonction d’alimentation en énergie du système de motorisation électrique permettant la propulsion du véhicule. La batterie d’alimentation basse tension alimente des équipements électriques auxiliaires, tels que des calculateurs embarqués, des moteurs de lève-vitres, un système multimédia, etc. La batterie d’alimentation haute tension délivre typiquement une tension comprise entre 100 V et 900 V, de préférence entre 100 V et 500 V, tandis que la batterie d’alimentation basse tension délivre typiquement une tension de l’ordre de 12 V, 24 V ou 48 V. Ces deux batteries d’alimentation haute et basse tension doivent pouvoir être chargées. As is known, an electric or hybrid motor vehicle comprises an electric drive system powered by a high voltage power supply battery via a high voltage on-board electrical network and a plurality of auxiliary electrical equipment powered by a battery of electric power. low voltage supply via a low voltage on-board electrical network. Thus, the high voltage power supply battery provides a power supply function of the electric drive system for propelling the vehicle. The low-voltage battery pack powers auxiliary electrical equipment, such as on-board computers, window motors, a multimedia system, and so on. The high voltage power supply battery typically delivers a voltage of between 100 V and 900 V, preferably between 100 V and 500 V, while the low voltage supply battery typically delivers a voltage of the order of 12 V. V or 48 V. These two high and low voltage battery packs must be able to be charged.
[0004] La recharge en énergie électrique de la batterie d’alimentation haute tension peut être réalisée de manière connue en la connectant, via le réseau électrique haute tension continue du véhicule, à un réseau électrique externe, par exemple le réseau électrique alternatif domestique. The electric power recharge of the high voltage power supply battery can be carried out in a known manner by connecting it, via the high voltage electrical network of the vehicle, to an external electrical network, for example the domestic AC mains.
[0005] Il est également connu de charger la batterie basse tension directement à partir de la batterie haute tension. A cette fin, la batterie haute tension est connectée à la batterie basse tension via un convertisseur de tension continue en tension continue, appelé communément convertisseur continu-continu, isolé galvaniquement. It is also known to charge the low voltage battery directly from the high voltage battery. To this end, the high voltage battery is connected to the low battery voltage via a dc voltage converter, commonly referred to as a dc-to-dc converter, galvanically isolated.
[0006] La figure 1 représente un schéma bloc fonctionnel d’un système électrique embarqué de l’état de l’art. Un tel système comprend un chargeur électrique OBC chargé d’alimenter une batterie d’alimentation haute tension HB, typiquement dédiée à la propulsion d’un véhicule électrique ou hybride, et comprend en outre une batterie basse tension LB assurant l’alimentation d’équipements électriques dudit véhicule. [0006] FIG. 1 represents a functional block diagram of an on-board electrical system of the state of the art. Such a system comprises an electric charger OBC charged with supplying a high-voltage power supply battery HB, typically dedicated to the propulsion of an electric or hybrid vehicle, and further comprises a low-voltage battery LB ensuring the supply of equipment said vehicle.
[0007] Afin de commander le moteur électrique ENG entraînant les roues du véhicule, il est connu d’utiliser un onduleur INV permettant de convertir le courant continu fourni par la batterie d’alimentation haute tension HB en un ou plusieurs courants de commande alternatifs, par exemple sinusoïdaux. In order to control the ENG electric motor driving the wheels of the vehicle, it is known to use an INV inverter for converting the DC current supplied by the high voltage power supply battery HB into one or more alternating control currents, for example sinusoidal.
[0008] Toujours en référence à la figure 1 , pour l’alimentation du réseau d’alimentation électrique haute tension du véhicule permettant notamment la charge de la batterie d’alimentation haute tension HB, le chargeur électrique OBC reçoit le courant issu d’un réseau d’alimentation électrique externe G1 alternatif, tel qu’un réseau d’alimentation électrique alternatif domestique, pour alimenter la batterie d’alimentation haute tension HB. [0008] Still referring to FIG. 1, for the supply of the vehicle's high-voltage power supply network, in particular for charging the high-voltage power supply battery HB, the electric charger OBC receives the current from a an alternative G1 external power supply network, such as a domestic AC power supply, for supplying the high voltage power supply battery HB.
[0009] Enfin, toujours en référence à la figure 1 , la charge de la batterie basse tension LB étant réalisée de manière connue par la batterie d’alimentation haute tension HB, le système comprend à cette fin un convertisseur continu-continu DCDC isolé, connecté entre la batterie d’alimentation haute tension HB et la batterie basse tension LB. Finally, again with reference to FIG. 1, the charge of the low-voltage battery LB being carried out in a known manner by the high-voltage supply battery HB, the system comprises for this purpose an isolated DC-DC converter, connected between the high voltage power supply battery HB and the low voltage battery LB.
[0010] Dans ce contexte, lors de la mise sous tension du réseau électrique embarqué haute tension, c’est-à-dire, dans un véhicule électrique ou hybride, lorsque la batterie haute tension assure une fonction d’alimentation en énergie du système de motorisation électrique, comme cela est connu, il peut apparaître des courants d’appel, également désignés courants « in rush » selon la terminologie en langue anglaise connue de l’homme du métier, potentiellement de forte intensité, préjudiciables pour les composants électroniques dudit réseau électrique embarqué haute tension car des surcourants entraînent à terme la réduction de la durée de vie des composants électroniques, en particulier des capacités, qui sont sur le réseau électrique embarqué haute tension. In this context, when powering the high voltage on-board electrical network, that is to say, in an electric or hybrid vehicle, when the high voltage battery provides a system power supply function of electric motorization, as is known, it can appear inrush currents, also known currents "in rush" according to the terminology in English known to those skilled in the art, potentially high intensity, detrimental to the electronic components of said high voltage on-board electrical network because overcurrent ultimately leads to a reduction in the service life of the electronic components, in particular the capacitors, which are on the high voltage on-board electrical network.
[0011 ] Afin de pallier l’apparition de ces courants d’appel, il est nécessaire de pré-charger les composants capacitifs du réseau électrique embarqué haute tension. Dans l’état de la technique, des circuits dédiés à la pré-charge du réseau électrique embarqué haute tension sont mis en œuvre. [0012] De tels circuits de pré-charge comprennent des relais et des résistances spécialement configurés pour réaliser la pré-charge des composants capacitifs du réseau électrique embarqué haute tension, de sorte à atteindre une tension respective à leurs bornes permettant d’éviter l’apparition de courants d’appel préjudiciables. In order to overcome the appearance of these inrush currents, it is necessary to pre-charge the capacitive components of the high voltage on-board electrical network. In the state of the art, circuits dedicated to the pre-charge of the high voltage on-board electrical network are implemented. Such pre-charging circuits comprise relays and resistors specially configured to perform the pre-charging of the capacitive components of the high voltage on-board electrical network, so as to reach a respective voltage at their terminals making it possible to avoid appearance of damaging currents of appeal.
[0013] Ces circuits de pré-charge utilisés dans l’état présentent cependant un coût élevé et suscitent des pertes. These pre-charge circuits used in the state however have a high cost and cause losses.
[0014] La présente invention vise à pallier au moins en partie ces inconvénients, en proposant une solution alternative à la mise en oeuvre d’un circuit de pré-charge, dans le contexte présenté ci-dessus. The present invention aims to overcome at least in part these disadvantages, by proposing an alternative solution to the implementation of a pre-charge circuit, in the context presented above.
[0015] A cette fin, il est proposé un convertisseur continu-continu isolé apte à réaliser, selon un mode de fonctionnement particulier, la pré-charge d’un premier réseau électrique, notamment embarqué haute tension, à partir d’un deuxième réseau électrique, notamment embarqué basse tension. Pour y parvenir, on modifie un convertisseur continu-continu isolé galvaniquement et comprenant un premier circuit et un deuxième circuit, avec chacun des bobines inductives commandées par des interrupteurs. Dans un tel convertisseur continu-continu isolé, chaque bobine inductive du premier circuit - ou circuit primaire - est couplée à une bobine du deuxième circuit - ou circuit secondaire -, formant au moins un transformateur réalisant un circuit magnétique par lequel de l’énergie est transférée du premier réseau électrique au deuxième réseau électrique. En particulier pour rappel, le réseau électrique embarqué haute tension, dans un véhicule électrique ou hybride, est connecté à une batterie haute tension assurant une fonction d’alimentation en énergie du système de motorisation électrique dudit véhicule. Le réseau électrique embarqué basse tension, toujours dans un véhicule, alimente une pluralité d’équipements embarqués dudit véhicule. To this end, it is proposed an isolated DC-DC converter adapted to perform, according to a particular mode of operation, the pre-charge of a first electrical network, including embedded high voltage, from a second network electrical, including embedded low voltage. To achieve this, a galvanically isolated DC-DC converter is modified comprising a first circuit and a second circuit, with each of the inductive coils controlled by switches. In such an isolated DC-DC converter, each inductive coil of the first circuit - or primary circuit - is coupled to a coil of the second circuit - or secondary circuit - forming at least one transformer producing a magnetic circuit by which energy is transferred from the first power grid to the second power grid. In particular as a reminder, the high voltage on-board electrical network, in an electric or hybrid vehicle, is connected to a high-voltage battery providing a power supply function of the electric motorization system of said vehicle. The low voltage on-board electrical network, still in a vehicle, supplies a plurality of onboard equipment of said vehicle.
[0016] Selon l’invention, le convertisseur continu-continu isolé comporte en outre une branche supplémentaire comprenant une bobine inductive supplémentaire dimensionnée pour, en réalisant un circuit magnétique avec au moins une bobine inductive du deuxième circuit dudit convertisseur, transférer de l’énergie du premier réseau électrique au deuxième réseau électrique de façon à réaliser la pré-charge dudit premier réseau électrique. According to the invention, the isolated DC-DC converter further comprises an additional branch comprising an additional inductive coil sized for, by producing a magnetic circuit with at least one inductive coil of the second circuit of said converter, transferring energy. from the first power grid to the second power grid so as to pre-charge said first power grid.
PRESENTATION GENERALE DE L’INVENTION GENERAL PRESENTATION OF THE INVENTION
[0017] A cet effet, l’invention concerne un convertisseur continu-continu isolé, notamment pour véhicule automobile, comprenant : For this purpose, the invention relates to an isolated DC-DC converter, particularly for a motor vehicle, comprising:
- une première borne d’interface destinée à être reliée à un premier réseau électrique, a first interface terminal intended to be connected to a first electrical network,
- une deuxième borne d’interface destinée à être reliée à un deuxième réseau électrique, - un premier circuit, relié à la première borne d’interface, et comprenant au moins une branche primaire comprenant au moins une bobine inductive, a second interface terminal intended to be connected to a second electrical network, a first circuit, connected to the first interface terminal, and comprising at least one primary branch comprising at least one inductive coil,
- un deuxième circuit, relié à la deuxième borne d’interface, et comprenant une branche secondaire comprenant au moins une bobine inductive,  a second circuit, connected to the second interface terminal, and comprising a secondary branch comprising at least one inductive coil,
chaque bobine inductive de ladite au moins une branche primaire étant couplée à une bobine inductive de la branche secondaire pour former au moins un transformateur, de sorte que, selon un premier mode de fonctionnement, le convertisseur continu-continu isolé est configuré pour transférer de l’énergie du premier réseau électrique vers le deuxième réseau électrique, par l’intermédiaire du premier et du deuxième circuits, via le(s) circuit(s) magnétique(s) formé(s) par les bobines inductives couplées de la branche primaire et de la branche secondaire. Ledit convertisseur continu-continu isolé est remarquable en ce qu’il comprend au moins une branche supplémentaire comprenant au moins une bobine inductive supplémentaire, ladite au moins une branche supplémentaire étant connectée à la première borne d’interface, et ladite au moins une bobine inductive supplémentaire étant couplée à une bobine inductive de la branche secondaire, de sorte que, selon un deuxième mode de fonctionnement, le convertisseur est configuré pour transférer de l’énergie du deuxième réseau électrique vers le premier réseau électrique, par l’intermédiaire du deuxième circuit et de la branche supplémentaire, via ladite au moins une bobine inductive de la branche secondaire et ladite au moins une inductance supplémentaire de la branche supplémentaire. each inductive coil of said at least one primary branch being coupled to an inductive coil of the secondary branch to form at least one transformer, so that, in a first mode of operation, the isolated DC-DC converter is configured to transfer the energy from the first electrical network to the second electrical network, via the first and second circuits, via the magnetic circuit (s) formed by the coupled inductive coils of the primary branch and of the secondary branch. Said isolated DC-DC converter is remarkable in that it comprises at least one additional branch comprising at least one additional inductive coil, said at least one additional branch being connected to the first interface terminal, and said at least one inductive coil further being coupled to an inductive coil of the secondary branch so that, in a second mode of operation, the converter is configured to transfer energy from the second power grid to the first power grid through the second circuit. and the additional branch, via said at least one inductive coil of the secondary branch and said at least one additional inductance of the additional branch.
[0018] Au moyen de cette branche supplémentaire, configurée de manière adaptée, le convertisseur continu-continu isolé selon l’invention assure une fonction de pré-charge du premier réseau électrique, en particulier d’un réseau électrique embarqué haute tension. By means of this additional branch, suitably configured, the isolated DC-DC converter according to the invention provides a pre-charge function of the first electrical network, in particular a high voltage on-board electrical network.
[0019] Selon un mode de réalisation, la branche supplémentaire est configurée pour inhiber tout transfert d’énergie du deuxième réseau électrique vers le premier réseau électrique lorsque le premier mode de fonctionnement est actif. According to one embodiment, the additional branch is configured to inhibit any energy transfer from the second power grid to the first power grid when the first operating mode is active.
[0020] Avantageusement, la branche supplémentaire comprend un interrupteur unidirectionnel ou bidirectionnel de manière à ouvrir la branche supplémentaire lorsque le premier mode de fonctionnement est actif. Advantageously, the additional branch comprises a unidirectional or bidirectional switch so as to open the additional branch when the first mode of operation is active.
[0021] Avantageusement, le premier circuit et le deuxième circuit comprennent des interrupteurs pour commander chaque bobine inductive. Advantageously, the first circuit and the second circuit comprise switches for controlling each inductive coil.
[0022] Selon une forme de réalisation, le premier circuit comprend deux branches primaires comprenant chacune deux bobines inductives et le deuxième circuit comprend une branche secondaire comprenant deux bobines inductives, les bobines inductives de chaque branche primaire étant couplées par paire et respectivement avec une bobine inductive de la branche secondaire, de façon à former deux transformateurs présentant chacun trois bobines inductives. According to one embodiment, the first circuit comprises two primary branches each comprising two inductive coils and the second circuit comprises a secondary branch comprising two inductive coils, the inductive coils of each branch. primary are coupled in pairs and respectively with an inductive coil of the secondary branch, so as to form two transformers each having three inductive coils.
[0023] Selon une forme de réalisation, le convertisseur continu-continu selon l’invention comprend une unique branche supplémentaire présentant une bobine inductive supplémentaire couplée avec la bobine inductive de la branche secondaire du deuxième circuit appartenant au premier transformateur, ou avec la bobine inductive de la branche secondaire appartenant au deuxième transformateur, ou comprenant deux branches supplémentaires présentant chacune une bobine inductive supplémentaire, la bobine inductive supplémentaire de l’une des branches supplémentaires étant couplée avec l’une des bobines inductives de la branche secondaire et l’autre desdites bobines inductives supplémentaires étant couplée avec l’autre desdites bobines inductives de la branche secondaire. According to one embodiment, the DC-DC converter according to the invention comprises a single additional branch having an additional inductive coil coupled with the inductive coil of the secondary branch of the second circuit belonging to the first transformer, or with the inductive coil. of the secondary branch belonging to the second transformer, or comprising two additional branches each having an additional inductive coil, the additional inductive coil of one of the additional branches being coupled with one of the inductive coils of the secondary branch and the other of said additional inductive coils being coupled with the other of said inductive coils of the secondary branch.
[0024] Dans un véhicule automobile, le premier réseau électrique est un réseau électrique haute tension et le deuxième réseau électrique est un réseau électrique basse tension. Une batterie haute tension est connectée sur le réseau électrique haute tension et une batterie basse tension est connectée sur le réseau électrique basse tension. In a motor vehicle, the first power grid is a high voltage electrical network and the second power grid is a low voltage electrical network. A high voltage battery is connected to the high voltage power grid and a low voltage battery is connected to the low voltage grid.
[0025] La présente invention vise aussi un procédé de pré-charge d’un premier réseau électrique à partir d’énergie issue d’un deuxième réseau électrique, lors du démarrage dudit premier réseau électrique, au moyen de la mise en oeuvre d’un convertisseur continu-continu isolé tel que brièvement décrit ci-dessus, dont la première borne d’interface est connectée au premier réseau électrique et dont la deuxième borne d’interface est connectée au deuxième réseau électrique, le convertisseur continu-continu isolé étant mis en oeuvre dans le deuxième mode de fonctionnement. The present invention also aims at a method of pre-charging a first power grid from energy from a second power grid, when starting said first power grid, by means of the implementation of an isolated DC-DC converter as briefly described above, whose first interface terminal is connected to the first electrical network and whose second interface terminal is connected to the second electrical network, the isolated DC-DC converter being implemented in the second mode of operation.
[0026] La présente invention vise aussi un procédé de décharge d’un premier réseau électrique lors d’une déconnexion dudit premier réseau électrique, ledit premier réseau électrique comprenant, lors de ladite déconnexion, au moins une capacité chargée, ladite décharge comprenant la mise en oeuvre d’un convertisseur continu-continu isolé tel que brièvement décrit ci-dessus, dont la première borne d’interface est connectée au premier réseau électrique et dont la deuxième borne d’interface est connectée au deuxième réseau électrique, le convertisseur continu-continu isolé, et dans lequel l’interrupteur de la branche supplémentaire est bidirectionnel, le convertisseur continu-continu isolé étant mis en oeuvre selon un troisième mode de fonctionnement dans lequel l’énergie stockée dans ladite au moins une capacité chargée est transférée au deuxième réseau électrique par l’intermédiaire dudit au moins un transformateur supplémentaire formé de ladite au moins une bobine inductive supplémentaire et d’une bobine inductive de la branche secondaire, pour décharger ladite au moins une capacité chargée. [0027] Avantageusement, l’énergie transférée au deuxième circuit pendant la décharge de ladite au moins une capacité est utilisée pour charger une batterie connectée sur ledit deuxième réseau électrique. The present invention also aims at a method of discharging a first electrical network during a disconnection of said first electrical network, said first electrical network comprising, during said disconnection, at least one charged capacity, said discharge comprising the setting of an isolated DC-DC converter as briefly described above, whose first interface terminal is connected to the first electrical network and whose second interface terminal is connected to the second electrical network, the DC-DC converter continuous isolated, and wherein the switch of the additional branch is bidirectional, the isolated DC-DC converter being implemented according to a third mode of operation in which the energy stored in said at least one charged capacity is transferred to the second network electrical through said at least one additional transformer formed of ladit e at least one additional inductive coil and an inductive coil of the secondary branch, for discharging said at least one loaded capacitor. Advantageously, the energy transferred to the second circuit during the discharge of said at least one capacitor is used to charge a battery connected to said second electrical network.
[0028] La présente invention vise par ailleurs un véhicule automobile électrique ou hybride, comprenant un premier réseau électrique et un deuxième réseau électrique, une batterie haute tension reliée audit premier réseau électrique et une batterie basse tension reliée audit deuxième réseau électrique, ledit véhicule comprenant par ailleurs un convertisseur continu-continu isolé tel que brièvement décrit ci-dessus, connecté entre ledit premier réseau électrique et ledit réseau deuxième électrique. The present invention also provides an electric or hybrid motor vehicle, comprising a first electrical network and a second electrical network, a high voltage battery connected to said first power grid and a low voltage battery connected to said second power grid, said vehicle comprising moreover, an isolated DC-DC converter as briefly described above, connected between said first electrical network and said second electrical network.
[0029] Un tel véhicule électrique ou hybride comprend un système de motorisation électrique alimenté par la batterie d’alimentation haute tension via le premier réseau électrique, une pluralité d’équipements électriques auxiliaires alimentés par la batterie d’alimentation basse tension via le deuxième réseau électrique. Such an electric or hybrid vehicle comprises an electric drive system powered by the high voltage power supply battery via the first power grid, a plurality of auxiliary electrical equipment powered by the low voltage power supply battery via the second network. electric.
PRESENTATION DES FIGURES PRESENTATION OF FIGURES
[0030] L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple, et se référant aux dessins annexés donnés à titre d’exemples non limitatifs, dans lesquels des références identiques sont données à des objets semblables et sur lesquels : The invention will be better understood on reading the description which follows, given solely by way of example, and with reference to the accompanying drawings given by way of non-limiting examples, in which identical references are given to FIG. similar objects and on which:
- la figure 1 (déjà commentée) illustre un schéma bloc fonctionnel d’un système électrique connu, embarqué dans un véhicule électrique ou hybride, FIG. 1 (already commented on) illustrates a functional block diagram of a known electrical system, embedded in an electric or hybrid vehicle,
- la figure 2 illustre un convertisseur continu-continu isolé selon l’état de l’art,  FIG. 2 illustrates an isolated DC-DC converter according to the state of the art,
la figure 3 illustre une première forme de réalisation d’un convertisseur continu-continu isolé selon l’invention,  FIG. 3 illustrates a first embodiment of an isolated DC-DC converter according to the invention,
la figure 4 illustre une deuxième forme de réalisation d’un convertisseur continu-continu isolé selon l’invention,  FIG. 4 illustrates a second embodiment of an isolated DC-DC converter according to the invention,
la figure 5 montre une troisième forme de réalisation d’un convertisseur continu-continu selon l’invention,  FIG. 5 shows a third embodiment of a DC-DC converter according to the invention,
la figure 6 montre un autre exemple d’un convertisseur continu-continu selon l’invention.  Figure 6 shows another example of a DC-DC converter according to the invention.
[0031] Il faut noter que les figures exposent l’invention de manière détaillée pour mettre en oeuvre l’invention, lesdites figures pouvant bien entendu servir à mieux définir l’invention le cas échéant. It should be noted that the figures disclose the invention in detail to implement the invention, said figures can of course be used to better define the invention where appropriate.
DESCRIPTION DETAILLEE DE L’INVENTION [0032] Dans la description qui sera faite ci-après, on parlera d’une mise en oeuvre de l’invention dans un véhicule automobile électrique ou hybride. Cela ne doit cependant pas être interprété de façon restrictive, l’invention pouvant notamment être mise en oeuvre dans tout type de véhicule. DETAILED DESCRIPTION OF THE INVENTION In the description to be made below, we will speak of an implementation of the invention in an electric or hybrid motor vehicle. However, this should not be interpreted restrictively, the invention being able to be implemented in any type of vehicle.
[0033] Un véhicule électrique ou hybride comprend une batterie d’alimentation haute tension, un système de motorisation électrique, un réseau électrique embarqué haute tension, une batterie d’alimentation basse tension, un réseau électrique embarqué basse tension et une pluralité d’équipements électriques auxiliaires. An electric or hybrid vehicle comprises a high voltage power supply battery, an electric drive system, a high voltage on-board electrical network, a low voltage power supply battery, a low voltage on-board electrical network and a plurality of equipment. auxiliary electric.
[0034] Le réseau électrique embarqué haute tension relie la batterie d’alimentation haute tension et le système de motorisation électrique afin que la batterie d’alimentation haute tension assure une fonction d’alimentation en énergie du système de motorisation électrique permettant la propulsion du véhicule. Comme décrit précédemment, la batterie d’alimentation haute tension délivre typiquement une tension comprise entre 100 V et 900 V, de préférence entre 100 V et 500 V. The on-board high voltage electrical network connects the high voltage power supply battery and the electric drive system so that the high voltage power supply battery provides a power supply function of the electric drive system for propelling the vehicle. . As previously described, the high voltage power supply battery typically delivers a voltage of between 100 V and 900 V, preferably between 100 V and 500 V.
[0035] Le réseau électrique embarqué basse tension relie la batterie d’alimentation basse tension et la pluralité d’équipements électriques auxiliaires afin que la batterie d’alimentation basse tension alimente les équipements électriques auxiliaires, tels que des calculateurs embarqués, des moteurs de lève-vitres, un système multimédia, etc. Comme cela est connu, la batterie d’alimentation basse tension délivre typiquement une tension de l’ordre de 12 V, 24 V ou 48 V. The low voltage on-board electrical network connects the low voltage power supply battery and the plurality of auxiliary electrical equipment so that the low voltage power supply battery supplies the auxiliary electrical equipment, such as on-board computers, drive motors. screens, a multimedia system, etc. As is known, the low voltage supply battery typically delivers a voltage of the order of 12 V, 24 V or 48 V.
[0036] La recharge en énergie électrique de la batterie d’alimentation haute tension peut être réalisée en la connectant, via un réseau électrique haute tension continue du véhicule, à un réseau électrique externe, par exemple le réseau électrique alternatif domestique. The electric power recharge of the high-voltage power supply battery can be achieved by connecting it, via a high-voltage electrical network of the vehicle, to an external electrical network, for example the domestic alternating electric network.
[0037] La recharge de la batterie basse tension est réalisée directement à partir de la batterie haute tension. A cette fin, la batterie haute tension est connectée à la batterie basse tension via un convertisseur continu-continu. The charging of the low voltage battery is performed directly from the high voltage battery. To this end, the high voltage battery is connected to the low voltage battery via a DC-DC converter.
[0038] Les figures 2 à 5 représentent différents schémas électroniques correspondant à un convertisseur continu-continu isolé 1 , 10, 1 1 , 12 connecté entre un premier réseau électrique embarqué HV, haute tension, et un deuxième réseau électrique embarqué LV, basse tension. Figures 2 to 5 show different electronic diagrams corresponding to an isolated DC-DC converter 1, 10, 1 1, 12 connected between a first on-board HV electrical network, high voltage, and a second on-board LV electrical network, low voltage .
[0039] La figure 2 correspond au schéma électronique d’un convertisseur continu-continu isolé selon l’état de l’art tandis que les figures 3 à 5 représentent différentes formes de réalisation du convertisseur continu-continu isolé selon l’invention. [0040] Comme expliqué précédemment, le convertisseur continu-continu 1 , 10, 1 1 , 12 a pour fonction la conversion, éventuellement réversible, d’une haute tension continue en une basse tension continue. La haute tension, typiquement comprise entre 10 V et 500 V, est délivrée aux bornes du réseau électrique embarqué haute tension HV ou issue de celles-ci. La basse tension, typiquement égale à environ 12 V, 24 V ou 48 V est délivrée aux bornes du réseau électrique embarqué basse tension LV ou issue de celles-ci. Figure 2 corresponds to the electronic diagram of a DC-DC converter isolated according to the state of the art while Figures 3 to 5 show different embodiments of the DC-DC converter isolated according to the invention. As explained above, the DC-DC converter 1, 10, 1 1, 12 has the function of converting, possibly reversible, a high DC voltage into a low DC voltage. The high voltage, typically between 10 V and 500 V, is delivered to or from the terminals of the HV high voltage on-board electrical network. The low voltage, typically equal to approximately 12 V, 24 V or 48 V, is delivered to or from the terminals of the on-line LV low-voltage electrical network.
[0041] A cette fin, comme expliqué précédemment, on configure le rapport de conversion entre une tension d’entrée et une tension de sortie des transformateurs constitués des bobines inductives couplées L1 , L3 et L5 d’une part, formant un premier transformateur T1 , et des bobines inductives couplées L2, L4 et L6 d’autre part, formant un deuxième transformateur T2, les bobines inductives L1 et L2 étant connectées en série sur une première branche du premier circuit - ou circuit primaire -, les bobines inductives L3 et L4 étant connectées en série sur une deuxième branche du premier circuit, et les bobines inductives L5 et L6 étant connectées en série sur une branche du deuxième circuit- ou circuit secondaire. For this purpose, as previously explained, the conversion ratio between an input voltage and an output voltage of the transformers constituted by the coupled inductive coils L1, L3 and L5 is formed on the one hand, forming a first transformer T1. , and coupled inductive coils L2, L4 and L6, on the other hand, forming a second transformer T2, the inductive coils L1 and L2 being connected in series on a first branch of the first circuit - or primary circuit - the inductive coils L3 and L4 being connected in series on a second branch of the first circuit, and the inductive coils L5 and L6 being connected in series on a branch of the second circuit- or secondary circuit.
[0042] Le circuit primaire comprend les bobines inductives L1 , L2, L3, L4 et des interrupteurs Q3, Q4 qui contribuent au contrôle de l’énergie échangée entre le circuit primaire et le circuit secondaire. Au circuit secondaire, l’interrupteur Q6 est connecté entre une masse électrique et une borne de la bobine inductive L6 afin de contrôler l’énergie circulant dans la bobine L6. L’interrupteur Q5 est connecté entre une masse électrique et une borne de la bobine inductive L5 afin de contrôler l’énergie circulant dans la bobine L5. Les interrupteurs Q5, Q6 du circuit secondaire forment ainsi un circuit redresseur synchrone. The primary circuit comprises the inductive coils L1, L2, L3, L4 and switches Q3, Q4 which contribute to the control of the energy exchanged between the primary circuit and the secondary circuit. At the secondary circuit, the switch Q6 is connected between an electrical ground and a terminal of the inductive coil L6 to control the energy flowing in the coil L6. The switch Q5 is connected between an electrical ground and a terminal of the inductive coil L5 in order to control the energy flowing in the coil L5. The switches Q5, Q6 of the secondary circuit thus form a synchronous rectifier circuit.
[0043] Une capacité C3 est connectée entre la première branche et la deuxième branche du premier circuit. En particulier, la capacité C3 est connectée entre deux bornes respectives des interrupteurs Q3, Q4 contrôlant les énergies des bobines inductives L1 , L2 de la première branche du premier circuit et L3, L4 de la deuxième branche du premier circuit, respectivement. L’autre borne de l’interrupteur Q3 est en outre reliée à une autre capacité C2. La capacité C2 a une fonction de source de tension pour le circuit primaire du premier circuit. La capacité C2 est connectée d’une part à la borne de l’interrupteur Q3 et d’autre part à une masse, notamment la masse du premier circuit. Une inductance L0 est par ailleurs connectée entre un nœud auquel sont reliés la capacité C3 et l’interrupteur Q4 et un point milieu auquel sont connectées deux bornes respectives d’interrupteurs Q1 , Q2 connectés en entrée du convertisseur continu-continu isolé 1 , 10, 1 1 , 12. L’autre borne de l’interrupteur d’entrée Q1 est par ailleurs connectée à une première borne d’interface du convertisseur continu-continu isolé 10, 1 1 , 12. La première borne d’interface est connectée au réseau électrique embarqué haute tension HV. L’autre borne de l’interrupteur d’entrée Q2 est par ailleurs connectée à une masse électrique, notamment une masse électrique du premier circuit du convertisseur continu-continu isolé 10, 1 1 , 12. L’inductance LO, les capacités C3, C2, les interrupteurs Q1 , Q2, Q3, Q4, Q5, Q6 et les bobines inductives des circuits primaire et secondaire forment ainsi un circuit convertisseur de tension. Les interrupteurs Q1 , Q2 forment un demi-pont en H permettant de fournir aux premier et deuxième transformateurs une tension plus faible que la tension délivrée par le réseau électrique embarqué haute tension HV à ses bornes d’interface. A capacitor C3 is connected between the first branch and the second branch of the first circuit. In particular, the capacitor C3 is connected between two respective terminals of the switches Q3, Q4 controlling the energies of the inductive coils L1, L2 of the first branch of the first circuit and L3, L4 of the second branch of the first circuit, respectively. The other terminal of the switch Q3 is further connected to another capacitor C2. The capacitor C2 has a voltage source function for the primary circuit of the first circuit. The capacitor C2 is connected on the one hand to the terminal of the switch Q3 and on the other hand to a ground, in particular the ground of the first circuit. An inductance L0 is furthermore connected between a node to which the capacitance C3 and the switch Q4 are connected and a midpoint to which are connected two respective terminals of switches Q1, Q2 connected to the input of the isolated DC-DC converter 1, 10, The other terminal of the input switch Q1 is furthermore connected to a first interface terminal of the isolated DC-DC converter 10, 1 1, 12. The first interface terminal is connected to the HV high voltage on-board electrical network. The other terminal of the input switch Q2 is also connected to an electrical ground, in particular an electric ground of the first circuit of the isolated DC-DC converter 10, 1 1, 12. The inductance LO, the capacitors C3, C2, the switches Q1, Q2, Q3, Q4, Q5, Q6 and the inductive coils of the primary and secondary circuits thus form a voltage converter circuit. The switches Q1, Q2 form an H half-bridge to provide the first and second transformers with a voltage lower than the voltage delivered by the HV high voltage on-board electrical network at its interface terminals.
[0044] Alternativement, l’inductance L0 pourrait être connectée entre le nœud auquel sont reliés la capacité C2 et l’interrupteur Q3 et le point milieu auquel sont connectés les interrupteurs Q1 , Q2 connectés en entrée du convertisseur continu-continu isolé 1 , 10, 1 1 , 12, par exemple comme illustré en figure 6, de façon similaire par ailleurs à l’exemple de la figure 3. En figures 4 et 5, l’inductance L0 pourrait également être connectée de cette façon. Alternatively, the inductance L0 could be connected between the node to which the capacitor C2 and the switch Q3 are connected and the midpoint to which the switches Q1, Q2 connected to the input of the isolated DC-DC converter 1, 10 are connected. , 1 1, 12, for example as illustrated in Figure 6, similarly also in the example of Figure 3. In Figures 4 and 5, the inductance L0 could also be connected in this way.
[0045] De préférence, lesdits interrupteurs Q1 à Q6 sont des MOSFETS, notamment des MOSFETS à commutation douce, c’est-à-dire aptes à commuter à tension nulle, autrement désigné ZVS pour « Zéro Voltage Switching ». Preferably, said switches Q1 to Q6 are MOSFETS, including MOSFETS soft switch, that is to say, able to switch to zero voltage, otherwise designated ZVS for "Zero Voltage Switching".
[0046] Selon un premier mode de fonctionnement du convertisseur continu-continu isolé 1 , 10, 1 1 , 12, de l’énergie est transférée du réseau électrique embarqué haute tension HV vers le réseau électrique embarqué basse tension LV lorsque ledit réseau électrique embarqué haute tension HV est actif, c’est-à-dire lorsqu’une batterie haute tension (non représentée) délivre une haute tension à ses bornes, en vue de fournir de l’énergie pour charger une batterie basse tension (non représentée) connectée sur le réseau électrique embarqué basse tension LV. A cette fin, un module de commande contrôle les interrupteurs Q1 , Q2, Q3, Q4 de façon à alternativement stocker de l’énergie dans les bobines inductives L1 et L3 et dans les bobines inductives L2 et L4, sur une partie de la période correspondante, pour la transférer au deuxième circuit, respectivement aux bobines inductives L5 et L6 sur une partie complémentaire de la période. Notamment, le module de commande contrôle les interrupteurs Q1 , Q2, Q3, Q4 en leur délivrant des signaux PWM (« Puise Width Modulation »). En particulier, les signaux délivrés aux interrupteurs Q1 , Q2 ont un rapport cyclique variable et les signaux délivrés aux interrupteurs Q3, Q4 ont des rapports cycliques constants. Dans le premier mode de fonctionnement, le convertisseur convertit la tension du réseau haute tension HV vers le réseau basse tension LV en faisant varier le rapport cyclique des interrupteurs Q1 , Q2 tout en maintenant constant le rapport cyclique des interrupteurs Q3, Q4. Cependant, le convertisseur pourrait fonctionner différemment, par exemple en faisant varier tous les rapports cycliques. According to a first mode of operation of the isolated DC-DC converter 1, 10, 1 1, 12, energy is transferred from the HV high voltage on-board electrical network to the LV low voltage on-board electrical network when said on-board electrical network. HV high voltage is active, that is to say when a high voltage battery (not shown) delivers a high voltage to its terminals, to provide power to charge a low voltage battery (not shown) connected on the low voltage LV electrical network. To this end, a control module controls the switches Q1, Q2, Q3, Q4 so as alternately to store energy in the inductive coils L1 and L3 and in the inductive coils L2 and L4, for a part of the corresponding period. to transfer it to the second circuit, respectively to the inductive coils L5 and L6 on a complementary part of the period. In particular, the control module controls the switches Q1, Q2, Q3, Q4 by delivering PWM signals ("Pulse Width Modulation"). In particular, the signals delivered to the switches Q1, Q2 have a variable duty cycle and the signals delivered to the switches Q3, Q4 have constant duty cycles. In the first mode of operation, the converter converts the voltage of the high voltage network HV to the low voltage network LV by varying the duty cycle of the switches Q1, Q2 while maintaining constant the duty cycle of the switches Q3, Q4. However, the converter could operate differently, for example by varying all the duty cycles.
[0047] Il est à noter que ce fonctionnement à partir de deux transformateurs en parallèle commandés alternativement n’est pas obligatoire car il est possible de fonctionner avec un seul transformateur isolé. Cependant, l’utilisation de deux transformateurs en parallèle commandés alternativement permet de recourir à des composants électroniques plus petits (diodes, interrupteurs, capacités), donc moins encombrants et souvent moins coûteux, car la puissance maximale transférée par chaque transformateur alternativement est réduite de moitié. Dans le cadre d’une mise en œuvre dans un véhicule automobile, la puissance maximale correspondant à l’énergie transférée serait environ égale à 400 W par transformateur dans le cas où deux transformateurs en parallèle sont utilisés, contre 800 W pour un transformateur unique. It should be noted that this operation from two alternately controlled alternating transformers is not mandatory because it is possible to operate with a single isolated transformer. However, the use of two alternately controlled parallel transformers makes it possible to use smaller electronic components (diodes, switches, capacitors), therefore less cumbersome and often less expensive, since the maximum power transferred by each transformer is reduced by half. As part of an implementation in a motor vehicle, the maximum power corresponding to the energy transferred would be approximately equal to 400 W per transformer in the case where two parallel transformers are used, against 800 W for a single transformer.
[0048] Entre les bornes d’interface du réseau électrique embarqué haute tension HV, une capacité d’entrée C1 du réseau HV se charge au démarrage du réseau électrique embarqué haute tension HV. Between the interface terminals of the HV high voltage on-board electrical network, an input capacitor C1 of the HV network is charged at startup of the HV high voltage on-board electrical network.
[0049] La présente invention permet d’assurer la pré-charge de ladite capacité d’entrée C1 lors du démarrage du réseau électrique embarqué haute tension HV, permettant d’éviter la circulation de courants d’appel. The present invention makes it possible to ensure the pre-charge of said input capacitor C1 during the start of the HV high voltage on-board electrical network, making it possible to avoid the flow of inrush currents.
[0050] Une capacité d’entrée C4 du réseau électrique embarqué basse tension LV est également prévue, connectée entre une deuxième borne d’interface du convertisseur continu- continu isolé 10, 1 1 , 12 et une masse électrique, notamment une masse électrique du deuxième circuit du convertisseur continu-continu isolé 10, 1 1 , 12. An input capacitor C4 of the LV low-voltage on-board electrical network is also provided, connected between a second isolated DC-DC converter interface terminal 10, 1 1, 12 and an electrical ground, in particular an electrical ground of second circuit of the isolated DC-DC converter 10, 1 1, 12.
[0051] Dans le premier mode de fonctionnement, l’énergie transférée du réseau électrique embarqué haute tension HV au réseau électrique embarqué basse tension LV permet notamment le chargement d’une batterie basse tension (non représentée) connectée audit réseau électrique embarqué basse tension LV. In the first mode of operation, the energy transferred from the HV high voltage on-board electrical network to the LV low voltage on-board electrical network notably enables the charging of a low voltage battery (not shown) connected to said LV low voltage on-board electrical network. .
[0052] Le convertisseur continu-continu isolé selon l’invention permet la mise en œuvre d’un deuxième mode de fonctionnement, voire d’un troisième mode de fonctionnement. Trois formes de réalisation du convertisseur continu-continu isolé selon l’invention sont représentées sur les figures 3 à 5. The DC-DC isolated converter according to the invention allows the implementation of a second mode of operation, or even a third mode of operation. Three embodiments of the isolated DC-DC converter according to the invention are shown in Figures 3 to 5.
[0053] A cette fin, le convertisseur continu-continu isolé 10, 1 1 , 12 comporte au moins une branche supplémentaire comprenant une bobine inductive supplémentaire L7, L8. Ladite au moins une branche supplémentaire s’étend entre une masse électrique et la première borne d’interface du convertisseur continu-continu isolé 10, 1 1 , 12. Ladite au moins une bobine inductive supplémentaire L7, L8 est couplée respectivement à une bobine du deuxième circuit L5, L6, apte à transférer de l’énergie du réseau électrique embarqué basse tension LV au réseau électrique embarqué haute tension HV. A cette fin, un module de commande contrôle les interrupteurs Q5, Q6, notamment par un signal PWM à fréquence fixe, de façon à stocker de l’énergie dans les bobines inductives L5 et/ou L6, sur une partie de la période correspondante, pour la transférer à ladite au moins une bobine inductive supplémentaire L7, L8, et donc au réseau électrique embarqué haute tension HV, sur une partie complémentaire de la période. [0054] Le rapport de transformation du transformateur supplémentaire, autrement dit le rapport entre la tension en entrée, correspondant à la tension délivrée par le réseau électrique embarqué basse tension LV, et la tension de sortie, correspondant à la tension délivrée au réseau électrique embarqué haute tension HV, en particulier aux bornes de la capacité d’entrée C1 dudit réseau électrique embarqué haute tension HV, est configuré pour permettre le chargement de ladite capacité d’entrée C1 du réseau électrique embarqué haute tension HV en un temps maximum prédéfini. To this end, the isolated DC-DC converter 10, 1 1, 12 comprises at least one additional branch comprising an additional inductive coil L7, L8. Said at least one additional branch extends between an electrical ground and the first interface terminal of the isolated DC-DC converter 10, 1 1, 12. Said at least one additional inductive coil L7, L8 is respectively coupled to a coil of second circuit L5, L6, able to transfer energy from the LV low voltage on-board electrical network to the HV high voltage on-board electrical network. For this purpose, a control module controls the switches Q5, Q6, in particular by a fixed frequency PWM signal, so as to store energy in the inductive coils L5 and / or L6 over a part of the corresponding period, to transfer it to said at least one additional inductive coil L7, L8, and thus to the HV high voltage on-board electrical network, on a complementary part of the period. The transformation ratio of the additional transformer, in other words the ratio between the input voltage, corresponding to the voltage delivered by the LV low voltage on-board electrical network, and the output voltage, corresponding to the voltage delivered to the on-board electrical network. HV high voltage, in particular at the terminals of the input capacitance C1 of said HV high voltage on-board electrical network, is configured to enable the loading of said input capacitor C1 of the HV high voltage on-board electrical network in a predefined maximum time.
[0055] Plus généralement, le transformateur supplémentaire est configuré pour pré-charger le réseau électrique embarqué haute tension HV, en particulier en un temps maximum prédéfini. Dans le contexte d’une mise en oeuvre dans un véhicule, la capacité du réseau électrique embarqué haute tension à pré-charger présente une valeur d’environ 2 mF à charger en moins de 200 ms. Grâce à cette pré-charge, on évite la circulation de courant d’appel au démarrage du réseau électrique embarqué haute tension HV. More generally, the additional transformer is configured to pre-charge the HV high voltage on-board electrical network, in particular in a predefined maximum time. In the context of an implementation in a vehicle, the capacity of the high voltage on-board electrical network to pre-charge has a value of approximately 2 mF to be loaded in less than 200 ms. Thanks to this pre-charge, it avoids the inrush current flow at the start of the HV high voltage on-board electrical network.
[0056] La branche supplémentaire est configurée pour inhiber tout transfert d’énergie par ladite au moins une branche supplémentaire lorsque le premier mode de fonctionnement est actif, c’est-à-dire lorsque de l’énergie est transférée via le convertisseur continu-continu isolé 10, 1 1 , 12 du réseau électrique embarqué haute tension HV au réseau électrique embarqué basse tension LV. Par exemple, le rapport de transformation entre la bobine inductive L5 et la bobine inductive supplémentaire L7 et/ou, respectivement, entre la bobine inductive L6 et la bobine inductive supplémentaire L8, est choisi de manière à éviter que le deuxième mode de fonctionnement puisse être actif lorsque le premier mode de fonctionnement est déjà actif. En particulier, le rapport de transformation entre la bobine inductive L5 et la bobine inductive supplémentaire L7 est égal à 10. Lorsque la tension du réseau électrique basse tension LV est égale à 16 V, alors la tension aux bornes de l’inductance supplémentaire L7 est égale à 160 V. Si la tension du réseau électrique haute tension HV est comprise entre 210V et 500V, alors cette tension est supérieure à la tension aux bornes de la bobine inductive supplémentaire L7, la diode intrinsèque de l’interrupteur Q7 est bloquante, l’interrupteur Q7 lui-même étant ouvert. Ainsi, il n’y a pas de transfert d’énergie du circuit secondaire vers la bobine inductive supplémentaire L7. The additional branch is configured to inhibit any transfer of energy by said at least one additional branch when the first mode of operation is active, that is to say when energy is transferred via the continuous converter. isolated continuous 10, 1 1, 12 HV high voltage on-board electrical network to LV low voltage on-board electrical network. For example, the transformation ratio between the inductive coil L5 and the additional inductive coil L7 and / or, respectively, between the inductive coil L6 and the additional inductive coil L8, is chosen so as to prevent the second mode of operation from being possible. active when the first mode of operation is already active. In particular, the transformation ratio between the inductive coil L5 and the additional inductive coil L7 is equal to 10. When the voltage of the low voltage electrical network LV is equal to 16 V, then the voltage across the additional inductance L7 is equal to 160 V. If the voltage of the high-voltage mains HV is between 210V and 500V, then this voltage is higher than the voltage across the additional inductive coil L7, the intrinsic diode of the switch Q7 is blocking, switch Q7 itself being open. Thus, there is no energy transfer from the secondary circuit to the additional inductive coil L7.
[0057] Afin de réaliser l’inhibition décrite ci-dessus, la branche supplémentaire peut comprendre aussi, dans les modes de réalisation représentés sur les figures 3 à 5, un interrupteur Q7, Q8 connecté entre une borne de chaque bobine inductive supplémentaire L7, L8 et une masse électrique ou entre une borne de chaque bobine inductive supplémentaire L7, L8 et la première borne d’interface du convertisseur continu-continu isolé. Chaque interrupteur peut être unidirectionnel, par exemple une diode (non représentée), ou un interrupteur bidirectionnel, tel qu’un transistor Q7, Q8, par exemple un transistor MOSFET. [0058] En référence à la figure 3, le convertisseur continu-continu isolé 10 comporte ainsi deux branches supplémentaires comprenant respectivement une bobine inductive supplémentaire L7, L8. Chaque branche supplémentaire relie une borne d’interface du réseau électrique embarqué haute tension HV et une masse électrique. Les bobines inductives L7, L8 peuvent fonctionner de manière entrelacée avec les deux bobines inductives L5, L6 du circuit secondaire. In order to achieve the inhibition described above, the additional branch can also comprise, in the embodiments shown in FIGS. 3 to 5, a switch Q7, Q8 connected between one terminal of each additional inductive coil L7, L8 and an electrical ground or between a terminal of each additional inductive coil L7, L8 and the first interface terminal of the isolated DC-DC converter. Each switch may be unidirectional, for example a diode (not shown), or a bidirectional switch, such as a transistor Q7, Q8, for example a MOSFET transistor. With reference to FIG. 3, the isolated DC-DC converter 10 thus comprises two additional branches respectively comprising an additional inductive coil L7, L8. Each additional branch connects an HV high voltage on-board electrical system interface terminal and an electrical ground. The inductive coils L7, L8 can operate in an interlaced manner with the two inductive coils L5, L6 of the secondary circuit.
[0059] Sur chaque branche supplémentaire, une bobine inductive L7, L8 présente une borne reliée à une borne d’interface du réseau électrique embarqué haute tension HV et une borne reliée à une borne d’un interrupteur Q7, Q8 qui la commande, l’autre borne dudit interrupteur Q7, Q8 étant connectée à une masse électrique. On each additional branch, an inductive coil L7, L8 has a terminal connected to an interface terminal of the HV high voltage on-board electrical network and a terminal connected to a terminal of a switch Q7, Q8 which controls it. another terminal of said switch Q7, Q8 being connected to an electrical ground.
[0060] Chaque bobine inductive supplémentaire L7, L8 est couplée à une bobine inductive respective L5, L6 du deuxième circuit, formant deux transformateurs supplémentaires commandés respectivement par les interrupteurs Q5, Q6, Q7, Q8 et réalisant deux circuits magnétiques supplémentaires aptes à transférer de l’énergie du réseau électrique embarqué basse tension LV au réseau électrique embarqué haute tension HV, en particulier à des fins de pré-charge, notamment de la capacité C1 . Each additional inductive coil L7, L8 is coupled to a respective inductive coil L5, L6 of the second circuit, forming two additional transformers controlled respectively by the switches Q5, Q6, Q7, Q8 and providing two additional magnetic circuits capable of transferring the LV low voltage on-board electrical network energy to the HV high voltage on-board electrical network, in particular for pre-charge purposes, in particular C1 capacity.
[0061] Dans le mode de réalisation représenté à la figure 4, le convertisseur continu-continu isolé 1 1 comprend une seule branche supplémentaire comprenant une bobine inductive supplémentaire L7 couplée à la bobine inductive L5 du deuxième circuit appartenant par ailleurs au premier transformateur. Les bobines inductives couplées L5, L7 forment un transformateur supplémentaire réalisant un circuit magnétique supplémentaire apte à transférer de l’énergie du réseau électrique embarqué basse tension LV au réseau électrique embarqué haute tension HV, en particulier à des fins de pré-charge, notamment de la capacité C1 . In the embodiment shown in Figure 4, the isolated DC-DC converter 1 1 comprises a single additional branch comprising an additional inductive coil L7 coupled to the inductive coil L5 of the second circuit also belonging to the first transformer. Coupled inductive coils L5, L7 form an additional transformer providing an additional magnetic circuit capable of transferring energy from the LV low voltage on-board electrical network to the HV high voltage on-board electrical network, in particular for pre-charging purposes, particularly for C1 capacity.
[0062] De façon correspondante, dans le mode de réalisation représenté à la figure 5, le convertisseur continu-continu isolé 12 comprend une seule branche supplémentaire comprenant une bobine inductive supplémentaire L8 couplée à la bobine inductive L6 du deuxième circuit appartenant par ailleurs au deuxième transformateur. Les bobines inductives couplées L6, L8 forment un transformateur supplémentaire réalisant un circuit magnétique supplémentaire apte à transférer de l’énergie du réseau électrique embarqué basse tension LV au réseau électrique embarqué haute tension HV, en particulier à des fins de pré-charge. Correspondingly, in the embodiment shown in FIG. 5, the isolated DC-DC converter 12 comprises a single additional branch comprising an additional inductive coil L8 coupled to the inductive coil L6 of the second circuit belonging to the second circuit. transformer. Coupled inductive coils L6, L8 form an additional transformer providing an additional magnetic circuit capable of transferring energy from the LV low voltage on-board electrical network to the HV high voltage on-board electrical network, in particular for pre-charging purposes.
[0063] Comme cela a été décrit précédemment, il est possible de remplacer les interrupteurs Q7 et/ou Q8, selon le mode de réalisation, par des diodes (non représentées) assurant la fonction d’interrupteur unidirectionnel respectivement connectées entre une borne de la bobine inductive L7, L8 et une borne d’interface du réseau électrique embarqué haute tension HV. De telles diodes ont pour fonction d’inhiber tout transfert d’énergie, via la (les) branche(s) supplémentaire(s), du réseau électrique embarqué haute tension HV vers le réseau électrique embarqué basse tension LV. Ces diodes ont notamment leur borne cathode orientée vers la première borne d’interface du convertisseur continu-continu isolé. [0064] L’utilisation d’interrupteurs Q7, Q8, bidirectionnels de type MOSFETs, permet avantageusement la mise en oeuvre d‘un troisième mode de fonctionnement du convertisseur continu-continu isolé 10, 1 1 , 12 selon l’invention. Selon ce troisième mode de fonctionnement, à la déconnexion du réseau électrique embarqué haute tension HV, le premier mode de fonctionnement devenant inactif, lesdits interrupteurs Q7, Q8 sont commandés à l’état passant dans le sens d’un transfert d’énergie du réseau électrique embarqué haute tension HV (en cours d’extinction) vers le réseau électrique embarqué basse tension LV sur lequel est connecté une batterie basse tension. Ce transfert d’énergie permet la décharge passive ou active des capacités du réseau électrique embarqué haute tension HV, en particulier de la capacité d’entrée C1 , lors de la déconnexion dudit réseau électrique embarqué haute tension HV. [0065] D’une part le deuxième circuit comprenant les bobines inductives L5, L6 et les interrupteurs bidirectionnels Q5, Q6 et d’autre part ladite au moins une branche supplémentaire comprenant respectivement une bobine inductive supplémentaire L7, L8 et un interrupteur bidirectionnel Q7, Q8 forment alors un convertisseur de tension continue en tension continue bidirectionnel. [0066] Avantageusement, l’énergie ainsi récupérée par le réseau électrique embarqué basse tension LV peut permettre le chargement d’une batterie basse tension connectée audit réseau électrique embarqué basse tension LV. As has been previously described, it is possible to replace the switches Q7 and / or Q8, according to the embodiment, by diodes (not shown) providing the function of unidirectional switch respectively connected between a terminal of the inductive coil L7, L8 and an HV high voltage on-board electrical network interface terminal. Such diodes have the function of inhibiting any energy transfer, via the additional branch (s), of the HV high voltage on-board electrical network to the LV low voltage on-board electrical network. These diodes have in particular their cathode terminal oriented towards the first interface terminal of the isolated DC-DC converter. The use of switches Q7, Q8 bidirectional type MOSFETs, advantageously allows the implementation of a third mode of operation of the isolated DC-DC converter 10, 1 1, 12 according to the invention. According to this third mode of operation, at the disconnection of the HV high voltage on-board electrical network, the first mode of operation becoming inactive, said switches Q7, Q8 are controlled in the on state in the direction of a transfer of energy of the network. HV high voltage on-board electrical system (in the process of being extinguished) to the low-voltage LV on-board electrical network on which a low-voltage battery is connected. This energy transfer allows the passive or active discharge of the capacitances of the HV high voltage on-board electrical network, in particular of the input capacitance C1, during the disconnection of said HV high voltage on-board electrical network. On the one hand the second circuit comprising the inductive coils L5, L6 and bidirectional switches Q5, Q6 and on the other hand said at least one additional branch respectively comprising an additional inductive coil L7, L8 and a bidirectional switch Q7, Q8 then form a bidirectional DC voltage DC converter. Advantageously, the energy thus recovered by the LV low-voltage on-board electrical network can enable the charging of a low-voltage battery connected to said LV low voltage on-board electrical network.

Claims

REVENDICATIONS
1. Convertisseur continu-continu isolé (10, 1 1 , 12), notamment pour véhicule automobile, comprenant :  An isolated DC-DC converter (10, 1 1, 12), particularly for a motor vehicle, comprising:
une première borne d’interface destinée à être reliée à un premier réseau électrique (HV),  a first interface terminal intended to be connected to a first electrical network (HV),
une deuxième borne d’interface destinée à être reliée à un deuxième réseau électrique (LV),  a second interface terminal intended to be connected to a second electrical network (LV),
un premier circuit, relié à la première borne d’interface, et comprenant au moins une branche primaire comprenant au moins une bobine inductive (L1 , L2, L3, L4), un deuxième circuit, relié à la deuxième borne d’interface, et comprenant une branche secondaire comprenant au moins une bobine inductive (L5, L6), chaque bobine inductive (L1 , L2, L3, L4) de ladite au moins une branche primaire étant couplée à une bobine inductive (L5, L6) de la branche secondaire pour former au moins un transformateur,  a first circuit, connected to the first interface terminal, and comprising at least one primary branch comprising at least one inductive coil (L1, L2, L3, L4), a second circuit connected to the second interface terminal, and comprising a secondary branch comprising at least one inductive coil (L5, L6), each inductive coil (L1, L2, L3, L4) of said at least one primary branch being coupled to an inductive coil (L5, L6) of the secondary branch to form at least one transformer,
de sorte que, selon un premier mode de fonctionnement, le convertisseur continu-continu isolé (10, 1 , 12) est configuré pour transférer de l’énergie du premier réseau électrique (HV) vers le deuxième réseau électrique (LV), par l’intermédiaire du premier et du deuxième circuits, via le(s) circuit(s) magnétique(s) formé(s) par les bobines inductives couplées (L1 , L3, L5 : L2, L4, L6) de la branche primaire et de la branche secondaire,  so that, in a first mode of operation, the isolated DC-DC converter (10, 1, 12) is configured to transfer energy from the first power grid (HV) to the second power grid (LV), by intermediate of the first and second circuits, via the magnetic circuit (s) formed by the coupled inductive coils (L1, L3, L5: L2, L4, L6) of the primary branch and the secondary branch,
caractérisé en ce qu’il comprend au moins une branche supplémentaire comprenant au moins une bobine inductive supplémentaire (L7, L8), ladite au moins une branche supplémentaire étant connectée à la première borne d’interface, et ladite au moins une bobine inductive supplémentaire (L7, L8) étant couplée à une bobine inductive (L5, L6) de la branche secondaire,  characterized in that it comprises at least one additional branch comprising at least one additional inductive coil (L7, L8), said at least one additional branch being connected to the first interface terminal, and said at least one additional inductive coil ( L7, L8) being coupled to an inductive coil (L5, L6) of the secondary branch,
de sorte que, selon un deuxième mode de fonctionnement, le convertisseur continu- continu isolé (10, 1 1 , 12) est configuré pour transférer de l’énergie du deuxième réseau électrique (LV) vers le premier réseau électrique (HV), par l’intermédiaire du deuxième circuit et de la branche supplémentaire, via ladite au moins une bobine inductive (L5, L6) de la branche secondaire et ladite au moins une inductance supplémentaire (L7, L8) de la branche supplémentaire.  so that, in a second mode of operation, the isolated DC-DC converter (10, 11, 12) is configured to transfer power from the second power grid (LV) to the first power grid (HV), by via the second circuit and the additional branch, via said at least one inductive coil (L5, L6) of the secondary branch and said at least one additional inductor (L7, L8) of the additional branch.
2. Convertisseur continu-continu selon la revendication 1 , dans lequel la branche supplémentaire est configurée pour inhiber tout transfert d’énergie du deuxième réseau électrique (LV) vers le premier réseau électrique (HV) lorsque le premier mode de fonctionnement est actif. The DC-DC converter according to claim 1, wherein the additional branch is configured to inhibit any power transfer from the second power grid (LV) to the first power grid (HV) when the first operating mode is active.
3. Convertisseur continu-continu isolé selon la revendication précédente, dans lequel la branche supplémentaire comprend un interrupteur (Q7, Q8) unidirectionnel ou bidirectionnel de manière à ouvrir la branche supplémentaire lorsque le premier mode de fonctionnement est actif. 3. Isolated DC-DC converter according to the preceding claim, wherein the additional branch comprises a switch (Q7, Q8) unidirectional or bidirectional so as to open the additional branch when the first operating mode is active.
4. Convertisseur continu-continu selon l’une des revendications précédentes, dans lequel le premier circuit et le deuxième circuit comprennent des interrupteurs (Q3, Q4, Q5, Q6) pour contrôler l’énergie circulant dans chaque bobine inductive (L1 , L2, L3, L4, L5, L6). 4. DC-DC converter according to one of the preceding claims, wherein the first circuit and the second circuit comprise switches (Q3, Q4, Q5, Q6) for controlling the energy flowing in each inductive coil (L1, L2, L3, L4, L5, L6).
5. Convertisseur continu-continu selon l’une des revendications précédentes, dans lequel le premier circuit comprend deux branches primaires comprenant chacune deux bobines inductive (L1 , L2 ; L3, L4) et le deuxième circuit comprend une branche secondaire comprenant deux bobines inductives (L5, L6), les bobines inductives (L1 , L2, L3, L4) de chaque branche primaire étant couplée par paire et respectivement avec une bobine inductive (L5, L6) de la branche secondaire, de façon à former deux transformateurs présentant chacun trois bobines inductives (L1 , L3, L5 ; L2, L4, L6). 5. DC-DC converter according to one of the preceding claims, wherein the first circuit comprises two primary branches each comprising two inductive coils (L1, L2, L3, L4) and the second circuit comprises a secondary branch comprising two inductive coils ( L5, L6), the inductive coils (L1, L2, L3, L4) of each primary branch being coupled in pairs and respectively with an inductive coil (L5, L6) of the secondary branch, so as to form two transformers each having three inductive coils (L1, L3, L5, L2, L4, L6).
6. Convertisseur continu-continu selon la revendication précédente, comprenant une unique branche supplémentaire présentant une bobine inductive supplémentaire (L7, L8) couplée avec la bobine inductive (L5) de la branche secondaire du deuxième circuit appartenant au premier transformateur, ou avec la bobine inductive (L6) de la branche secondaire appartenant au deuxième transformateur, ou comprenant deux branches supplémentaires présentant chacune une bobine inductive supplémentaire (L7, L8), la bobine inductive supplémentaire (L7) de l’une des branches supplémentaires étant couplée avec l’une des bobines inductives (L5) de la branche secondaire et l’autre desdites bobines inductives supplémentaires (L8) étant couplée avec l’autre desdites bobines inductives (L6) de la branche secondaire. 6. DC-DC converter according to the preceding claim, comprising a single additional branch having an additional inductive coil (L7, L8) coupled with the inductive coil (L5) of the secondary branch of the second circuit belonging to the first transformer, or with the coil inductive (L6) of the secondary branch belonging to the second transformer, or comprising two additional branches each having an additional inductive coil (L7, L8), the additional inductive coil (L7) of one of the additional branches being coupled with one inductive coils (L5) of the secondary branch and the other of said additional inductive coils (L8) being coupled with the other of said inductive coils (L6) of the secondary branch.
7. Procédé de pré-charge d’un premier réseau électrique (HV) à partir d’énergie issue d’un deuxième réseau électrique (LV), lors du démarrage dudit premier réseau électrique (HV), au moyen de la mise en oeuvre d’un convertisseur continu-continu isolé (10, 1 1 , 12) selon l’une des revendications précédentes, dont la première borne d’interface est connectée au premier réseau électrique (HV) et dont la deuxième borne d’interface est connectée au deuxième réseau électrique (LV), le convertisseur continu-continu isolé (10, 1 1 , 12) étant mis en oeuvre selon ledit deuxième mode de fonctionnement. 7. A method of pre-charging a first electrical network (HV) from energy from a second electrical network (LV), when starting said first electrical network (HV), by means of the implementation an isolated DC-DC converter (10, 1 1, 12) according to one of the preceding claims, wherein the first interface terminal is connected to the first electrical network (HV) and the second interface terminal is connected to it at the second electrical network (LV), the isolated DC-DC converter (10, 1 1, 12) being implemented according to said second mode of operation.
8. Procédé de décharge d’un premier réseau électrique (HV) dans un deuxième réseau électrique (LV) lors d’une déconnexion dudit premier réseau électrique (HV), ledit premier réseau électrique (HV) comprenant, lors de ladite déconnexion, au moins une capacité (C1 ) chargée, ladite décharge comprenant la mise en oeuvre d’un convertisseur continu-continu isolé (10, 1 1 , 12) selon une des revendications 1 à 6 combinées à la revendication 3, dont la première borne d’interface est connectée au premier réseau électrique (HV) et dont la deuxième borne d’interface est connectée au deuxième réseau électrique (LV), le convertisseur continu-continu isolé (10, 1 1 , 12) et dans lequel l’interrupteur de la branche supplémentaire est bidirectionnel, 8. A method of discharging a first electrical network (HV) into a second electrical network (LV) upon disconnection of said first electrical network (HV), said first electrical network (HV) comprising, upon said disconnection, at the at least one charged capacitor (C1), said discharge comprising the implementation of an isolated DC-DC converter (10, 1 1, 12) according to one of claims 1 to 6 combined with claim 3, the first terminal of which interface is connected to the first power grid (HV) and whose second interface terminal is connected to the second power grid (LV), the isolated DC-DC converter (10, 11, 12) and in which the switch of the extra branch is bidirectional,
le convertisseur continu-continu isolé (10, 1 1 , 12) étant mis en oeuvre selon un troisième mode de fonctionnement dans lequel l’énergie stockée dans ladite au moins une capacité (C1 ) chargée est transférée au deuxième réseau électrique (LV) par l’intermédiaire dudit au moins un transformateur supplémentaire formé de ladite au moins une bobine inductive supplémentaire (L7, L8) et d’une bobine inductive (L5, L6) de la branche secondaire, pour décharger ladite au moins une capacité (C1 ) chargée.  the isolated DC-DC converter (10, 1 1, 12) being implemented according to a third mode of operation in which the energy stored in the at least one charged capacitor (C1) is transferred to the second electrical network (LV) by via said at least one additional transformer formed of said at least one additional inductive coil (L7, L8) and an inductive coil (L5, L6) of the secondary branch, for discharging said at least one capacitor (C1) charged .
9. Procédé selon la revendication précédente, dans lequel l’énergie transférée au deuxième circuit pendant la décharge de ladite au moins une capacité (C1 ) est utilisée pour charger une batterie connectée sur ledit deuxième réseau électrique (LV). 9. Method according to the preceding claim, wherein the energy transferred to the second circuit during the discharge of said at least one capacitor (C1) is used to charge a battery connected to said second electrical network (LV).
10. Véhicule automobile électrique ou hybride, comprenant un premier réseau électrique embarqué dit réseau électrique embarqué haute tension (HV) et un deuxième réseau électrique embarqué dit réseau électrique embarqué basse tension (LV), une batterie haute tension reliée audit réseau électrique embarqué haute tension (HV) et une batterie basse tension reliée audit réseau électrique embarqué basse tension (LV), ledit véhicule comprenant par ailleurs un convertisseur continu-continu isolé (10, 1 1 , 12) selon l’une des revendications 1 à 6, connecté entre ledit réseau électrique embarqué haute tension (HV) et ledit réseau électrique embarqué basse tension (LV). 10. Electric or hybrid motor vehicle, comprising a first embedded power network said high voltage on-board electrical network (HV) and a second onboard power network said low voltage on-board electrical network (LV), a high voltage battery connected to said high voltage on-board electrical network. (HV) and a low-voltage battery connected to said low-voltage on-board electrical network (LV), said vehicle further comprising an isolated DC-DC converter (10, 1 1, 12) according to one of claims 1 to 6, connected between said high voltage on-board electrical network (HV) and said low voltage on-board electrical network (LV).
EP18800998.9A 2017-12-08 2018-11-20 Dc-dc converter with pre-charging of a first electrical grid from a second electrical grid Withdrawn EP3721543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761831A FR3074984B1 (en) 2017-12-08 2017-12-08 CONTINUOUS-CONTINUOUS CONVERTER WITH PRE-CHARGING OF A FIRST ELECTRICAL NETWORK FROM A SECOND ELECTRICAL NETWORK
PCT/EP2018/081983 WO2019110297A1 (en) 2017-12-08 2018-11-20 Dc-dc converter with pre-charging of a first electrical grid from a second electrical grid

Publications (1)

Publication Number Publication Date
EP3721543A1 true EP3721543A1 (en) 2020-10-14

Family

ID=61003251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18800998.9A Withdrawn EP3721543A1 (en) 2017-12-08 2018-11-20 Dc-dc converter with pre-charging of a first electrical grid from a second electrical grid

Country Status (5)

Country Link
US (1) US11411505B2 (en)
EP (1) EP3721543A1 (en)
CN (1) CN111512533A (en)
FR (1) FR3074984B1 (en)
WO (1) WO2019110297A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121298A1 (en) * 2021-03-29 2022-09-30 Valeo Siemens Eautomotive France Sas ISOLATED VOLTAGE CONVERTER

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181169A (en) * 1991-11-15 1993-01-19 Allied-Signal Inc. Bi-directional PWM converter
JP4719567B2 (en) * 2005-12-21 2011-07-06 日立オートモティブシステムズ株式会社 Bidirectional DC-DC converter and control method thereof
EP3095181B1 (en) * 2014-07-21 2020-12-16 Huawei Technologies Co. Ltd. Bi-directional dc-dc converter
FR3042661B1 (en) * 2015-10-16 2017-12-08 Valeo Systemes De Controle Moteur DC / DC ISOLATED CONVERTER
FR3064851B1 (en) * 2017-03-28 2019-04-05 Valeo Siemens Eautomotive France Sas CONTINUOUS / CONTINUOUS VOLTAGE CONVERTING DEVICE

Also Published As

Publication number Publication date
FR3074984A1 (en) 2019-06-14
US20210006171A1 (en) 2021-01-07
US11411505B2 (en) 2022-08-09
CN111512533A (en) 2020-08-07
FR3074984B1 (en) 2020-12-25
WO2019110297A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
EP2695279B1 (en) Charge transfer device and associated management method
EP3386087B1 (en) Three-phase and single-phase electric charging system for electric or hybrid vehicle
EP3403872B1 (en) Charger system for an electric or hybrid vehicle
EP2915244B1 (en) Charge transfer method and related electric device
EP3607644B1 (en) Method for controlling a charging device on board an electric or hybrid vehicle
EP3605818A1 (en) Dc-dc resonant voltage converter
EP3605820B1 (en) Dc-dc resonant voltage converter
WO2013000721A2 (en) Power management system comprising a power source, a source of renewable energy, and a power converter
EP3389175B1 (en) Conversion device, associated control method and vehicle
EP3171505B1 (en) Device for charging a traction battery of a motor vehicle with at least partially electric traction
EP3721543A1 (en) Dc-dc converter with pre-charging of a first electrical grid from a second electrical grid
FR3104846A1 (en) Electrical system for direct voltage conversion and charging of supply batteries
EP3053247B1 (en) System and method for charging a traction battery limiting the current draw of parasitic capacitances
FR3059276A1 (en) COMBINED DEVICE FOR CHARGING A BATTERY AND FOR POWERING AN ELECTRIC MACHINE
WO2019057719A1 (en) Method for controlling a charging system of a traction battery
EP3118989B1 (en) Rotary electric machine with reversible multiphase dual voltage for a motor vehicle, and corresponding electrical network with two sub-networks
FR3018244A1 (en) ELECTRIC OR HYBRID MOTOR VEHICLE WITH DC-DC CONVERTER FOR CHARGING AND TRACTION, AND CORRESPONDING METHOD
FR2977083A1 (en) Power battery for use in hybrid or electric car, has set of battery cells, where each cell includes switching unit i.e. transistor, and electrical winding, where set of cells are not electrically interconnected
FR3064126A1 (en) ELECTRICAL SYSTEM FOR MOTOR VEHICLE WITH ELECTRIC OR HYBRID MOTOR
WO2019110296A1 (en) Dc-dc converter for an electric or hybrid vehicle with recovery of secondary losses
FR2698499A1 (en) Circuit for operating an inductive load.
FR3066866B1 (en) CONTINUOUS-CONTINUOUS CONVERTER FOR ELECTRIC OR HYBRID VEHICLE
FR2974462A1 (en) Device for charging storage unit i.e. rechargeable high voltage battery, for electric vehicle, has power factor correction module connected to connection terminals and power supply during charging phase of storage unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20210316

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO EAUTOMOTIVE FRANCE SAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230922

R18D Application deemed to be withdrawn (corrected)

Effective date: 20230922