EP3717749B1 - Ensemble pour turbomachine axiale, procédé d'assemblage et joints d'étanchéité associés - Google Patents

Ensemble pour turbomachine axiale, procédé d'assemblage et joints d'étanchéité associés Download PDF

Info

Publication number
EP3717749B1
EP3717749B1 EP18762286.5A EP18762286A EP3717749B1 EP 3717749 B1 EP3717749 B1 EP 3717749B1 EP 18762286 A EP18762286 A EP 18762286A EP 3717749 B1 EP3717749 B1 EP 3717749B1
Authority
EP
European Patent Office
Prior art keywords
platform
gasket
fixing
casing
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18762286.5A
Other languages
German (de)
English (en)
Other versions
EP3717749A1 (fr
Inventor
Mathieu Renaud
Alain Derclaye
Sébastien VACCA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aero Boosters SA
Original Assignee
Safran Aero Boosters SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aero Boosters SA filed Critical Safran Aero Boosters SA
Publication of EP3717749A1 publication Critical patent/EP3717749A1/fr
Application granted granted Critical
Publication of EP3717749B1 publication Critical patent/EP3717749B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • F01D25/06Antivibration arrangements for preventing blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/24Three-dimensional ellipsoidal
    • F05D2250/241Three-dimensional ellipsoidal spherical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/37Retaining components in desired mutual position by a press fit connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the invention relates to an assembly for an axial turbomachine, to a method of assembling an assembly for a turbomachine and to a seal for a mounting platform for the stator blade of an axial turbomachine.
  • the document EP 2 930 308 A1 describes a turbomachine compressor in which the wall of the casing is made of a composite material and has, on its internal surface, flat facets for securing the stator vanes. To this end, the blades are provided with platforms arranged at the outer radial end of each blade, each of the platforms coming into contact with a facet. This makes it possible to reduce the stress concentrations between the wall of the casing and the blades.
  • a layer of abradable material is provided on the internal face of the wall of the housing. This abradable layer is placed at the junction of the platforms and ensures the continuity of the guiding surface of the air flow.
  • the object of the invention is to solve at least one of the problems posed by the prior art. More precisely, the object of the invention is to increase the efficiency of the turbomachine and to ensure the reliability of the attachment of the blades to the casing.
  • the invention relates to an assembly for an axial turbomachine, in particular an aircraft turbojet, the assembly comprising: an annular casing with an internal surface; an annular row of stator vanes with at least one stator vane comprising a blade extending radially from a fixing platform, said fixing platform being fixed to the housing and having a polygonal outline; remarkable in that it further comprises a seal formed by an element distinct from the casing and distinct from the fixing platform, and comprising a frame the outline of which follows the polygonal outline of the fixing platform, said frame being in radial contact of the fixing platform and the casing in order to ensure a seal.
  • the frame sealingly delimits a pocket radially between the fixing platform and the casing, said pocket extending in particular over the majority of the fixing platform.
  • the frame is formed of bars running along the sides of the platform.
  • the frame of the seal has a general exterior shape in parallelogram and preferably rectangular.
  • the platform has a fixing pin which passes through an orifice in the casing, and in that the fixing pin passes through the seal.
  • a portion of the seal is O-ring or cylindrical, and surrounds the fixing axis.
  • segments connect the toric or cylindrical portion to the frame.
  • the segments comprise two circumferential segments oriented in the circumferential direction of the turbomachine and at least one axial segment oriented in the axial direction of the turbomachine.
  • the toric or cylindrical portion is enclosed in the upstream half of the seal.
  • the seal comprises a downstream reinforcing tongue, preferably extending mainly in the circumferential direction of the turbomachine.
  • the seal is interposed between the casing and several adjacent blade platforms, said seal following the polygonal contours of each of said several platforms.
  • adjacent vanes For example, several adjacent pairs of platforms and facets can share the same joint.
  • the internal surface of the casing comprises an annular row of facets receiving the stator vanes, an external radial surface of the platform being inclined with respect to the associated facet and / or the radial thickness of the seal is more important downstream than upstream. Due to the non-direct contact between the two respective surfaces of the platform and of the facet, they may not be parallel because they are not resting on one another. Thus, it is possible, but not essential, for the seal to have a greater thickness downstream than upstream, that is to say at the place where the pressure of the air flow is greatest.
  • a layer of abradable material is provided on the internal face of the casing, in particular upstream and / or downstream of the facets, and at a distance axially from the platforms and / or from the seal.
  • the subject of the invention is also a method of assembling an assembly for a turbomachine, remarkable in that the assembly is one of the embodiments described above and in that the method comprises a step (a) of placing the seal between the casing and the blade platform, and a step (b) of fixing the blade to the casing during which the seal is compressed radially between the platform of the blade and the casing.
  • the seal is more compressed downstream than upstream.
  • the fixing step (b) comprises the tightening of a nut on the fixing axis so as to compress the seal.
  • the invention also relates to a seal for a fixing platform for the stator blade of an axial turbomachine, in particular of an aircraft turbojet, said fixing platform having a polygonal outline, the seal comprising: a frame of which the outline is able to match the polygonal outline of the fixing platform, and of the thermoformed studs.
  • the studs are inserts for molding the seal.
  • the studs comprise holes, preferably opening, able to cooperate with pins provided on the platform.
  • the invention also relates to a seal for an axial turbomachine stator blade fixing platform, in particular for an aircraft turbojet, said fixing platform having a polygonal outline, the seal comprising: a frame whose outline is able to follow the polygonal contour of the fixing platform, and an adhesive element at least on part of the frame.
  • the adhesive element is an adhesive layer provided on the part of the frame capable of coming into contact with the platform.
  • the adhesive element is covered with a cover.
  • the assembly method is remarkable in that the seal is according to one of the embodiments described above, step (a) of fitting the seal between the casing and the blade platform comprising a sub-step of pre-assembly of the seal to the platform.
  • the pre-assembly sub-step comprises fixing the studs to pins provided on the platform.
  • the pre-assembly sub-step comprises the removal of the cover and the attachment by adhesion of the seal to the platform via the adhesive element.
  • the platforms of the blades comprise sides of polygons in contact with one another.
  • the frame forms a continuous loop, and / or the outline is closed.
  • the seal in particular the frame, forms a closed and sealed loop which is inscribed in the polygonal outline of the fixing platform.
  • the presence of the seal allows a simpler and more flexible design: the abradable layer which must be contiguous to the platform in known systems can be positioned at a distance because it is no longer essential for the sealing function. Also, the precision of machining and positioning of the surfaces of the facets and of the platforms of the blades is no longer as important because the manufacturing tolerances can be widened thanks to the presence of the seal.
  • interior and exterior refer to a positioning relative to the axis of rotation of an axial turbomachine.
  • the axial direction is along the axis of rotation, and the radial direction is perpendicular to the axial direction.
  • the lateral direction is understood according to the circumference, and may be perpendicular to the axis.
  • the figure 1 shows a double-flow turbojet 2.
  • the turbojet 2 comprises a low-pressure compressor 4, a high-pressure compressor 6, a combustion chamber 8 and a turbine 10.
  • the mechanical power of the turbine 10 transmitted via the central shaft up to rotor 12 sets in motion the two compressors 4 and 6.
  • Compressors have several rows of rotor blades associated with rows of stator vanes. The rotation of the rotor around its axis of rotation 14 thus makes it possible to generate a flow of progressively compressed air to the combustion chamber 8.
  • a fan 16 is coupled to the rotor 12 and generates an air flow which is divided into a primary flow 18 and a secondary flow 20.
  • the primary 18 and secondary 20 flows are annular flows, they are channeled using partitions. cylindrical, or ferrules, which can be internal and / or external.
  • the figure 2 is a sectional view of a compressor of an axial turbomachine such as that of the figure 1 .
  • the compressor can be a low-pressure compressor 4. Part of the fan 16 can be seen there as well as the spout 22 for separating the primary flow 18 and the secondary flow 20.
  • the rotor 12 can include several rows of rotor blades 24.
  • the low-pressure compressor 4 comprises at least one rectifier which contains an annular row of stator vanes 26. Each rectifier is associated with the fan 16 or with a row of rotor vanes 24 in order to straighten the air flow, so as to converting flow velocity into pressure.
  • the compressor comprises at least one casing 28.
  • the casing 28 may have a generally circular or tubular shape. It can be an external compressor casing and can be made of composite materials, which makes it possible to reduce its mass while optimizing its rigidity.
  • the casing 28 may comprise fixing flanges 30, for example annular fixing flanges 30 for fixing the separating nozzle 22 and / or for fixing to an intermediate fan casing of the turbomachine.
  • the housing then acts as a mechanical link between the separating spout 22 and the intermediate housing 32.
  • the housing also performs a function of centering the separating spout 22 with respect to the intermediate housing, for example using its annular flanges. .
  • the annular flanges 30 can be made of composite and include fixing holes (not shown) to allow fixing by bolts, or by lockbolts.
  • the flanges 30 may include centering surfaces, such as centering holes.
  • the casing 28 may comprise a wall 32 which is generally circular or in the form of an arc of a circle, the axial edges of which may be delimited by the flanges 30.
  • the wall 32 may have a profile of revolution around the axis of rotation 14.
  • the wall 32 may be in composite material, with a matrix and a reinforcement.
  • the wall 32 may have the shape of an ogive, with a variation in radius along the axis 14.
  • the housing can be formed of half-shells or half-housings, which are separated by an axial plane.
  • the housing half-shells are connected using axial flanges.
  • the stator vanes 26 extend essentially radially from the wall 32, at the level of annular zones for receiving the vanes. These zones can comprise fixing means such as annular grooves, or fixing holes.
  • the blades 26 can be fixed therein individually, or form blade segments fixed to the wall 32.
  • the wall forms a mechanical link between several blades of different rows and / or of the same row of blades.
  • the stator vanes 26 each comprise a fixing platform 34, optionally provided with fixing pins 36 such as threaded rods or any other equivalent means.
  • the wall may comprise annular layers of abradable material 38 between the platforms 34 of the blades, so as to form a barrier between the primary flow 18 and the wall 32.
  • the casing 28, or at least its wall 32 can be made of a composite material.
  • the composite material can be produced using a fiber reinforcement pre-impregnated and cured by autoclave, or by injection.
  • the injection may consist in impregnating a fibrous reinforcement with a resin, possibly organic, such as epoxy.
  • the impregnation can be according to a process of the RTM type (acronym for Resin Transfer Molding).
  • the fibrous reinforcement may be a woven preform, optionally three-dimensionally, or comprise a stack or a winding of different fibrous sheets or fibrous plies, which may extend over the wall, and over at least one or more flanges.
  • the plies can comprise carbon fibers, and / or graphite fibers, and / or glass fibers to prevent galvanic corrosion, and / or kevlar fibers, and / or carbotitanium fibers. Thanks to the materials mentioned, a turbomachine casing can measure between 3 and 5 mm thick for a diameter greater than 1 meter.
  • the figure 3 represents a half-shell of the axial turbine housing, for example an external compressor casing, possibly low-pressure.
  • the casing is seen axially, from upstream.
  • the present teaching can be applied to any casing of the turbomachine, such as a fan casing or a turbine casing.
  • the wall 32 has a curved internal surface 40.
  • the internal surface 40 may include a continuous curvature along the circumference of the circular wall and / or along the axial direction.
  • the internal surface 40 may be circular around the axis of rotation 14 of the turbomachine, and possibly facing said axis.
  • the wall 32, or at least the internal surface 40 can be annular, possibly generally tubular.
  • the curvature of the internal surface 40 can be monotonic, and possibly constant.
  • the curvature can vary axially, for example be more curved downstream.
  • the internal surface 40 may be a conical surface portion, a spheroidal surface portion, optionally spherical, or a combination of each of these surfaces.
  • the wall 32 may comprise facets 42, optionally arranged in at least one annular row along the circumference of the wall 32.
  • Each facet 42 defines a flat surface.
  • the facets 42 of a row can be regularly distributed angularly.
  • the wall 32 may include several annular rows of facets 42 spaced axially along the axially of the wall 32. At least one or each facet 42 is flush with the internal surface 40 of the wall. By flush it can be understood that a facet is level, and / or extends, and / or touches the internal surface.
  • the facets 42 can have different shapes, possibly the facets of the same row have the same shape. Each row can have different shapes of facets.
  • the facets 42 may have disk shapes, oval shapes.
  • the average diameters of the facets 42 can vary gradually, they can increase towards the end of the wall 32 having a minimum diameter, which in the example illustrated in figure 2 is the direction from upstream to downstream.
  • the facets 42 of the same row can be distant from each other. They can then be separated by portions of internal surface 40 which have continuous curvatures. Each facet 42 of the same row can be surrounded by the internal surface 40. The facets 42 of the same row can be tangent to each other, they can be in contact at the level of contact points. Or, the facets of the same row can be truncated laterally. These facets can be contiguous along junction lines 44.
  • each facet 42 can comprise a fixing means, such as a fixing hole 46, which can cooperate with a blade fixing pin.
  • a fixing orifice 46 is disposed at the center of the associated facet.
  • the fixing holes 46 can be arranged in one or more annular row (s). These can be distributed axially along the wall 32.
  • At least one or each axial flange 48 can be integral with the wall 32, as can at least one or each annular flange 30.
  • at least one type of flange, or each flange can be attached to the wall.
  • the wall can be made of composite and the flanges can be metallic and fixed to the wall.
  • the figure 4 represents a turbomachine blade, for example a stator blade 26 of a low pressure compressor rectifier.
  • the vane can also be a turbine vane.
  • the blade 26 comprises a body 50, or blade, forming a profiled surface intended to extend into the primary flow. Its shape makes it possible to modify the flow of the flow.
  • the blade extends axially from a leading edge 60 to a trailing edge 62.
  • the “lower surface” and “upper surface” faces connect the leading edge 60 to the trailing edge 62 and a medium camber (noted 64 on the figure 5 ) is defined equidistant from these two faces.
  • the platform 34 for fixing the blade 26 to the wall of the casing may have the general shape of a plate. It can comprise at least one or two zones of lesser thickness 52, and optionally a zone with increased thickness 54. The zone with increased thickness 54 can be surrounded by a zone of lesser thickness 52, or be placed between two zones of lesser thickness 52.
  • the fixing axis 36 may extend opposite the blade 50 of the blade.
  • the or each platform 34 comprises an external radial bearing surface 56 intended to come opposite a facet.
  • the figure 5 represents a model of a blade platform seen from the outside radially (or seen from above compared to the view of the figure 4 ).
  • the blade 50 of the vane which is on the other side of the platform 34 is shown in dotted lines. Platform models can change from one row of blades to another.
  • the platform 34 may have the general shape of a quadrilateral such as a parallelogram, a trapezoid or a rectangle.
  • the contour of the platform 34 comprises opposite lateral edges 58, which may optionally come into contact with the adjacent lateral edges 58 of the other blades in the same row, and with the upstream and downstream edges 59.
  • the lateral edges 58 can be bent or arched for limit their rotation when tightening their fasteners.
  • the platform 34 is made of metal, preferably of titanium. It can also be made of a composite with an organic matrix. It may be integral with the body of the vane 26. To comply with a precise shape, its outline is machined, possibly rectified in order to comply with strict tolerances.
  • the extra thick zone 54 may have the shape of a disc, the fixing axis 36 possibly being placed in the center of the disc and / or of the rectangle.
  • the axis can be arranged eccentrically and not in the center of the platform.
  • the center of axis 36 may be at a distance of 20 to 50% of the axial dimension of the platform on the upstream side.
  • the axis 36 can be circumscribed in the first half or the first upstream third of the platform.
  • the figure 6 shows a stator vane 26 fixed to the wall 32.
  • the wall 32 may have a generally constant thickness, for example at the level of at least one or of each facet 42. Its outer surface 70 may be curved at the level of each facet 42, preferably with a continuous and / or monotonic curvature axially and / or circumferentially at the level of each facet 42.
  • the external surface 70 of the wall 32 can comprise a flat 72 at the level of at least one facet 42, preferably at the level of every facet.
  • One or each flat 72 may be parallel to the associated facet 42.
  • a flat 72 forms a flat surface, possibly smooth. It can form a discontinuity in the curvature of the outer surface 70.
  • the flat provides a flat surface for a clamping means 74 of the fixing pin 36, preferably a nut 74 on a threaded pin 36.
  • the outer radial surface 56 of the or each platform 34 faces the facet 42.
  • This facing surface 56 and this facing facet 42 may be parallel and of substantially similar dimensions.
  • the surfaces 42, 56 can be inclined with respect to one another.
  • the surface 56 of the platform may not be flat.
  • the extra thick zone 54 comes into contact with the facet 42 and the axis 36 penetrates into the orifice (noted 46 on the figure 3 ) of facet 42.
  • the abradable 38 can be inserted between the surfaces 42 and 56.
  • the abradable 38 can stop at the edges of the platform or be at an axial distance therefrom.
  • the or each facet 42 forms a discontinuity in the internal surface 40.
  • the contour of at least one or each facet 42 may form a line of rupture of the curvature of the internal surface. All around each facet 42, the tangents of the inner surface may be inclined relative to the facet 42.
  • the facets 42 may form flattens in the inner surface 40, the flattens being inward.
  • the wall has a continuity of material between the facets and the internal surface, and possibly a geometric discontinuity.
  • a seal 80 of elastic material to prevent air leaks between the platform and the housing.
  • This seal contains a pocket 68 delimited by the seal 80, the outer radial surface 56 of the platform 34 and the wall 32 of the housing.
  • the casing may not be provided with facets and the surface 56 therefore faces the tubular or cylindrical wall 32.
  • the joint can be made of bars. Its outer contour may at least partially correspond to the contour of the surface 56 and therefore be in the form of a polygon, in particular a trapezoid, parallelogram or rectangle. Three of the segments of the seal 82, 84, 86 forming the polygon are visible on the figure 6 .
  • the seal can include flat portions.
  • One or both surfaces 42 and 56 may have housings, for example grooves to receive one or more segments of the seal 80.
  • the figure 7 details the seal 80 in this same embodiment.
  • the seal 80 has a frame 81 composed of upstream 82 and downstream 84 outer segments and axial outer segments 86, 88 forming a rectangle.
  • the seal may further comprise an O-ring portion 90 preferably connected to the frame 81 by segments at 90 °, in particular in this example two axial segments 92, 94 and two circumferential segments 96, 98, that is to say which s' mainly extend along the circumference.
  • the toric portion 90 can be connected to the frame 81 by means of a cross, in particular formed by the segments.
  • the O-ring portion 90 is at the center of the seal 80.
  • the latter can alternatively be offset upstream or downstream, that is to say in the direction of the segment 82 or 84 respectively.
  • the toric portion 90 can also be offset circumferentially, that is to say towards the segment 86 or the segment 88.
  • the section of the circumferential segments 96, 98 is greater than the section of the segments 92, 94. If the segments are all of the same thickness - the thickness being their dimension in the radial direction which is perpendicular to the plane of the figure 7 -, the section of the circumferential segments 96, 98 is larger because of their dimension in the axial direction which is greater than the circumferential dimension of the segments 92, 94.
  • the thickness of the downstream segment 84 of the frame 81 can be greater than the thickness of the upstream segment 82 of the frame 81.
  • the figure 8 shows an isometric view of a gasket 180 according to a second embodiment.
  • the segments of the seal 180 are incremented by 100 relative to that of the figure 7 .
  • the toric portion 190 is only connected to the frame 181 formed by the segments 182, 184, 186, 188 by three segments 192, 196 and 198.
  • This example shows in particular the variation in thickness along the seal. 180.
  • the downstream segment 184 in particular has a greater thickness than the upstream segment 182. This allows a greater compression ratio of the seal 180 downstream when the surfaces 42 and 56 are parallel. This also allows the mounting of a seal between two surfaces 42 and 56 which are not parallel, the variable thickness of the seal “catching up” the variable gap between the two surfaces 42 and 56.
  • the figures 9 and 10 describe a seal 280 according to a third embodiment.
  • the segments of the seal 280 are incremented by 100 relative to that of the figure 8 .
  • the O-ring portion 290 has an oval shape and the latter is not disposed in the middle of the seal but in the upstream half.
  • the toric portion 290 is connected to the frame 281 by the circumferential segments 296, 298 and the axial segment 292.
  • a reinforcing strip 284 is provided to replace the downstream segment.
  • figure 10 illustrates this strip 284 and highlights the significant variation in thickness between upstream and downstream.
  • the strip 284 can also come in addition to a downstream segment (like the segment 184 of the previous embodiment), the strip extending upstream or downstream of such a segment, possibly at a distance from it.
  • the frame 281 is formed by the segments 282, 286, 288 and the strip 284.
  • the joints of two adjacent platforms can come into contact with each other.
  • the axial outer segments 86, 88, 186, 188, 286, 288 of two joints of adjacent platforms may be parallel and come into contact with one another.
  • a platform may have one side of the outline parallel to one side of an adjacent platform and contact that side.
  • two or more adjacent joints may form a single joint 380 common to several platforms.
  • This seal 380 comprises an upstream segment 382 and a downstream segment 384 common to several platforms.
  • O-ring portions 390 are each provided to circumcise the fixing axis of the respective platforms and inner segments are provided to connect the O-ring portions 390 to the upstream 382 and downstream 384 segments.
  • the arrangement of the O-ring portions 390 and the respective inner segments correspond the layout of the platforms.
  • certain O-ring portions can be positioned at different places axially, and the dimension of the gasket portions facing a platform can be greater or lesser.
  • the fact that the seal 380 is not symmetrical can serve as a polarizing device during the assembly of the turbomachine.
  • the seal can follow the polygonal contours of each of the adjacent vane platforms.
  • the joint is therefore formed of several frames 381 and two adjacent frames can share a segment in common.
  • Such a seal 380 can cooperate with several blades of the annular row of blades, such as for example two or four adjacent blades, or all the blades facing a half-casing.
  • a seal can cooperate with a plurality of adjacent vanes, at least one of which is fixed to a half-casing and at least one other is fixed to the other half-casing.
  • the seal can also be common to all the blades of a row of blades and be in the form of a crown.
  • the figures 12 and 13 illustrate a seal 480, 580 according to the invention. This can have the various elements already described in the other embodiments (O-ring portion, tongue, a single joint common to several platforms, etc.).
  • the seal 480 has thermoformed pads 483, produced in the form of molding inserts. These pads 483 are preferably arranged at the level of the frame 481 of the seal.
  • one or more studs can be arranged at other locations of the seal 480. These studs can include a hole which can cooperate with pins provided on the platform. The pins can be such that a tight assembly in the studs is obtained. This allows the seal to be pre-assembled on the platform.
  • the studs can alternatively be provided with an internal thread to receive a threaded rod of the platforms.
  • the studs are 2, 4 or 6 in number.
  • the studs can be of identical or different dimensions, in particular when the seal is thicker downstream as shown in the figure. figure 12 . Alternatively, a single stud can also be provided on the seal.
  • the figure 13 shows a pad 580 provided with an adhesive element 583 on its frame 581.
  • the elements are shown schematically and the scale of sizes is not respected.
  • the adhesive element may be a dot of glue or an adhesive layer 583, which may be covered with a seal 585.
  • the seal 585 is removed from the seal 580, then the seal is positioned on the platform.
  • the cover has a part 587 that does not adhere to the adhesive means in order to facilitate its removal.
  • the seal adheres to the platform and facilitates the assembly of the platform and its seal in the housing.
  • the joint of the various embodiments illustrated above can be made completely of elastomer, polymer or foam.
  • One or more of the segments may comprise a rigid wire (metallic or other) in its core coated with elastomer, polymer or foam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

    Domaine technique
  • L'invention a trait à un ensemble pour turbomachine axiale, à un procédé d'assemblage d'un ensemble pour turbomachine et à un joint d'étanchéité pour une plateforme de fixation d'aube statorique de turbomachine axiale.
  • Technique antérieure
  • Le document EP 2 930 308 A1 décrit un compresseur de turbomachine dans lequel la paroi du carter est en matériau composite et dispose, sur sa surface interne, de facettes planes pour assurer la fixation des aubes statoriques. A cette fin, les aubes sont pourvues de plateformes agencées à l'extrémité radiale externe de chaque aube, chacune des plateformes venant au contact d'une facette. Ceci permet de réduire les concentrations de contraintes entre la paroi du carter et les aubes. Une couche de matériau abradable est prévue sur la face interne de la paroi du carter. Cette couche d'abradable est disposée en jonction des plateformes et assure la continuité de la surface de guidage du flux d'air. Cependant, il apparaît que cette disposition est insuffisante pour assurer l'étanchéité du flux, et en particulier des fuites d'air peuvent apparaître sous certaines conditions de pression et de température, entre les plateformes et la paroi du carter. Ceci impacte principalement le rendement de la turbomachine et peut affecter la durabilité de la tenue mécanique de la fixation des aubes.
  • Résumé de l'invention Problème technique
  • L'invention a pour objectif de résoudre au moins un des problèmes posés par l'art antérieur. Plus précisément, l'invention a pour objectif d'augmenter le rendement de la turbomachine et d'assurer la fiabilité de la fixation des aubes au carter.
  • Solution technique
  • L'invention a trait à un ensemble pour turbomachine axiale, notamment de turboréacteur d'aéronef, l'ensemble comprenant : un carter annulaire avec une surface interne ; une rangée annulaire d'aubes statoriques avec au moins une aube statorique comprenant une pale s'étendant radialement depuis une plateforme de fixation, ladite plateforme de fixation étant fixée au carter et présentant un contour polygonal ; remarquable en ce qu'il comprend en outre un joint d'étanchéité formé par un élément distinct du carter et distinct de la plateforme de fixation, et comprenant un cadre dont le contour épouse le contour polygonal de la plateforme de fixation, ledit cadre étant en contact radial de la plateforme de fixation et du carter afin d'y assurer une étanchéité.
  • Selon un mode avantageux de l'invention, le cadre délimite de manière étanche une poche radialement entre la plateforme de fixation et le carter, ladite poche s'étendant notamment sur la majorité de la plateforme de fixation.
  • Selon un mode avantageux de l'invention, le cadre est formé de barres longeant les côtés de la plateforme.
  • Selon un mode avantageux de l'invention, le cadre du joint a une forme extérieure générale en parallélogramme et préférentiellement rectangulaire.
  • Selon un mode avantageux de l'invention, la plateforme a un axe de fixation qui traverse un orifice du carter, et en ce que l'axe de fixation traverse le joint.
  • Selon un mode avantageux de l'invention, une portion du joint est torique ou cylindrique, et entoure l'axe de fixation.
  • Selon un mode avantageux de l'invention, des segments relient la portion torique ou cylindrique au cadre.
  • Selon un mode avantageux de l'invention, les segments comprennent deux segments circonférentiels orientés selon la direction circonférentielle de la turbomachine et au moins un segment axial orienté selon la direction axiale de la turbomachine.
  • Selon un mode avantageux de l'invention, la portion torique ou cylindrique est renfermée dans la moitié amont du joint.
  • Selon un mode avantageux de l'invention, le joint comprend une languette de renfort aval, préférentiellement s'étendant principalement selon la direction circonférentielle de la turbomachine.
  • Selon un mode avantageux de l'invention, le joint est interposé entre le carter et plusieurs plateformes d'aubes adjacentes, ledit joint épousant les contours polygonaux de chacune desdites plusieurs plateformes d'aubes adjacentes. Par exemple, plusieurs couples adjacents de plateformes et de facettes peuvent partager le même joint.
  • Selon un mode avantageux de l'invention, la surface interne du carter comporte une rangée annulaire de facettes recevant les aubes statoriques, une surface radiale externe de la plateforme étant inclinée par rapport à la facette associée et/ou l'épaisseur radiale du joint est plus importante en aval qu'en amont. Du fait du non contact direct entre les deux surfaces respectives de la plateforme et de la facette, elles peuvent ne pas être parallèles car elles ne sont pas en appui l'une sur l'autre. Ainsi, il est possible mais pas indispensable, que le joint ait une épaisseur plus importante en aval qu'en amont, c'est-à-dire à l'endroit où la pression du flux d'air est la plus importante.
  • Selon un mode avantageux de l'invention, une couche de matériau abradable est prévue sur la face interne du carter, notamment en amont et/ou en aval des facettes, et à distance axialement des plateformes et/ou du joint.
  • L'invention a également pour objet un procédé d'assemblage d'un ensemble pour turbomachine, remarquable en ce que l'ensemble est l'un des modes de réalisation exposés ci-dessus et en ce que le procédé comprend une étape (a) de mise en place du joint entre le carter et la plateforme d'aube, et une étape (b) de fixation de l'aube au carter pendant laquelle joint est comprimé radialement entre la plateforme de l'aube et le carter.
  • Selon un mode avantageux de l'invention, le joint est plus comprimé en aval qu'en amont.
  • Selon un mode avantageux de l'invention, l'étape (b) de fixation comprend le serrage d'un écrou sur l'axe de fixation de manière à comprimer du joint.
  • Ainsi, l'invention a également trait à un joint d'étanchéité pour une plateforme de fixation d'aube statorique de turbomachine axiale, notamment de turboréacteur d'aéronef, ladite plateforme de fixation présentant un contour polygonal, le joint comprenant : un cadre dont le contour est apte à épouser le contour polygonal de la plateforme de fixation, et des plots thermoformés.
  • Selon un mode avantageux de l'invention, les plots sont des inserts de moulage du joint.
  • Selon un mode avantageux de l'invention, les plots comprennent des trous, préférentiellement débouchants, apte à coopérer avec des pions prévus sur la plateforme.
  • L'invention a également trait à un joint d'étanchéité pour une plateforme de fixation d'aube statorique de turbomachine axiale, notamment de turboréacteur d'aéronef, ladite plateforme de fixation présentant un contour polygonal, le joint comprenant : un cadre dont le contour est apte à épouser le contour polygonal de la plateforme de fixation, et un élément adhésif au moins sur une partie du cadre.
  • Selon un mode avantageux de l'invention, l'élément adhésif est une couche adhésive prévue sur la partie du cadre apte à venir au contact de la plateforme.
  • Selon un mode avantageux de l'invention, l'élément adhésif est recouvert d'un opercule.
  • Selon un mode avantageux de l'invention, le procédé d'assemblage est remarquable en ce que le joint d'étanchéité est selon l'un des modes de réalisations exposés ci-dessus, l'étape (a) de mise en place du joint entre le carter et la plateforme d'aube comprenant une sous-étape de pré-assemblage du joint à la plateforme.
  • Selon un mode avantageux de l'invention, la sous-étape de pré-assemblage comprend la fixation des plots à des pions prévus sur la plateforme.
  • Selon un mode avantageux de l'invention, la sous-étape de pré-assemblage comprend l'enlèvement de l'opercule et la fixation par adhérence du joint à la plateforme via l'élément adhésif.
  • Selon un mode avantageux de l'invention, les plateformes des aubes comprennent des côtés de polygones en contact les uns des autres.
  • Selon un mode avantageux de l'invention, le cadre forme une boucle continue , et/ou le contour est fermé.
  • Selon un mode avantageux de l'invention, le joint d'étanchéité, notamment le cadre, forme une boucle fermée et étanche qui est inscrite dans le contour polygonal de la plateforme de fixation.
  • Avantages apportés
  • La présence du joint permet une conception plus simple et plus flexible : la couche d'abradable qui doit être contiguë à la plateforme dans les systèmes connus peut être positionnée à distance car elle n'est plus indispensable à la fonction d'étanchéité. Aussi, la précision d'usinage et de mise en position des surfaces des facettes et des plateformes des aubes n'est plus aussi importante car les tolérances de fabrication peuvent être élargie grâce à la présence du joint.
  • Brève description des dessins
    • La figure 1 représente une turbomachine axiale selon l'invention ;
    • La figure 2 est un schéma d'un compresseur de turbomachine ;
    • La figure 3 esquisse une vue axiale du carter du compresseur de turbomachine selon l'invention ;
    • La figure 4 illustre une aube de stator avec une plateforme en contact d'une facette du carter ;
    • La figure 5 représente une vue de dessus de l'aube ;
    • La figure 6 représente une portion de paroi de carter sur laquelle est fixée une aube ;
    • La figure 7 représente une vue de dessus d'un mode de réalisation d'un joint ;
    • La figure 8 représente une vue isométrique d'un joint selon un second mode de réalisation ;
    • La figure 9 représente un troisième mode de réalisation du joint ;
    • La figure 10 représente une vue isométrique du joint de la figure 9 ;
    • La figure 11 représente un quatrième mode de réalisation du joint ;
    • La figure 12 représente un cinquième mode de réalisation du joint ;
    • La figure 13 représente un sixième mode de réalisation du joint.
    Description des modes de réalisation
  • Dans la description qui va suivre, les termes intérieur et extérieur renvoient à un positionnement par rapport à l'axe de rotation d'une turbomachine axiale. La direction axiale est selon l'axe de rotation, et la direction radiale est perpendiculaire à la direction axiale. La direction latérale est entendue selon la circonférence, et peut être perpendiculaire à l'axe.
  • La figure 1 représente un turboréacteur double-flux 2. Le turboréacteur 2 comprend un compresseur basse-pression 4, un compresseur haute-pression 6, une chambre de combustion 8 et une turbine 10. En fonctionnement, la puissance mécanique de la turbine 10 transmise via l'arbre central jusqu'au rotor 12 met en mouvement les deux compresseurs 4 et 6.
  • Les compresseurs comportent plusieurs rangées d'aubes de rotor associées à des rangées d'aubes de stators. La rotation du rotor autour de son axe de rotation 14 permet ainsi de générer un débit d'air progressivement comprimé jusqu'à la chambre de combustion 8.
  • Un fan 16 est couplé au rotor 12 et génère un flux d'air qui se divise en un flux primaire 18 et un flux secondaire 20. Les flux primaire 18 et secondaire 20 sont des flux annulaires, ils sont canalisés à l'aide de cloisons cylindriques, ou viroles, qui peuvent être intérieures et/ou extérieures.
  • La figure 2 est une vue en coupe d'un compresseur d'une turbomachine axiale telle que celle de la figure 1. Le compresseur peut être un compresseur basse-pression 4. On peut y observer une partie du fan 16 ainsi que le bec de séparation 22 du flux primaire 18 et du flux secondaire 20. Le rotor 12 peut comprendre plusieurs rangées d'aubes rotoriques 24.
  • Le compresseur basse-pression 4 comprend au moins un redresseur qui contient une rangée annulaire d'aubes statoriques 26. Chaque redresseur est associé au fan 16 ou à une rangée d'aubes rotoriques 24 pour en redresser le flux d'air, de sorte à convertir la vitesse du flux en pression.
  • Le compresseur comprend au moins un carter 28. Le carter 28 peut présenter une forme généralement circulaire ou tubulaire. Il peut être un carter externe de compresseur et peut être en matériaux composites, ce qui permet de réduire sa masse tout en optimisant sa rigidité. Le carter 28 peut comprendre des brides de fixation 30, par exemple des brides annulaires de fixation 30 pour la fixation du bec de séparation 22 et/ou pour se fixer à un carter intermédiaire de soufflante de la turbomachine. Le carter assure alors une fonction de lien mécanique entre le bec de séparation 22 et le carter intercalaire 32. Le carter assure également une fonction de centrage du bec de séparation 22 par rapport au carter intermédiaire, par exemple à l'aide de ses brides annulaires. Les brides annulaires 30 peuvent être en composite et comprendre des orifices de fixation (non représentés) pour permettre une fixation par boulons, ou par lockbolts. Les brides 30 peuvent comprendre des surfaces de centrage, tels des orifices de centrage.
  • La carter 28 peut comprendre une paroi 32 généralement circulaire ou en arc de cercle, dont les bords axiaux peuvent être délimités par les brides 30. La paroi 32 peut présenter un profil de révolution autour de l'axe de rotation 14. La paroi 32 peut être en matériau composite, avec une matrice et un renfort. La paroi 32 peut présenter une forme d'ogive, avec une variation de rayon le long de l'axe 14.
  • Le carter peut être formé de demi-coquilles ou de demi-carters, qui sont séparés par un plan axial. Les demi-coquilles du carter sont reliées à l'aide de brides axiales.
  • Les aubes statoriques 26 s'étendent essentiellement radialement depuis la paroi 32, au niveau de zones annulaires de réception d'aubes. Ces zones peuvent comprendre des moyens de fixations telles des gorges annulaires, ou des orifices de fixation. Les aubes 26 peuvent y être fixées de manière individuelle, ou former des segments d'aubes fixés à la paroi 32. La paroi forme un lien mécanique entre plusieurs aubes de différentes rangées et/ou d'une même rangée d'aubes.
  • Les aubes statoriques 26 comprennent chacune une plateforme 34 de fixation, éventuellement munies d'axes de fixation 36 tels des tiges filetées ou tout autre moyen équivalent. La paroi peut comprendre des couches annulaires de matériau abradable 38 entre les plateformes 34 des aubes, de sorte à former une barrière entre le flux primaire 18 et la paroi 32.
  • Le carter 28, ou du moins sa paroi 32, peut être réalisé en un matériau composite. Le matériau composite peut être réalisé à l'aide d'un renfort fibreux pré-imprégné et durci par autoclave, ou par injection. L'injection peut consister à imprégner un renfort fibreux d'une résine, éventuellement organique, tel de l'époxy. L'imprégnation peut être selon un procédé du type RTM (acronyme anglais pour Resin Transfer Molding).
  • Le renfort fibreux peut être une préforme tissée, éventuellement de manière tridimensionnelle, ou comprendre un empilement ou un enroulement de différentes feuilles fibreuses ou plis fibreux, qui peuvent s'étendre sur la paroi, et sur au moins une ou plusieurs brides. Les plis peuvent comprendre des fibres de carbone, et/ou des fibres de graphite, et/ou des fibres de verre pour éviter la corrosion galvanique, et/ou des fibres de kevlar, et/ou des fibres de carbotitanium. Grâce aux matériaux évoqués, un carter turbomachine peut mesurer entre 3 et 5 mm d'épaisseur pour un diamètre supérieur à 1 mètre.
  • La figure 3 représente une demi-coquille de carter de la turbine axiale, par exemple d'un carter externe de compresseur, éventuellement basse-pression. Le carter est vu axialement, depuis l'amont. Le présent enseignement peut être appliqué à tout carter de la turbomachine, tel un carter de soufflante ou un carter de turbine.
  • La paroi 32 présente une surface interne courbe 40. La surface interne 40 peut comprendre une courbure continue selon la circonférence de la paroi circulaire et/ou selon la direction axiale. La surface interne 40 peut être circulaire autour de l'axe de rotation 14 de la turbomachine, et éventuellement en regard dudit axe. La paroi 32, ou du moins la surface interne 40 peut être annulaire, éventuellement généralement tubulaire. Selon la circonférence, la courbure de la surface interne 40 peut être monotone, et éventuellement constante. La courbure peut varier axialement, par exemple être plus courbée vers l'aval. La surface interne 40 peut être une portion de surface conique, une portion de surface de sphéroïde, éventuellement sphérique, ou une combinaison de chacun de ces surfaces.
  • La paroi 32 peut comprendre des facettes 42, éventuellement disposées en au moins une rangée annulaire selon la circonférence de la paroi 32. Chaque facette 42 définit une surface plane. Les facettes 42 d'une rangée peuvent être régulièrement réparties angulairement. La paroi 32 peut comprendre plusieurs rangées annulaires de facettes 42 espacées axialement le long axialement de la paroi 32. Au moins une ou chaque facette 42 affleure la surface interne 40 de la paroi. Par affleurer on peut entendre qu'une facette est à niveau, et/ou prolonge, et/ou touche la surface interne.
  • Les facettes 42 peuvent présenter différentes formes, éventuellement les facettes d'une même rangée présentent la même forme. Chaque rangée peut présenter des formes différentes de facettes. Les facettes 42 peuvent présenter des formes de disques, des formes ovales. Les diamètres moyens des facettes 42 peuvent varier progressivement, ils peuvent augmenter en direction de l'extrémité de la paroi 32 ayant un diamètre minimal, qui dans l'exemple illustré en figure 2 est la direction d'amont vers l'aval.
  • Les facettes 42 d'une même rangée peuvent être distantes les unes des autres. Elles peuvent être alors séparées par des portions de surface interne 40 qui présentent des courbures continues. Chaque facette 42 d'une même rangée peut être entourée par la surface interne 40. Les facettes 42 d'une même rangée peuvent être tangentes les unes aux autres, elles peuvent être en contact au niveau de points de contact. Ou encore, les facettes d'une même rangée peuvent être tronquées latéralement. Ces facettes peuvent être jointives selon des lignes de jonction 44.
  • Une ou chaque facette 42 peut comprendre un moyen de fixation, tel un orifice de fixation 46, qui peut coopérer avec un axe de fixation d'aube. Préférentiellement, chaque orifice de fixation 46 est disposé au centre de la facette associée. Les orifices de fixation 46 peuvent être agencés en une ou plusieurs rangée(s) annulaire(s). Celles-ci peuvent être réparties axialement le long de la paroi 32.
  • Au moins une ou chaque bride axiale 48 peut être venue de matière avec la paroi 32, tout comme au moins une ou chaque bride annulaire 30. Alternativement, au moins un type de bride, ou chaque bride peut être rapporté sur la paroi. Par exemple, la paroi peut être en composite et les brides peuvent être métalliques et fixées sur la paroi.
  • La figure 4 représente une aube de turbomachine, par exemple une aube statorique 26 de redresseur de compresseur basse pression. L'aube peut également être une aube de turbine.
  • L'aube 26 comprend un corps 50, ou pale, formant une surface profilée destinée à s'étendre dans le flux primaire. Sa forme permet de modifier l'écoulement du flux. La pale s'étend axialement d'un bord d'attaque 60 à un bord de fuite 62. Les faces « intrados » et « extrados » relient le bord d'attaque 60 au bord de fuite 62 et une cambrure moyenne (noté 64 sur la figure 5) est définie à équidistance de ces deux faces.
  • La plateforme 34 de fixation de l'aube 26 à la paroi du carter peut présenter une forme générale de plaque. Elle peut comprendre au moins une ou deux zones de moindre épaisseur 52, et éventuellement une zone en surépaisseur 54. La zone en surépaisseur 54 peut être entourée par une zone de moindre épaisseur 52, ou être disposée entre deux zones de moindre épaisseur 52. L'axe de fixation 36 peut s'étendre à l'opposé de la pale 50 de l'aube. La ou chaque plateforme 34 comprend une surface radiale externe d'appui 56 destinée à venir en regard d'une facette.
  • La figure 5 représente un modèle de plateforme d'aube vue depuis l'extérieur radialement (ou vu de dessus par rapport à la vue de la figure 4). La pale 50 de l'aube qui est de l'autre côté de la plateforme 34 est représentée en trait pointillés. Les modèles de plateformes peuvent changer d'une rangée d'aubes à une autre.
  • La plateforme 34 peut présenter une forme générale de quadrilatère tel un parallélogramme, un trapèze ou un rectangle. Le contour de la plateforme 34 comprend des bords latéraux 58 opposés, pouvant éventuellement venir en contact des bords latéraux 58 voisins des autres aubes d'une même rangée, et des bords amont et aval 59. Les bords latéraux 58 peuvent être coudés ou arqués pour limiter leur rotation lors du serrage de leurs fixations.
  • La plateforme 34 est réalisée en métal, préférentiellement en titane. Elle peut également être en composite à matrice organique. Elle peut être venue de matière avec le corps de l'aube 26. Pour respecter une forme précise, son contour est usiné, éventuellement rectifié afin de respecter des tolérances strictes.
  • La zone en surépaisseur 54 peut présenter une forme de disque, l'axe de fixation 36 étant éventuellement disposé au centre du disque et/ou du rectangle. Alternativement, l'axe peut être disposé de manière excentrée et non au centre de la plateforme. Par exemple, le centre de l'axe 36 peut être à une distance de 20 à 50% de la dimension axiale de la plateforme du côté amont. L'axe 36 peut être circonscrit dans la première moitié ou le premier tiers amont de la plateforme.
  • La figure 6 représente une aube statorique 26 fixée à la paroi 32.
  • La paroi 32 peut présenter une épaisseur généralement constante, par exemple au niveau d'au moins une ou de chaque facette 42. Sa surface externe 70 peut être courbe au niveau de chaque facette 42, préférentiellement avec une courbure continue et/ou monotone axialement et/ou circonférentiellement au droit de chaque facette 42. Alternativement, la surface externe 70 de la paroi 32 peut comprendre un méplat 72 au niveau d'au moins une facette 42, préférentiellement au niveau de chaque facette. Un ou chaque méplat 72 peut être parallèle à la facette 42 associée. Un méplat 72 forme une surface plane, éventuellement lisse. Il peut former une discontinuité de la courbure de la surface externe 70. Le méplat offre une surface plane pour un moyen de serrage 74 de l'axe de fixation 36, préférentiellement un écrou 74 sur un axe fileté 36.
  • La surface radiale externe 56 de la ou chaque plateforme 34 vient en regard de la facette 42. Cette surface 56 et cette facette 42 en regard peuvent être parallèles et de dimensions sensiblement similaires. Alternativement les surfaces 42, 56 peuvent être inclinées l'une par rapport à l'autre. La surface 56 de la plateforme peut ne pas être plane.
  • La zone en surépaisseur 54 vient au contact de la facette 42 et l'axe 36 pénètre dans l'orifice (noté 46 sur la figure 3) de la facette 42.
  • De l'abradable 38 peut s'insérer entre les surfaces 42 et 56. L'abradable 38 peut s'arrêter aux bords de la plateforme ou être à distance axiale de celle-ci.
  • La ou chaque facette 42 forme une discontinuité dans la surface interne 40. Le contour d'au moins une ou de chaque facette 42 peut former une ligne de rupture de la courbure de la surface interne. Tout autour de chaque facette 42, les tangentes de la surface interne peuvent être inclinées par rapport à la facette 42. Les facettes 42 peuvent former des aplatissements dans la surface interne 40, les aplatissements étant vers l'intérieur. La paroi présente une continuité de matière entre les facettes et la surface interne, et éventuellement une discontinuité géométrique.
  • Entre la facette 42 et la surface 56 est prévu un joint d'étanchéité 80 en matériau élastique pour éviter les fuites d'air entre la plateforme et le carter. Ce joint renferme une poche 68 délimitée par le joint 80, la surface radiale externe 56 de la plateforme 34 et la paroi 32 du carter.
  • Bien que l'exemple illustré montre un carter avec des facettes, le carter peut ne pas être pourvu de facettes et la surface 56 vient donc en regard de la paroi tubulaire ou cylindrique 32.
  • Le joint peut être fait de barres. Son contour extérieur peut correspondre au moins partiellement au contour de la surface 56 et donc être en forme de polygone, notamment trapèze, parallélogramme ou rectangle. Trois des segments du joint 82, 84, 86 formant le polygone sont visibles sur la figure 6. Alternativement, le joint peut comprendre des portions planes.
  • L'une ou les deux surfaces 42 et 56 peuvent présenter des logements par exemple des gorges pour recevoir un ou plusieurs segments du joint 80.
  • La figure 7 détaille le joint 80 dans ce même mode de réalisation. Le joint 80 a un cadre 81 composé de segments extérieurs amont 82 et aval 84 et de segments extérieurs axiaux 86, 88 formant un rectangle.
  • Le joint peut en outre comprendre une portion torique 90 préférablement reliée au cadre 81 par des segments à 90°, notamment dans cet exemple deux segments axiaux 92, 94 et deux segments circonférentiels 96, 98, c'est-à-dire qui s'étendent principalement selon la circonférence. La portion torique 90 peut être reliée au cadre 81 à l'aide d'une croix, notamment formée par les segments.
  • Dans cet exemple, la portion torique 90 est au centre du joint 80. Celle-ci peut alternativement être déportée sur l'amont ou l'aval, c'est-à-dire en direction du segment 82 ou 84 respectivement. La portion torique 90 peut aussi être décalée circonférentiellement, c'est-à-dire vers le segment 86 ou le segment 88.
  • Préférentiellement, la section des segments circonférentiels 96, 98 est plus importante que la section des segments 92, 94. Si les segments sont tous de même épaisseur - l'épaisseur étant leur dimension dans la direction radiale qui est perpendiculaire au plan de la figure 7 -, la section des segments circonférentiels 96, 98 est plus importante par le fait de leur dimension dans la direction axiale qui est plus grande que la dimension circonférentielle des segments 92, 94.
  • L'épaisseur du segment aval 84 du cadre 81 peut être plus importante que l'épaisseur du segment amont 82 du cadre 81.
  • La figure 8 représente une vue isométrique d'un joint 180 selon un second mode de réalisation. Les segments du joint 180 sont incrémentés de 100 par rapport à celui de la figure 7.
  • Dans cet exemple, la portion torique 190 n'est reliée au cadre 181 formé par les segments 182, 184, 186, 188 que par trois segments 192, 196 et 198. Cet exemple montre en particulier la variation d'épaisseur le long du joint 180. Le segment aval 184 a en particulier une plus importante épaisseur que le segment amont 182. Ceci permet un taux de compression du joint 180 plus important en aval lorsque les surfaces 42 et 56 sont parallèles. Ceci permet aussi le montage d'un joint entre deux surfaces 42 et 56 qui ne sont pas parallèles, l'épaisseur variable du joint « rattrapant » l'écart variable entre les deux surfaces 42 et 56.
  • Les figures 9 et 10 décrivent un joint 280 selon un troisième mode de réalisation. Les segments du joint 280 sont incrémentés de 100 par rapport à celui de la figure 8. La portion torique 290 présente une forme ovale et celle-ci n'est pas disposée au milieu du joint mais dans la moitié amont. La portion torique 290 est reliée au cadre 281 par les segments circonférentiels 296, 298 et le segment axial 292. En remplacement du segment aval est prévue une bandelette de renfort 284. La figure 10 illustre cette bandelette 284 et met en avant l'importante variation de l'épaisseur entre l'amont et l'aval. La bandelette 284 peut aussi venir en complément d'un segment aval (comme le segment 184 du mode de réalisation précédent), la bandelette s'étendant en amont ou en aval d'un tel segment, éventuellement à distance de celui-ci. Le cadre 281 est formé par les segments 282, 286, 288 et la bandelette 284.
  • Les joints de deux plateformes adjacentes peuvent venir au contact l'un de l'autre. Les segments extérieurs axiaux 86, 88, 186, 188, 286, 288 de deux joints de plateformes adjacentes peuvent être parallèles et venir au contact l'un de l'autre.
  • Une plateforme peut avoir un côté du contour parallèle à un côté d'une plateforme adjacente et venir au contact de ce côté.
  • Alternativement, comme représenté sur la figure 11, deux ou plusieurs joints adjacents peuvent ne former qu'un seul joint 380 commun à plusieurs plateformes.
  • Ce joint 380 comprend un segment amont 382 et un segment aval 384 communs à plusieurs plateformes. Des portions toriques 390 sont prévues pour circoncire chacune l'axe de fixation des plateformes respective et des segments intérieurs sont prévus pour relier les portions toriques 390 aux segments amont 382 et aval 384. L'agencement des portions toriques 390 et des segments intérieurs respectifs correspond à l'agencement des plateformes. Ainsi, certaines portions toriques peuvent être positionnées à différents endroits axialement, et la dimension des portions de joint en regard d'une plateforme peut être plus ou moins grande. Le fait que le joint 380 n'est pas symétrique peut servir de détrompeur lors du montage de la turbomachine.
  • Le joint peut épouser les contours polygonaux de chacune des plateformes d'aubes adjacentes. Le joint est donc formé de plusieurs cadres 381 et deux cadres adjacents peuvent partager un segment en commun.
  • Un tel joint 380 peut coopérer avec plusieurs aubes de la rangée annulaire d'aubes, comme par exemple deux ou quatre aubes adjacentes, ou toutes les aubes en regard d'un demi-carter. Alternativement, un joint peut coopérer avec une pluralité d'aubes adjacentes dont l'une au moins est fixée à un demi-carter et au moins une autre est fixée à l'autre demi-carter. Le joint peut également être commun à toutes les aubes d'une rangée d'aube et se présenter sous la forme d'une couronne.
  • Les figures 12 et 13 illustrent un joint 480, 580 selon l'invention. Celui-ci peut disposer des différents éléments déjà décrits dans les autres modes de réalisation (portion torique, languette, un joint unique commun à plusieurs plateforme, etc.).
  • En outre, le joint 480 dispose de plots 483 thermoformés, réalisés sous forme d'inserts de moulage. Ces plots 483 sont préférentiellement disposés au niveau du cadre 481 du joint. Alternativement, un ou des plots peuvent être disposés à d'autres endroits du joint 480. Ces plots peuvent comprendre un trou qui peut coopérer avec des pions prévus sur la plateforme. Les pions peuvent être tels qu'un assemblage serré dans les plots est obtenu. Ceci permet de pré-assembler le joint sur la plateforme. Les plots peuvent alternativement être pourvus d'un taraudage pour recevoir une tige filetée des plateformes. Les plots sont au nombre de 2, 4 ou 6. Les plots peuvent être de dimensions identiques ou différentes, en particulier lorsque le joint est plus épais en aval comme représenté sur la figure 12. Alternativement un seul plot peut aussi être prévu sur le joint.
  • La figure 13 représente un plot 580 muni d'un élément adhésif 583 sur son cadre 581. Les éléments sont représentés schématiquement et l'échelle des grandeurs n'est pas respectée. L'élément adhésif peut être un point de colle ou une couche adhésive 583, qui peut être recouverte d'un opercule 585. Lors du montage, l'opercule 585 est enlevé du joint 580, puis le joint est positionné sur la plateforme. A cette fin, l'opercule dispose d'une partie 587 non adhérente au moyen adhésif afin de faciliter son enlèvement.
  • Ainsi, le joint adhère à la plateforme et facilite le montage de la plateforme et de son joint dans le carter.
  • Le joint des différents modes de réalisation illustrés ci-dessus peut être fait complètement d'élastomère, de polymère ou de mousse. Un ou plusieurs des segments peut comprendre un fil rigide (métallique ou autre) en son cœur enrobé d'élastomère, de polymère ou de mousse.
  • Les différents détails des différents modes de réalisation exposés dans la présente demande peuvent être combinés à moins qu'il ne soit explicitement décrit comme alternatives et qu'une telle combinaison soit rendue mécaniquement impossible.

Claims (15)

  1. Ensemble pour turbomachine axiale (2), notamment de turboréacteur d'aéronef, l'ensemble comprenant :
    - un carter (28) annulaire avec une surface interne (40) ;
    - une rangée annulaire d'aubes statoriques (26) avec au moins une aube statorique (26) comprenant une pale (50) s'étendant radialement depuis une plateforme de fixation (34), ladite plateforme de fixation (34) étant fixée au carter (28) et présentant un contour polygonal (58, 59) ;
    caractérisé en ce qu'il comprend en outre
    un joint d'étanchéité (80, 180, 280, 380, 480, 580) formé par un élément distinct du carter (28) et distinct de la plateforme de fixation (34), et comprenant un cadre (81, 181, 281, 381, 481, 581) dont le contour épouse le contour polygonal (58, 59) de la plateforme de fixation (34), ledit cadre (81, 181, 281, 381, 481, 581) étant en contact radial de la plateforme de fixation (34) et du carter (28) afin d'y assurer une étanchéité.
  2. Ensemble selon la revendication 1, caractérisé en ce que le cadre (81, 181, 281, 381, 481, 581) délimite de manière étanche une poche (68) radialement entre la plateforme de fixation (34) et le carter (28), ladite poche (68) s'étendant notamment sur la majorité de la plateforme de fixation (34).
  3. Ensemble selon l'une des revendications 1 ou 2, caractérisé en ce que la plateforme comprend des côtés de polygone en contact les uns avec les autres, et le cadre (81, 181, 281, 381, 481, 581) est formé de barres (82, 84, 86, 88, 182, 184, 186, 188, 282, 284, 286, 288, 382, 384, 386, 388) longeant les côtés de la plateforme.
  4. Ensemble selon l'une des revendications 1 à 3, caractérisé en ce que le cadre (81, 181, 281, 381, 481, 581) du joint (80, 180, 280, 380, 480, 580) a une forme extérieure générale en parallélogramme et préférentiellement rectangulaire, ou en ce que la plateforme (34) a un axe de fixation (36) qui traverse un orifice (46) du carter (28), et en ce que l'axe de fixation (36) traverse le joint (80, 180, 280, 380, 480, 580), une portion (90, 190, 290, 390) du joint (80, 180, 280, 380) étant optionnellement torique ou cylindrique et entourant l'axe de fixation (36), et des segments (92, 94, 96, 98, 192, 196, 198, 292, 296, 298) reliant préférentiellement la portion torique ou cylindrique (90, 190, 290, 390) au cadre (81, 181, 281, 381), les segments (92, 94, 96, 98, 192, 196, 198, 292, 296, 298) comprenant optionnellement deux segments circonférentiels (96, 98, 196, 198, 296, 298) orientés selon la direction circonférentielle de la turbomachine et au moins un segment axial (92, 94, 192, 292) orienté selon la direction axiale de la turbomachine, et/ou la portion torique ou cylindrique (290, 390) étant optionnellement renfermée dans la moitié amont du joint (180, 280, 380).
  5. Ensemble selon l'une des revendications 1 à 4, caractérisé en ce que le joint d'étanchéité (80, 180, 280, 380, 480, 580), notamment le cadre (81, 181, 281, 381, 481, 581), forme une boucle fermée et étanche qui est inscrite dans le contour polygonal (58, 59) de la plateforme de fixation (34).
  6. Ensemble selon l'une des revendications 1 à 5, caractérisé en ce que le joint (280) comprend une languette de renfort aval (284), préférentiellement s'étendant principalement selon la direction circonférentielle de la turbomachine.
  7. Ensemble selon l'une des revendications 1 à 6, caractérisé en ce que le joint (380) est interposé entre le carter (28) et plusieurs plateformes (34) d'aubes adjacentes, ledit joint (380) épousant les contours polygonaux (58, 59) de chacune desdites plusieurs plateformes (34) d'aubes adjacentes.
  8. Ensemble selon l'une des revendications 1 à 7, caractérisé en ce que la surface interne (40) du carter (28) comporte une rangée annulaire de facettes (42) recevant les aubes statoriques (26), une surface radiale externe (56) de la plateforme (34) étant inclinée par rapport à la facette (42) associée et/ou l'épaisseur radiale du joint (80, 180, 280, 380, 480, 580) est plus importante en aval qu'en amont.
  9. Ensemble selon l'une des revendications 1 à 8, caractérisé en ce qu'une couche de matériau abradable (38) est prévue sur la surface interne (40) du carter (28), notamment en amont et/ou en aval des facettes (42), et à distance axialement des plateformes (34) et/ou du joint (80, 180, 280, 380, 480, 580).
  10. Procédé d'assemblage d'un ensemble pour turbomachine, caractérisé en ce que l'ensemble est selon l'une des revendications 1 à 9 et en ce que le procédé comprend une étape (a) de mise en place du joint (80, 180, 280, 380, 480, 580) entre le carter (28) et la plateforme (34) d'aube (26), et une étape (b) de fixation de l'aube (26) au carter (28) pendant laquelle le joint (80, 180, 280, 380, 480, 580) est comprimé radialement entre la plateforme (34) de l'aube (26) et le carter (28), le joint (80, 180, 280, 380, 480, 580) étant préférentiellement plus comprimé en aval qu'en amont.
  11. Procédé selon la revendication 10 et ensemble selon la revendication 4, caractérisé en ce que l'étape (b) fixation comprend le serrage d'un écrou (74) sur l'axe de fixation (36) de manière à comprimer le joint (80, 180, 280, 380, 480, 580).
  12. Joint d'étanchéité (480) pour une plateforme de fixation d'aube statorique de turbomachine axiale (2), notamment de turboréacteur d'aéronef, ladite plateforme de fixation (34) présentant un contour polygonal (58, 59), le joint (480) comprenant : un cadre (481) dont le contour est apte à épouser le contour polygonal (58, 59) de la plateforme de fixation (34), et des plots thermoformés (483), les plots (483) étant des inserts de moulage du joint (480), les plots comprenant optionnellement des trous, préférentiellement débouchants, apte à coopérer avec des pions prévus sur la plateforme (34).
  13. Joint d'étanchéité (580) pour une plateforme de fixation d'aube statorique de turbomachine axiale (2), notamment de turboréacteur d'aéronef, ladite plateforme de fixation (34) présentant un contour polygonal (58, 59), le joint (580) comprenant : un cadre (581) dont le contour est apte à épouser le contour polygonal (58, 59) de la plateforme de fixation (34), et un élément adhésif (583) au moins sur une partie du cadre (581), l'élément adhésif (583) étant recouvert d'un opercule (585), l'élément adhésif (583) étant optionnellement une couche adhésive prévue sur la partie du cadre (581) apte à venir au contact de la plateforme (34).
  14. Procédé selon l'une des revendications 10 ou 11, caractérisé en ce que le joint d'étanchéité (480, 580) est selon l'une des revendications 12 ou 13, l'étape (a) de mise en place du joint (480, 580) entre le carter (28) et la plateforme (34) d'aube (26) comprenant une sous-étape de pré-assemblage du joint (480, 580) à la plateforme (34).
  15. Procédé selon la revendication 14 en combinaison d'un joint (480) selon la revendication 12, caractérisé en ce que la sous-étape de pré-assemblage comprend la fixation des plots (483) à des pions prévus sur la plateforme (34), ou procédé selon la revendication 14 en combinaison d'un joint (580) selon la revendication 13, caractérisé en ce que la sous-étape de pré-assemblage comprend l'enlèvement de l'opercule (585) et la fixation par adhérence du joint (580) à la plateforme (34).
EP18762286.5A 2017-11-30 2018-08-30 Ensemble pour turbomachine axiale, procédé d'assemblage et joints d'étanchéité associés Active EP3717749B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2017/5874A BE1025753B1 (fr) 2017-11-30 2017-11-30 Etancheite plateforme d’aube - carter dans un compresseur de turbomachine axiale
PCT/EP2018/073321 WO2019105610A1 (fr) 2017-11-30 2018-08-30 Ensemble pour turbomachine axiale, turbomachine axiale, procédé d'assemblage et joint d'étanchéité associés

Publications (2)

Publication Number Publication Date
EP3717749A1 EP3717749A1 (fr) 2020-10-07
EP3717749B1 true EP3717749B1 (fr) 2021-09-29

Family

ID=60781413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18762286.5A Active EP3717749B1 (fr) 2017-11-30 2018-08-30 Ensemble pour turbomachine axiale, procédé d'assemblage et joints d'étanchéité associés

Country Status (5)

Country Link
US (1) US11421539B2 (fr)
EP (1) EP3717749B1 (fr)
CN (1) CN111108265B (fr)
BE (1) BE1025753B1 (fr)
WO (1) WO2019105610A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3108674B1 (fr) 2020-03-27 2022-03-11 Safran Aircraft Engines Assemblage a etancheite renforcee pour turbomachine d’aeronef, comprenant une roue aubagee de stator ainsi qu’un carter exterieur agence autour de la roue aubagee
BE1029166B1 (fr) 2021-03-03 2022-10-03 Safran Aero Boosters Carter pour compresseur de turbomachine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989130B1 (fr) * 2012-04-05 2014-03-28 Snecma Etage redresseur de compresseur pour une turbomachine
EP2738356B1 (fr) * 2012-11-29 2019-05-01 Safran Aero Boosters SA Aube de redresseur de turbomachine, redresseur de turbomachine et procédé de montage associé
EP2896796B1 (fr) * 2014-01-20 2019-09-18 Safran Aero Boosters SA Stator de turbomachine axiale et turbomachine associée
EP2930308B1 (fr) * 2014-04-11 2021-07-28 Safran Aero Boosters SA Carter à facettes de turbomachine axiale
EP2977559B1 (fr) * 2014-07-25 2017-06-07 Safran Aero Boosters SA Stator de turbomachine axiale et turbomachine associée
BE1022809B1 (fr) * 2015-03-05 2016-09-13 Techspace Aero S.A. Aube composite de compresseur de turbomachine axiale
US10208614B2 (en) * 2016-02-26 2019-02-19 General Electric Company Apparatus, turbine nozzle and turbine shroud
US10371166B2 (en) * 2016-12-16 2019-08-06 Pratt & Whitney Canada Corp. Stator vane seal arrangement for a gas turbine engine

Also Published As

Publication number Publication date
BE1025753A1 (fr) 2019-06-27
CN111108265A (zh) 2020-05-05
US11421539B2 (en) 2022-08-23
CN111108265B (zh) 2022-06-07
EP3717749A1 (fr) 2020-10-07
US20210062662A1 (en) 2021-03-04
WO2019105610A1 (fr) 2019-06-06
BE1025753B1 (fr) 2019-07-04

Similar Documents

Publication Publication Date Title
EP3064708B1 (fr) Aube composite de compresseur de turbomachine axiale avec une feuille de renfort et turbomachine comprenant une telle aube
EP2886804B1 (fr) Dispositif d'étanchéité pour un compresseur de turbomachine
EP2811121B1 (fr) Carter composite de compresseur de turbomachine axiale avec bride de fixation métallique
EP2896796B1 (fr) Stator de turbomachine axiale et turbomachine associée
EP3273003B1 (fr) Caisson à aubes de redresseur de compresseur de turbomachine axiale
EP3091201B1 (fr) Bec de séparation composite de compresseur de turbomachine axiale
FR2961554A1 (fr) Secteur angulaire de redresseur pour compresseur de turbomachine, redresseur de turbomachine et turbomachine comprenant un tel secteur
EP3717749B1 (fr) Ensemble pour turbomachine axiale, procédé d'assemblage et joints d'étanchéité associés
EP2336572A1 (fr) Virole ou section de virole en deux parties pour étage redresseur a aubes d'un compresseur axial
EP2843196B1 (fr) Compresseur de turbomachine et turboachine associée
FR2943984A1 (fr) Helice pour turbomachine d'aeronef comprenant un moyeu support d'aubes scinde en deux portions annulaires montees l'une sur l'autre.
EP2886802B1 (fr) Joint de virole interne de dernier étage de compresseur de turbomachine axiale
EP2821595A1 (fr) Secteur d'aubes statorique à fixation mixte pour turbomachine axiale
EP2199544A1 (fr) Architecture de redresseur
EP2930308B1 (fr) Carter à facettes de turbomachine axiale
FR2470269A1 (fr) Structure de retention pour carter de compresseur d'une turbomachine
EP3121375B1 (fr) Armature d'aube composite de compresseur de turbomachine axiale
EP3382242B1 (fr) Joint à brosse pour rotor de turbomachine
FR3005693A1 (fr) Turbomachine d'aeronef a double flux comprenant une virole inter-veine a maintien aval simplifie
EP3751102B1 (fr) Rotor pour compresseur de turbomachine et procédé de montage associé
WO2021219949A1 (fr) Carter intermediaire de redressement avec bras structural monobloc
BE1026460B1 (fr) Carter structural pour turbomachine axiale
FR3103855A1 (fr) Structure améliorée de bord d’attaque d’aube.
EP3899207B1 (fr) Ensemble de turbomachine comprenant des aubes de soufflante à bord de fuite prolongé
BE1027343B1 (fr) Rotor hybride avec des pions de plateforme penetrant dans le tambour

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210604

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1434361

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018024340

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210929

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1434361

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018024340

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220830

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 6

Ref country code: DE

Payment date: 20230720

Year of fee payment: 6

Ref country code: BE

Payment date: 20230720

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929