EP3719587A1 - Shock-absorber device and timepiece mechanical oscillator with flexible guide having such a shock-absorber device - Google Patents

Shock-absorber device and timepiece mechanical oscillator with flexible guide having such a shock-absorber device Download PDF

Info

Publication number
EP3719587A1
EP3719587A1 EP20166331.7A EP20166331A EP3719587A1 EP 3719587 A1 EP3719587 A1 EP 3719587A1 EP 20166331 A EP20166331 A EP 20166331A EP 3719587 A1 EP3719587 A1 EP 3719587A1
Authority
EP
European Patent Office
Prior art keywords
oscillator
nihs
axis
housing
shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20166331.7A
Other languages
German (de)
French (fr)
Other versions
EP3719587B1 (en
Inventor
Grégory Musy
François BARROT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Publication of EP3719587A1 publication Critical patent/EP3719587A1/en
Application granted granted Critical
Publication of EP3719587B1 publication Critical patent/EP3719587B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • G04B31/04Shock-damping bearings with jewel hole and cap jewel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/005Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/002Component shock protection arrangements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs

Definitions

  • the present invention relates to an anti-shock device with a rigid stopper and a flexible guide mechanical clock oscillator having such an anti-shock device.
  • the present invention also relates to a mechanical horological oscillator comprising said shockproof device.
  • shock-absorbing devices to protect components, for example those of a watch, is well known.
  • the document EP3076245 describes a shock and / or vibration damping device comprising a flexible element, capable of being deformed under the effect of a stress, and a so-called dissipative layer obtained in a material having a shear modulus lower than the shear modulus of l flexible element, at least partially secured to said flexible element.
  • the document EP3324246 describes rigid axial abutment means arranged to protect the resonator mechanism with blades against axial shocks in the direction of the axis.
  • the shock absorber cooperates with a pivot axis attached to the center of the oscillator.
  • the part of the axle which comes into contact with the shock absorber is always the same regardless of the intensity of the shock, namely, the end of the axle for axial shocks and the terminal reach of the axle for radial shocks.
  • the diameter of the terminal surface of the axis must therefore be large enough so that no shock, whatever its intensity, can damage it. This implies a large axle diameter, ie a large lever arm which generates a significant friction torque on the balance during an impact.
  • Wearing shocks can occur easily and be repeated at high frequency.
  • a significant friction torque associated with repeated shocks when wearing ( ⁇ 500G NIHS) at high frequency can lead to a significant loss of amplitude of the balance or even when the mechanism is stopped or blocked. This is all the more critical for flexibly guided oscillators which generally operate with a low nominal amplitude.
  • An object of the present invention is to minimize the friction between a flexible guided oscillator and its shock absorber and thus to reduce the loss of amplitude of the oscillator due to shocks when worn, which is particularly critical for flexible guided oscillators.
  • which are generally equipped on the one hand with a low nominal amplitude and on the other hand with a non-self-starting escapement which can be blocked if the amplitude of the oscillator is too low.
  • the present invention incorporates a viscoelastic spring and associates it with a rigid stopper so that the impacts during wear are taken up by the viscoelastic shock absorber and accidental impacts by the rigid stopper.
  • NIHS 91-30 Wearing shocks are defined by the NIHS 91-30 standard, "Definition of linear accelerations encountered by a wristwatch during sudden movements and shocks while wearing”.
  • Accidental shocks are defined by NIHS 91-20, "Definition of Typical Linear Shocks for Wristwatch Components”.
  • NIHS 91-10 specifies the minimum requirements for shock resistant watches and describes the corresponding test method.
  • an anti-shock device comprising a viscoelastic element and a rigid stop, each being configured so as to cooperate with a portion of the oscillator; in which the viscoelastic element is configured so as to deform elastically when the oscillator is subjected, during an impact, to an acceleration between 20 G and 1000 G NIHS, preferably between 50 G and 500 G NIHS; in which said portion cooperates with a rigid stop when the portion undergoes an acceleration beyond at least 1000 G NIHS, preferably at least 500 G NIHS; and wherein there is no contact between said portion of the oscillator and the shock absorber for an acceleration of less than 50 G NIHS.
  • the present invention also relates to a mechanical horological oscillator comprising a balance, a suspension with flexible guide guiding and resiliently recalling the balance in a plane of oscillation and provided with protection against shocks, the oscillator comprising at least one anti-shock device according to invention.
  • the shock absorber of the present invention interacts with an attached axis having two different ranges and each characterized by a specific diameter.
  • the axle bearing characterized by the smallest diameter cooperates with the viscoelastic spring for impacts during wear while the axle bearing characterized by the larger diameter cooperates with the rigid stop for accidental impacts. This makes it possible to minimize friction and therefore the loss of amplitude of the balance resulting from shocks when worn while ensuring that the axis is not damaged for accidental shocks of great intensity (> 500G NIHS).
  • the operation of the shock absorber of the present invention is similar to that of the Incabloc® shock absorber for shocks when wearing the range 20 G to 1000 G NIHS (or 50 G to 500 G NIHS) and for accidental shocks from 1000G to 5000G NIHS, with the difference that the shock absorber of the invention dissipates the energy of shocks when worn by 20 G at 1000 G NIHS (or 50 G at 500 G NIHS) by the viscosity of the spring regardless of the direction of the impact while the Incabloc® only dissipates the energy of radial shocks by dry friction and does not dissipate the energy at all axial shocks.
  • Dissipating the energy of the shock is important because the more post-shock rebounds there are between the oscillator and the shock, the longer the oscillator will rub against the shock and the greater the loss of amplitude resulting from the shock. oscillator.
  • the operation of the present invention is completely different from that of the Incabloc®. Indeed, the Incabloc® must ensure both the function of guiding the axis of the balance and the function of shockproof. This implies that the Incabloc® spring is preloaded so that the bearing guiding the balance does not move for very low wearing shocks ( ⁇ 50 G NIHS). This allows the balance to be guided except in the event of strong disturbance (> 50 G NIHS).
  • the guidance is provided by the flexible pivot. There is therefore no contact between the attached axis and the shock absorber for low shocks when worn ( ⁇ 50 G NIHS). As a result, it is on the one hand not necessary to preload the viscoelastic spring and on the other hand the balance is less disturbed by this type of shock than in the case of the Incabloc®.
  • the figure 1 shows a top view of a flexible guided mechanical oscillator 1 for a watch movement, according to one embodiment.
  • the mechanical oscillator 1 comprises an anti-shock device 2 intended to protect the mechanical oscillator 1 clockwork with flexible guidance from shocks.
  • the figure 2 shows a top view of the mechanical oscillator 1, without the shock absorber in order to make visible some components of the oscillator 1.
  • the oscillator comprises a balance 10, a flexible guide suspension 11 guiding and resiliently returning the balance 10 in a plane of oscillation.
  • the flexible guided suspension 11 connects the balance 10 to a fixed base 5 of the oscillator 1.
  • the base 5 is intended to be fixed to a fixed part of the watch movement.
  • the oscillator 1 comprises an axis 3 rigidly linked to the balance 10 by a rigid connection 4 which relates this axis 3 to the center of rotation of the balance 10.
  • the flexible guide suspension comprises elastic blades 11 connecting the base 5 to the balance 10 via a rigid ring 6 integral with the rigid link 4.
  • the figure 3 shows a sectional view of the shockproof device 2, according to one embodiment.
  • the shockproof device 2 comprises a viscoelastic element 20 and a rigid stopper 21, each being configured so as to cooperate with a portion of a clock oscillator (for example axis 3).
  • the viscoelastic element 20 is configured so as to deform elastically when the oscillator is subjected, during an impact, to an acceleration between 50 G and 500 G NIHS, so as to damp the impact. For an acceleration beyond at least 500 G NIHS, the oscillator comes into abutment on the rigid stop 21.
  • the stiffness of the viscoelastic element 20 is adjusted so that said portion of the oscillator (for example axis 3) cooperates with the viscoelastic element 20 when the oscillator is subjected to an acceleration between 50 G and 500 G NIHS, and cooperates with the rigid stopper 21 when the oscillator is subjected to acceleration beyond at least 500 G NIHS.
  • the viscoelastic element 20 comprises a plurality of flexible blades 201, each comprising a viscoelastic material 202. One end of each of said flexible blades is secured to an intermediate piece 22 intended to cooperate with the portion of the oscillator 1.
  • This shape execution of the viscoelastic element 20 is similar to that described in the document EP3076245 .
  • the intermediate piece 22 takes the form of a disc (or cylinder) from which extend the plurality of flexible blades 201 (three flexible blades 201 in the figure 3 ).
  • the flexible blades 201 can be curved in a spiral pattern, the center of the spiral being coincident with a central axis 26 of the intermediate piece 22.
  • the curved blades can include a recess forming a reservoir 203 opening between two flexible blades 201 allowing the 'flow, for example by capillary action, of the material viscoelastic 202 between the flexible blades 201 during the manufacturing process.
  • the viscoelastic element 20 dampens the shock by the deformation of the viscoelastic material 202 of the flexible blades 201.
  • the flexible blades 201 are sufficiently deflected so that a contact occurs between the portion (axis 3) of the oscillator and the rigid stop 21.
  • the flexible blades 201 can be deflected radially and axially (for example, with respect to the central axis 26).
  • the viscoelastic element 20 dampens a shock undergone by the oscillator in the axial direction and in the radial direction, that is to say along the plane in which the flexible blades 201 extend, a plane perpendicular to central axis 26.
  • the flexible blades 201 may have an axial stiffness and a radial stiffness which are adjusted so that the portion of the oscillator (axis 3) cooperates with the viscoelastic element 20 when the oscillator is subjected. to an acceleration, respectively axial and radial, between 50 G and 500 G NIHS, and cooperates with the rigid stop 21 when the oscillator is subjected to an acceleration, respectively axial and radial, beyond at least 500 G NIHS.
  • the intermediate piece 22 comprises a first housing 24 configured to cooperate with the portion of the oscillator (axis 3).
  • the rigid stopper 21 takes the form of a disc arranged under the viscoelastic element 20.
  • the rigid stopper 21 comprises a second housing 25 also configured to cooperate with the portion of the oscillator (axis 3).
  • the first housing 24 is blind.
  • a stone 23 can be positioned in the bottom of the first housing 24.
  • the flexible blades 201 can be made of silicon.
  • the viscoelastic material 202 can then be included between the flexible blades 201 or in the flexible blades 201.
  • the viscoelastic material 202 can be deposited in a cavity formed in the flexible blade 201.
  • the intermediate piece 22 (and the stone 23) which is called upon to be in direct contact with the portion of the oscillator can be made of a material other than silicon, which is more resilient than silicon.
  • the viscoelastic material 202 has a low shear modulus, i.e. a shear modulus preferably less than 10 GPa, a loss factor of at least 0.1.
  • the viscoelastic material 202 has a shear modulus at least 10 times lower than the shear modulus of the flexible blade (s) 201.
  • the viscoelastic material 202 may comprise a polymer, preferably an elastomer.
  • the flexible blades 201 can be made from a metal or metal alloy, for example using a LIGA type process or by laser cutting.
  • the role of the flexible blades 201 is to allow a displacement of the viscoelastic element 202 when the oscillator 1 is subjected, during an impact, to an acceleration between 20G and 1000G (typically between 50G and 500G), which allows '' absorb the shock (dissipation of all or part of the energy of the shock) without blocking and / or slowing down the main mode of oscillation of oscillator 1.
  • the figure 4 shows a sectional view of the mechanical horological oscillator 1 with flexible guidance, according to one embodiment in which the oscillator 1 comprises two axes 3, each being rigidly linked to the balance 10 by the rigid connection 4. The two axes 3 and the two rigid links 4 are arranged coaxially. Each of the two axes 3 cooperates with an anti-shock device 2.
  • the oscillator 1 comprises an upper axis 3 cooperating with an upper shock device 2 and a lower axis 3 cooperating with a lower shock device 2.
  • the figure 5 shows a sectional view of the upper axis 3 and of the central part of the upper shock-absorbing device 2, according to one embodiment.
  • each axis 3 comprises at least one end of the axis 30, an end surface 31 having a small diameter and linked to the end of the axis 30, a proximal surface 32 of greater diameter than the end surface 31 and a shoulder 33 connecting the proximal bearing 32 to the base 34 of the axis 3.
  • the end face 31 cooperates with the viscoelastic element 20.
  • the proximal face 32 cooperates with the rigid stop 21 when the acceleration radial is beyond at least 500 G NIHS.
  • the end bearing surface 31 cooperates with the lateral edges of the first housing 24 and the proximal bearing surface 32 cooperates with the lateral edges 21 'of the second housing 25.
  • the shaft end 30 cooperates with the viscoelastic element 20.
  • the shoulder 33 cooperates with the rigid stop 21 when the Radial acceleration is in excess of at least 500 G NIHS.
  • the end of the shaft 30 cooperates with the bottom (the stone 23) of the first housing 24 and the shoulder 33 cooperates with a lower plane 21 "of the rigid stop 21.
  • axis 3 does not come into contact with the shock absorber 2. These are the properties of mass and stiffness of oscillator 1 as well as the clearances. between axis 3 and intermediate piece 22 (and stone 23) which determines this shock level for a first contact between oscillator 1 and shock absorber 2.
  • the shock absorber 2 can be deformed and dampen the post-shock vibrations radially and axially; it also makes it possible to dissipate tip / tilt rotation movements (tilting / tilting) which may occur (and even be superimposed on radial and axial movements) following shocks of the oscillator on the stop.
  • the behavior of the shock absorber 2 can be similar for axial or radial shocks.
  • the oscillator 1 of the invention comprising two shock absorbers 2 makes it possible to reduce the diameter of the terminal surface 31 working with the shock absorber in order to minimize the friction for shocks at least less than 500 G NIHS. There is also better dissipation of the energy of axial shocks, radial tilt / tilt at least less than 500 G NIHS compared to known shock absorbers.
  • the figure 6 shows a top view of the oscillator 1 including the shock absorber 2 in which the flexible blades 201 curved in a spiral pattern are replaced by an XY table structure.
  • the viscoelastic element 20 comprises a pair of flexible blades 201 essentially parallel, oriented along an X axis and a pair of blades essentially parallel flexible 201, oriented along a Y axis. Reservoirs 203 allow the flow of viscoelastic material 202 between each of the pairs of flexible blades 201.
  • the flexible blades 201 curved in a spiral pattern are replaced by a star structure. More particularly, the shock-absorbing device 2 comprises flexible blades 201 in accordion form. Reservoirs 203 allow the viscoelastic material 202 to flow between two flexible blades 201 parallel.
  • the viscoelastic element 20 may be sized so as to have a flexibility equivalent to that of the viscoelastic element 20 in which the flexible blades 201 have a spiral configuration.
  • the variants of the anti-shock device 2 shown in the figures 6 and 7 thus make it possible to resume the “tip-tilt-pistons” and radial movements of the balance 10 following an impact, while dissipating (by viscoelastic effect) the energy of the impact.
  • the sizing of the viscoelastic element 20 can be based on the judicious choice of the following parameters: the number of flexible blades 201, the type of viscoelastic material, the material constituting the blades, the geometry of these blades, such as their thickness, width, height, length and the relationship between these dimensions.
  • the reservoirs 203 can be dimensioned to allow, as in the spiral configuration of the viscoelastic element 20, the deposition of a viscoelastic polymer, for example by capillarity, between the two opposite faces of the elastic blades 201, thus achieving a sandwich structure therefore the viscoelastic material 202 constitutes the core.

Abstract

La présente invention concerne un dispositif antichoc destiné à protéger des chocs un oscillateur mécanique horloger à guidage flexible, le dispositif antichoc comprenant: un élément viscoélastique (20) et une butée rigide (21), chacun étant configuré de manière à coopérer avec une portion (3) de l'oscillateur; L'élément viscoélastique (20) étant configuré de manière à se déformer lorsque l'oscillateur est soumis, lors d'un choc, à une accélération entre 20 G et 1000 G NIHS, préférentiellement entre 50 G et 500 G NIHS; ladite portion (3) coopérant avec butée rigide (21) lorsque la portion (3) subit une accélération au-delà d'au moins 1000 G NIHS, préférentiellement d'au moins 500 G. La présente invention concerne également un oscillateur mécanique horloger (1) comprenant un balancier (10), une suspension à guidage flexible (11) guidant et rappelant élastiquement le balancier (10) dans un plan d'oscillation et pourvu d'une protection contre les chocs, l'oscillateur (1) comprenant au moins un dispositif antichoc selon l'invention.The present invention relates to an anti-shock device intended to protect a flexible-guided mechanical horological oscillator from shocks, the anti-shock device comprising: a viscoelastic element (20) and a rigid stopper (21), each being configured so as to cooperate with a portion ( 3) of the oscillator; The viscoelastic element (20) being configured so as to deform when the oscillator is subjected, during an impact, to an acceleration between 20 G and 1000 G NIHS, preferably between 50 G and 500 G NIHS; said portion (3) cooperating with a rigid stop (21) when the portion (3) undergoes an acceleration beyond at least 1000 G NIHS, preferably at least 500 G. The present invention also relates to a clockwork mechanical oscillator ( 1) comprising a balance (10), a flexible guided suspension (11) guiding and resiliently returning the balance (10) in a plane of oscillation and provided with protection against shocks, the oscillator (1) comprising at at least one shockproof device according to the invention.

Description

Domaine techniqueTechnical area

La présente invention concerne un dispositif antichoc avec butée rigide et un oscillateur mécanique horloger à guidage flexible disposant d'un tel dispositif antichoc. La présente invention concerne également un oscillateur mécanique horloger comprenant ledit dispositif antichoc.The present invention relates to an anti-shock device with a rigid stopper and a flexible guide mechanical clock oscillator having such an anti-shock device. The present invention also relates to a mechanical horological oscillator comprising said shockproof device.

Etat de la techniqueState of the art

Dans le domaine de la micromécanique de haute précision, et celui de l'horlogerie en particulier, l'utilisation de dispositifs dits antichocs pour protéger des composants, par exemple ceux d'une montre, est bien connue.In the field of high precision micromechanics, and that of watchmaking in particular, the use of so-called shock-absorbing devices to protect components, for example those of a watch, is well known.

Le document EP3076245 décrit un dispositif amortisseur de chocs et/ou de vibrations comprenant un élément flexible, apte à se déformer sous l'effet d'une contrainte, et une couche dite dissipative obtenue dans un matériau présentant un module de cisaillement inférieur au module de cisaillement de l'élément flexible, solidaire au moins partiellement dudit élément flexible.The document EP3076245 describes a shock and / or vibration damping device comprising a flexible element, capable of being deformed under the effect of a stress, and a so-called dissipative layer obtained in a material having a shear modulus lower than the shear modulus of l flexible element, at least partially secured to said flexible element.

Le document EP3324246 décrit des moyens de butée axiale rigide agencés pour la protection du mécanisme résonateur à lames contre les chocs axiaux selon la direction de l'axe.The document EP3324246 describes rigid axial abutment means arranged to protect the resonator mechanism with blades against axial shocks in the direction of the axis.

Dans les cas des antichocs décrits dans EP3076245 et EP3324246 , l'antichoc coopère avec un axe de pivotement rapporté au centre de l'oscillateur. La partie de l'axe qui entre en contact avec l'antichoc est toujours la même quel que soit l'intensité du choc, à savoir, le bout de l'axe pour les chocs axiaux et la portée terminale de l'axe pour les chocs radiaux. Le diamètre de la portée terminale de l'axe doit donc être suffisamment grand pour qu'aucun choc, quel que soit son intensité, ne puisse l'endommager. Cela implique un grand diamètre d'axe soit un grand bras de levier qui génère un couple de frottement important sur le balancier lors d'un choc.In the case of the shock absorbers described in EP3076245 and EP3324246 , the shock absorber cooperates with a pivot axis attached to the center of the oscillator. The part of the axle which comes into contact with the shock absorber is always the same regardless of the intensity of the shock, namely, the end of the axle for axial shocks and the terminal reach of the axle for radial shocks. The diameter of the terminal surface of the axis must therefore be large enough so that no shock, whatever its intensity, can damage it. This implies a large axle diameter, ie a large lever arm which generates a significant friction torque on the balance during an impact.

Les chocs au porter (< 500G NIHS) peuvent se produire facilement et se répéter à fréquence élevée. Ainsi un couple de frottement important associé à des chocs au porter (< 500G NIHS) répétés à fréquence élevée peuvent conduire à une perte importante d'amplitude du balancier voir même à l'arrêt ou au blocage du mécanisme. Cela est d'autant plus critique pour les oscillateurs à guidage flexible qui fonctionnent généralement avec une faible amplitude nominale.Wearing shocks (<500G NIHS) can occur easily and be repeated at high frequency. Thus, a significant friction torque associated with repeated shocks when wearing (<500G NIHS) at high frequency can lead to a significant loss of amplitude of the balance or even when the mechanism is stopped or blocked. This is all the more critical for flexibly guided oscillators which generally operate with a low nominal amplitude.

Bref résumé de l'inventionBrief summary of the invention

Un but de la présente invention est de minimiser les frottements entre un oscillateur à guidage flexible et son antichoc et ainsi de réduire la perte d'amplitude de l'oscillateur suite aux chocs au porter, ce qui est particulièrement critique pour les oscillateurs à guidage flexible qui sont généralement dotés d'une part d'une faible amplitude nominale et d'autre part d'un échappement non auto-démarrant pouvant se bloquer si l'amplitude de l'oscillateur est trop faible.An object of the present invention is to minimize the friction between a flexible guided oscillator and its shock absorber and thus to reduce the loss of amplitude of the oscillator due to shocks when worn, which is particularly critical for flexible guided oscillators. which are generally equipped on the one hand with a low nominal amplitude and on the other hand with a non-self-starting escapement which can be blocked if the amplitude of the oscillator is too low.

La présente invention intègre un ressort viscoélastique et l'associe à une butée rigide de sorte que les chocs au porter soient repris par l'antichoc viscoélastique et les chocs accidentels par la butée rigide.The present invention incorporates a viscoelastic spring and associates it with a rigid stopper so that the impacts during wear are taken up by the viscoelastic shock absorber and accidental impacts by the rigid stopper.

Les chocs au porter sont définis pas la norme NIHS 91-30, "Définition des accélérations linéaires rencontrées par une montre-bracelet lors de gestes brusques et de chocs au porter". Les chocs accidentels sont définis par la norme NIHS 91-20, "Définition des chocs linéaires types pour les composants de montres-bracelet". La norme NIHS 91-10 spécifie les exigences minimales applicables aux montres résistant aux chocs et décrit la méthode d'essai correspondante.Wearing shocks are defined by the NIHS 91-30 standard, "Definition of linear accelerations encountered by a wristwatch during sudden movements and shocks while wearing". Accidental shocks are defined by NIHS 91-20, "Definition of Typical Linear Shocks for Wristwatch Components". NIHS 91-10 specifies the minimum requirements for shock resistant watches and describes the corresponding test method.

Selon l'invention, ces buts sont atteints notamment au moyen d'un dispositif antichoc comprenant un élément viscoélastique et une butée rigide, chacun étant configuré de manière à coopérer avec une portion de l'oscillateur; dans lequel l'élément viscoélastique est configuré de manière à se déformer élastiquement lorsque l'oscillateur est soumis, lors d'un choc, à une accélération entre 20 G et 1000 G NIHS, préférentiellement entre 50 G et 500 G NIHS; dans lequel ladite portion coopère avec une butée rigide lorsque la portion subit une accélération au-delà d'au moins 1000 G NIHS, préférentiellement d'au moins 500 G NIHS ; et dans lequel il n'y a aucun contact entre ladite portion de l'oscillateur et le dispositif antichoc pour une accélération inférieure à 50 G NIHS.According to the invention, these aims are achieved in particular by means of an anti-shock device comprising a viscoelastic element and a rigid stop, each being configured so as to cooperate with a portion of the oscillator; in which the viscoelastic element is configured so as to deform elastically when the oscillator is subjected, during an impact, to an acceleration between 20 G and 1000 G NIHS, preferably between 50 G and 500 G NIHS; in which said portion cooperates with a rigid stop when the portion undergoes an acceleration beyond at least 1000 G NIHS, preferably at least 500 G NIHS; and wherein there is no contact between said portion of the oscillator and the shock absorber for an acceleration of less than 50 G NIHS.

La présente invention concerne également un oscillateur mécanique horloger comprenant un balancier, une suspension à guidage flexible guidant et rappelant élastiquement le balancier dans un plan d'oscillation et pourvu d'une protection contre les chocs, l'oscillateur comprenant au moins un dispositif antichoc selon l'invention.The present invention also relates to a mechanical horological oscillator comprising a balance, a suspension with flexible guide guiding and resiliently recalling the balance in a plane of oscillation and provided with protection against shocks, the oscillator comprising at least one anti-shock device according to invention.

Dans ce contexte et contrairement aux antichocs décrits dans EP3076245 et EP3324246 , l'antichoc de la présente invention interagit avec un axe rapporté disposant de deux portées différentes et caractérisées chacune par un diamètre spécifique. Ainsi, la portée d'axe caractérisée par le plus faible diamètre coopère avec le ressort viscoélastique pour les chocs au porter tandis que la portée d'axe caractérisée par le plus grand diamètre coopère avec la butée rigide pour les chocs accidentels. Cela permet de minimiser les frottements et donc la perte d'amplitude du balancier consécutive aux chocs au porter tout en garantissant que l'axe ne soit pas endommagé pour les chocs accidentels de grande intensité (> 500G NIHS).In this context and unlike the shock absorbers described in EP3076245 and EP3324246 , the shock absorber of the present invention interacts with an attached axis having two different ranges and each characterized by a specific diameter. Thus, the axle bearing characterized by the smallest diameter cooperates with the viscoelastic spring for impacts during wear while the axle bearing characterized by the larger diameter cooperates with the rigid stop for accidental impacts. This makes it possible to minimize friction and therefore the loss of amplitude of the balance resulting from shocks when worn while ensuring that the axis is not damaged for accidental shocks of great intensity (> 500G NIHS).

Le fonctionnement de l'antichoc de la présente invention s'apparente à celui de l'antichoc Incabloc® pour les chocs au porter de la gamme 20 G à 1000 G NIHS (ou 50 G à 500 G NIHS) et pour les chocs accidentels de 1000G à 5000G NIHS, à la différence près que l'antichoc de l'invention dissipe l'énergie des chocs au porter de 20 G à 1000 G NIHS (ou 50 G à 500 G NIHS) par la viscosité du ressort quel que soit la direction du choc alors que l'Incabloc® ne dissipe que l'énergie des chocs radiaux par frottement sec et ne dissipe aucunement l'énergie des chocs axiaux. Dissiper l'énergie du choc est important car plus il y aura de rebonds post-choc entre l'oscillateur et l'antichoc, plus l'oscillateur frottera longtemps contre l'antichoc et plus grande sera la perte d'amplitude résultante de l'oscillateur. Pour les chocs au porter dans la gamme 0 G à 50 G NIHS le fonctionnement de la présente invention est complètement différent de celui de l'Incabloc®. En effet, l'Incabloc® doit assurer à la fois la fonction de guidage de l'axe du balancier et la fonction d'antichoc. Cela implique que le ressort de l'Incabloc® est préchargé de sorte que le palier guidant le balancier ne se déplace pas pour des chocs au porter très faibles (< 50 G NIHS). Cela permet le guidage du balancier sauf en cas de forte perturbation (> 50 G NIHS).The operation of the shock absorber of the present invention is similar to that of the Incabloc® shock absorber for shocks when wearing the range 20 G to 1000 G NIHS (or 50 G to 500 G NIHS) and for accidental shocks from 1000G to 5000G NIHS, with the difference that the shock absorber of the invention dissipates the energy of shocks when worn by 20 G at 1000 G NIHS (or 50 G at 500 G NIHS) by the viscosity of the spring regardless of the direction of the impact while the Incabloc® only dissipates the energy of radial shocks by dry friction and does not dissipate the energy at all axial shocks. Dissipating the energy of the shock is important because the more post-shock rebounds there are between the oscillator and the shock, the longer the oscillator will rub against the shock and the greater the loss of amplitude resulting from the shock. oscillator. For shocks when worn in the range 0 G to 50 G NIHS, the operation of the present invention is completely different from that of the Incabloc®. Indeed, the Incabloc® must ensure both the function of guiding the axis of the balance and the function of shockproof. This implies that the Incabloc® spring is preloaded so that the bearing guiding the balance does not move for very low wearing shocks (<50 G NIHS). This allows the balance to be guided except in the event of strong disturbance (> 50 G NIHS).

Pour l'oscillateur de la présente invention, le guidage est assuré par le pivot flexible. Il n'y a donc aucun contact entre l'axe rapporté et l'antichoc pour les faibles chocs au porter (< 50 G NIHS). De ce fait, il n'est d'une part pas nécessaire de précharger le ressort viscoélastique et d'autre part le balancier est moins perturbé par ce type de chocs que dans le cas de l'Incabloc®.For the oscillator of the present invention, the guidance is provided by the flexible pivot. There is therefore no contact between the attached axis and the shock absorber for low shocks when worn (<50 G NIHS). As a result, it is on the one hand not necessary to preload the viscoelastic spring and on the other hand the balance is less disturbed by this type of shock than in the case of the Incabloc®.

Brève description des figuresBrief description of the figures

Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :

  • la figure 1 montre une vue de dessus d'un oscillateur mécanique comportant un dispositif antichoc, selon un mode de réalisation;
  • la figure 2 montre une vue du dessus de l'oscillateur mécanique de la figure 1, sans le dispositif antichoc;
  • la figure 3 montre une vue en coupe du dispositif antichoc, selon un mode de réalisation;
  • la figure 4 montre une vue en coupe de l'oscillateur mécanique horloger, selon un mode de réalisation; et
  • la figure 5 montre une vue en coupe de l'axe rapporté du balancier, selon une forme d'exécution;
  • la figure 6 illustre le dispositif antichoc, selon un autre mode de réalisation; et
  • la figure 7 illustre le dispositif antichoc, encore selon un autre mode de réalisation.
Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
  • the figure 1 shows a top view of a mechanical oscillator comprising an anti-shock device, according to one embodiment;
  • the figure 2 shows a top view of the mechanical oscillator of the figure 1 , without the shockproof device;
  • the figure 3 shows a sectional view of the shock absorber, according to one embodiment;
  • the figure 4 shows a sectional view of the mechanical clock oscillator, according to one embodiment; and
  • the figure 5 shows a sectional view of the added axis of the balance, according to one embodiment;
  • the figure 6 illustrates the shockproof device, according to another embodiment; and
  • the figure 7 illustrates the shockproof device, still according to another embodiment.

Exemple(s) de mode de réalisationExample (s) of embodiment

La figure 1 montre une vue de dessus d'un oscillateur mécanique 1 à guidage flexible pour un mouvement horloger, selon une forme de réalisation. L'oscillateur mécanique 1 comporte un dispositif antichoc 2 destiné à protéger des chocs de l'oscillateur 1 mécanique horloger à guidage flexible. La figure 2 montre une vue de dessus de l'oscillateur mécanique 1, sans le dispositif antichoc afin de rendre visible certains composants de l'oscillateur 1.The figure 1 shows a top view of a flexible guided mechanical oscillator 1 for a watch movement, according to one embodiment. The mechanical oscillator 1 comprises an anti-shock device 2 intended to protect the mechanical oscillator 1 clockwork with flexible guidance from shocks. The figure 2 shows a top view of the mechanical oscillator 1, without the shock absorber in order to make visible some components of the oscillator 1.

L'oscillateur comprend un balancier 10, une suspension à guidage flexible 11 guidant et rappelant élastiquement le balancier 10 dans un plan d'oscillation. La suspension à guidage flexible 11 relie le balancier 10 à une base 5 fixe de l'oscillateur 1. La base 5 est destinée à être fixée à une partie fixe du mouvement horloger. L'oscillateur 1 comprend un axe 3 lié rigidement au balancier 10 par une liaison rigide 4 qui rapporte cet axe 3 au centre de rotation du balancier 10. Dans l'exemple illustré, la suspension à guidage flexible comporte des lames élastiques 11 reliant la base 5 au balancier 10 par l'intermédiaire d'un anneau rigide 6 solidaire de la liaison rigide 4.The oscillator comprises a balance 10, a flexible guide suspension 11 guiding and resiliently returning the balance 10 in a plane of oscillation. The flexible guided suspension 11 connects the balance 10 to a fixed base 5 of the oscillator 1. The base 5 is intended to be fixed to a fixed part of the watch movement. The oscillator 1 comprises an axis 3 rigidly linked to the balance 10 by a rigid connection 4 which relates this axis 3 to the center of rotation of the balance 10. In the example illustrated, the flexible guide suspension comprises elastic blades 11 connecting the base 5 to the balance 10 via a rigid ring 6 integral with the rigid link 4.

La figure 3 montre une vue en coupe du dispositif antichoc 2, selon un mode de réalisation. Le dispositif antichoc 2 comprend un élément viscoélastique 20 et une butée rigide 21, chacun étant configuré de manière à coopérer avec une portion d'un oscillateur horloger (par exemple l'axe 3). L'élément viscoélastique 20 est configuré de manière à se déformer élastiquement lorsque l'oscillateur est soumis, lors d'un choc, à une accélération entre 50 G et 500 G NIHS, de sorte à amortir le choc. Pour une accélération au-delà d'au moins 500 G NIHS, l'oscillateur vient en butée sur la butée rigide 21.The figure 3 shows a sectional view of the shockproof device 2, according to one embodiment. The shockproof device 2 comprises a viscoelastic element 20 and a rigid stopper 21, each being configured so as to cooperate with a portion of a clock oscillator (for example axis 3). The viscoelastic element 20 is configured so as to deform elastically when the oscillator is subjected, during an impact, to an acceleration between 50 G and 500 G NIHS, so as to damp the impact. For an acceleration beyond at least 500 G NIHS, the oscillator comes into abutment on the rigid stop 21.

Plus particulièrement, la raideur de l'élément viscoélastique 20 est ajustée de manière à ce que ladite portion de l'oscillateur (par exemple l'axe 3) coopère avec l'élément viscoélastique 20 lorsque l'oscillateur est soumis à une accélération entre 50 G et 500 G NIHS, et coopère avec la butée rigide 21 lorsque l'oscillateur est soumis à une accélération au-delà d'au moins 500 G NIHS.More particularly, the stiffness of the viscoelastic element 20 is adjusted so that said portion of the oscillator (for example axis 3) cooperates with the viscoelastic element 20 when the oscillator is subjected to an acceleration between 50 G and 500 G NIHS, and cooperates with the rigid stopper 21 when the oscillator is subjected to acceleration beyond at least 500 G NIHS.

Selon la forme d'exécution illustrée à la figure 3, l'élément viscoélastique 20 comprend une pluralité de lames flexibles 201, chacune comprenant un matériau viscoélastique 202. Une extrémité de chacune desdites lames flexibles est solidaire d'une pièce intermédiaire 22 destinée à coopérer avec la portion de l'oscillateur 1. Cette forme d'exécution de l'élément viscoélastique 20 est similaire à celle décrite dans le document EP3076245 .According to the embodiment illustrated on figure 3 , the viscoelastic element 20 comprises a plurality of flexible blades 201, each comprising a viscoelastic material 202. One end of each of said flexible blades is secured to an intermediate piece 22 intended to cooperate with the portion of the oscillator 1. This shape execution of the viscoelastic element 20 is similar to that described in the document EP3076245 .

Toujours selon la configuration illustrée à la figure 3, la pièce intermédiaire 22 prend la forme d'un disque (ou cylindre) depuis lequel s'étendent la pluralité de lames flexibles 201 (trois lames flexibles 201 dans la figure 3). Les lames flexibles 201 peuvent être incurvées suivant un motif de spirale, le centre de la spirale étant confondu avec un axe central 26 de la pièce intermédiaire 22. Les lames incurvées peuvent comprendre un évidement formant un réservoir 203 débouchant entre deux lames flexibles 201 permettant l'écoulement, par exemple par capillarité, du matériau viscoélastique 202 entre les lames flexibles 201 lors du processus de fabrication.Still according to the configuration shown in figure 3 , the intermediate piece 22 takes the form of a disc (or cylinder) from which extend the plurality of flexible blades 201 (three flexible blades 201 in the figure 3 ). The flexible blades 201 can be curved in a spiral pattern, the center of the spiral being coincident with a central axis 26 of the intermediate piece 22. The curved blades can include a recess forming a reservoir 203 opening between two flexible blades 201 allowing the 'flow, for example by capillary action, of the material viscoelastic 202 between the flexible blades 201 during the manufacturing process.

Dans cette configuration, lorsque l'oscillateur est soumis à une accélération entre 50 G et 500 G NIHS, l'élément viscoélastique 20 amortit le choc par la déformation du matériau viscoélastique 202 des lames flexibles 201. Lorsque l'oscillateur est soumis à une accélération au-delà d'au moins 500 g, les lames flexibles 201 sont suffisamment défléchies pour qu'un contact se produise entre la portion (l'axe 3) de l'oscillateur et la butée rigide 21.In this configuration, when the oscillator is subjected to an acceleration between 50 G and 500 G NIHS, the viscoelastic element 20 dampens the shock by the deformation of the viscoelastic material 202 of the flexible blades 201. When the oscillator is subjected to an acceleration beyond at least 500 g, the flexible blades 201 are sufficiently deflected so that a contact occurs between the portion (axis 3) of the oscillator and the rigid stop 21.

Plus particulièrement, lorsque l'oscillateur est soumis à une accélération entre 50 G et 500 G NIHS, les lames flexibles 201 peuvent être défléchies radialement et axialement (par exemple, par rapport à l'axe central 26). Dans cette configuration, l'élément viscoélastique 20 amortit un choc subi par l'oscillateur dans la direction axiale et dans la direction radiale, c'est-à-dire selon le plan dans lequel s'étendent les lames flexibles 201, plan perpendiculaire à l'axe central 26.More particularly, when the oscillator is subjected to an acceleration between 50 G and 500 G NIHS, the flexible blades 201 can be deflected radially and axially (for example, with respect to the central axis 26). In this configuration, the viscoelastic element 20 dampens a shock undergone by the oscillator in the axial direction and in the radial direction, that is to say along the plane in which the flexible blades 201 extend, a plane perpendicular to central axis 26.

A cette fin, les lames flexibles 201 peuvent avoir une raideur axiale et un raideur radiale qui sont ajustées de manière à ce que la portion de l'oscillateur (l'axe 3) coopère avec l'élément viscoélastique 20 lorsque l'oscillateur est soumis à une accélération, respectivement axiale et radiale, entre 50 G et 500 G NIHS, et coopère avec la butée rigide 21 lorsque l'oscillateur est soumis à une accélération, respectivement axiale et radiale, au-delà d'au moins 500 G NIHS.To this end, the flexible blades 201 may have an axial stiffness and a radial stiffness which are adjusted so that the portion of the oscillator (axis 3) cooperates with the viscoelastic element 20 when the oscillator is subjected. to an acceleration, respectively axial and radial, between 50 G and 500 G NIHS, and cooperates with the rigid stop 21 when the oscillator is subjected to an acceleration, respectively axial and radial, beyond at least 500 G NIHS.

Toujours selon la configuration illustrée à la figure 3, la pièce intermédiaire 22 comporte un premier logement 24 configuré pour coopérer avec la portion de l'oscillateur (l'axe 3). La butée rigide 21 prend la forme d'un disque disposé sous l'élément viscoélastique 20. La butée rigide 21 comporte un second logement 25 également configuré pour coopérer avec la portion de l'oscillateur (l'axe 3).Still according to the configuration shown in figure 3 , the intermediate piece 22 comprises a first housing 24 configured to cooperate with the portion of the oscillator (axis 3). The rigid stopper 21 takes the form of a disc arranged under the viscoelastic element 20. The rigid stopper 21 comprises a second housing 25 also configured to cooperate with the portion of the oscillator (axis 3).

Selon une forme d'exécution, le premier logement 24 est borgne. Une pierre 23 peut être positionnée dans le fond du premier logement 24.According to one embodiment, the first housing 24 is blind. A stone 23 can be positioned in the bottom of the first housing 24.

Les lames flexibles 201 peuvent être réalisées en silicium. Le matériau viscoélastique 202 peut alors être compris entre les lames flexibles 201 ou dans les lames flexibles 201. Par exemple, le matériau viscoélastique 202 peut être déposé dans une cavité formée dans la lame flexible 201. Notons que, comme le silicium supporte peu les déformations plastiques locales, la pièce intermédiaire 22 (et la pierre 23) qui est appelée à être en contact direct avec la portion de l'oscillateur, peut être fabriquée dans un matériau autre que le silicium, plus résiliant que le silicium. De manière avantageuse, le matériau viscoélastique 202 présente un module de cisaillement faible, i.e. un module de cisaillement de préférence inférieur à 10 GPa, un facteur de perte d'au moins 0.1. De préférence, le matériau viscoélastique 202 présente un module de cisaillement au moins 10 fois inférieur au module de cisaillement de la ou des lames flexibles 201. A cette fin, le matériau viscoélastique 202 peut comprendre un polymère, de préférence un élastomère.The flexible blades 201 can be made of silicon. The viscoelastic material 202 can then be included between the flexible blades 201 or in the flexible blades 201. For example, the viscoelastic material 202 can be deposited in a cavity formed in the flexible blade 201. Note that, since silicon has little resistance to deformation local plastics, the intermediate piece 22 (and the stone 23) which is called upon to be in direct contact with the portion of the oscillator, can be made of a material other than silicon, which is more resilient than silicon. Advantageously, the viscoelastic material 202 has a low shear modulus, i.e. a shear modulus preferably less than 10 GPa, a loss factor of at least 0.1. Preferably, the viscoelastic material 202 has a shear modulus at least 10 times lower than the shear modulus of the flexible blade (s) 201. To this end, the viscoelastic material 202 may comprise a polymer, preferably an elastomer.

Alternativement, les lames flexibles 201 peuvent être réalisées dans un métal ou alliage métallique, par exemple à l'aide d'un procédé de type LIGA ou par découpe laser.Alternatively, the flexible blades 201 can be made from a metal or metal alloy, for example using a LIGA type process or by laser cutting.

Le rôle des lames flexibles 201 est de permettre un déplacement de l'élément viscoélastique 202 lorsque l'oscillateur 1 est soumis, lors d'un choc, à une accélération entre 20G et 1000G (typiquement entre 50G et 500G), ce qui permet d'amortir le choc (dissipation de tout ou partie de l'énergie du choc) sans bloquer et/ou freiner le principal mode d'oscillation de l'oscillateur 1. La figure 4 montre une vue en coupe de l'oscillateur mécanique horloger 1 à guidage flexible, selon une forme de réalisation dans lequel l'oscillateur 1 comprend deux axes 3, chacun étant lié rigidement au balancier 10 par la liaison rigide 4. Les deux axes 3 et les deux liaisons rigides 4 sont arrangés de manière coaxiale. Chacun des deux axes 3 coopère avec un dispositif antichoc 2. Autrement dit, l'oscillateur 1 comprend un axe 3 supérieur coopérant avec un dispositif antichoc 2 supérieur et un axe 3 inférieur coopérant avec un dispositif antichoc 2 inférieur.The role of the flexible blades 201 is to allow a displacement of the viscoelastic element 202 when the oscillator 1 is subjected, during an impact, to an acceleration between 20G and 1000G (typically between 50G and 500G), which allows '' absorb the shock (dissipation of all or part of the energy of the shock) without blocking and / or slowing down the main mode of oscillation of oscillator 1. The figure 4 shows a sectional view of the mechanical horological oscillator 1 with flexible guidance, according to one embodiment in which the oscillator 1 comprises two axes 3, each being rigidly linked to the balance 10 by the rigid connection 4. The two axes 3 and the two rigid links 4 are arranged coaxially. Each of the two axes 3 cooperates with an anti-shock device 2. In other words, the oscillator 1 comprises an upper axis 3 cooperating with an upper shock device 2 and a lower axis 3 cooperating with a lower shock device 2.

La figure 5 montre une vue en coupe de l'axe 3 supérieur et de la partie centrale du dispositif antichoc 2 supérieur, selon une forme d'exécution.The figure 5 shows a sectional view of the upper axis 3 and of the central part of the upper shock-absorbing device 2, according to one embodiment.

Selon une forme d'exécution, chaque axe 3 comprend au moins un bout d'axe 30, une portée terminale 31 ayant un faible diamètre et lié au bout d'axe 30, une portée proximale 32 de plus grand diamètre que la portée terminale 31 et d'un épaulement 33 liant la portée proximale 32 à la base 34 de l'axe 3.According to one embodiment, each axis 3 comprises at least one end of the axis 30, an end surface 31 having a small diameter and linked to the end of the axis 30, a proximal surface 32 of greater diameter than the end surface 31 and a shoulder 33 connecting the proximal bearing 32 to the base 34 of the axis 3.

Lorsque l'oscillateur 1 subit un choc dans la direction radiale avec une accélération radiale entre 50 G et 500 G NIHS, la portée terminale 31 coopère avec l'élément viscoélastique 20. La portée proximale 32 coopère avec la butée rigide 21 lorsque l'accélération radiale est au-delà d'au moins 500 G NIHS. Par exemple, la portée terminale 31 coopère avec les bords latéraux du premier logement 24 et la portée proximale 32 coopère avec les bords latéraux 21' du second logement 25.When the oscillator 1 is impacted in the radial direction with a radial acceleration between 50 G and 500 G NIHS, the end face 31 cooperates with the viscoelastic element 20. The proximal face 32 cooperates with the rigid stop 21 when the acceleration radial is beyond at least 500 G NIHS. For example, the end bearing surface 31 cooperates with the lateral edges of the first housing 24 and the proximal bearing surface 32 cooperates with the lateral edges 21 'of the second housing 25.

Lorsque l'oscillateur 1 subit un choc dans la direction axiale avec une accélération axiale entre 50 G et 500 G NIHS, le bout d'axe 30 coopère avec l'élément viscoélastique 20. L'épaulement 33 coopère avec la butée rigide 21 lorsque l'accélération radiale est au-delà d'au moins 500 G NIHS. Par exemple, le bout d'axe 30 coopère avec le fond (la pierre 23) du premier logement 24 et l'épaulement 33 coopère avec un plan inférieur 21" de la butée rigide 21.When the oscillator 1 is impacted in the axial direction with an axial acceleration between 50 G and 500 G NIHS, the shaft end 30 cooperates with the viscoelastic element 20. The shoulder 33 cooperates with the rigid stop 21 when the Radial acceleration is in excess of at least 500 G NIHS. For example, the end of the shaft 30 cooperates with the bottom (the stone 23) of the first housing 24 and the shoulder 33 cooperates with a lower plane 21 "of the rigid stop 21.

Notons que pour des chocs de très faible intensité (< 50 G NIHS), l'axe 3 ne rentre pas en contact avec le dispositif antichoc 2. Ce sont les propriétés de masse et de raideur de l'oscillateur 1 de même que les jeux entre l'axe 3 et la pièce intermédiaire 22 (et la pierre 23) qui détermine ce niveau de choc pour un premier contact entre l'oscillateur 1 et le dispositif antichoc 2.Note that for very low intensity shocks (<50 G NIHS), axis 3 does not come into contact with the shock absorber 2. These are the properties of mass and stiffness of oscillator 1 as well as the clearances. between axis 3 and intermediate piece 22 (and stone 23) which determines this shock level for a first contact between oscillator 1 and shock absorber 2.

Ce sont les propriétés de masse et de raideur de l'oscillateur 1, les jeux entre l'axe 3 et la butée rigide 21 et finalement les raideurs axiales et radiales de l'élément viscoélastique 20 qui déterminent ce niveau de choc pour un premier contact entre l'oscillateur 1 et la butée rigide 21. Ainsi l'élément viscoélastique 20 sert avant tout à éviter que l'axe 3 n'entre en contact avec la butée rigide 21 pour les chocs au porter au moins inférieurs à 500 G NIHS.It is the mass and stiffness properties of oscillator 1, the clearances between the axis 3 and the rigid stop 21 and finally the axial and radial stiffnesses of the viscoelastic element 20 which determine this level of shock for a first contact. between the oscillator 1 and the rigid stopper 21. Thus the viscoelastic element 20 serves above all to prevent the axis 3 from coming into contact with the rigid stopper 21 for shocks to wear at least less than 500 G NIHS.

Le dispositif antichoc 2 peut se déformer et amortir les vibrations post-chocs radialement et axialement ; il permet également de dissiper les mouvements de rotation tip/tilt (bascule/inclinaison) qui peuvent survenir (et même se superposer aux mouvements radiaux et axiaux) suite à des chocs de l'oscillateur sur la butée. Le comportement du dispositif antichoc 2 peut être similaire pour des chocs axiaux ou radiaux.The shock absorber 2 can be deformed and dampen the post-shock vibrations radially and axially; it also makes it possible to dissipate tip / tilt rotation movements (tilting / tilting) which may occur (and even be superimposed on radial and axial movements) following shocks of the oscillator on the stop. The behavior of the shock absorber 2 can be similar for axial or radial shocks.

Par rapport aux antichocs connus, l'oscillateur 1 de l'invention comprenant deux dispositifs antichocs 2 permet de réduire le diamètre de la portée terminale 31 collaborant avec l'antichoc afin de minimiser les frottements pour les chocs au moins inférieurs à 500 G NIHS. Il y a également une meilleure dissipation de l'énergie des chocs axiaux, radiaux bascule/inclinaison au moins inférieurs à 500 G NIHS par rapport aux antichocs connus.Compared with known shock absorbers, the oscillator 1 of the invention comprising two shock absorbers 2 makes it possible to reduce the diameter of the terminal surface 31 working with the shock absorber in order to minimize the friction for shocks at least less than 500 G NIHS. There is also better dissipation of the energy of axial shocks, radial tilt / tilt at least less than 500 G NIHS compared to known shock absorbers.

D'autres configurations possibles de l'élément viscoélastique 20 permettant de réaliser la fonction de guidage flexible des lames flexibles 201 sont également envisageables. Par exemple, la figure 6 montre une vue de dessus de l'oscillateur 1 comprenant le dispositif antichoc 2 dans lequel les lames flexibles 201 incurvées suivant un motif de spirale sont remplacées par une structure en table XY. Dans l'exemple de la figure 6, l'élément viscoélastique 20 comporte une paire de lames flexibles 201 essentiellement parallèles, orientées selon un axe X et une paire de lames flexibles 201 essentiellement parallèles, orientées selon un axe Y. Des réservoirs 203 permettent l'écoulement du matériau viscoélastique 202 entre chacune des paires de lames flexibles 201.Other possible configurations of the viscoelastic element 20 making it possible to perform the flexible guiding function of the flexible blades 201 are also possible. For example, the figure 6 shows a top view of the oscillator 1 including the shock absorber 2 in which the flexible blades 201 curved in a spiral pattern are replaced by an XY table structure. In the example of figure 6 , the viscoelastic element 20 comprises a pair of flexible blades 201 essentially parallel, oriented along an X axis and a pair of blades essentially parallel flexible 201, oriented along a Y axis. Reservoirs 203 allow the flow of viscoelastic material 202 between each of the pairs of flexible blades 201.

Encore dans un autre exemple montré à la figure 7, les lames flexibles 201 incurvées suivant un motif de spirale sont remplacées par une structure en étoile. Plus particulièrement, le dispositif antichocs 2 comporte des lames flexibles 201 en accordéon. Des réservoirs 203 permettent l'écoulement du matériau viscoélastique 202 entre deux lames flexibles 201 parallèles.Yet in another example shown at figure 7 , the flexible blades 201 curved in a spiral pattern are replaced by a star structure. More particularly, the shock-absorbing device 2 comprises flexible blades 201 in accordion form. Reservoirs 203 allow the viscoelastic material 202 to flow between two flexible blades 201 parallel.

Dans les variantes du dispositif antichocs 2 montrées aux figures 6 et 7, l'élément viscoélastique 20 peut être dimensionné de manière à avoir une souplesse équivalente à celle de l'élément viscoélastique 20 dans lequel les lames flexibles 201 ont une configuration en spirale. Tout comme l'implémentation de l'antichoc décrit dans les figures 1 à 5, les variantes du dispositif antichocs 2 représenté dans les figures 6 et 7, permettent ainsi de reprendre les déplacements "tip-tilt-pistons "et radiaux du balancier 10 suite à un choc, tout en dissipant (par effet viscoélastique) l'énergie du choc. Par exemple, le dimensionnement de l'élément viscoélastique 20 peut se baser sur le choix judicieux des paramètres suivants : le nombre de lames flexibles 201, le type de matériau viscoélastique, le matériau constitutif des lames, la géométrie de ces lames, telle que leur épaisseur, leur largeur, leur hauteur, leur longueur et le rapport entre ces dimensions.In the variants of the anti-shock device 2 shown in figures 6 and 7 , the viscoelastic element 20 may be sized so as to have a flexibility equivalent to that of the viscoelastic element 20 in which the flexible blades 201 have a spiral configuration. Just like the implementation of the shockproof described in the figures 1 to 5 , the variants of the anti-shock device 2 shown in the figures 6 and 7 , thus make it possible to resume the “tip-tilt-pistons” and radial movements of the balance 10 following an impact, while dissipating (by viscoelastic effect) the energy of the impact. For example, the sizing of the viscoelastic element 20 can be based on the judicious choice of the following parameters: the number of flexible blades 201, the type of viscoelastic material, the material constituting the blades, the geometry of these blades, such as their thickness, width, height, length and the relationship between these dimensions.

Les réservoirs 203 peuvent être dimensionnés pour permettre, comme dans la configuration en spirale de l'élément viscoélastique 20, le dépôt d'un polymère viscoélastique, par exemple par capillarité, entre les deux faces en vis à vis des lames élastiques 201, réalisant ainsi une structure en sandwich donc le matériau viscoélastique 202 constitue l'âme.The reservoirs 203 can be dimensioned to allow, as in the spiral configuration of the viscoelastic element 20, the deposition of a viscoelastic polymer, for example by capillarity, between the two opposite faces of the elastic blades 201, thus achieving a sandwich structure therefore the viscoelastic material 202 constitutes the core.

Numéros de référence employés sur les figuresReference numbers used in figures

11
oscillateuroscillator
1010
balancierpendulum
1111
suspension à guidage flexibleflexible guided suspension
22
dispositif antichocshockproof device
2020
élément viscoélastique, ressort viscoélastiqueviscoelastic element, viscoelastic spring
201201
lame flexibleflexible blade
202202
matériau viscoélastiqueviscoelastic material
203203
réservoirtank
2121
butée rigiderigid stop
21'21 '
bords latéraux du second logementside edges of the second housing
21"21 "
plan inférieur de la butée rigidelower plane of the rigid stop
2222
pièce intermédiaireintermediate piece
2323
pierrePierre
2424
premier logementfirst accommodation
2525
second logementsecond accommodation
2626
axe centralcentral axis
33
axeaxis
3030
bout d'axeaxle end
3131
portée terminaleterminal scope
3232
portée proximaleproximal reach
3333
épaulementshoulder
3434
base de l'axeaxis base
44
liaison rigiderigid connection
55
basebased
66
anneau rigiderigid ring

Claims (17)

Dispositif antichoc destiné à protéger des chocs un oscillateur mécanique horloger à guidage flexible, le dispositif antichoc comprenant: un élément viscoélastique (20) et une butée rigide (21), chacun étant configuré de manière à coopérer avec une portion (3) de l'oscillateur; caractérisé en ce que l'élément viscoélastique (20) est configuré de manière à se déformer lorsque l'oscillateur est soumis, lors d'un choc, à une accélération entre 20 G et 1000 G NIHS, préférentiellement entre 50 G et 500 G NIHS; en ce que ladite portion (3) coopère avec la butée rigide (21) lorsque la portion (3) subit une accélération au-delà d'au moins 1000 G NIHS, préférentiellement d'au moins 500 G NIHS; et en ce que il n'y a aucun contact entre ladite portion (3) de l'oscillateur et le dispositif antichoc (2) pour une accélération inférieure à 50 G NIHS. Shockproof device intended to protect a flexible mechanical watchmaking oscillator from shocks, the shockproof device comprising: a viscoelastic element (20) and a rigid stopper (21), each being configured so as to cooperate with a portion (3) of the oscillator; characterized in that the viscoelastic element (20) is configured so as to deform when the oscillator is subjected, during an impact, to an acceleration between 20 G and 1000 G NIHS, preferably between 50 G and 500 G NIHS ; in that said portion (3) cooperates with the rigid stop (21) when the portion (3) undergoes an acceleration beyond at least 1000 G NIHS, preferably at least 500 G NIHS; and in that there is no contact between said portion (3) of the oscillator and the shock absorber (2) for an acceleration less than 50 G NIHS. Dispositif antichoc selon la revendication 1,
dans lequel la raideur de l'élément viscoélastique (20) est ajustée de manière à ce que la portion (3) de l'oscillateur coopère avec l'élément viscoélastique (20) lorsque l'oscillateur est soumis à une accélération entre 20 G et 1000 G NIHS, préférentiellement entre 50 G et 500 G NIHS, et coopère avec la butée rigide (21) lorsque l'oscillateur est soumis à une accélération au-delà d'au moins 1000 G NIHS, préférentiellement d'au moins 500 G NIHS.
Shockproof device according to claim 1,
wherein the stiffness of the viscoelastic element (20) is adjusted such that the oscillator portion (3) cooperates with the viscoelastic element (20) when the oscillator is subjected to an acceleration between 20 G and 1000 G NIHS, preferably between 50 G and 500 G NIHS, and cooperates with the rigid stopper (21) when the oscillator is subjected to acceleration beyond at least 1000 G NIHS, preferably at least 500 G NIHS .
Dispositif antichoc selon la revendication 1 ou 2,
dans lequel l'élément viscoélastique (20) comprend une pluralité de lames flexibles, chacune comprenant un matériau viscoélastique.
Shockproof device according to claim 1 or 2,
wherein the viscoelastic member (20) comprises a plurality of flexible blades, each comprising a viscoelastic material.
Dispositif antichoc selon la revendication 3,
dans lequel une extrémité de chacune desdites lames flexibles est solidaire d'une pièce intermédiaire (22) destinée à coopérer avec la portion (3) de l'oscillateur.
Shockproof device according to claim 3,
in which one end of each of said flexible blades is integral an intermediate part (22) intended to cooperate with the portion (3) of the oscillator.
Dispositif antichoc selon la revendication 4,
dans lequel la pièce intermédiaire (22) a la forme d'un cylindre de révolution depuis lequel s'étendent ladite pluralité de lames flexibles, la pièce intermédiaire (22) comportant un premier logement (24) configuré pour coopérer avec ladite portion (3).
Shockproof device according to claim 4,
wherein the intermediate piece (22) has the shape of a cylinder of revolution from which extend said plurality of flexible blades, the intermediate piece (22) comprising a first housing (24) configured to cooperate with said portion (3) .
Dispositif antichoc selon la revendication 4 ou 5,
dans lequel les lames flexibles sont incurvées suivant un motif de spirale, le centre de la spirale étant confondu avec un axe central (26) de la pièce intermédiaire (22) et du logement (24).
Shockproof device according to claim 4 or 5,
wherein the flexible blades are curved in a spiral pattern, the center of the spiral coinciding with a central axis (26) of the intermediate piece (22) and the housing (24).
Dispositif antichoc selon la revendication 5 ou 6,
dans lequel la butée rigide (21) a la forme d'un cylindre de révolution et comporte un second logement (25) configuré pour coopérer avec ladite portion (3).
Shockproof device according to claim 5 or 6,
wherein the rigid stopper (21) has the shape of a cylinder of revolution and comprises a second housing (25) configured to cooperate with said portion (3).
Oscillateur mécanique horloger (1) comprenant un balancier (10), une suspension à guidage flexible (11) guidant et rappelant élastiquement le balancier (10) dans un plan d'oscillation et pourvu d'une protection contre les chocs,
caractérisé en que
l'oscillateur (1) comprend au moins un dispositif antichoc selon l'une des revendications 1 à 7.
Mechanical clockwork oscillator (1) comprising a balance (10), a flexible guide suspension (11) guiding and resiliently returning the balance (10) in a plane of oscillation and provided with protection against shocks,
characterized in that
the oscillator (1) comprises at least one anti-shock device according to one of claims 1 to 7.
Oscillateur (1) selon la revendication 8,
comprenant un axe (3) lié rigidement au balancier (10), l'axe (3) coopérant avec l'élément viscoélastique (20) et la butée rigide (21).
Oscillator (1) according to claim 8,
comprising an axis (3) rigidly linked to the balance (10), the axis (3) cooperating with the viscoelastic element (20) and the rigid stop (21).
Oscillateur (1) selon la revendication 9,
dans lequel l'axe (3) comprend une portée terminale (31) coopérant avec l'élément viscoélastique (20) lorsque l'axe (3) subit une accélération radiale entre 20 G et 1000 G NIHS, préférentiellement entre 50 G et 500 G NIHS, et une portée proximale (32) coopérant avec la butée rigide (21) lorsque l'axe (3) subit une accélération radiale au-delà d'au moins 1000 G NIHS, préférentiellement d'au moins 500 G NIHS.
Oscillator (1) according to claim 9,
in which the axis (3) comprises an end face (31) cooperating with the viscoelastic element (20) when the axis (3) undergoes a radial acceleration between 20 G and 1000 G NIHS, preferably between 50 G and 500 G NIHS, and a proximal bearing (32) cooperating with the rigid stop (21) when the axis (3) undergoes a radial acceleration beyond at least 1000 G NIHS, preferably at least 500 G NIHS.
Oscillateur (1) selon la revendication 10,
dans lequel l'axe (3) comprend un bout d'axe (30) coopérant avec l'élément viscoélastique (20) lorsque l'axe (3) subit une accélération axiale entre 20 G et 1000 G NIHS, préférentiellement entre 50 G et 500 G NIHS; et
dans lequel la portée proximale (32) est de plus grand diamètre que la portée terminale (31) de manière à former un épaulement (33), l'épaulement (33) coopérant avec la butée rigide (21) lorsque l'axe (3) subit une accélération axiale au-delà d'au moins 1000 G NIHS, préférentiellement d'au moins 500 G NIHS.
Oscillator (1) according to claim 10,
in which the axis (3) comprises an end of the axis (30) cooperating with the viscoelastic element (20) when the axis (3) undergoes an axial acceleration between 20 G and 1000 G NIHS, preferably between 50 G and 500 G NIHS; and
in which the proximal bearing surface (32) is of greater diameter than the end bearing surface (31) so as to form a shoulder (33), the shoulder (33) cooperating with the rigid stop (21) when the axis (3) ) undergoes an axial acceleration beyond at least 1000 G NIHS, preferably at least 500 G NIHS.
Oscillateur (1) selon la revendication 10 ou 11,
dans lequel la pièce intermédiaire (22) a la forme d'un cylindre de révolution comportant un premier logement (24), la portée terminale (31) coopérant avec le premier logement (24).
Oscillator (1) according to claim 10 or 11,
in which the intermediate part (22) has the shape of a cylinder of revolution comprising a first housing (24), the end surface (31) cooperating with the first housing (24).
Oscillateur (1) selon l'une des revendications 10 à 12,
dans lequel la butée rigide (21) a la forme d'un cylindre de révolution et comporte un second logement (25) concentrique avec le premier logement (24) et de plus grand diamètre que ce dernier, la portée proximale (32) coopérant avec le second logement (25).
Oscillator (1) according to one of claims 10 to 12,
in which the rigid stop (21) has the shape of a cylinder of revolution and comprises a second housing (25) concentric with the first housing (24) and of greater diameter than the latter, the proximal bearing (32) cooperating with the second housing (25).
Oscillateur (1) selon les revendications 11 et 12,
dans lequel le premier logement (24) est borgne, et
dans lequel le bout d'axe (30) coopère avec le fond de premier logement (24).
Oscillator (1) according to claims 11 and 12,
in which the first housing (24) is blind, and
in which the end of the shaft (30) cooperates with the bottom of the first housing (24).
Oscillateur (1) selon la revendication 14,
dans lequel le fond de premier logement (24) comporte une pierre (23).
Oscillator (1) according to claim 14,
in which the bottom of the first housing (24) comprises a stone (23).
Oscillateur (1) selon les revendications 11 et 13,
dans lequel l'épaulement (33) coopère avec un plan inférieur (21") de la butée rigide (21).
Oscillator (1) according to claims 11 and 13,
in which the shoulder (33) cooperates with a lower plane (21 ") of the rigid stop (21).
Oscillateur (1) selon l'une des revendications 8 à 16, comportant deux antichocs (2) disposés de chaque côté du balancier (10).Oscillator (1) according to one of claims 8 to 16, comprising two shock absorbers (2) arranged on each side of the balance (10).
EP20166331.7A 2019-04-04 2020-03-27 Shock-absorber device and timepiece mechanical oscillator with flexible guide having such a shock-absorber device Active EP3719587B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00461/19A CH716041A1 (en) 2019-04-04 2019-04-04 Anti-shock device and mechanical oscillator with flexible guidance having such an anti-shock device.

Publications (2)

Publication Number Publication Date
EP3719587A1 true EP3719587A1 (en) 2020-10-07
EP3719587B1 EP3719587B1 (en) 2023-05-24

Family

ID=66091825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20166331.7A Active EP3719587B1 (en) 2019-04-04 2020-03-27 Shock-absorber device and timepiece mechanical oscillator with flexible guide having such a shock-absorber device

Country Status (3)

Country Link
US (1) US20200319597A1 (en)
EP (1) EP3719587B1 (en)
CH (1) CH716041A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971656A1 (en) * 2020-09-18 2022-03-23 The Swatch Group Research and Development Ltd Shock protection provided with a viscous element for a resonator mechanism with flexible pivot
EP4343450A1 (en) 2022-09-22 2024-03-27 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Oscillator mechanism on flexible guide for a mechanical clockwork comprising an anti-shock suspension

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2015147A2 (en) * 2007-07-12 2009-01-14 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Shock-absorbing bearing for a timepiece
EP3076245A1 (en) 2015-04-02 2016-10-05 CSEM Centre Suisse D'electronique Et De Microtechnique SA Damping device, in particular for micromechanical clock component
EP3291025A1 (en) * 2016-08-30 2018-03-07 Montres Breguet S.A. Multi-leaf shock absorber
EP3324246A1 (en) 2016-11-16 2018-05-23 The Swatch Group Research and Development Ltd Protection of a resonator mechanism with axial impact blades

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450759B1 (en) * 2010-11-09 2020-08-12 Montres Breguet SA Magnetic shock absorber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2015147A2 (en) * 2007-07-12 2009-01-14 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Shock-absorbing bearing for a timepiece
EP3076245A1 (en) 2015-04-02 2016-10-05 CSEM Centre Suisse D'electronique Et De Microtechnique SA Damping device, in particular for micromechanical clock component
EP3291025A1 (en) * 2016-08-30 2018-03-07 Montres Breguet S.A. Multi-leaf shock absorber
EP3324246A1 (en) 2016-11-16 2018-05-23 The Swatch Group Research and Development Ltd Protection of a resonator mechanism with axial impact blades

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971656A1 (en) * 2020-09-18 2022-03-23 The Swatch Group Research and Development Ltd Shock protection provided with a viscous element for a resonator mechanism with flexible pivot
EP4343450A1 (en) 2022-09-22 2024-03-27 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Oscillator mechanism on flexible guide for a mechanical clockwork comprising an anti-shock suspension

Also Published As

Publication number Publication date
EP3719587B1 (en) 2023-05-24
US20200319597A1 (en) 2020-10-08
CH716041A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
EP1696286B1 (en) Shock-damping bearing for timepieces
EP3324247B1 (en) Protection of blades of a mechanical watch resonator
EP3719587B1 (en) Shock-absorber device and timepiece mechanical oscillator with flexible guide having such a shock-absorber device
EP2015147B2 (en) Shock-absorbing bearing for a timepiece
EP3324246B1 (en) Protection of a resonator mechanism with axial impact blades
EP3382472A1 (en) Guide bearing of a timepiece balance pivot
EP3382470B1 (en) Timepiece oscillator with a flexible pivot
EP3076245B1 (en) Damping device, in particular for micromechanical clock component
WO2009060074A1 (en) Shock-absorbing bearing for timepiece
EP2976684B1 (en) Pivot for clock mechanism
EP3291025B1 (en) Multi-leaf shock absorber
CH698675B1 (en) Impact-absorbing bearing for mechanical watch, has spring plates prestressed so as to exert torque for maintaining mobile unit against stop units i.e. studs, on mobile unit, where mobile unit is constituted of jewel enclosed by central part
EP3291027B1 (en) Membrane shock absorber
EP3839651A1 (en) Mechanical timepiece oscillator with flexible guide
EP3971655A1 (en) Shock-proof protection with abutment for a resonator mechanism with rotatable flexible guiding
CH717880A2 (en) Resonator mechanism with rotating flexible guide with shock protection with stop.
EP3422117A1 (en) Shock-absorber bearing for a shaft of a timepiece mobile
EP4343450A1 (en) Oscillator mechanism on flexible guide for a mechanical clockwork comprising an anti-shock suspension
CH713138A2 (en) Protection of the blades of a mechanical watch resonator in case of shock.
CH712864B1 (en) Diaphragm shock absorber for timepiece.
CH713946B1 (en) Shock-absorbing bearing for an axis of a moving part of a timepiece.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210401

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 17/04 20060101ALN20221122BHEP

Ipc: G04B 31/04 20060101AFI20221122BHEP

INTG Intention to grant announced

Effective date: 20221213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020011012

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1569902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230524

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1569902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230925

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230824

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230924

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020011012

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 5

Ref country code: GB

Payment date: 20240322

Year of fee payment: 5

26N No opposition filed

Effective date: 20240227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524