EP3720648A1 - Steel material composite, method for producing a component, and use - Google Patents

Steel material composite, method for producing a component, and use

Info

Publication number
EP3720648A1
EP3720648A1 EP17811278.5A EP17811278A EP3720648A1 EP 3720648 A1 EP3720648 A1 EP 3720648A1 EP 17811278 A EP17811278 A EP 17811278A EP 3720648 A1 EP3720648 A1 EP 3720648A1
Authority
EP
European Patent Office
Prior art keywords
optional
steel
layer
composite
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17811278.5A
Other languages
German (de)
French (fr)
Inventor
Thomas Grosserüschkamp
Maik BOGATSCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3720648A1 publication Critical patent/EP3720648A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the invention relates to a composite steel material with at least two layers of steel. Furthermore, the invention relates to a method for producing a component and a use of the component.
  • machinable and / or shearable steels can usually be formed from a flat product to a pre-geometry before they are machined or machined to produce the final geometry.
  • Good machinable and / or shearable steels generally have poor forming properties, since the alloying components, such as lead, phosphorus and / or sulfur, which cause good machinability, counteract the formability.
  • Steels are used which are easy to form, but do not show the desired chip pattern during machining, but form so-called flow chips.
  • the disadvantage of the formation of the flow chips is that they can damage the surface of the workpiece to be machined. Furthermore, this can enforce the chip tool, which increases the cleaning effort and thereby in turn can extend the processing time. The service life of the cutting tool can be shortened. Summary of Invention
  • the invention is therefore based on the object to provide a semifinished product, which combines the above-mentioned opposing properties, whereby the aforementioned disadvantages can be substantially compensated or reduced.
  • a steel composite material is proposed with at least two layers, which at least a first layer of a machinable and / or shearable steel and at least one second layer of a malleable steel, which materially with the first layer is connected.
  • the steel composite according to the invention ensures sufficient formability with good machinability and / or shearability.
  • Machinable and / or shearable steels are in particular free-cutting steels (EN 10087). Also, tempered steels (EN 10083), case hardening steels (EN 10084) or nickel steels (EN 10085), each with a sulfur content of at least 0.01% by weight, can be used.
  • steels of the grades DC (DIN EN 10130), DD (DIN EN 10111), DX (DIN EN 10346) or fine grain steels for cold forming (EN 10149) are to be understood as malleable steels.
  • Steels that can be shaped in particular under the influence of temperature in such a way that the required final geometry of the component to be manufactured can be imaged without failure can be used.
  • the at least first layer of the steel composite material is composed, by way of example, of Fe and, in terms of production, unavoidable impurities in% by weight
  • first layer may optionally comprise one or more of the following optional alloying elements:
  • optional Nb up to 0.050%
  • optional N up to 0.020%
  • optional B up to 0.010%
  • optional AI up to 1.0%.
  • C is a strength-increasing alloying element and contributes to the increase in hardness to the hardness by either dissolved as an interstitial atom in austenite or forms with Fe or the optionally alloyed alloying elements Cr, Ti, Nb and / or V carbides, on the one hand harder than the surrounding Can be matrix or at least distort it so that the hardness of the matrix increases.
  • C is therefore present at levels of at least 0.020 wt.%, More preferably at least 0.070 wt.%, Preferably at least 0.10 wt.%, To achieve a desired hardness and some mechanical resistance To ensure processing.
  • the C content is limited to a maximum of 0.60 wt .-%, in particular a maximum of 0.55 wt .-%.
  • Si is an alloying element that can contribute to solid solution hardening and, depending on the content, has a positive effect in increasing the hardness, so that a content of at least 0.020% by weight, in particular at least 0.050% by weight, can be present. At lower levels of effectiveness of Si is not clearly demonstrated. Si, however, does not negatively affect the properties of the steel. If too much silicon is added to the steel, it has a negative influence on the deformability and toughness properties. Therefore, the alloying element is limited to not more than 1.00% by weight, in particular not more than 0.60% by weight, preferably not more than 0.40% by weight, in particular to ensure adequate rolling properties.
  • Si can be used for deoxidizing the steel, if an optional use of Al, for example, should be avoided in order to avoid undesired setting z. B. of N to avoid.
  • Mn is an alloying element which can contribute to hardenability and is used in particular for bonding S to MnS so that a content of at least 0.20% by weight, in particular at least 0.40% by weight, is present can.
  • Manganese reduces the critical cooling rate, which can increase the hardenability, especially in a heat treatment process.
  • the alloying element is to a maximum of 2.00 wt .-%, in particular a maximum of 1.50 wt .-%, to ensure a good forming behavior.
  • Mn has a strong segregation and is therefore preferably limited to a maximum of 1.30 wt .-%.
  • P is an iron companion, which has a strong toughening effect and is usually one of the unwanted accompanying elements. Due to its low diffusion rate, solidification of the melt can lead to strong segregations. For these reasons, the element is limited to a maximum of 0, 150 wt .-%, in particular at most 0, 110 wt .-%.
  • S has a strong propensity for segregation in steel and forms undesirable FeS, as a result of which it can be set by alloying Mn.
  • the S content is therefore limited to a maximum of 0.50 wt .-%, in particular at most 0.45 wt .-%.
  • Pb can be alloyed up to a maximum of 0.50 wt .-%, in particular at most 0.40 wt .-%, preferably at most 0.350 wt .-%, which can lead to a smooth surface of the steel in a mechanical processing. Alloy contents above the stated upper limit would result in exceeding the legal restrictions.
  • At least one of the alloying elements S, P, Pb due to the positive influence on the machinability by forming brittle inclusions in the steel, at which chips can break during mechanical or machining machining, individually or in total from either S and P or S. and Pb or P and Pb or S and P and Pb having at least 0.020% by weight, in particular at least 0.050% by weight, preferably at least at least 0, 10 wt .-%, particularly preferably at least 0, 150 wt .-% present. Total in sum SP + S + Pb> 0.020 wt .-%.
  • Cr may contribute to the adjustment of the strength as an optional alloying element, in particular with a content of at least 0.020% by weight.
  • Cr can be used alone or in combination with other elements as carbide formers. Because of the positive effect on the toughness of the material, the Cr content can preferably be adjusted to at least 0.15% by weight.
  • the alloying element can be limited to a maximum of 3.0% by weight, in particular a maximum of 2.50% by weight, preferably a maximum of 2.0% by weight.
  • Cu can contribute to hardness increase as an optional alloying element by precipitation hardening and in particular with a content of at least 0.010% by weight. be alloyed. Cu can be limited to a maximum of 0.50 wt .-%.
  • Ti, Nb, and / or V may be added as optional alloying elements singly or in combination for grain refining.
  • Ti can be used to set N. Above all, however, these elements can be used as micro-alloying elements to form strengthen keitssteigernde carbides, nitrides and / or carbonitrides.
  • Ti, Nb and / or V can be used at levels of in each case or in total at least 0.010% by weight. For complete setting of N, the content of Ti should be at least 3.42 * N.
  • Nb is at most 0.050 wt.%, In particular at most 0.030 wt.%, Ti is at most 0.020 wt.%, In particular at most 0.0150 wt.%, And V is at most 0.40 wt. -%, in particular limited to a maximum of 0.250 wt .-%, since higher contents may adversely affect the material properties, in particular adversely affect the toughness of the first layer.
  • Mo can optionally be added as a carbide former to increase the yield strength and improve toughness.
  • a content of at least 0.010 wt .-% can be alloyed.
  • the maximum content is limited to a maximum of 1.0% by weight, preferably a maximum of 0.70% by weight.
  • N as an optional alloying element, can exert a similar effect as C because its ability to form nitrides can have a positive effect on strength.
  • AI is optional
  • aluminum nitrides can be formed to enhance nucleation and to improve the efficiency of nucleation Hamper grain growth.
  • the content is limited to a maximum of 0.020 wt .-%.
  • a maximum level of 0.0150 wt% is adjusted to avoid the undesirable formation of coarse titanium nitrides in the event of an optional presence of Ti which would adversely affect toughness.
  • the optional alloying element Boron this is bound by nitrogen, if the aluminum or titanium content is not high enough or not present.
  • Ni which can optionally be alloyed up to a maximum of 5.0% by weight, can positively influence the deformability of the material.
  • B as an optional alloying element in atomic form, retards the microstructure transformation to ferritin / bainite and improves the strength, in particular if N is bound by optionally strong nitride formers such as Al and / or Nb, and can have a content in particular of at least 0.0005 wt. -% to be available.
  • the alloying element is limited to a maximum of 0.010 wt .-%, in particular to a maximum of 0.0070 wt .-%, since higher contents may adversely affect the material properties, in particular based on the toughness at the grain boundaries.
  • Sn, As, and / or Co are optional alloying elements that can be counted as contaminants, individually or in combination, unless specifically added to set specific properties.
  • the contents are limited to a maximum of 0.050 wt.% Sn, in particular a maximum of 0.040 wt.% Sn, to a maximum of 0.020 wt.% Co, to a maximum of 0.020 wt.
  • oxide occupancies particularly on the release layer between the first and second layers, hinder diffusion between the deliberately differently alloyed steels, such as For example, in the German Offenlegungsschrift DE 10 2016 204 567 Al described.
  • the maximum content of oxygen is given as 0.0050 wt%, preferably 0.0020 wt%.
  • H is optional and as the smallest atom on interstitial sites in steel very flexible and can lead to tears in the core especially when cooling from the hot rolling.
  • the element hydrogen is therefore reduced to a maximum content of 0.0010% by weight, in particular of which at most 0.0006% by weight, preferably at most 0.0004% by weight, more preferably at most 0.0002% by weight are reduced.
  • Ca can optionally be added to the melt as desulphurising agent and for targeted sulphide addition in amounts of up to 0.0150% by weight, preferably up to 0.0050% by weight, which leads to an altered plasticity of the sulphides in the case of Hot rolling leads.
  • the cold-forming behavior is preferably improved by the Ca addition.
  • the described effects are effective from the level of 0.0005 wt .-%, which is why this limit can be chosen with optional use of Ca as a minimum.
  • AI can contribute in particular to the deoxidation, which is why optionally a content of at least 0.010 wt .-% can be adjusted.
  • the alloying element is limited to a maximum of 1.0% by weight in order to ensure the best possible castability, preferably a maximum of 0.30% by weight, in order essentially to reduce unwanted precipitations in the material, in particular in the form of non-metallic oxidic inclusions. or to avoid which may adversely affect the material properties.
  • the content is set between 0.020 and 0.30 wt .-%.
  • AI can also be used to tie off the nitrogen that is available in the steel as an option.
  • the at least second layer of the steel composite material consists of a steel having an elongation at break A 80 > 10, in particular an elongation at break A 80 > 15, preferably an elongation at break A 80 > 20, particularly preferably an elongation at break A 80 > 25.
  • the first layer has a material thickness of between 5% and 70%, in particular between 10% and 50%, preferably between 20% and 40%, based on the total material thickness of the steel material composite.
  • the material thickness of the first layer of at least 5% should be ensured that a mechanical processing can be implemented exclusively in the first position.
  • the restriction of the material thickness of the first layer to a maximum of 70% should give the steel composite material a certain malleability.
  • the total material thickness is between 0.5 and 20.0 mm, in particular between 1.0 and 15.0 mm, preferably between 2.0 and 10.0 mm.
  • the steel composite material has exactly one first layer and one second layer.
  • the composite steel material can also be designed to have at least three layers, wherein the first layer as a core layer between two cover layers, each formed from the second layer are, can be arranged.
  • the second layer can be arranged as a core layer between two cover layers, which are each formed from the first layer.
  • the cover layers may have either a symmetrical or asymmetrical structure in the at least three-layered design.
  • the steel-material composite is produced by means of plating, in particular roll-cladding, preferably hot-rolled cladding, as described, for example, in German Patent DE 10 2005 006 606 B3. Reference is made to this patent, the contents of which are hereby incorporated by reference. Composite fabrication is generally known in the art.
  • the invention relates to a method for producing a component, wherein a steel composite material according to the invention is provided, which is shaped into a preform, in particular cold-formed, and the preform for producing a final shape or a further shape, in particular for further process steps at least partially machined in the region of the first layer.
  • Mechanical processing is to be understood as meaning, in particular, a machining operation, for example, turning, milling and / or drilling in sections in the region of the first layer.
  • a substantially complete machining of the surface can take place. If the first layer is only partially accessible, for example if it is arranged as a core layer in the at least three-layered component, the first layer can also be machined only in the region of the front side of the component.
  • the final shape or the further shape may be heat treated.
  • further properties or improved properties can be set on the component, for example by flash annealing or hardening with optionally subsequent tempering or surface hardening in the course of carburizing or nitriding.
  • the invention relates to a use of a component produced by one of the aforementioned methods as a component in vehicle or metal construction, in particular in the drive train of a vehicle.
  • the powertrain of a vehicle includes all components that transmit the engine power to the wheels. These include, starting with the engine, the assemblies of clutch and gearbox, cardan shaft, drive shafts and differentials. In the hybrid vehicles, full hybrid and plug-in, as well as the pure electric vehicles, the electric motors are added.
  • Exemplary components may be plate carriers, rotor carriers, stator carriers, pressure plates, toothed belt wheels, donor wheels, rotor wheels and shafts.
  • the use relates to all rotationally symmetrical components that still need to be machined at least in sections after a non-cutting shaping.
  • FIG. 1 shows a first exemplary embodiment of a component according to the invention in different representations
  • steel composite materials according to the invention can be produced by means of hot-rolled plating, in particular to provide semi-finished products, which can unite opposing properties, such as play a sufficient formability with good machinability and / or shearability.
  • sheet metal blanks and / or slabs from at least two layers (1, 2, 3, 4) with different properties are stacked on one another, which at least partially along their edges cohesively, preferably by means of welding to a pre-bond miteinan- are connected.
  • the pre-bond is brought to a temperature of at least 1000 ° C and hot rolled in several steps to a composite steel material with a total material thickness, for example from 2.0 to 10.0 mm.
  • the steel composite can be further reduced to lower overall material thicknesses, in particular by means of cold rolling.
  • 1 shows a first exemplary embodiment of a component (10) according to the invention in different representations, in a perspective view and in a sectional view according to section II and in an enlarged partial sectional view.
  • the component (10) is formed by a composite steel material, which was produced in the course of the abovementioned hot-rolling plating and comprises a first layer (1) and a second layer (2), which are connected to one another in a material-locking manner.
  • the first layer (1) consists of a readily machinable and / or shearable steel and the second layer (2) consists of a good deformable steel.
  • the first layer (1) can in particular be made of a free-cutting steel according to EN 10087, for example a steel with the designation l lSMn30, or of a tempered steel according to EN 10083 with a sulfur content of at least 0.01% by weight, for example of a steel with the designation 42CrMoS4.
  • the second layer (2) can consist of a steel with an elongation at break A 80 > 10, in particular an elongation at break A 80 > 15, for example from a steel with the designation DC according to DIN EN 10130, with the designation DD according to DIN EN 10111 , with the designation DX according to DIN EN 10346 or with the designation S355MC according to DIN EN 10149-2.
  • a substantially planar steel material composite was provided, which had a first layer (1) with a material thickness of at least 25%, based on the total material thickness of the composite steel material. Due to the percentage higher proportion of good formable steel (second layer, 2), a sufficient and complex shape can be ensured.
  • the composite steel material was cold-formed into a preform by means of suitable forming means, not shown, and the surface of the preform was unilaterally machined by suitable means (20) to its final shape, or brought into another form for further process steps. Alternatively, the steel material composite can also be thermoformed to produce a preform if required. The cutting removal reduced the material thickness of the first layer (1) to less than half of the original material thickness of the first layer before machining.
  • FIG. 2 shows a second exemplary embodiment of a component (10 ') according to the invention in different representations, in a perspective view and in a sectional view along section II-II and in an enlarged partial sectional view.
  • the component (10 ') is formed in comparison to the component (10) by a three-layer steel composite material.
  • the steel composite material comprises a second layer (2) arranged as a core layer between two cover layers, which are each formed from the first layer (1, 3).
  • a substantially planar steel material composite was provided, which had two first layers (1, 3), each with a material thickness of at least 20%, based on the total material thickness of the composite steel material.
  • the steel composite was cold formed into a preform by means of suitable forming means not shown, and the preform on both sides, more specifically, the two surfaces of the first layer (1, 3) were machined by suitable means (20) to produce a final shape or shape , Alternatively, if required, the steel material composite can also be thermoformed to produce a preform.
  • a cutting removal took place on both sides, the material thickness being reduced on both sides by approximately 1/4 of the original material thicknesses of the first layers (1, 3).
  • the mechanical processing does not have to be carried out completely on the entire surface of the first layers (1, 3), but can also be carried out in sections only as required.
  • the mechanical processing may also be followed by a heat treatment on the final mold or on the further mold to improve the properties.
  • FIG. 3 shows a third exemplary embodiment of a component (10 ") according to the invention in different illustrations, in a perspective view and in a sectional view according to section III-III and in an enlarged partial sectional view.
  • the component (10 ") is like the component (10 ') also formed by a three-layer steel composite material, but with the difference that the first layer (1) as a core layer between two cover layers, each consisting of the second layer (2, 4) are formed, is arranged.
  • a substantially planar steel material composite was provided, which had a first layer (1) with a material thickness of at least 50%, based on the total material thickness of the steel material composite.
  • the steel composite material has become a preform by means of suitable and not shown cold molded and the preform for producing a final shape from the front side of a mechanical or machining machining by means of suitable means (20) drove, wherein in the front side a circumferential groove-shaped geometry was machined into the component (10 ") was introduced.
  • the steel material composite can also be thermoformed to produce a preform if required.
  • the mechanical processing can also be followed by a heat treatment on the final shape to improve the properties.
  • the component according to the invention or the component which can be produced from the steel material composite according to the invention can be used as a component in vehicle or metal construction, in particular as a component in the drive train of a vehicle, preferably in the form of a rotationally symmetrical component.

Abstract

The present invention relates to a steel material composite having at least two layers (1, 2, 3, 4) comprising at least a first layer (1, 3) made of a machinable and/or shearable steel and at least a second layer (2, 4) made of a formable steel, which is integrally bonded to the first layer (1, 3)

Description

Stahlwerkstoffverbund, Verfahren zur Herstellung eines Bauteils sowie Verwendung  Steel material composite, method for producing a component and use
Technisches Gebiet (Technical Field) Technical Field
Die Erfindung betrifft einen Stahlwerkstoffverbund mit mindestens zwei Lagen Stahl. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines Bauteils und eine Verwendung des Bauteils.  The invention relates to a composite steel material with at least two layers of steel. Furthermore, the invention relates to a method for producing a component and a use of the component.
Technischer Hintergrund (Background Art) Technical Background (Background Art)
Im Fahrzeugbau, beispielsweise im Bereich des Antriebsstranges eines Fahrzeugs werden Bauteile eingesetzt, die aufgrund von Genauigkeits- und/oder Oberflächenanforderungen spa- nend bearbeitet werden müssen.  In vehicle construction, for example in the area of the drive train of a vehicle, components are used which have to be machined on account of precision and / or surface requirements.
Im Stand der Technik sind zerspanbare und/oder scherbare Stähle bekannt. Diese werden zum größten Teil aus Halbzeugen, welche meistens zylinderförmig bereitgestellt und insbe- sondere zur Herstellung von rotationssymmetrischen Bauteilen verwendet werden, wobei sie aus einem Vollmaterial überwiegend einer spanabhebenden Drehbearbeitung bis zur Erzeu- gung der Endgeometrie ausgesetzt werden. Diese Bearbeitungsweise ist sehr material- und kostenintensiv. In the prior art machinable and / or shear steels are known. These are made for the most part of semi-finished products, which are usually provided in a cylindrical shape and are used in particular for the production of rotationally symmetrical components, whereby they are exposed from a solid material predominantly to a cutting turning operation until the final geometry is generated. This processing is very material and cost intensive.
Um zumindest den Materialeinsatz zu reduzieren, können zerspanbare und/oder scherbare Stähle meistens aus einem Flachprodukt zu einer Vorgeometrie geformt werden, bevor sie zur Erzeugung der Endgeometrie mechanisch respektive spanend bearbeitet werden. Gut zer- spanbare und/oder scherbare Stähle weisen in der Regel schlechte Umformeigenschaften auf, da die Legierungsbestandteile, wie zum Beispiel Blei, Phosphor und/oder Schwefel, die eine gute Zerspanbarkeit bewirken, der Umformbarkeit entgegenwirken. Es werden Stähle verwen- det, die gut formbar sind, aber bei der spanenden Bearbeitung nicht das gewünschte Span- bild zeigen, sondern sogenannte Fließspäne bilden. Nachteilig wirkt sich bei der Entstehung der Fließspäne aus, dass sie die zu bearbeitende Oberfläche des Werkstücks beschädigen können. Des Weiteren kann sich dadurch das Spanwerkzeug zusetzen, wodurch sich der Reinigungsaufwand erhöht und sich dadurch wiederrum die Bearbeitungszeit verlängern kann. Auch die Standzeit des Spanwerkzeugs kann sich verkürzen. Zusammenfassung der Erfindung (Summary of Invention) In order to reduce at least the use of materials, machinable and / or shearable steels can usually be formed from a flat product to a pre-geometry before they are machined or machined to produce the final geometry. Good machinable and / or shearable steels generally have poor forming properties, since the alloying components, such as lead, phosphorus and / or sulfur, which cause good machinability, counteract the formability. Steels are used which are easy to form, but do not show the desired chip pattern during machining, but form so-called flow chips. The disadvantage of the formation of the flow chips is that they can damage the surface of the workpiece to be machined. Furthermore, this can enforce the chip tool, which increases the cleaning effort and thereby in turn can extend the processing time. The service life of the cutting tool can be shortened. Summary of Invention
Der Erfindung liegt somit die Aufgabe zu Grunde, ein Halbzeug bereit zu stellen, welches die oben genannten gegensätzlichen Eigenschaften vereint, wodurch die vorgenannten Nachteile im Wesentlichen kompensiert oder verringert werden können.  The invention is therefore based on the object to provide a semifinished product, which combines the above-mentioned opposing properties, whereby the aforementioned disadvantages can be substantially compensated or reduced.
Gelöst wird diese Aufgabe durch einen Stahlwerkstoffverbund mit den Merkmalen des Patent- anspruchs 1. This object is achieved by a steel composite material with the features of patent claim 1.
Um die oben genannten gegensätzlichen Eigenschaften in einem Halbzeug zu vereinen, wird ein Stahlwerkstoffverbund mit mindestens zwei Lagen vorgeschlagen, welcher mindestens eine erste Lage aus einem zerspanbaren und/oder scherbaren Stahl und mindestens eine zweite Lage aus einem formbaren Stahl, welche stoffschlüssig mit der ersten Lage verbunden ist, umfasst. Der erfindungsgemäße Stahlwerkstoffverbund stellt eine ausreichende Umform- barkeit bei guter Zerspanbarkeit und/oder Scherbarkeit sicher. In order to combine the abovementioned opposing properties in a semifinished product, a steel composite material is proposed with at least two layers, which at least a first layer of a machinable and / or shearable steel and at least one second layer of a malleable steel, which materially with the first layer is connected. The steel composite according to the invention ensures sufficient formability with good machinability and / or shearability.
Unter zerspanbare und/oder scherbare Stähle sind insbesondere Automatenstähle (EN 10087) zu verstehen. Auch Vergütungsstähle (EN 10083), Einsatzstähle (EN 10084) oder Ni- trierstähle (EN 10085), die jeweils einen Schwefelgehalt von mindestens 0,01 Gew.-% aufwei- sen, können verwendet werden. Machinable and / or shearable steels are in particular free-cutting steels (EN 10087). Also, tempered steels (EN 10083), case hardening steels (EN 10084) or nickel steels (EN 10085), each with a sulfur content of at least 0.01% by weight, can be used.
Unter formbare Stähle sind insbesondere Stähle der Güten DC (DIN EN 10130), DD (DIN EN 10111), DX (DIN EN 10346) oder Feinkornbaustähle zum Kaltumformen (EN 10149) zu ver- stehen. Auch Stähle, die sich insbesondere unter Temperatureinwirkung dergestalt umformen lassen, dass die benötigte Endgeometrie des zu fertigenden Bauteils versagensfrei abgebildet werden kann, können verwendet werden. In particular, steels of the grades DC (DIN EN 10130), DD (DIN EN 10111), DX (DIN EN 10346) or fine grain steels for cold forming (EN 10149) are to be understood as malleable steels. Steels that can be shaped in particular under the influence of temperature in such a way that the required final geometry of the component to be manufactured can be imaged without failure can be used.
Gemäß einer ersten Ausführung besteht die mindestens erste Lage des Stahlwerkstoffver- bunds beispielshaft neben Fe und herstellungsbedingt unvermeidbaren Verunreinigungen in Gew.-% aus According to a first embodiment, the at least first layer of the steel composite material is composed, by way of example, of Fe and, in terms of production, unavoidable impurities in% by weight
C: bis 0,60 %, C: up to 0.60%,
Si: bis 1,00 %,  Si: up to 1.00%,
Mn: bis 2,00 %,  Mn: up to 2.00%,
P: bis 0, 150 %,  P: to 0, 150%,
S: bis 0,50 %,  S: up to 0.50%,
Pb: bis 0,50 %, mit S P + S + Pb > 0,020 Gew.-%, Pb: up to 0.50%, with SP + S + Pb> 0.020 wt%,
wobei die erste Lage optional eine oder mehrere der folgenden optionalen Legierungselemen- te aufweisen kann: wherein the first layer may optionally comprise one or more of the following optional alloying elements:
optional Cr: bis 3,0 %, optional Cr: up to 3.0%,
optional Cu: bis 0,50 %, optional Cu: up to 0.50%,
optional Nb: bis 0,050 %, optional Nb: up to 0.050%,
optional Mo: bis 1,0 %, optional Mo: up to 1.0%,
optional N: bis 0,020 %, optional N: up to 0.020%,
optional Ti: bis 0,020 %, optional Ti: up to 0.020%,
optional V: bis 0,40 %, optional V: up to 0.40%,
optional Ni: bis 5,0 %, optional Ni: up to 5.0%,
optional B: bis 0,010 %, optional B: up to 0.010%,
optional Sn: bis 0,050 %, optional Sn: up to 0.050%,
optional H: bis 0,0010 %, optional H: up to 0.0010%,
optional As: bis 0,020 %, optional As: up to 0.020%,
optional Co: bis 0,020 %, optional Co: up to 0.020%,
optional 0: bis 0,0050 %, optional 0: to 0.0050%,
optional Ca: bis 0,0150 %, optional Ca: up to 0.0150%,
optional AI: bis 1,0 %. optional AI: up to 1.0%.
C ist ein festigkeitssteigerndes Legierungselement und trägt mit zunehmendem Gehalt zur Härtesteigerung bei, indem es entweder als interstitielles Atom im Austenit gelöst vorliegt oder mit Fe oder den optional zulegierten Legierungselementen Cr, Ti, Nb und/oder V Karbide bildet, die einerseits härter als die umgebende Matrix sein können oder diese zumindest so verzerren können, dass die Härte der Matrix steigt. C ist daher mit Gehalten von mindestens 0,020 Gew.-%, insbesondere von mindestens 0,070 Gew.-%, vorzugsweise von mindestens 0, 10 Gew.-% vorhanden, um eine gewünschte Härte zu erreichen bzw. einzustellen und einen gewissen Widerstand für die mechanische Bearbeitung sicherzustellen. Der C-Gehalt ist auf maximal 0,60 Gew.-%, insbesondere maximal 0,55 Gew.-% beschränkt. C is a strength-increasing alloying element and contributes to the increase in hardness to the hardness by either dissolved as an interstitial atom in austenite or forms with Fe or the optionally alloyed alloying elements Cr, Ti, Nb and / or V carbides, on the one hand harder than the surrounding Can be matrix or at least distort it so that the hardness of the matrix increases. C is therefore present at levels of at least 0.020 wt.%, More preferably at least 0.070 wt.%, Preferably at least 0.10 wt.%, To achieve a desired hardness and some mechanical resistance To ensure processing. The C content is limited to a maximum of 0.60 wt .-%, in particular a maximum of 0.55 wt .-%.
Si ist ein Legierungselement, das zur Mischkristallhärtung beitragen kann und wirkt sich je nach Gehalt positiv in einer Härtesteigerung aus, so dass ein Gehalt von mindestens 0,020 Gew.-%, insbesondere mindestens 0,050 Gew.-% vorhanden sein kann. Bei geringeren Ge- halten ist eine Wirksamkeit von Si nicht klar nachweisbar. Si wirkt sich aber auch nicht negativ auf die Eigenschaften des Stahls aus. Wird dem Stahl zu viel Silizium zugegeben, hat dies einen negativen Einfluss auf das Verformungsvermögen und die Zähigkeitseigenschaften. Da- her ist das Legierungselement auf maximal 1,00 Gew.-%, insbesondere maximal 0,60 Gew.- %, vorzugsweise maximal 0,40 Gew.-% beschränkt, um insbesondere eine ausreichende Walzbarkeit sicherzustellen. Zudem kann Si zur Desoxidation des Stahls verwendet werden, falls ein optionaler Einsatz von AI beispielsweise vermieden werden soll, um eine unerwünsch- te Abbindung z. B. von N zu vermeiden. Si is an alloying element that can contribute to solid solution hardening and, depending on the content, has a positive effect in increasing the hardness, so that a content of at least 0.020% by weight, in particular at least 0.050% by weight, can be present. At lower levels of effectiveness of Si is not clearly demonstrated. Si, however, does not negatively affect the properties of the steel. If too much silicon is added to the steel, it has a negative influence on the deformability and toughness properties. Therefore, the alloying element is limited to not more than 1.00% by weight, in particular not more than 0.60% by weight, preferably not more than 0.40% by weight, in particular to ensure adequate rolling properties. In addition, Si can be used for deoxidizing the steel, if an optional use of Al, for example, should be avoided in order to avoid undesired setting z. B. of N to avoid.
Mn ist ein Legierungselement, das zur Härtbarkeit beitragen kann und insbesondere zum Ab- binden von S zu MnS eingesetzt wird, so dass ein Gehalt von mindestens 0,20 Gew.-%, insbe- sondere mindestens 0,40 Gew.-% vorhanden sein kann. Mangan setzt die kritische Abkühlge- schwindigkeit herab, wodurch die Härtbarkeit, insbesondere bei einem Wärmebehandlungs- prozess erhöht werden kann. Das Legierungselement ist auf maximal 2,00 Gew.-%, insbeson- dere maximal 1,50 Gew.-%, um ein gutes Umformverhalten sicherzustellen. Zudem wirkt Mn stark seigernd und ist daher vorzugsweise auf maximal 1,30 Gew.-% beschränkt. Mn is an alloying element which can contribute to hardenability and is used in particular for bonding S to MnS so that a content of at least 0.20% by weight, in particular at least 0.40% by weight, is present can. Manganese reduces the critical cooling rate, which can increase the hardenability, especially in a heat treatment process. The alloying element is to a maximum of 2.00 wt .-%, in particular a maximum of 1.50 wt .-%, to ensure a good forming behavior. In addition, Mn has a strong segregation and is therefore preferably limited to a maximum of 1.30 wt .-%.
P ist ein Eisenbegleiter, der sich stark zähigkeitsmindernd auswirkt und in der Regel zu den unerwünschten Begleitelementen zählt. P kann aufgrund seiner geringen Diffusionsgeschwin- digkeit beim Erstarren der Schmelze zu starken Seigerungen führen. Aus diesen genannten Gründen wird das Element auf maximal 0, 150 Gew.-%, insbesondere maximal 0, 110 Gew.-% begrenzt. P is an iron companion, which has a strong toughening effect and is usually one of the unwanted accompanying elements. Due to its low diffusion rate, solidification of the melt can lead to strong segregations. For these reasons, the element is limited to a maximum of 0, 150 wt .-%, in particular at most 0, 110 wt .-%.
S weist im Stahl eine starke Neigung zur Seigerung auf und bildet unerwünschtes FeS, wes- wegen es durch Zulegieren von Mn abgebunden werden kann. Der S-Gehalt wird daher auf maximal 0,50 Gew.-%, insbesondere maximal 0,45 Gew.-% eingeschränkt. S has a strong propensity for segregation in steel and forms undesirable FeS, as a result of which it can be set by alloying Mn. The S content is therefore limited to a maximum of 0.50 wt .-%, in particular at most 0.45 wt .-%.
Pb kann bis zu maximal 0,50 Gew.-%, insbesondere maximal 0,40 Gew.-%, vorzugsweise maximal 0,350 Gew.-% zulegiert werden, welches bei einer mechanischen Bearbeitung zu einer glatten Oberfläche des Stahls führen kann. Legierungsgehalte oberhalb der genannten Obergrenze würden zu einer Überschreitung der gesetzlichen Beschränkungen führen. Pb can be alloyed up to a maximum of 0.50 wt .-%, in particular at most 0.40 wt .-%, preferably at most 0.350 wt .-%, which can lead to a smooth surface of the steel in a mechanical processing. Alloy contents above the stated upper limit would result in exceeding the legal restrictions.
Vorzugsweise ist mindestens eines der Legierungselemente S, P, Pb aufgrund des positiven Einflusses auf die Zerspanbarkeit durch Bildung spröder Einschlüsse im Stahl, an denen Spä- ne bei einer mechanischen respektive spanabhebenden Bearbeitung brechen können, einzeln oder in Summe aus entweder S und P oder S und Pb oder P und Pb oder S und P und Pb mit mindestens 0,020 Gew.-%, insbesondere mindestens 0,050 Gew.-%, vorzugsweise mindes- tens 0, 10 Gew.-%, besonders bevorzugt mindestens 0, 150 Gew.-% vorhanden. Entspricht in Summe S P + S + Pb > 0,020 Gew.-%. Preferably, at least one of the alloying elements S, P, Pb, due to the positive influence on the machinability by forming brittle inclusions in the steel, at which chips can break during mechanical or machining machining, individually or in total from either S and P or S. and Pb or P and Pb or S and P and Pb having at least 0.020% by weight, in particular at least 0.050% by weight, preferably at least at least 0, 10 wt .-%, particularly preferably at least 0, 150 wt .-% present. Total in sum SP + S + Pb> 0.020 wt .-%.
Cr kann als optionales Legierungselement je nach Gehalt zur Einstellung der Festigkeit beitra- gen, insbesondere mit einem Gehalt von mindestens 0,020 Gew.-%. Zudem kann Cr allein oder in Kombination mit anderen Elementen als Karbidbildner eingesetzt werden. Wegen der positiven Wirkung auf die Zähigkeit des Materials kann der Cr-Anteil bevorzugt auf mindestens 0, 150 Gew.-% eingestellt werden. Das Legierungselement kann aus wirtschaftlichen Gründen auf maximal 3,0 Gew.-%, insbesondere maximal 2,50 Gew.-%, vorzugsweise maximal 2,0 Gew.-% beschränkt werden. Depending on the content, Cr may contribute to the adjustment of the strength as an optional alloying element, in particular with a content of at least 0.020% by weight. In addition, Cr can be used alone or in combination with other elements as carbide formers. Because of the positive effect on the toughness of the material, the Cr content can preferably be adjusted to at least 0.15% by weight. For economic reasons, the alloying element can be limited to a maximum of 3.0% by weight, in particular a maximum of 2.50% by weight, preferably a maximum of 2.0% by weight.
Cu kann als optionales Legierungselement durch Ausscheidungshärtung zu einer Härtesteige- rung beitragen und insbesondere mit einem Gehalt von mindestens 0,010 Gew.-%. zulegiert werden. Cu kann auf maximal 0,50 Gew.-% beschränkt werden. Cu can contribute to hardness increase as an optional alloying element by precipitation hardening and in particular with a content of at least 0.010% by weight. be alloyed. Cu can be limited to a maximum of 0.50 wt .-%.
Ti, Nb, und/oder V können als optionale Legierungselemente einzeln oder in Kombination zur Kornfeinung zulegiert werden. Zudem kann Ti zur Abbindung von N verwendet werden. Vor allem aber können diese Elemente als Mikrolegierungselemente eingesetzt werden, um festig keitssteigernde Carbide, Nitride und/oder Carbonitride zu bilden. Zur Gewährleistung ihrer Wirksamkeit können Ti, Nb und/oder V mit Gehalten von jeweils oder in Summe mindestens 0,010 Gew.-% eingesetzt werden. Zur vollständigen Abbindung von N wäre der Gehalt an Ti mit mindestens 3,42*N vorzusehen. Nb ist auf maximal 0,050 Gew.-%, insbesondere maxi- mal 0,030 Gew.-%, Ti ist auf maximal 0,020 Gew.-%, insbesondere maximal 0,0150 Gew.-%, und V ist auf maximal 0,40 Gew.-%, insbesondere maximal 0,250 Gew.-% beschränkt, da höhere Gehalte sich nachteilig auf die Werkstoffeigenschaften, insbesondere sich negativ auf die Zähigkeit der ersten Lage auswirken können. Ti, Nb, and / or V may be added as optional alloying elements singly or in combination for grain refining. In addition, Ti can be used to set N. Above all, however, these elements can be used as micro-alloying elements to form strengthen keitssteigernde carbides, nitrides and / or carbonitrides. To ensure their effectiveness, Ti, Nb and / or V can be used at levels of in each case or in total at least 0.010% by weight. For complete setting of N, the content of Ti should be at least 3.42 * N. Nb is at most 0.050 wt.%, In particular at most 0.030 wt.%, Ti is at most 0.020 wt.%, In particular at most 0.0150 wt.%, And V is at most 0.40 wt. -%, in particular limited to a maximum of 0.250 wt .-%, since higher contents may adversely affect the material properties, in particular adversely affect the toughness of the first layer.
Mo kann optional als Karbidbildner zur Erhöhung der Streckgrenze und Verbesserung der Zä- higkeit zulegiert werden. Um die Wirksamkeit dieser Effekte zu gewährleisten, kann ein Gehalt von mindestens 0,010 Gew.-% zulegiert werden. Aus Kostengründen wird der Maximalgehalt auf maximal 1,0 Gew.-%, bevorzugt maximal 0,70 Gew.-% beschränkt. Mo can optionally be added as a carbide former to increase the yield strength and improve toughness. In order to ensure the effectiveness of these effects, a content of at least 0.010 wt .-% can be alloyed. For reasons of cost, the maximum content is limited to a maximum of 1.0% by weight, preferably a maximum of 0.70% by weight.
N kann als optionales Legierungselement eine ähnliche Wirkung wie C entfalten, denn seine Fähigkeit zur Nitridbildung kann sich positiv auf die Festigkeit auswirken. Bei optionaler Anwe- senheit von AI können sich Aluminiumnitride bilden, die die Keimbildung verbessern und das Kornwachstum behindern. Der Gehalt ist auf maximal 0,020 Gew.-% begrenzt. Bevorzugt wird ein maximaler Gehalt von 0,0150 Gew.-% eingestellt, um die unerwünschte Bildung grober Ti- tannitride im Falle einer optionalen Anwesenheit von Ti zu vermeiden, die sich negativ auf die Zähigkeit auswirken würden. Zudem wird bei Einsatz des optionalen Legierungselements Bor dieses von Stickstoff abgebunden, falls der Aluminium- oder Titangehalt nicht hoch genug bzw. nicht vorhanden ist. N, as an optional alloying element, can exert a similar effect as C because its ability to form nitrides can have a positive effect on strength. If AI is optional, aluminum nitrides can be formed to enhance nucleation and to improve the efficiency of nucleation Hamper grain growth. The content is limited to a maximum of 0.020 wt .-%. Preferably, a maximum level of 0.0150 wt% is adjusted to avoid the undesirable formation of coarse titanium nitrides in the event of an optional presence of Ti which would adversely affect toughness. In addition, when using the optional alloying element Boron this is bound by nitrogen, if the aluminum or titanium content is not high enough or not present.
Ni, welches optional bis zu maximal 5,0 Gew.-% zulegiert werden kann, kann positiv die Ver- formbarkeit des Materials beeinflussen. Aus Kostengründen werden insbesondere Gehalte von maximal 4,50 Gew.-%, bevorzugt maximal 4,30 Gew.-% eingestellt. Ni, which can optionally be alloyed up to a maximum of 5.0% by weight, can positively influence the deformability of the material. For reasons of cost, in particular contents of not more than 4.50% by weight, preferably not more than 4.30% by weight, are set.
B kann als optionales Legierungselement in atomarer Form die Gefügeumwandlung zu Fer- rit/Bainit verzögern und die Festigkeit verbessern, insbesondere wenn N durch optional starke Nitridbildner wie AI und/oder Nb abgebunden wird und kann mit einem Gehalt insbesondere von mindestens 0,0005 Gew.-% vorhanden sein. Das Legierungselement ist auf maximal 0,010 Gew.-%, insbesondere auf maximal 0,0070 Gew.-% beschränkt, da höhere Gehalte sich nachteilig auf die Werkstoffeigenschaften, insbesondere bezogen auf die Zähigkeit an den Korngrenzen auswirken können. B, as an optional alloying element in atomic form, retards the microstructure transformation to ferritin / bainite and improves the strength, in particular if N is bound by optionally strong nitride formers such as Al and / or Nb, and can have a content in particular of at least 0.0005 wt. -% to be available. The alloying element is limited to a maximum of 0.010 wt .-%, in particular to a maximum of 0.0070 wt .-%, since higher contents may adversely affect the material properties, in particular based on the toughness at the grain boundaries.
Sn, As und/oder Co sind optionale Legierungselemente, die einzeln oder in Kombination, wenn sie nicht gezielt zur Einstellung spezieller Eigenschaften zulegiert werden, zu den Verun- reinigungen gezählt werden können. Die Gehalte sind beschränkt auf maximal 0,050 Gew.-% Sn, insbesondere maximal 0,040 Gew.-% Sn, auf maximal 0,020 Gew.-% Co, auf maximal 0,020 Gew.-% As. Sn, As, and / or Co are optional alloying elements that can be counted as contaminants, individually or in combination, unless specifically added to set specific properties. The contents are limited to a maximum of 0.050 wt.% Sn, in particular a maximum of 0.040 wt.% Sn, to a maximum of 0.020 wt.% Co, to a maximum of 0.020 wt.
0 ist optional und üblicher Weise unerwünscht, kann in geringsten Gehalten in der vorliegen- den Erfindung jedoch auch förderlich sein, da Oxidbelegungen insbesondere auf der Trenn- schicht zwischen der ersten und zweiten Lage die Diffusion zwischen den bewusst unter- schiedlich legierten Stählen behindert, wie beispielsweise in der deutschen Offenlegungs- schrift DE 10 2016 204 567 Al beschrieben. Der Maximalgehalt für Sauerstoff wird mit 0,0050 Gew.-%, bevorzugt 0,0020 Gew.-% angegeben. 0 is optional and usually undesirable, but may also be beneficial in the lowest levels in the present invention, since oxide occupancies, particularly on the release layer between the first and second layers, hinder diffusion between the deliberately differently alloyed steels, such as For example, in the German Offenlegungsschrift DE 10 2016 204 567 Al described. The maximum content of oxygen is given as 0.0050 wt%, preferably 0.0020 wt%.
H ist optional und als kleinstes Atom auf Zwischengitterplätzen im Stahl sehr beweglich und kann insbesondere beim Abkühlen von der Warmwalzung zu Aufreißungen im Kern führen. Das Element Wasserstoff wird daher auf einen Gehalt von maximal 0,0010 Gew.-%, insbeson- dere maximal 0,0006 Gew.-%, vorzugsweise maximal 0,0004 Gew.-%, weiter bevorzugt ma- ximal 0,0002 Gew.-% reduziert. H is optional and as the smallest atom on interstitial sites in steel very flexible and can lead to tears in the core especially when cooling from the hot rolling. The element hydrogen is therefore reduced to a maximum content of 0.0010% by weight, in particular of which at most 0.0006% by weight, preferably at most 0.0004% by weight, more preferably at most 0.0002% by weight are reduced.
Ca kann optional der Schmelze als Entschwefelungsmittel und zur gezielten Sulfidbeeinflus- sung in Gehalten von bis zu 0,0150 Gew.-%, bevorzugt bis zu 0,0050 Gew.-% zulegiert wer- den, was zu einer veränderten Plastizität der Sulfide bei der Warmwalzung führt. Darüber hin aus wird durch die Ca-Zugabe bevorzugt auch das Kaltumformverhalten verbessert. Die be- schriebenen Effekte sind ab Gehalten von 0,0005 Gew.-% wirksam, weswegen diese Grenze bei optionalem Einsatz von Ca als Minimum gewählt werden kann. Ca can optionally be added to the melt as desulphurising agent and for targeted sulphide addition in amounts of up to 0.0150% by weight, preferably up to 0.0050% by weight, which leads to an altered plasticity of the sulphides in the case of Hot rolling leads. In addition, the cold-forming behavior is preferably improved by the Ca addition. The described effects are effective from the level of 0.0005 wt .-%, which is why this limit can be chosen with optional use of Ca as a minimum.
AI kann insbesondere zur Desoxidation beitragen, weshalb optional ein Gehalt von mindestens 0,010 Gew.-% eingestellt werden kann. Das Legierungselement ist auf maximal 1,0 Gew.-% zur Gewährleistung einer möglichst guten Vergießbarkeit, vorzugsweise maximal 0,30 Gew.-% beschränkt, um unerwünschte Ausscheidungen im Werkstoff insbesondere in Form von nicht- metallischen oxidischen Einschlüssen im Wesentlichen zu reduzieren und/oder zu vermeiden, welche die Werkstoffeigenschaften negativ beeinflussen können. Beispielsweise ist der Gehalt zwischen 0,020 und 0,30 Gew.-% eingestellt. AI kann auch dafür eingesetzt werden, den im Stahl optional vorhandenen Stickstoff abzubinden. AI can contribute in particular to the deoxidation, which is why optionally a content of at least 0.010 wt .-% can be adjusted. The alloying element is limited to a maximum of 1.0% by weight in order to ensure the best possible castability, preferably a maximum of 0.30% by weight, in order essentially to reduce unwanted precipitations in the material, in particular in the form of non-metallic oxidic inclusions. or to avoid which may adversely affect the material properties. For example, the content is set between 0.020 and 0.30 wt .-%. AI can also be used to tie off the nitrogen that is available in the steel as an option.
Gemäß einer Ausführung besteht die mindestens zweite Lage des Stahlwerkstoffverbunds aus einem Stahl mit einer Bruchdehnung A80 > 10, insbesondere einer Bruchdehnung A80 > 15, vorzugsweise einer Bruchdehnung A80 > 20, besonders bevorzugt einer Bruchdehnung A80 > 25. According to one embodiment, the at least second layer of the steel composite material consists of a steel having an elongation at break A 80 > 10, in particular an elongation at break A 80 > 15, preferably an elongation at break A 80 > 20, particularly preferably an elongation at break A 80 > 25.
Gemäß einer Ausführung weist die erste Lage eine Materialdicke zwischen 5 % und 70 %, insbesondere zwischen 10 % und 50 %, vorzugsweise zwischen 20 % und 40 % bezogen auf die Gesamtmaterialdicke des Stahlwerkstoffverbundes auf. Die Materialdicke der ersten Lage von mindestens 5% soll sichergestellt sein, dass eine mechanische Bearbeitung ausschließ- lich in der ersten Lage umsetzbar ist. Die Beschränkung der Materialdicke der ersten Lage auf maximal 70% soll dem Stahlwerkstoffverbund eine gewisse Formbarkeit verleihen. Die Ge- samtmaterialdicke beträgt zwischen 0,5 und 20,0 mm, insbesondere zwischen 1,0 und 15,0 mm, vorzugsweise zwischen 2,0 und 10,0 mm. In seiner einfachsten Ausführung weist der Stahlwerkstoffverbund genau eine erste Lage und eine zweite Lage auf. Je nach Anwendung kann der Stahlwerkstoffverbund auch mindestens dreilagig ausgeführt sein, wobei die erste Lage als Kernlage zwischen zwei Decklagen, welche jeweils aus der zweiten Lage gebildet sind, angeordnet sein kann. Alternativ kann auch die zweite Lage als Kernlage zwischen zwei Decklagen, welche jeweils aus der ersten Lage gebildet sind, angeordnet sein. Die Decklagen können bei der mindestens dreilagigen Ausführung entweder einen symmetrischen oder asymmetrischen Aufbau aufweisen. According to one embodiment, the first layer has a material thickness of between 5% and 70%, in particular between 10% and 50%, preferably between 20% and 40%, based on the total material thickness of the steel material composite. The material thickness of the first layer of at least 5% should be ensured that a mechanical processing can be implemented exclusively in the first position. The restriction of the material thickness of the first layer to a maximum of 70% should give the steel composite material a certain malleability. The total material thickness is between 0.5 and 20.0 mm, in particular between 1.0 and 15.0 mm, preferably between 2.0 and 10.0 mm. In its simplest embodiment, the steel composite material has exactly one first layer and one second layer. Depending on the application, the composite steel material can also be designed to have at least three layers, wherein the first layer as a core layer between two cover layers, each formed from the second layer are, can be arranged. Alternatively, the second layer can be arranged as a core layer between two cover layers, which are each formed from the first layer. The cover layers may have either a symmetrical or asymmetrical structure in the at least three-layered design.
Gemäß einer weiteren Ausführung ist der Stahlwerkstoffverbund mittels Plattieren, insbeson- dere Walzplattieren, vorzugsweise Warmwalzplattieren, wie es beispielsweise in der deutschen Patentschrift DE 10 2005 006 606 B3 beschrieben ist, hergestellt. Es wird Bezug auf diese Patentschrift genommen, deren Inhalt hiermit in diese Anmeldung aufgenommen wird. Die Verbundherstellung ist allgemein Stand der Technik. According to a further embodiment, the steel-material composite is produced by means of plating, in particular roll-cladding, preferably hot-rolled cladding, as described, for example, in German Patent DE 10 2005 006 606 B3. Reference is made to this patent, the contents of which are hereby incorporated by reference. Composite fabrication is generally known in the art.
Gemäß einem zweiten Aspekt betrifft die Erfindung ein Verfahren zur Herstellung eines Bau- teils, wobei ein erfindungsgemäßer Stahlwerkstoffverbund bereitgestellt wird, welcher zu einer Vorform geformt, insbesondere kaltgeformt wird und die Vorform zur Erzeugung einer End- form oder einer weiteren Form, insbesondere für weitere Prozessschritte zumindest ab- schnittsweise im Bereich der ersten Lage mechanisch bearbeitet wird. Unter mechanischer Bearbeitung ist insbesondere eine spanabhebende Bearbeitung zu verstehen, beispielsweise ein Drehen, Fräsen und/oder Bohren abschnittsweise im Bereich der ersten Lage. Je nach Anordnung der ersten Lage am Bauteil, beispielsweise als zugängliche Lage kann eine im Wesentlichen vollständige spanabhebende Bearbeitung der Oberfläche erfolgen. Ist die erste Lage nur teilweise zugänglich, beispielsweise wenn sie im mindestens dreilagig ausgeführten Bauteil als Kernlage angeordnet ist, ist die erste Lage auch nur im Bereich der Stirnseite des Bauteils spanabhebend bearbeitbar. According to a second aspect, the invention relates to a method for producing a component, wherein a steel composite material according to the invention is provided, which is shaped into a preform, in particular cold-formed, and the preform for producing a final shape or a further shape, in particular for further process steps at least partially machined in the region of the first layer. Mechanical processing is to be understood as meaning, in particular, a machining operation, for example, turning, milling and / or drilling in sections in the region of the first layer. Depending on the arrangement of the first layer on the component, for example as an accessible position, a substantially complete machining of the surface can take place. If the first layer is only partially accessible, for example if it is arranged as a core layer in the at least three-layered component, the first layer can also be machined only in the region of the front side of the component.
Gemäß einer Ausführung des Verfahrens kann die Endform oder die weitere Form wärmebe- handelt werden. Durch eine Wärmebehandlung können an dem Bauteil weitere Eigenschaften respektive verbesserte Eigenschaften eingestellt werden, beispielsweise durch ein Entspan- nungsglühen oder ein Härten mit optional anschließendem Anlassen oder eine Oberflächen- härtung im Zuge eines Aufkohlens oder Nitrierens. According to an embodiment of the method, the final shape or the further shape may be heat treated. By means of a heat treatment, further properties or improved properties can be set on the component, for example by flash annealing or hardening with optionally subsequent tempering or surface hardening in the course of carburizing or nitriding.
Gemäß einem dritten Aspekt betrifft die Erfindung eine Verwendung eines nach einem der vorgenannten Verfahren hergestellten Bauteils als Komponente im Fahrzeug- oder Metallbau, insbesondere im Antriebsstrang eines Fahrzeugs. Der Antriebsstrang eines Fahrzeuges um- fasst alle Komponenten, welche die Motorkraft zu den Rädern weiterleiten. Hierzu zählen be- ginnend vom Motor die Baugruppen aus Kupplung und Getriebe, Kardanwelle, Antriebswellen und Differenziale. Bei den Hybridfahrzeugen, bei Vollhybrid und Plug-in, sowie den reinen Elektrofahrzeugen kommen die Elektromotoren hinzu. Beispielhafte Bauteile können Lamellen- träger, Rotorträger, Statorträger, Druckplatten, Zahnriemenräder, Geberräder, Rotorräder und Wellen sein. According to a third aspect, the invention relates to a use of a component produced by one of the aforementioned methods as a component in vehicle or metal construction, in particular in the drive train of a vehicle. The powertrain of a vehicle includes all components that transmit the engine power to the wheels. These include, starting with the engine, the assemblies of clutch and gearbox, cardan shaft, drive shafts and differentials. In the hybrid vehicles, full hybrid and plug-in, as well as the pure electric vehicles, the electric motors are added. Exemplary components may be plate carriers, rotor carriers, stator carriers, pressure plates, toothed belt wheels, donor wheels, rotor wheels and shafts.
Vorzugsweise bezieht sich die Verwendung auf alle rotationssymmetrischen Bauteile, die nach einer spanlosen Formgebung noch mindestens abschnittsweise spanend bearbeitet werden müssen. Preferably, the use relates to all rotationally symmetrical components that still need to be machined at least in sections after a non-cutting shaping.
Kurze Beschreibung der Zeichnungen (Brief Description of Drawings) Short description of the drawings (Brief Description of Drawings)
Im Folgenden wird die Erfindung anhand einer mehrere Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Gleiche Teile sind stets mit gleichen Bezugszeichen versehen. Es zeigt  In the following the invention will be explained in more detail with reference to a drawing illustrating several embodiments. Identical parts are always provided with the same reference numerals. It shows
Figur 1) ein erstes Ausführungsbeispiel eines erfindungsgemäßen Bauteils in unter- schiedlichen Darstellungen, FIG. 1) shows a first exemplary embodiment of a component according to the invention in different representations,
Figur 2) ein zweites Ausführungsbeispiel eines erfindungsgemäßen Bauteils in unter- schiedlichen Darstellungen und  2), a second embodiment of a component according to the invention in different representations and
Figur 3) ein drittes Ausführungsbeispiel eines erfindungsgemäßen Bauteils in unter- schiedlichen Darstellungen.  3), a third embodiment of a component according to the invention in different representations.
Beschreibung der bevorzugten Ausführungsformen (Best Mode for Carrying out the Invention) Description of the Preferred Embodiments (Best Mode for Carrying Out the Invention)
Aus handelsüblichen Stahlflachprodukten können besonders bevorzugt erfindungsgemäße Stahlwerkstoffverbunde mittels Warmwalzplattieren erzeugt werden, insbesondere um Halb zeuge bereitzustellen, welche gegensätzliche Eigenschaften vereinen können, wie zum Bei spiel eine ausreichende Umformbarkeit bei guter Zerspanbarkeit und/oder Scherbarkeit. Dazu werden Blechzuschnitte und/oder Brammen aus mindestens zwei Lagen (1, 2, 3, 4) mit unter- schiedlichen Eigenschaften aufeinander gestapelt, welche zumindest bereichsweise entlang ihrer Kanten stoffschlüssig, vorzugsweise mittels Schweißen zu einem Vorverbund miteinan- der verbunden werden. Der Vorverbund wird auf eine Temperatur von mindestens 1000°C gebracht und in mehreren Schritten zu einem Stahlwerkstoffverbund mit einer Gesamtmateri- aldicke beispielsweise von 2,0 bis 10,0 mm warmgewalzt. Bei Bedarf kann der Stahlwerkstoff- verbund auf geringere Gesamtmaterialdicken, insbesondere mittels Kaltwalzen weiter redu- ziert werden. In Figur 1 ist ein erstes Ausführungsbeispiel eines erfindungsgemäßen Bauteils (10) in unter- schiedlichen Darstellungen gezeigt, in einer perspektivischen Ansicht und in einer Schnittan- sicht gemäß Schnitt l-l sowie in einer vergrößerten Teilschnittansicht. Das Bauteil (10) ist durch einen Stahlwerkstoffverbund gebildet, welcher im Zuge des oben genannten Warmwalz- plattierens erzeugt wurde und eine erste Lage (1) und eine zweite Lage (2) umfasst, welche stoffschlüssig miteinander verbunden sind. Die erste Lage (1) besteht aus einem gut zerspan- baren und/oder scherbaren Stahl und die zweite Lage (2) besteht aus einem gut verformbaren Stahl. Die erste Lage (1) kann insbesondere aus einem Automatenstahl nach EN 10087, bei- spielsweise einem Stahl mit der Bezeichnung l lSMn30, oder aus einem Vergütungsstahl nach EN 10083 mit einem Schwefelgehalt von mindestens 0,01 Gew.-%, beispielsweise aus einem Stahl mit der Bezeichnung 42CrMoS4, bestehen. Die zweite Lage (2) kann aus einem Stahl mit einer Bruchdehnung A80 > 10, insbesondere einer Bruchdehnung A80 > 15 beste- hen, beispielsweise aus einem Stahl mit der Bezeichnung DC nach DIN EN 10130, mit der Bezeichnung DD nach DIN EN 10111, mit der Bezeichnung DX nach DIN EN 10346 oder mit der Bezeichnung S355MC nach DIN EN 10149-2. From commercially available flat steel products, particularly preferably steel composite materials according to the invention can be produced by means of hot-rolled plating, in particular to provide semi-finished products, which can unite opposing properties, such as play a sufficient formability with good machinability and / or shearability. For this purpose, sheet metal blanks and / or slabs from at least two layers (1, 2, 3, 4) with different properties are stacked on one another, which at least partially along their edges cohesively, preferably by means of welding to a pre-bond miteinan- are connected. The pre-bond is brought to a temperature of at least 1000 ° C and hot rolled in several steps to a composite steel material with a total material thickness, for example from 2.0 to 10.0 mm. If required, the steel composite can be further reduced to lower overall material thicknesses, in particular by means of cold rolling. 1 shows a first exemplary embodiment of a component (10) according to the invention in different representations, in a perspective view and in a sectional view according to section II and in an enlarged partial sectional view. The component (10) is formed by a composite steel material, which was produced in the course of the abovementioned hot-rolling plating and comprises a first layer (1) and a second layer (2), which are connected to one another in a material-locking manner. The first layer (1) consists of a readily machinable and / or shearable steel and the second layer (2) consists of a good deformable steel. The first layer (1) can in particular be made of a free-cutting steel according to EN 10087, for example a steel with the designation l lSMn30, or of a tempered steel according to EN 10083 with a sulfur content of at least 0.01% by weight, for example of a steel with the designation 42CrMoS4. The second layer (2) can consist of a steel with an elongation at break A 80 > 10, in particular an elongation at break A 80 > 15, for example from a steel with the designation DC according to DIN EN 10130, with the designation DD according to DIN EN 10111 , with the designation DX according to DIN EN 10346 or with the designation S355MC according to DIN EN 10149-2.
Zur Herstellung des Bauteils (10) wurde ein im Wesentlichen eben ausgeführter Stahlwerk- stoffverbund bereitgestellt, welcher eine erste Lage (1) mit einer Materialdicke von mindestens 25% bezogen auf die Gesamtmaterialdicke des Stahlwerkstoffverbunds aufwies. Durch den prozentual höheren Anteil des gut formbaren Stahls (zweite Lage, 2) kann eine ausreichende und komplexe Formgebung gewährleistet werden. Der Stahlwerkstoffverbund wurde zu einer Vorform mittels geeigneten und nicht dargestellten Formgebungsmitteln kalt geformt und die Oberfläche der Vorform wurde einseitig durch spanabhebende Bearbeitung mittels geeigneten Mitteln (20) in seine Endform gebracht respektive in eine weitere Form für weitere Prozess- schritte gebracht werden. Alternativ kann der Stahlwerkstoffverbund zur Herstellung einer Vorform bei Bedarf auch warm geformt werden. Der spanabhebende Abtrag reduzierte die Materialdicke der ersten Lage (1) auf weniger als die Hälfte der ursprünglichen Materialdicke der ersten Lage vor der mechanischen Bearbeitung. Die mechanische Bearbeitung muss nicht vollständig auf der gesamten Oberfläche der erste Lage (1) erfolgen, sondern kann auch nur nach Bedarf abschnittsweise durchgeführt werden. An die mechanische Bearbeitung kann sich auch noch eine Wärmebehandlung an der Endform oder an der weiteren Form zur Ver- besserung der Eigenschaften anschließen. In Figur 2 ist ein zweites Ausführungsbeispiel eines erfindungsgemäßen Bauteils (10‘) in un- terschiedlichen Darstellungen gezeigt, in einer perspektivischen Ansicht und in einer Schnitt- ansicht gemäß Schnitt ll-ll sowie in einer vergrößerten Teilschnittansicht. Das Bauteil (10‘) ist im Vergleich zum Bauteil (10) durch einen dreilagigen Stahlwerkstoffverbund gebildet. Der Stahlwerkstoffverbund umfasst eine zweite Lage (2) als Kernlage zwischen zwei Decklagen angeordnet, welche jeweils aus der ersten Lage (1, 3) gebildet sind. To produce the component (10), a substantially planar steel material composite was provided, which had a first layer (1) with a material thickness of at least 25%, based on the total material thickness of the composite steel material. Due to the percentage higher proportion of good formable steel (second layer, 2), a sufficient and complex shape can be ensured. The composite steel material was cold-formed into a preform by means of suitable forming means, not shown, and the surface of the preform was unilaterally machined by suitable means (20) to its final shape, or brought into another form for further process steps. Alternatively, the steel material composite can also be thermoformed to produce a preform if required. The cutting removal reduced the material thickness of the first layer (1) to less than half of the original material thickness of the first layer before machining. The mechanical processing does not have to take place completely on the entire surface of the first layer (1), but can also be carried out only in sections as required. Mechanical treatment may also be followed by heat treatment on the final mold or on the further mold to improve the properties. FIG. 2 shows a second exemplary embodiment of a component (10 ') according to the invention in different representations, in a perspective view and in a sectional view along section II-II and in an enlarged partial sectional view. The component (10 ') is formed in comparison to the component (10) by a three-layer steel composite material. The steel composite material comprises a second layer (2) arranged as a core layer between two cover layers, which are each formed from the first layer (1, 3).
Zur Herstellung des Bauteils (10‘) wurde ein im Wesentlichen eben ausgeführter Stahlwerk- stoffverbund bereitgestellt, welcher zwei erste Lage (1, 3) mit jeweils einer Materialdicke von mindestens 20% bezogen auf die Gesamtmaterialdicke des Stahlwerkstoffverbunds aufwies. Der Stahlwerkstoffverbund wurde zu einer Vorform mittels geeigneten und nicht dargestellten Formgebungsmitteln kalt geformt und die Vorform beidseitig, genauer gesagt, die beiden Oberflächen der ersten Lage (1, 3) wurden zur Erzeugung einer Endform oder einer weiteren Form mittels geeigneten Mitteln (20) spanabhebend bearbeitet. Alternativ kann der Stahlwerk- stoffverbund zur Herstellung einer Vorform bei Bedarf auch warm geformt werden. Um den Genauigkeits- und/oder Oberflächenanforderungen am gesamten Bauteil (10‘) gerecht zu werden, erfolgte auf beiden Seiten ein spanabhebender Abtrag, wobei die Materialdicke beid- seitig um ca. 1/4 der ursprünglichen Materialdicken der ersten Lagen (1, 3) vor der mechani- schen Bearbeitung reduziert wurden. Die mechanische Bearbeitung muss nicht vollständig auf der gesamten Oberfläche der ersten Lagen (1, 3) erfolgen, sondern kann auch nur nach Be- darf abschnittsweise durchgeführt werden. An die mechanische Bearbeitung kann sich auch noch eine Wärmebehandlung an der Endform oder an der weiteren Form zur Verbesserung der Eigenschaften anschließen. To produce the component (10 '), a substantially planar steel material composite was provided, which had two first layers (1, 3), each with a material thickness of at least 20%, based on the total material thickness of the composite steel material. The steel composite was cold formed into a preform by means of suitable forming means not shown, and the preform on both sides, more specifically, the two surfaces of the first layer (1, 3) were machined by suitable means (20) to produce a final shape or shape , Alternatively, if required, the steel material composite can also be thermoformed to produce a preform. In order to meet the accuracy and / or surface requirements of the entire component (10 '), a cutting removal took place on both sides, the material thickness being reduced on both sides by approximately 1/4 of the original material thicknesses of the first layers (1, 3). were reduced before mechanical processing. The mechanical processing does not have to be carried out completely on the entire surface of the first layers (1, 3), but can also be carried out in sections only as required. The mechanical processing may also be followed by a heat treatment on the final mold or on the further mold to improve the properties.
In Figur 3 ist ein drittes Ausführungsbeispiel eines erfindungsgemäßen Bauteils (10“) in un- terschiedlichen Darstellungen gezeigt, in einer perspektivischen Ansicht und in einer Schnitt- ansicht gemäß Schnitt lll-lll sowie in einer vergrößerten Teilschnittansicht. Das Bauteil (10“) ist wie das Bauteil (10‘) ebenfalls durch einen dreilagigen Stahlwerkstoffverbund gebildet, jedoch mit dem Unterschied, dass die erste Lage (1) als Kernlage zwischen zwei Decklagen, welche jeweils aus der zweiten Lage (2, 4) gebildet sind, angeordnet ist. FIG. 3 shows a third exemplary embodiment of a component (10 ") according to the invention in different illustrations, in a perspective view and in a sectional view according to section III-III and in an enlarged partial sectional view. The component (10 ") is like the component (10 ') also formed by a three-layer steel composite material, but with the difference that the first layer (1) as a core layer between two cover layers, each consisting of the second layer (2, 4) are formed, is arranged.
Zur Herstellung des Bauteils (10“) wurde ein im Wesentlichen eben ausgeführter Stahlwerk- stoffverbund bereitgestellt, welcher eine erste Lage (1) mit einer Materialdicke von mindestens 50% bezogen auf die Gesamtmaterialdicke des Stahlwerkstoffverbunds aufwies. Der Stahl werkstoffverbund wurde zu einer Vorform mittels geeigneten und nicht dargestellten Formge- bungsmitteln kalt geformt und die Vorform zur Erzeugung einer Endform von der Stirnseite her eine mechanische respektive spanabhebende Bearbeitung mittels geeigneten Mitteln (20) er- fuhr, wobei in der Stirnseite eine umlaufende, nutförmige Geometrie spanabhebend in das Bauteil (10“) eingebracht wurde. Alternativ kann der Stahlwerkstoffverbund zur Herstellung einer Vorform bei Bedarf auch warm geformt werden. An die mechanische Bearbeitung kann sich auch noch eine Wärmebehandlung an der Endform zur Verbesserung der Eigenschaften anschließen. To produce the component (10 "), a substantially planar steel material composite was provided, which had a first layer (1) with a material thickness of at least 50%, based on the total material thickness of the steel material composite. The steel composite material has become a preform by means of suitable and not shown cold molded and the preform for producing a final shape from the front side of a mechanical or machining machining by means of suitable means (20) drove, wherein in the front side a circumferential groove-shaped geometry was machined into the component (10 ") was introduced. Alternatively, the steel material composite can also be thermoformed to produce a preform if required. The mechanical processing can also be followed by a heat treatment on the final shape to improve the properties.
Die Erfindung ist nicht auf die gezeigten Ausführungen beschränkt, sondern die einzelnen Merkmale sind beliebig miteinander kombinierbar. Besonders bevorzugt kann das erfindungs- gemäße Bauteil respektive das Bauteil, welches aus dem erfindungsgemäßen Stahlwerkstoff- verbund hergestellt werden kann, als Komponente im Fahrzeug- oder Metallbau verwendet werden, insbesondere als Komponente im Antriebsstrang eines Fahrzeugs, vorzugsweise in Form eines rotationssymmetrischen Bauteils. The invention is not limited to the embodiments shown, but the individual features can be combined with each other. Particularly preferably, the component according to the invention or the component which can be produced from the steel material composite according to the invention can be used as a component in vehicle or metal construction, in particular as a component in the drive train of a vehicle, preferably in the form of a rotationally symmetrical component.

Claims

Ansprüche claims
1. Stahlwerkstoffverbund mit mindestens zwei Lagen (1, 2, 3, 4) umfassend mindestens eine erste Lage (1, 3) aus einem zerspanbaren und/oder scherbaren Stahl und mindes- tens eine zweite Lage (2, 4) aus einem formbaren Stahl, welche stoffschlüssig mit der ersten Lage (1, 3) verbunden ist. 1. steel composite material with at least two layers (1, 2, 3, 4) comprising at least a first layer (1, 3) of a machinable and / or shearable steel and at least a second layer (2, 4) of a moldable steel , which is materially connected to the first layer (1, 3).
2. Stahlwerkstoffverbund nach Anspruch 1, dadurch gekennzeichnet, dass die mindes- tens erste Lage (1, 3) neben Fe und herstellungsbedingt unvermeidbaren Verunreini- gungen in Gew.-% aus 2. Steel material composite according to claim 1, characterized in that the at least first layer (1, 3) in addition to Fe and production-related unavoidable impurities in wt .-% of
C: bis 0,60 %,  C: up to 0.60%,
Si: bis 1,00 %,  Si: up to 1.00%,
Mn: bis 2,00 %,  Mn: up to 2.00%,
P: bis 0, 150 %,  P: to 0, 150%,
S: bis 0,50 %,  S: up to 0.50%,
Pb: bis 0,50 %,  Pb: up to 0.50%,
mit S P + S + Pb > 0,020 Gew .-%  with S P + S + Pb> 0.020% by weight
besteht, wobei die erste Lage (1, 3) optional eine oder mehrere der folgenden optiona- len Legierungselemente aufweisen kann:  wherein the first layer (1, 3) may optionally comprise one or more of the following optional alloying elements:
optional Cr: bis 3,0 %,  optional Cr: up to 3.0%,
optional Cu: bis 0,50 %,  optional Cu: up to 0.50%,
optional Nb: bis 0,050 %,  optional Nb: up to 0.050%,
optional Mo: bis 1,0 %,  optional Mo: up to 1.0%,
optional N: bis 0,020 %,  optional N: up to 0.020%,
optional Ti: bis 0,020 %,  optional Ti: up to 0.020%,
optional V: bis 0,40 %,  optional V: up to 0.40%,
optional Ni: bis 5,0 %,  optional Ni: up to 5.0%,
optional B: bis 0,010 %,  optional B: up to 0.010%,
optional Sn: bis 0,050 %,  optional Sn: up to 0.050%,
optional H : bis 0,0010 %,  optional H: up to 0.0010%,
optional As: bis 0,020 %,  optional As: up to 0.020%,
optional Co: bis 0,020 %,  optional Co: up to 0.020%,
optional 0: bis 0,0050 %,  optional 0: to 0.0050%,
optional Ca: bis 0,0150 %,  optional Ca: up to 0.0150%,
optional AI: bis 1,0 %. optional AI: up to 1.0%.
3. Stahlwerkstoffverbund nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass die mindestens zweite Lage (2, 4) aus einem Stahl mit einer Bruchdeh- nung A80 > 10, insbesondere einer Bruchdehnung A80 > 15 besteht. 3. Steel material composite according to one of the preceding claims, characterized in that the at least second layer (2, 4) consists of a steel having a breaking elongation A 80 > 10, in particular an elongation at break A 80 > 15.
4. Stahlwerkstoffverbund nach einem der vorgenannten Ansprüche, dadurch gekennzeich- net, dass die erste Lage (1, 3) eine Materialdicke zwischen 5 % und 70 %, insbesondere zwischen 10 % und 50 % bezogen auf die Gesamtmaterialdicke des Stahlwerkstoffver- bunds aufweist. 4. Steel material composite according to one of the preceding claims, characterized marked, that the first layer (1, 3) has a material thickness between 5% and 70%, in particular between 10% and 50% based on the total material thickness of the Stahlwerkstoffver composite.
5. Stahlwerkstoffverbund nach einem der vorgenannten Ansprüche, dadurch gekennzeich- net, dass der Stahlwerkstoffverbund mittels Plattieren, insbesondere mittels Warmwalz- plattieren hergestellt ist. 5. Steel composite material according to one of the preceding claims, characterized marked, that the steel material composite is produced by means of plating, in particular by means of hot-rolling plating.
6. Verfahren zur Herstellung eines Bauteils (10, 10‘, 10“), wobei ein Stahlwerkstoffver- bund nach einem der vorgenannten Ansprüche bereitgestellt wird, der Stahlwerkstoff- verbund zu einer Vorform geformt wird und die Vorform zur Erzeugung einer Endform oder einer weiteren Form zumindest abschnittsweise im Bereich der ersten Lage (1, 3) mechanisch bearbeitet wird. 6. A method for producing a component (10, 10 ', 10 "), wherein a steel composite material is provided according to one of the preceding claims, the steel composite is formed into a preform and the preform for producing a final shape or another shape at least in sections in the region of the first layer (1, 3) is mechanically processed.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Endform oder die wei- tere Form wärmebehandelt wird. 7. The method according to claim 6, characterized in that the final shape or the further form is heat treated.
8. Verwendung eines nach einem der Ansprüche 6 bis 7 hergestellten Bauteils als Kompo- nente im Fahrzeug- oder Metallbau, insbesondere im Antriebsstrang eines Fahrzeugs. 8. Use of a component produced according to one of claims 6 to 7 as a component in vehicle or metal construction, in particular in the drive train of a vehicle.
EP17811278.5A 2017-12-05 2017-12-05 Steel material composite, method for producing a component, and use Withdrawn EP3720648A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/081484 WO2019110087A1 (en) 2017-12-05 2017-12-05 Steel material composite, method for producing a component, and use

Publications (1)

Publication Number Publication Date
EP3720648A1 true EP3720648A1 (en) 2020-10-14

Family

ID=60627625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17811278.5A Withdrawn EP3720648A1 (en) 2017-12-05 2017-12-05 Steel material composite, method for producing a component, and use

Country Status (5)

Country Link
US (1) US11351754B2 (en)
EP (1) EP3720648A1 (en)
JP (1) JP2021505761A (en)
CN (1) CN111432981A (en)
WO (1) WO2019110087A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119612A (en) 1975-04-15 1976-10-20 Nippon Steel Corp A composite steel plate for use as a sliding part in a machine by weld ing assembling
JPH0356644A (en) 1989-07-26 1991-03-12 Nippon Steel Corp Clad steel sheet excellent in burr resistance at the time of press forming and its production
JPH03133630A (en) 1989-10-20 1991-06-06 Nippon Steel Corp Clad steel sheet having good formability excellent in dent resistance and surface strain resistance
JPH0639655B2 (en) 1990-01-30 1994-05-25 新日本製鐵株式会社 Good formability composite steel sheet with excellent burr resistance during press forming and method for producing the same
CN2418330Y (en) 2000-04-21 2001-02-07 叶万青 Double-metal tube
DE102005006606B3 (en) 2005-02-11 2006-03-16 Thyssenkrupp Steel Ag Production of roll-plated hot roll strip, involves having rectangular plates produced from steel and placed on top of each other with surfaces of plates treated before being placed on top of each other
JP5114672B2 (en) * 2008-04-17 2013-01-09 新日鐵住金株式会社 Laminated steel sheet and manufacturing method thereof
DK2662179T3 (en) 2009-10-26 2014-10-13 Neomax Materials Co Ltd Aluminum bonding alloy of a nickel-magnesium alloy
DE102011015071A1 (en) 2011-03-24 2012-09-27 Thyssenkrupp Steel Europe Ag Composite material and structural component for a motor vehicle
EP2886332B1 (en) 2013-12-20 2018-11-21 ThyssenKrupp Steel Europe AG Flat steel product, and method of producing a component of a motor vehicle body and of a motor vehicle body.
JP6543439B2 (en) 2014-04-01 2019-07-10 東洋鋼鈑株式会社 Method of manufacturing metal laminate
DE102014114365A1 (en) * 2014-10-02 2016-04-07 Thyssenkrupp Steel Europe Ag Multilayered flat steel product and component made from it
DE102015114989B3 (en) * 2015-09-07 2016-09-29 Thyssenkrupp Ag Method for producing a component structure with improved joining properties and component structure
DE102016204567A1 (en) 2016-03-18 2017-09-21 Thyssenkrupp Ag Method for producing a hot-rolled material composite, flat product package, hot-rolled material composite and its use

Also Published As

Publication number Publication date
US11351754B2 (en) 2022-06-07
JP2021505761A (en) 2021-02-18
CN111432981A (en) 2020-07-17
WO2019110087A1 (en) 2019-06-13
US20210213708A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
EP2446064B1 (en) Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component
DE69720163T3 (en) Steel and method for forming a steel workpiece by cold plastic processing
DE60033772T2 (en) Martensitic hardening steel with high fatigue strength and martensitic hardening steel strip
EP3168312B1 (en) Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
EP3325678B1 (en) Formable lightweight steel with improved mechanical properties and method for producing semi-finished products from said steel
EP3591078B1 (en) Use of a steel for an additive production method, method for producing a steel component and steel component
EP3797176A1 (en) Shaped sheet-metal part with a high tensile strength formed from a steel and method for the production thereof
DE102017208252A1 (en) Three-layer wear steel or safety steel, method of making a component and use
EP2228459A1 (en) Component with different stability characteristics
EP3625047A1 (en) Safety steel or wear-resistant steel, and use
DE112014004834T5 (en) Hot rolled steel sheet with excellent surface hardness after carburizing heat treatment and excellent drawability
EP3625045B1 (en) Hot-working material, component and use
DE102015220195A1 (en) Carburized alloy steel with improved durability and method of making the same
EP2289770A1 (en) Corrosion protected taylored welded blank for a motor vehicle and its method of production
EP3625044B1 (en) Hot-working material, component and use
DE102008022401A1 (en) Method for the production of steel mold part e.g. automobile body with predominantly bainitic structure, comprises providing starting material in the form of a steel plate or a preformed steel part and through-heating the starting material
EP3720648A1 (en) Steel material composite, method for producing a component, and use
DE102016211411A1 (en) Vehicle wheel and use
WO2020048599A1 (en) Hot-rolled flat steel product and method for the production thereof
WO2017050558A1 (en) Semifinished part and method for producing a vehicle component, use of a semifinished part, and vehicle component
WO2021063747A1 (en) Process for producing an at least partly quenched and tempered sheet steel component and at least partly quenched and tempered sheet steel component
DE102016115618A1 (en) Process for producing a high-strength steel strip with improved properties during further processing and such a steel strip
CH642109A5 (en) FAST WORK STEEL.
EP3625048A1 (en) Hot-working material, component and use
DE112012001745T5 (en) Steel for cold punching and steel element for a steel belt using the same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210429

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20220621