EP3721091B1 - Gesteuerte faltenmembranpumpe - Google Patents

Gesteuerte faltenmembranpumpe Download PDF

Info

Publication number
EP3721091B1
EP3721091B1 EP18811053.0A EP18811053A EP3721091B1 EP 3721091 B1 EP3721091 B1 EP 3721091B1 EP 18811053 A EP18811053 A EP 18811053A EP 3721091 B1 EP3721091 B1 EP 3721091B1
Authority
EP
European Patent Office
Prior art keywords
diaphragm
sensor
circulator
membrane
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18811053.0A
Other languages
English (en)
French (fr)
Other versions
EP3721091A1 (de
Inventor
Guy Delaisse
Jean-Baptiste Drevet
Harold GUILLEMIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMS R&D Sas
Original Assignee
AMS R&D Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMS R&D Sas filed Critical AMS R&D Sas
Publication of EP3721091A1 publication Critical patent/EP3721091A1/de
Application granted granted Critical
Publication of EP3721091B1 publication Critical patent/EP3721091B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0018Special features the periphery of the flexible member being not fixed to the pump-casing, but acting as a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/14Machines, pumps, or pumping installations having flexible working members having peristaltic action having plate-like flexible members

Definitions

  • the invention relates to the field of undulating membrane circulators.
  • An object of the invention is to provide a means of controlling parameter(s) influencing the vibrations of the circulator.
  • This circulator is essentially characterized in that it also comprises a device for detecting at least one value representative of a displacement of the membrane relative to the body, this detection device being functionally connected to a unit of power supply to the motor, this power supply unit being arranged to deliver at least one electric power supply signal to the motor as a function of a detection signal delivered to the power supply unit by said detection device, this detection signal being a function of said at least one detected value.
  • the detection of a value representative of the displacement of the membrane then the generation of a detection signal representative of this at least one detected value and finally the control of the motor via said at least one electric power supply signal of the motor itself function of a detection signal, allows control of the operation of the motor and therefore makes it possible to act on the movement of the membrane in the body.
  • This control allows servoing of the circulator according to the displacement of the first edge of the membrane which, in addition to controlling the frequency and/or the amplitude of displacement of the edge of the membrane, allows the hydrodynamic characteristics of the circulator to be varied. at each instant, i.e. the flow rate of fluid pumped, the pressure difference between the inlet and the outlet of the chamber, the curve of the evolution over time of the flow rate and/or the pressure in bedroom exit.
  • the actuation mechanism is arranged to define a maximum MAX amplitude of the reciprocating movement of the first edge of the variable membrane in function of said at least one power supply signal delivered to the motor.
  • the motor is thus a motor whose maximum amplitude of oscillation/maximum travel of the rotor relative to the stator is variable as a function of said at least one electric power supply signal of the motor.
  • the term rotor designates the part of the motor which is movable relative to the stator without implying that this mobility is necessarily a rotation.
  • the rotor can be linearly or substantially linearly movable with respect to the stator.
  • a linear motor is any motor whose rotor, over a complete motor cycle, moves relative to the stator along a trajectory which extends along a line segment, passing through the extremities of this straight line segment and without ever deviating from this straight line segment by a distance greater than 10% of the length of this straight line segment.
  • the supply unit can thus adjust the distance between the edge of the membrane and the wall of the chamber to vary the "occlusivity", that is to say the minimum fluid passage section authorized by the membrane every moment of its undulation.
  • This minimum authorized fluid passage section being the smallest authorized passage section at a given instant between the fluid inlet opening and the fluid outlet opening. It is also noted that by adjusting the maximum amplitude of displacement of the membrane as well as its oscillation frequency and by following a movement imposed in the time of displacement of the first edge of the membrane with respect to the support, the unit of power supply can define the variation of the wavelength transiting along the membrane and through therefore the number of inflections of the wave traveling along the membrane in the chamber.
  • the circulator according to the invention by allowing regulation of said at least one motor supply signal taking into account the value or values detected and representative of the displacement of the first edge of the membrane, makes it possible to regulate the amplitude of displacement of the first upstream edge and/or the oscillation frequency of this first edge and/or the force applied to this first edge of the membrane and/or the displacement curve over time of this first edge of the membrane.
  • the circulator makes it possible to control the value of the minimum passage section through the chamber and the number of inflections of the membrane, which plays on the flow rate of fluid and the pressure of fluid delivered by the circulator.
  • a linear alternating motion designates a displacement of a given point or object which, over a complete cycle of the alternation, follows a trajectory which extends along a segment of line, passing through the extremities of this line segment, without ever deviating from this line segment by a distance greater than 10% of the length of this line segment.
  • the first membrane edge is stiffened by a reinforcement in order to limit its deformation when this first edge is moved following the reciprocating movement. There is thus a uniform displacement of the first edge of the membrane, which limits the appearance of secondary waves on the membrane.
  • the circulator according to the invention has a device 5 for detecting at least one value representative of a displacement of the membrane 3 relative to the body 2.
  • This detection device 5 is functionally connected to a power supply unit 6 of the motor which can be an inverter. Depending on the case, this inverter can be connected to a direct or alternating current, single-phase or polyphase power supply network.
  • This power supply unit 6 is arranged to deliver at least one electric power supply signal to the motor as a function of a detection signal Sd delivered to the power supply unit 6 by said detection device 5, this detection signal Sd being a function of said at least one detected value.
  • the invention makes it possible to regulate the motor according to the actual displacement of the membrane in the chamber, this displacement being estimated by measuring at least one value representative of this displacement by said detection device 5.
  • the movement of the membrane can be controlled so that the circulator adopts an expected operating point.
  • the operating point is a state of various operating parameters of the circulator at a given time of operation.
  • the circulator can be controlled to limit the vibratory level induced during its operation and thus limit the energy lost by contact of the membrane against the wall of the chamber and/or the energy lost in the form of shock of the membrane against the wall.
  • the service life of the circulator can be improved.
  • this control can be used to reach an operating point of the circulator desired where the flow rate and/or the pressure difference between the upstream and downstream of the circulator and/or the ripple frequency and/or the ripple wavelength is/are chosen as setpoints to be reached and as a basis for determining the time course of said power signal to be generated.
  • the detection device 5 is preferably arranged so that said detection signal Sd delivered to the power supply unit 6 is a function of measurements carried out by at least one sensor C1 of said detection device 5 chosen from the group of sensors comprising Hall effect sensor, resolver sensor, incremental encoder, an optical sensor using a light beam to measure a displacement parameter of a membrane surface, a laser sensor using a laser beam to measure a displacement parameter of a membrane surface , an optical sensor using a light beam to measure a displacement parameter of a target, a laser sensor using a laser beam to measure a displacement parameter of a target, an accelerometer, a capacitive sensor, an inductive sensor, a sensor resistive, a camera associated with an image analysis system, an infrared sensor, an eddy current sensor.
  • sensor C1 of said detection device 5 chosen from the group of sensors comprising Hall effect sensor, resolver sensor, incremental encoder, an optical sensor using a light beam to measure a displacement parameter of a membrane surface, a laser sensor using a laser beam to measure a displacement
  • This or these sensors can be arranged to measure a position, a speed, an acceleration representative of the displacement of the first edge of the membrane.
  • the incremental encoder can be rotary to increment a value according to a rotation angle or be a translational encoder incrementing a value according to a translation distance.
  • said at least one sensor C1 of the detection device may have a target C12 mechanically connected to any zone of the membrane and more particularly at the first edge of the membrane 31, the value representative of a displacement of the membrane varying during the displacement of this target C12 relative to the body of the circulator 2.
  • the target C12 is embedded on the membrane.
  • the target may be a target whose displacement can be detected via a magnetic and/or electric and/or electromagnetic field measurement varying with the displacement of the target.
  • the senor C1 can detect a relative movement of the membrane with respect to the body without using a target.
  • the optical or laser sensor can measure the displacement of any point of the membrane whether or not the latter bears an added target.
  • a spring can be mechanically connected to the mechanical connection part 41 which mechanically connects, directly or indirectly, the motor vis-à-vis the first edge of the membrane 31.
  • This spring 42 symbolizes any elastic means arranged to exert a elastic return force of the mechanical connecting piece 41 and of the first membrane edge 31 towards a given stable position.
  • the spring may be a leaf spring comprising one or more elastic leaves and/or one or more coil springs.
  • the mechanical connecting part is guided in movement by guide means which may be either exclusively constituted by elastic means or by a guide by pivot or slide as on the figure 2 optionally associated with elastic means.
  • the motor M comprises a movable rotor M1, that is to say an assembly movable by rotation or translation or other relative to a stator M2 of the motor.
  • This rotor M1 comprises at least one permanent magnet M10, in this case at least two permanent magnets distributed symmetrically with respect to the first membrane edge.
  • the stator M2 comprises at least one stator coil, in this case two coils M21, M22 arranged opposite passage paths of the permanent magnets during the reciprocating movement of the first edge.
  • Each coil is adapted to generate a magnetic flux in response to said at least one electrical power supply signal from the motor M, this magnetic flux acting on the permanent magnets to induce a permanent magnet attraction or repulsion force and thus generate a movement of the rotor relative to the stator.
  • the motor power supply signal is delivered to each at least one coil M21, M22 by the power supply unit 6 of the motor.
  • a stator coil is a stator winding, that is to say a conductive wire wound around a core and assembled to be able to remain fixed with respect to the body of the circulator.
  • the motor is a brushless motor also called “brushless motor”, or self-driven synchronous machine with permanent magnets, this motor comprising a structure on which is fixed said rotor position sensor, said at least one permanent magnet of the rotor being mounted movable with respect to this structure and said rotor position sensor being preferably a sensor measuring the position of said at least one permanent magnet with respect to this motor structure).
  • a brushless motor also called “brushless motor”
  • this motor comprising a structure on which is fixed said rotor position sensor, said at least one permanent magnet of the rotor being mounted movable with respect to this structure and said rotor position sensor being preferably a sensor measuring the position of said at least one permanent magnet with respect to this motor structure).
  • the detection device 5 may comprise at least one position sensor C5, C6 of the rotor with respect to said at least one stator coil M21, M22.
  • the sensor it is possible for the sensor to be placed on the rotor itself, this sensor being for example an accelerometer.
  • the detection device being connected to this sensor integrated in the brushless motor and being adapted to generate said detection signal Sd according to a value measured using this sensor built into the brushless motor.
  • This or these sensors integrated into the motor can be one or more Hall effect current sensors associated with a program to measure the force and the speed (frequency) of the rotor.
  • the determination of the force makes it possible to determine the position of the first edge of the membrane with respect to the body.
  • the power supply unit 6 comprises a computer 60 arranged to define the characteristics of said at least one motor power supply signal M using mathematical functions and/or using a cartographic database of the circulator and/or logic operators (IF THEN) and as a function of pressure values and flow rate values of the fluid circulating in the chamber of the circulator, these values being measured with a C41 flow sensor and at least one pressure sensor C42.
  • a computer 60 arranged to define the characteristics of said at least one motor power supply signal M using mathematical functions and/or using a cartographic database of the circulator and/or logic operators (IF THEN) and as a function of pressure values and flow rate values of the fluid circulating in the chamber of the circulator, these values being measured with a C41 flow sensor and at least one pressure sensor C42.
  • the map can define a plurality of operating points constituting relationships between amplitude of displacement of the first membrane edge, fluid viscosity, fluid flow generated by the circulator, upstream and downstream pressure difference and frequency of alternating movement of the first membrane edge. membrane relative to the body.
  • the movement of the membrane thus remains controlled, for example always to maintain this membrane at a distance from the walls of the chamber or at a certain predetermined distance from these chamber walls.
  • a target/setpoint value can be the pressure difference or a flow rate target value.
  • the computer 60 uses the cartography and/or the mathematical functions and/or the database and/or logical operators (IF THEN) and the signal of detection Sd to determine the power supply signal to be generated in order to reach this chosen target value.
  • the cartographic database can be generated via multiple tests of the circulator to determine a plurality of operating points thereof.
  • the actuation mechanism 4 is arranged to define a maximum MAX amplitude of the reciprocating movement of the first edge 31 of the membrane variable as a function of said at least one electric power supply signal delivered to the motor M.
  • This rule of variation of the maximum amplitude MAX as a function of the electric power supply signal delivered to the motor M is preferably integrated into the cartographic database.
  • the actuation mechanism 4 it is possible to arrange for the actuation mechanism 4 to comprise an electromechanical amplitude variation assembly separate from said motor.
  • This electromechanical assembly which includes said part connecting the motor to the first edge of the membrane is here arranged to define a maximum amplitude of the reciprocating movement of the first edge of the variable membrane according to a maximum amplitude setpoint delivered by a control unit of amplitude to said electromechanical assembly.
  • the mechanical connecting part can be an arm pivoting around a pivot axis, an electromechanical actuator acting on the position of this pivot axis relative to this pivoting arm or on the length of this arm which is variable in order to define an amplitude of displacement of the edge of the membrane without having to vary the stroke/maximum amplitude of the motor.
  • the value representative of the displacement of the membrane relative to the body can be a maximum amplitude of displacement measured of the first edge of the membrane 31 relative to the body 2.
  • the detection device 5 may comprise one or more sensors (each sensor is represented by a black rectangle) arranged at different location(s) of the circulator 1, in the occurrence on the electronic part and/or the electric power supply part of the motor and/or the electromechanical part of the motor and/or the electromagnetic part of the motor and/or the hydraulic part of the circulator and/or preferably on the mechanical connection between the motor and the first edge of the membrane.
  • At least one sensor on the mechanical connection between the motor and the first edge of the membrane because it is at this point that the most reliable measurement possible of displacement parameters of the first edge of the membrane can be obtained, that is to say, its position and/or its speed and/or its frequency and/or its acceleration and/or the force transmitted to this first edge and/or the maximum amplitude of the displacement of the first edge.
  • the detection device 5 can comprise several sensors of different types chosen, for example example, among a Hall effect sensor C5, a synchroresolver C6, an incremental encoder C7.
  • the detection device 5 it is also possible for the detection device 5 to be arranged to detect the respective positions of several points of the membrane with respect to the body 2.
  • the detection device can be arranged to collect images of a longitudinal profile Prf of the membrane extending between the first and second edges of the membrane 31, 32 to detect said positions of several points of the membrane, these points belonging to said longitudinal profile of the membrane.
  • the detection device may comprise a plurality of sensors C1, C1', C1" distributed over the body facing a longitudinal profile Prf of the membrane extending from the first edge to the second edge of the membrane. This profile extends along the membrane.
  • sensors C1, C1', C1" can each be associated with a corresponding target C12, C12', C12" carried by the membrane and/or by the body to measure relative positions, each relative position illustrating a position of one of said sensors C1, C1', C1" with respect to one of said targets C12, C12', C12'' which corresponds to it.
  • the detection device may comprise an imaging device comprising a light source, such as a laser source generating an illumination plane of the membrane extending along the membrane from the first edge towards the second edge of the membrane 31, 32.
  • a light source such as a laser source generating an illumination plane of the membrane extending along the membrane from the first edge towards the second edge of the membrane 31, 32.
  • the positions of illuminated points of the membrane are evaluated by one or more sensors C1, C1' detecting light rays reflected by the membrane or possibly reflected by reflective targets carried by the membrane.
  • the positions of these points measured at a given instant can define a longitudinal profile Prf of the membrane at this given instant.
  • the detection device can be arranged to collect images of a surface of the membrane, this surface extending between the first and second edges of the membrane 31, 32 to detect said positions of several points of the membrane, these points belonging to a surface shape of the membrane in three dimensions to define a three-dimensional image of this membrane and its evolution over time.
  • the circulator may comprise at least one fluid deflector Dx positioned in the chamber 2a and connected to the body 2 to direct the fluid arriving in the chamber via the fluid inlet opening towards the first membrane edge in a direction D ranging from this first membrane edge to the second membrane edge.
  • a displacement sensor of the first membrane edge belonging to the detection device can be fixed on this deflector Dx.
  • the membrane 3 has, for example, a general shape selected from the group of membrane shapes comprising a discoidal shape, a rectangular shape, a tubular shape.
  • the membrane is in the form of a ribbon lying down, and on the figure 2 and 4 , it is of discoidal shape hollowed out in its center.
  • the membrane can be made of one or more materials selected from flexible elastomers - NBR - NR - EPDM - VMQ - PU - other food materials (CR - PDM - Peroxide - FKM - virgin PTFE) - PVC - silicone and/or metallic materials such as stainless steel.
  • the interaction between the sensor and its “target” which can be the edge of the membrane itself or a target carried by this first edge can be carried out by means of a camera associated with a system for analyzing the image, or a system for measuring a magnetic field if the target generates a magnetic field, the target being a magnet or an induction, or electrical if the target is a current conductor, or electromagnetic.
  • the sensor can also be optical and be equipped with a device for optical illumination of the target (the first edge of the membrane constituting the target or bearing the target), this illumination being via a ray such as an infrared or laser ray.
  • the sensor comprises a device sensitive to a reflection of the ray on the target such as a photosensitive cell. The closer the target is to the sensor, the greater the intensity of the reflected ray, which makes it possible to know the position of the first edge of the membrane with respect to the sensor.
  • the circulator according to the invention can be a liquid circulator, a gas circulator, a pump, a fan, a compressor, a thruster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Claims (16)

  1. Umwälzpumpe (1) mit Wellenmembran, umfassend:
    - ein Gehäuse (2), in dessen Innerem sich eine Kammer (2a) befindet, die gehäuseintern ist, wobei diese Kammer (2a) mindestens eine Fluidzuführöffnung (21) zum Zuführen von Fluid in die Kammer (2a) und mindestens eine Fluidauslassöffnung (22) zum Ableiten von Fluid aus der Kammer (2a) umfasst;
    - eine flexible Membran (3), die in der Kammer (2a) platziert ist, um sich dort zwischen einem ersten und zweiten Membranrand (31, 32) wellen zu können, wobei sich der erste Membranrand (31) näher zur Fluidzuführöffnung (21) als zur Fluidauslassöffnung (22) befindet und sich der zweite Membranrand (32) näher zur Fluidauslassöffnung (22) als zur Fluidzuführöffnung (21) befindet; wobei die Umwälzpumpe ferner umfasst:
    - einen Betätigungsmechanismus (4), der mindestens einen Motor (M) und mindestens ein mechanisches Verbindungsteil (41) umfasst, das den Motor (M) mit dem ersten Membranrand (31) verbindet, um ihn gemäß einer Wechselbewegung relativ zum Gehäuse (2) zu bewegen, um so auf der Membran (3) eine Wellenbewegung zu induzieren, die sich von dem ersten Membranrand (31) zum zweiten Membranrand (32) ausbreitet, dadurch gekennzeichnet, dass die Umwälzpumpe auch eine Detektionsvorrichtung (5) zum Erfassen mindestens eines Wertes umfasst, der repräsentativ für eine Bewegung der Membran (3) relativ zum Gehäuse (2) ist, wobei diese Detektionsvorrichtung (5) funktional mit einer Stromversorgungseinheit (6) zur Stromversorgung des Motors verbunden ist, wobei diese Stromversorgungseinheit ausgebildet ist, um mindestens ein elektrisches Stromversorgungssignal an den Motor in Abhängigkeit von einem Detektionssignal (Sd) zu liefern, das von der genannten Detektionsvorrichtung (5) an die Stromversorgungseinheit (6) geliefert wird, wobei dieses Detektionssignal (Sd) von dem genannten mindestens einen erfassten Wert abhängt.
  2. Umwälzpumpe mit Wellenmembran nach Anspruch 1, bei der die Detektionsvorrichtung (5) so ausgebildet ist, dass das genannte Detektionssignal (Sd), das an die Stromversorgungseinheit (6) geliefert wird, von Messungen abhängt, die von mindestens einem Sensor (C1) der genannten Detektionsvorrichtung (5) durchgeführt werden, der aus der Gruppe von Sensoren ausgewählt wird, die einen Hall-Effekt-Sensor, einen Resolver, einen Inkrementalgeber, einen optischen Sensor, der einen Lichtstrahl nutzt, um einen Bewegungsparameter einer Membranoberfläche zu messen, einen Lasersensor, der einen Laserstrahl nutzt, um einen Bewegungsparameter einer Membranoberfläche zu messen, einen optischen Sensor, der einen Lichtstrahl nutzt, um einen Bewegungsparameter eines Ziels zu messen, einen Lasersensor, der einen Laserstrahl nutzt, um einen Bewegungsparameter eines Ziels zu messen, einen Beschleunigungsmesser, einen kapazitiven Sensor, einen induktiven Sensor, einen resistiven Sensor, eine mit einem Bildanalysesystem verbundene Kamera, einen Infrarotsensor und einen Wirbelstromsensor umfasst.
  3. Umwälzpumpe mit Wellenmembran nach Anspruch 2, bei der der genannte mindestens einen Sensor (C1) der Detektionsvorrichtung ein Ziel (C12) aufweist, das mechanisch mit der Membran (31) verbunden ist, wobei der Wert, der repräsentativ für eine Bewegung der Membran ist, während der Bewegung dieses Ziels (C12) relativ zum Gehäuse (2) der Umwälzpumpe variiert.
  4. Umwälzpumpe mit Wellenmembran nach Anspruch 1, bei der die Detektionsvorrichtung (5) so ausgebildet ist, dass das genannte Detektionssignal (Sd), das an die Stromversorgungseinheit (6) geliefert wird, von Messungen abhängt, die von mindestens einem Sensor (C1) der Detektionsvorrichtung (5) durchgeführt werden, der aus der Gruppe von Verformungssensoren ausgewählt wird, die umfasst:
    - einen Verformungssensor zum Erfassen der Verformung des genannten mindestens einen mechanischen Verbindungsteils, das den Motor mit dem ersten Rand der Membran verbindet,
    - einen Verformungssensor zum Erfassen der Verformung mindestens einer Feder (42), die eine elastische Kraft ausübt, die in Abhängigkeit von der Bewegung des ersten Randes der Membran durch den Motor variabel ist,
    - einen Verformungssensor, der an der Membran angebracht ist, um Verformungen der Membran zu messen.
  5. Umwälzpumpe mit Wellenmembran nach Anspruch 1, bei der die Detektionsvorrichtung so ausgebildet ist, dass das genannte Detektionssignal (Sd), das an die Stromversorgungseinheit geliefert wird, von Messungen abhängt, die von mindestens einem Sensor der genannten Detektionsvorrichtung durchgeführt werden, der aus der Gruppe von Sensoren ausgewählt wird, die umfasst:
    - einen Sensor zum Messen einer mechanischen Kraft;
    - einen Magnetfeldsensor,
    - einen Spannungssensor,
    - einen Rotations-/Winkelverschiebungssensor (C7),
    - einen Stromsensor (C8).
  6. Umwälzpumpe mit Wellenmembran nach Anspruch 1, bei der die Stromversorgungseinheit (6) so ausgebildet ist, dass das genannte mindestens eine Stromversorgungssignal für den Motor (M), das sie erzeugt, von Messungen abhängt, die von mindestens einem Sensor der genannten Detektionsvorrichtung durchgeführt werden, der aus einer Gruppe von Sensoren zum Erfassen einer Fluideigenschaft ausgewählt wird, die umfasst:
    - mindestens einen Durchflusssensor (C41) zum Erfassen der Durchflussrate des Fluids, das von der Umwälzpumpe gepumpt wird;
    - mindestens einen Drucksensor (C42) zum Erfassen des Drucks des Fluids, das von der Umwälzpumpe gepumpt wird;
    - mindestens einen Viskositätssensor zum Erfassen der Viskosität des Fluids.
  7. Umwälzpumpe mit Wellenmembran nach einem der Ansprüche 1 bis 6, bei der der Betätigungsmechanismus (4) ausgebildet ist, um eine maximale Amplitude (MAX) der Wechselbewegung des ersten Randes (31) der Membran zu definieren, die in Abhängigkeit von dem genannten mindestens einen elektrischen Stromversorgungssignal variiert, das an den Motor (M) geliefert wird.
  8. Umwälzpumpe mit Wellenmembran nach einem der Ansprüche 1 bis 7, bei der der Betätigungsmechanismus (4) eine elektromechanische Einheit zur Veränderung der Amplitude umfasst, die getrennt vom Motor ist, wobei diese elektromechanische Einheit das genannte Teil umfasst, das den Motor mit dem ersten Rand der Membran verbindet, wobei diese elektromechanische Einheit ausgebildet ist, um eine maximale Amplitude der Wechselbewegung des ersten Randes der Membran zu definieren, die in Abhängigkeit von einem Schwellenwert der maximalen Amplitude variabel ist, der von einer Amplitudensteuereinheit an die genannte elektromechanische Einheit geliefert wird.
  9. Umwälzpumpe mit Wellenmembran nach einem der Ansprüche 1 bis 8, bei der der genannte Wert, der repräsentativ für die Bewegung der Membran relativ zum Gehäuse ist, eine maximale Amplitude einer Bewegung ist, die von dem ersten Membranrand (31) relativ zum Gehäuse (2) gemessen wird.
  10. Umwälzpumpe mit Wellenmembran nach einem der Ansprüche 1 bis 9, bei der die Umwälzpumpe einen Fluiddeflektor (Dx) umfasst, der in der Kammer (2a) positioniert und mit dem Gehäuse (2) verbunden ist, um Fluid, das in der Kammer (2a) über die Fluidzuführöffnung ankommt, zum ersten Membranrand gemäß einer Richtung (D) zu lenken, die von diesem ersten Membranrand zum zweiten Membranrand geht, wobei ein Sensor zum Erfassen der Bewegung des ersten Membranrandes zur Detektionsvorrichtung gehört und an diesem Deflektor befestigt ist.
  11. Umwälzpumpe mit Wellenmembran nach einem der Ansprüche 1 bis 10, bei der die Membran eine allgemeine Form aufweist, die aus der Gruppe von Membranformen ausgewählt wird, die eine diskoidale Form, eine rechteckige Form und eine rohrförmige Form umfasst.
  12. Umwälzpumpe mit Wellenmembran nach einem der Ansprüche 1 bis 11, bei der der Motor einen mobilen Rotor (M1) umfasst, der mindestens einen Dauermagneten (M10) und einen Stator (M2) umfasst, der mindestens eine Statorspule (M21, M22) umfasst, die angepasst ist, einen magnetischen Fluss in Antwort auf das genannte mindestens eine elektrische Stromversorgungssignal des Motors (M) zu erzeugen, wobei dieses elektrische Stromversorgungssignal des Motors durch die Stromversorgungseinheit (6) des Motors an die genannte mindestens eine Spule (M21, M22) geliefert wird.
  13. Umwälzpumpe mit Wellenmembran nach dem vorhergehenden Anspruch, bei der die Detektionsvorrichtung (5) mindestens einen Positionssensor (C5, C6) zum Erfassen der Position des Rotors in Bezug auf die genannte mindestens eine Statorspule (M21, M22) umfasst.
  14. Umwälzpumpe mit Wellenmembran nach einem der Ansprüche 1 bis 13, bei der die Detektionsvorrichtung (5) ausgebildet ist, um die jeweiligen Positionen von mehreren Punkten der Membran in Bezug auf das Gehäuse (2) zu erfassen.
  15. Umwälzpumpe mit Membran nach Anspruch 14, bei der die Detektionsvorrichtung ausgebildet ist, um Bilder eines Längsprofils der Membran zu sammeln, die sich zwischen dem ersten und zweiten Membranrand (31, 32) erstreckt, um die genannten Positionen von mehreren Punkten der Membran zu erfassen, wobei diese Punkte zum Längsprofil der Membran gehören.
  16. Umwälzpumpe mit Membran nach Anspruch 14, bei der die Detektionsvorrichtung ausgebildet ist, um Bilder einer Oberfläche der Membran zu sammeln, die sich zwischen dem ersten und zweiten Membranrand (31, 32) erstreckt, um die genannten Positionen von mehreren Punkten der Membran zu erfassen, wobei diese Punkte zu einer Oberflächenform der Membran in drei Dimensionen gehören, um so ein dreidimensionales Bild dieser Membran und ihrer Entwicklung im Zeitverlauf zu definieren.
EP18811053.0A 2017-12-05 2018-12-05 Gesteuerte faltenmembranpumpe Active EP3721091B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761679A FR3074544B1 (fr) 2017-12-05 2017-12-05 Circulateur a membrane ondulante pilotee
PCT/EP2018/083704 WO2019110695A1 (fr) 2017-12-05 2018-12-05 Circulateur a membrane ondulante pilotee

Publications (2)

Publication Number Publication Date
EP3721091A1 EP3721091A1 (de) 2020-10-14
EP3721091B1 true EP3721091B1 (de) 2022-02-09

Family

ID=61003243

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18811053.0A Active EP3721091B1 (de) 2017-12-05 2018-12-05 Gesteuerte faltenmembranpumpe

Country Status (9)

Country Link
US (1) US11649815B2 (de)
EP (1) EP3721091B1 (de)
JP (1) JP2021505813A (de)
CN (1) CN111788390B (de)
CA (1) CA3084583C (de)
DK (1) DK3721091T3 (de)
ES (1) ES2912293T3 (de)
FR (1) FR3074544B1 (de)
WO (1) WO2019110695A1 (de)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR355700A (fr) * 1905-06-28 1905-11-09 Leopold Selme Turbine à membranes ondulantes, reversible comme pompe
FR2497543B1 (fr) * 1981-01-07 1986-08-29 Imed Corp Mecanismes et procedes pour controler l'ecoulement d'un fluide vers un recepteur et convertir une pompe en controleur ainsi que controler la pression du fluide
US4722230A (en) * 1986-05-29 1988-02-02 Graco Inc. Pressure gauge for high pressure flow through diaphragm pump
JP2860398B2 (ja) * 1995-05-22 1999-02-24 工業技術院長 アキシャル磁気浮上回転モータ及びこれを用いた回転機器
FR2744769B1 (fr) * 1996-02-12 1999-02-12 Drevet Jean Baptiste Circulateur de fluide a membrane vibrante
JP3863292B2 (ja) * 1998-05-29 2006-12-27 シーケーディ株式会社 液体供給装置
US6659740B2 (en) * 1998-08-11 2003-12-09 Jean-Baptiste Drevet Vibrating membrane fluid circulator
DE10162773A1 (de) * 2001-12-20 2003-07-10 Knf Flodos Ag Sursee Dosierpumpe
US7134343B2 (en) * 2003-07-25 2006-11-14 Kabushiki Kaisha Toshiba Opto-acoustoelectric device and methods for analyzing mechanical vibration and sound
DE102005039772A1 (de) * 2005-08-22 2007-03-08 Prominent Dosiertechnik Gmbh Magnetdosierpumpe
FR2891321B1 (fr) * 2005-09-26 2012-05-25 Inergy Automotive Systems Res Pompe a membrane vibrante
US20080232987A1 (en) * 2006-11-28 2008-09-25 S.A.M. Amstar Diaphragm circulator
FR2893991B1 (fr) 2005-11-30 2013-10-11 Jean Baptiste Drevet Circulateur a membrane
US20090026881A1 (en) * 2007-07-26 2009-01-29 Hakan Erturk Piezoelectric fan, method of cooling a microelectronic device using same, and system containing same
FR2934650B1 (fr) * 2008-08-01 2010-09-17 Jean Baptiste Drevet Generateur d'energie.
FR2934651B1 (fr) * 2008-08-01 2010-08-27 Ams R & D Sas Pompe a membrane ondulante perfectionnee.
US20110150669A1 (en) * 2009-12-18 2011-06-23 Frayne Shawn Michael Non-Propeller Fan
US20110293450A1 (en) * 2010-06-01 2011-12-01 Micropump, Inc. Pump magnet housing with integrated sensor element
EP2469089A1 (de) * 2010-12-23 2012-06-27 Debiotech S.A. Elektronisches Steuerungsverfahren und System für eine piezoelektrische Pumpe
FR3021074B1 (fr) * 2014-05-14 2016-05-27 Saint Gobain Performance Plastics France Pompe a membrane
WO2018102561A1 (en) * 2016-11-30 2018-06-07 Massachusetts Institute Of Technology High force and low noise linear fine-tooth motor
TWI650545B (zh) * 2017-08-22 2019-02-11 研能科技股份有限公司 致動傳感模組

Also Published As

Publication number Publication date
DK3721091T3 (da) 2022-04-25
CA3084583C (fr) 2022-08-23
WO2019110695A1 (fr) 2019-06-13
JP2021505813A (ja) 2021-02-18
ES2912293T3 (es) 2022-05-25
FR3074544A1 (fr) 2019-06-07
US20200386219A1 (en) 2020-12-10
EP3721091A1 (de) 2020-10-14
FR3074544B1 (fr) 2021-10-22
CN111788390B (zh) 2023-01-10
CA3084583A1 (fr) 2019-06-13
US11649815B2 (en) 2023-05-16
CN111788390A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
FR2837033A1 (fr) Actionneur lineaire comprenant un moteur electrique polyphase
FR3074872B1 (fr) Vanne de reglage compacte
EP2740200B1 (de) Kompakte positionierungsanordnung mit einem stellglied und einem in das joch des stellglieds integrierten sensor
EP1659267A1 (de) Strömungsmaschine mit einer Vorrichtung zur automatischen Feststellung von Ferromagnetischen Teilchen in einem Öltank
CA2847078A1 (fr) Dispositif de motorisation multiaxe et instrument de commande equipe d'un tel dispositif
EP3446067B1 (de) Verfahren zum schätzen des spiels eines elektromechanischen aktuators
EP3721091B1 (de) Gesteuerte faltenmembranpumpe
FR3074620B1 (fr) Moteur electrique
FR3045239A1 (fr) Actionneur a cadre mobile bobine et dynamique amelioree
CN105715620A (zh) 基于图像识别技术的活塞式蓄能器活塞实时位移测量方法
EP2156548B1 (de) Kolbenbetätiger mit geschlossener servosteuerung
FR2913782A1 (fr) Procede d'equilibrage du mouvement des masses mobiles d'un moteur electrodynamique bilineaire
EP2812981B1 (de) Elektrische maschine mit modularer statorstruktur
CA2934766A1 (fr) Ensemble pour turbomachine pour mesurer des vibrations subies par une pale en rotation
EP1166295B1 (de) Verfahren zur positionsbestimmung eines beweglichen elements in mindestens einem hauptluftspalt eines elektromagnetischen aktuators
EP0966049B1 (de) Piezoelektrischer Motor mit integriertem Positionssensor
FR2883056A1 (fr) Dispositif dynamique accordable d'absorption des vibrations
EP3747717B1 (de) Erkennung des zustands einer feststellbremse
WO2019197775A1 (fr) Procede de commande d'un moteur polyphase
FR2588083A1 (fr) Dispositif pour la mesure en continu de la viscosite d'un fluide en mouvement
FR2883057A1 (fr) Dispositif dynamique accordable d'absorption des vibrations.
FR2883058A1 (fr) Systeme adaptatif et dispositifs dynamiques accordables d'absorption des vibrations
FR3124163A1 (fr) Compensateur de vol pour aéronef
EP3832400A1 (de) Vorrichtung und verfahren zur messung des spiels eines uhrwerks
FR2900707A1 (fr) Embrayage electromagnetique a detection de glissement, procede de detection et de mesure de la vitesse du glissement dans un tel embrayage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602018030660

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04B0043000000

Ipc: F04B0043140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 43/04 20060101ALI20210804BHEP

Ipc: F04B 43/00 20060101ALI20210804BHEP

Ipc: F04B 43/14 20060101AFI20210804BHEP

INTG Intention to grant announced

Effective date: 20210902

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1467663

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018030660

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220422

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2912293

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220525

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1467663

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220509

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018030660

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231220

Year of fee payment: 6

Ref country code: LU

Payment date: 20231220

Year of fee payment: 6

Ref country code: IT

Payment date: 20231228

Year of fee payment: 6

Ref country code: FR

Payment date: 20231222

Year of fee payment: 6

Ref country code: DK

Payment date: 20231227

Year of fee payment: 6

Ref country code: DE

Payment date: 20231214

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209