EP3713870A2 - Procédé et appareil pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures - Google Patents

Procédé et appareil pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures

Info

Publication number
EP3713870A2
EP3713870A2 EP18867317.2A EP18867317A EP3713870A2 EP 3713870 A2 EP3713870 A2 EP 3713870A2 EP 18867317 A EP18867317 A EP 18867317A EP 3713870 A2 EP3713870 A2 EP 3713870A2
Authority
EP
European Patent Office
Prior art keywords
permeate
hydrogen
carbon dioxide
synthesis gas
membrane system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18867317.2A
Other languages
German (de)
English (en)
Other versions
EP3713870B1 (fr
Inventor
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3713870A2 publication Critical patent/EP3713870A2/fr
Application granted granted Critical
Publication of EP3713870B1 publication Critical patent/EP3713870B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/64Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end by pressure-swing adsorption [PSA] at the hot end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a process for the combined production of hydrogen and carbon dioxide from a hydrocarbon mixture in which the hydrocarbon mixture is reformed to produce a synthesis gas containing hydrogen, monoxide of carbon, carbon dioxide and at least one hydrocarbon which is cooled, then enriched in hydrogen (H 2 ) and carbon dioxide (CO 2 ), optionally dried, and treated in a pressure modulation absorption unit (PSA) ) of hydrogen purification to produce hydrogen (the drying may precede or follow the purification), the waste being treated to capture CO 2 . It also relates to an installation capable of implementing the method.
  • PSA pressure modulation absorption unit
  • CO 2 emissions As climate change is one of today's major environmental problems, reducing greenhouse gas emissions, and in particular reducing CO 2 emissions, is one of the major challenges facing man.
  • One of the essential sources of CO 2 emissions is the burning of fossil fuels.
  • one of the methods used is the capture of carbon dioxide compressing and cooling the waste gas from the hydrogen purification unit by pressure swing adsorption (PSA H 2 ), so as to liquefy a fraction of the carbon dioxide contained in said waste gas.
  • PSA H 2 pressure swing adsorption
  • This liquid carbon dioxide can then be transported, stored, processed or used as needed. It is desirable for the operator of the facility to recover the non-condensed gases resulting from this operation of CO2 capture by compression and purification or CPU (compression and purification unit of the English).
  • the method implements PSA waste gas compression steps, followed by a drying step (the drying can, as described in WO2008 / 017783, be carried out upstream of the PSA) with recovery of the carbon dioxide.
  • carbon via a cryogenic purification unit (CPU).
  • the incondensable gases from the CPU are treated with a membrane allowing the hydrogen to permeate.
  • the hydrogen is returned upstream of the process, at the inlet of the PSA to increase the production of hydrogen of the plant, the residual gas from the membrane being used in the reforming stage, as fuel and or as a charge for feeding the reforming.
  • the same document proposes to carry out a step of removal of heavy impurities by adsorption prior to the partial condensation step of the waste gas.
  • adsorption system for removing a constituent such as propane, as it does not exist for ethane either.
  • Another solution would be to vaporize the CO2-rich product liquid resulting from the partial condensation of the waste gas, to heat it to a temperature of the order of 400 to 500 ° C, to inject oxygen and to carry out an oxidation.
  • catalytic system to remove such hydrocarbons as ethane and propane, then to cool and liquefy this CO2, to carry out a new distillation to remove oxygen so as to produce food grade liquid carbon dioxide which can then be transported and stored.
  • this alternative is both expensive and complex.
  • the CO2 must be recompressed at the outlet of the membrane, whereas according to the invention, a very high permeate pressure is maintained which is compatible with a condensation of CO2 in the CPU.
  • the permeate is close to atmospheric pressure, which does not allow it to be condensed directly since the CO2 can be in the liquid state only at a pressure greater than 519 kPa, ie 5, 19 bar abs or 0.519 MPa.
  • the objective of the present invention is therefore to meet the need to produce food grade CO2 without unduly complicating the installation. It consists in installing a membrane separation stage from which a permeate enriched in hydrogen and carbon dioxide is recovered, in which the quantities of impurities, in particular ethane, ethylene, propane and propene, are considerably reduced. Although this operation reduces the partial pressure of CO2 in the gas being partially condensed, it simplifies the process. Moreover, incondensables resulting from the partial condensation are richer in hydrogen and they do not need to be purified by a membrane. They can be directly recycled upstream of the PSA hh to increase the hydrogen production of the hydrogen. unit or be treated in a separate H2 PSA.
  • a step (h) for permeation separation of the flow of the waste gas in a first membrane system for obtaining a permeate depleted in at least one of the following hydrocarbons: ethane, propane, ethylene, propene, benzene, methanol and enriched with carbon dioxide and hydrogen and a non-permeate enriched in at least one of the following hydrocarbons: ethane, propane, ethylene, propene and depleted of carbon dioxide and hydrogen, the permeate having a partial pressure of carbon dioxide greater than 519 kPa, preferably greater than 1000 kPa, and
  • step (i) of partial condensation and / or distillation of said permeate for obtaining a CO2-rich liquid stream and a waste gas stream.
  • step (h) there is no permeate compression step between steps (h) and (I). the non-permeate of step (h) is separated in a second membrane system.
  • step (h) the non-permeate of step (h) is partially condensed.
  • the waste gas stream is sent to the adsorption unit by pressure modulation.
  • step (h) At least a part of the non-permeate of step (h) or a gas derived from this non-permeate is sent to the reforming or partial oxidation stage, as fuel for a burner of this step.
  • step (h) At least a part of the non-permeate of step (h) or a gas derived from this non-permeate is sent to the reforming or partial oxidation stage as feed gas.
  • the first and / or second membrane system removes at least one of the following hydrocarbons: ethane, propane, ethylene, propene, benzene, methanol so that at least 80%, or even at least 90% of the at least one hydrocarbon feeding the membrane system is found in the non-permeate of the first and / or second membrane system.
  • the method may comprise a compression step in a compressor upstream of the first membrane system.
  • a fluid derived from the non-permeate of the first membrane system is recycled upstream of the compressor.
  • the CO2-rich liquid stream obtained is of food grade.
  • the invention provides a process for the combined production of hydrogen and carbon dioxide from a hydrocarbon mixture comprising at least the following steps:
  • a compression step (h) (step (g) may also be carried out after the compression step) and purification of the Rpsa flow comprising a first permeation separation phase (membrane) for obtaining an enriched permeate in hydrogen and carbon dioxide and depleted in most impurities and a second phase of obtaining a liquid or supercritical flow rich in CO2 and a waste gas stream RI enriched in hydrogen and
  • the drying step (g) can be carried out before the compression step of step (h); when the compression step comprises successive intermediate compressions, the drying can be performed during the compression step, between two intermediate compressions; step (g) can also be performed after the compression step.
  • the impurities of which at least one of the following hydrocarbons: ethane, propane, ethylene, propene, benzene, metbanol can be in the synthesis gas from step a) and / or can be produced during the shift step c ).
  • an apparatus for the combined production of hydrogen and carbon dioxide from a hydrocarbon mixture comprising:
  • synthesis gas originating from an apparatus for reforming or partially oxidizing a hydrocarbon mixture in order to obtain synthesis gas containing at least hydrogen and carbon monoxide, carbon dioxide, methane, water vapor and possibly impurities including at least one of the following hydrocarbons: ethane, propane, ethylene, propene, benzene, methanol with available heat recovery, a conversion reactor (in English "shift") of all or part of the cooled synthesis gas for oxidizing most of the carbon monoxide to carbon dioxide with corresponding production of hydrogen and a synthesis gas enriched in H2 and CO2 and containing impurities including at least one of the following hydrocarbons: ethane, propane, ethylene, propene, benzene, methanol,
  • step (c) means for cooling the enriched H2 and CO2 synthesis gas from step (c) with means for removing the condensed water
  • PSA H2 pressure modulation adsorption unit
  • a first membrane system for permeation separation of the waste gas flow to obtain a permeate depleted in at least one of the following hydrocarbons: ethane, propane, ethylene, propene, benzene, methanol and enriched in carbon dioxide and hydrogen and a non-permeate enriched in at least one of the following hydrocarbons: ethane, propane, ethylene, propene and depleted of carbon dioxide and hydrogen, the permeate having a partial pressure of carbon greater than 519 kPa, preferably greater than 1000 kPa, and means of separation by partial condensation and / or distillation of said permeate for obtaining a CO2-rich liquid stream and a waste gas stream.
  • the apparatus may include:
  • Figure 1 is a schematic view of a process for the combined production of hydrogen and carbon dioxide as described in WO2006 / 054008 (state of the art).
  • Figure 2 is a schematic view of a process for the combined production of hydrogen and carbon dioxide according to a basic configuration of the invention.
  • Figure 3 is a schematic view of a method according to the invention which differs from that of Figure 2 in that a second membrane stage improves the recovery of hydrogen and carbon dioxide.
  • FIG. 4 is a schematic view of a process according to the invention which differs from that of FIG. 2 in that a second partial condensation and a second membrane stage makes it possible to further improve the recovery of hydrogen and carbon dioxide gas.
  • a second partial condensation and a second membrane stage makes it possible to further improve the recovery of hydrogen and carbon dioxide gas.
  • FIGS 3A and 4A show in more detail the last part of the respective methods of Figures 3 and 4.
  • Figure 1 describes the state of the art in which a hydrocarbon feedstock 1 mixed with water vapor (not shown) feeds a reformer 2 to generate a synthesis gas 3 containing at least carbon monoxide, hydrogen, carbon dioxide, unreacted methane and impurities.
  • This steam reforming step is carried out in a steam reforming furnace containing tubes filled with catalysts, the heat required for reforming being provided by combustion.
  • the synthesis gas 3 is then cooled to 4, the cooled synthesis gas being then subjected to a shift reaction in 6 during which the carbon monoxide reacts with water (shown but not referenced) to be partly - transformed into hydrogen and carbon dioxide.
  • the reaction involved (CO + H2O -> CO2 + H2) is called a gas reaction or a shift reaction.
  • This conversion reaction is generally carried out on the synthesis gas at high temperature (HT shift) or at medium temperature (MT shift), a second shift step 6b can be carried out downstream from the previous one, on the synthesis gas partially converted, at lower temperature (in English "low temperature shift”) - this second conversion step 6b is shown in broken lines, it is not mandatory.
  • the synthesis gas 7 - at the exit of step 6 or step 6b when step 6 is followed by a step 6b - is enriched in H2 and CO2 and depleted in CO; it is cooled to 8, then the cooled gas 9 is dried at 10 (for example using a TSA type adsorption process) to remove the water molecules and thus obtain a gaseous mixture 1 1 sec - with respect to the downstream treatment gas - which dry gas mixture is then subjected to a separation step in a pressure modulation adsorption unit 12 or PSA H2 to produce a product hydrogen gas stream 16 and a gas stream 14 of PSA waste (waste RPSA).
  • the stream 14 is then treated to capture the carbon dioxide; for this, it is compressed (sub-step 13a) so that its pressure is between 20 and 100 bar and it undergoes a substep 13 b of absorption purification so as to remove some heavy impurities such as benzene or benzene.
  • a substep 13 b of absorption purification so as to remove some heavy impurities such as benzene or benzene.
  • the stream 20 is then subjected to a separation step in a permeation unit 8 through a membrane to produce a gas stream 23 (permeate) enriched in hydrogen (Hii stream) and a gas stream 19 enriched with carbon monoxide and in methane.
  • This gaseous stream 19 may, for example, be sent as fuel to the reformer 2.
  • the drying of the synthesis gas, upstream and / or downstream of the PSA (not shown) makes it possible to eliminate the water which is detrimental to the smooth running of the reactor. downstream process.
  • a hydrocarbon feedstock 1 mixed with steam feeds a reformer 2 to generate a synthesis gas 3 containing at least carbon monoxide, carbon dioxide and carbon dioxide.
  • hydrogen, carbon dioxide, unreacted methane and impurities including at least the following hydrocarbons: ethane, propane, ethylene, propene.
  • This steam reforming step is carried out in a steam reforming furnace containing tubes filled with catalysts, the heat required for reforming being supplied by combustion.
  • the synthesis gas 3 is then cooled to 4, the cooled synthesis gas being then subjected to a shift reaction in 6 during which the carbon monoxide reacts with water (shown but not referenced) to be partly - transformed into hydrogen and carbon dioxide.
  • the reaction involved (CO + h1 ⁇ 2G -> CO2 + Fb) is called the water gas reaction or shift reaction.
  • This conversion reaction is generally conducted on the synthesis gas at high temperature (HT shift) or at medium temperature (MT shift), a second shift step 8b can be performed downstream of the previous one, on the synthesis gas partially converted, at lower temperature (in English "iow temperature shift") - this second conversion step 6b is shown in broken lines, it is not mandatory.
  • the synthesis gas 7 - at the exit of step 6 or step 6b when step 6 is followed by a step 6b - is enriched in H2 and CO2 and depleted in CO; it is cooled to 8, then the cooled gas 9 is dried at 10 (for example using a TSA type adsorption process) to remove the water molecules and thus obtain a gaseous mixture 1 1 sec - with respect to the downstream treatment gas - which dry gas mixture is then subjected to a separation step in a pressure modulation adsorption unit 12 or PSA H2 to produce a gaseous stream 16 of hydrogen produced and a gas stream 14 of PSA waste (residual Rpsa).
  • the stream 14 is then treated to capture the carbon dioxide; for this, it is compressed in a compressor 13 so that its pressure is between 20 and 100 bar to produce the gas 17. It can undergo a substep of adsorption purification so as to remove some heavy impurities such as benzene or methanol. Then, it is separated in a membrane system 8 to produce a permeate enriched with carbon dioxide and hydrogen and a non-permeate depleted of carbon dioxide and hydrogen and containing at least 90% of the at least one hydrocarbon present. in the gas 17.
  • the permeate 20, having a CO2 partial pressure of at least 519 kPa is not compressed and undergoes one or more successive condensation / separation steps in the CPU 21 to obtain a liquid flow.
  • the stream 23 is returned to the adsorption unit 12 to separate it with the gas 1 1.
  • the non-permeate 19 enriched in at least one of the following hydrocarbons: ethane, propane, ethylene, propene and depleted of carbon dioxide and hydrogen is sent as fuel to the furnace 2.
  • the membrane of the membrane system 17 can operate between ambient temperature of 100 ° C, preferably around 80 ° C, for example between 70 and 90 ° C.
  • the membrane may be a polymeric membrane capable of separating hydrogen which may be a polyamide, polyaramid, polybenzimidazoles, mixture of polybenzimidazole and polyimides.
  • the non-permeate 19 of the first membrane system 17 is sent to a second membrane system 24.
  • the non-permeate 19 enriched in at least one of the following hydrocarbons: ethane, propane, ethylene, propene and depleted in carbon dioxide and in Hydrogen separates in the second membrane system 24.
  • the permeate 25 of the second membrane system 24 enriched in CO2 with respect to the non-permeate 19 is returned to the absorption step 13.
  • the non-permeate 26 of the second membrane system 24 sent reforming 2.
  • the liquid 34 is distilled off in a distillation column 35 to produce a gas 36 and a carbon dioxide-rich liquid 22.
  • the non-permeate 19 of the first system membrane 8 is sent to a second membrane system 24 whose permeate 25 is sent upstream of the compressor 13B and the non-permeate 26 is sent to the reformer 2.
  • the second membrane system 24 serves to remove more than 98% of the ethane, propane, propene and benzene in the flow 17 found in the non-permeate 28.
  • the non-permeate 19 is condensed to recycle a CO2 enriched condensate 15B to compression 13 and the incondensable 15A passes into a second membrane 24 to separate a hydrogen-rich fraction 26 recycled upstream of the PSA and a fraction 25 rich in carbon monoxide and methane that goes to the reformer burners 2.
  • the flow 14 is compressed by the compressor 13A, purified with water (in case the drying is downstream of the PSA) and / or methanol and / or benzene in the adsorber 13C and compressed again by the compressor 13B.
  • the flow 17 produced by the compressor 13B is separated to produce a flow enriched in CO2 and depleted in at least one hydrocarbon 20.
  • the flow 20 is cooled by the cooler 31, the cooled flow 33 is partially condensed and separated in a separator. phases 32 whose gas 23 is returned to the adsorption 12.
  • the liquid 34 is separated by distillation in a distillation column 35 to produce a gas 38 and a liquid rich in carbon dioxide 22. This liquid may contain 99.8% of at least carbon dioxide, being of food grade.
  • the non-permeate 19 of the first membrane system 8 is sent to a heat exchanger 37 to partially condense and is separated in a phase separator 15.
  • the formed gas 15A is heated in the exchanger 37 and sent to a second membrane system 24 whose permeate 25 is sent upstream of the PSA 12 and the non-permeate 26 is sent to the reformer 2.
  • the liquid 15B of the phase separator 15 is expanded and then vaporized in the exchanger 37 to be sent upstream of the compressor 13B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Dans un procédé pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures, le gaz résiduaire d'un PSA H2 (12) est séparé par perméation pour réduire sa teneur en hydrocarbures et le gaz épuré en hydrocarbures est séparé à basse température pour produire un liquide riche en dioxyde de carbone (22).

Description

Procédé et appareil pour la production combinée d’hydrogène et de dioxyde de carbone à partir d’un mélange d'hydrocarbures
La présente invention concerne un procédé pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures dans lequel le mélange d'hydrocarbures est reformé pour produire un gaz de synthèse contenant de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone et au moins un hydrocarbure qui est refroidi, puis enrichi en hydrogène (H2) et dioxyde de carbone (CO2), oplionneilement séché, et traité dans une unité d'absorption en modulation de pression (PSA) de purification d'hydrogène pour produire de l'hydrogène (le séchage pouvant précéder ou suivre la purification), le résiduaire étant traité en vue de capturer du CO2. Elle concerne aussi une installation apte à la mise en œuvre du procédé.
Le changement climatique étant i'un des grands problèmes environnementaux actuels, diminuer les émissions de gaz à effet de serre, et tout particulièrement diminuer les émissions de CO2 est un des grands défis qui s'imposent à i'homme. Or l'une des sources essentielles d'émissions de CO2 est la combustion des combustibles fossiles.
Parmi les installations industrielles émettrices de dioxyde de carbone, on trouve notamment les installations de production d'hydrogène et de monoxyde de carbone qui émettent du dioxyde de carbone via leurs fumées, le CO2 contenu dans les fumées provenant de la combustion de gaz non valorisables générés dans le procédé et recyclés sous forme de combustibles, et de celle de combustibles additionnels tels que le naphta et le gaz naturel. La capture de CO2 sur ces installations s'effectue à la fois sur le CO2 présent dans des fumées de combustion, mais aussi sur le CO2 présent dans le gaz de synthèse produit par le procédé. Parmi les méthodes de capture du dioxyde de carbone présent dans le gaz de synthèse - c'est-à-dire produit lors du reformage ou obtenu par transformation ultérieure du gaz de synthèse - l'une des méthodes utilisées est la capture du dioxyde de carbone par compression et refroidissement du gaz résiduaire issu de l'unité de purification d'hydrogène par adsorption à modulation de pression (PSA H2), de sorte à liquéfier une fraction du dioxyde de carbone contenu dans ledit gaz résiduaire. Ce dioxyde de carbone liquide peut ensuite être transporté, stocké, transformé ou utilisé en fonction des besoins. Il est souhaitable pour l'exploitant de l'installation de valoriser les gaz non condensés issus de cette opération de capture de CO2 par compression et purification ou CPU (de l'anglais « compression and purification unit »).
Il est ainsi connu de W02006/054008 un procédé de production d’hydrogène dans lequel la capture de dioxyde de carbone permet en outre d'augmenter la production d'hydrogène de l'installation. Pour cela, le procédé met en œuvre des étapes de compression du gaz résiduaire du PSA, suivi d'une étape de séchage (le séchage pouvant, ainsi que décrit dans W02008/017783, être réalisé en amont du PSA) avec récupération du dioxyde de carbone via une unité de purification cryogénique (CPU). Les gaz incondensables issus de la CPU sont traités par une membrane permettant à l'hydrogène de perméer. L'hydrogène est renvoyé en amont du procédé, à l'entrée du PSA pour augmenter la production d'hydrogène de l'installation, le gaz résiduel issu de la membrane étant quant à lui utilisé dans l'étape de reformage, comme combustible et/ou comme charge destinée à alimenter le reformage.
Cependant, lorsque Ton souhaite produire du CO2 de qualité alimentaire, il faut également veiller à éliminer un certain nombre d’impuretés présentes dans le gaz résiduaire issues de l'unité de purification hydrogène (PSA H2). Pour les impuretés légères (méthane, monoxyde de carbone, azote, hydrogène, argon), on peut procéder par distillation tel que décrit dans WO20G6/0S4Ü08.
Mais, si la teneur en éthane est élevée dans le gaz résiduaire, il faudra augmenter considérablement le rebouillage de cette colonne pour atteindre une teneur finale de quelques ppm par comparaison à un cas où l’on n’éliminerait dans cette colonne que les impuretés légères de type méthane, monoxyde de carbone, azote, hydrogène ou argon, ce qui signifie une augmentation significative de la consommation énergétique de l’unité.
Pour les impuretés lourdes, le même document propose de procéder à une étape d’élimination d’impuretés lourdes par adsorption préalablement à l’étape de condensation partielle du gaz résiduaire. Malheureusement, il n’existe pas de système d’adsorption réellement efficace et économique pour éliminer un constituant tel que le propane, comme il n’en existe pas non plus pour l’éthane. Une autre solution consisterait à revaporiser le liquide produit riche en CO2 résultant de la condensation partielle du gaz résiduaire, à le réchauffer à une température de l’ordre de 400 à 500°C, à injecter de l’oxygène et à procéder à une oxydation catalytique pour éliminer notamment des hydrocarbures tels que l’éthane et le propane, puis à refroidir et liquéfier ce CO2, à procéder à une nouvelle distillation pour éliminer l’oxygène de manière à produire du dioxyde de carbone liquide de qualité alimentaire qui peut ensuite être transporté et stocké. Mais cette autre solution est à la fois coûteuse et complexe.
Selon le procédé d EP2141 1 19, on doit recomprimer le CO2 à la sortie de la membrane, alors que selon l’invention, on conserve une pression très élevée côté perméat qui est compatible avec une condensation du CO2 dans la CPU. Dans EP2141 1 19, le perméat est proche de la pression atmosphérique, ce qui ne permet pas de le condenser directement puisque le CO2 ne peut être à l’état liquide qu'à une pression supérieure à 519 kPa c’est à dire 5,19 bar abs ou 0,519 MPa.
L’objectif de la présente invention est donc de répondre au besoin de produire du CO2 de qualité alimentaire sans complexifier outre mesure l’installation. Elle consiste à installer une étape de séparation par membrane dont on récupérera un perméat enrichi en hydrogène et dioxyde de carbone où les quantités d’impuretés notamment l’éthane, l’éthylène, le propane et le propène sont considérablement réduites. Bien que cette opération réduise la pression partielle de CO2 dans le gaz faisant l’objet de la condensation partielle, elle permet de simplifier le procédé. Par ailleurs, les incondensables issus de la condensation partielle sont plus riches en hydrogène et ils n’ont pas besoin d'être purifié par une membrane lis peuvent être directement recyclés à l’amont du PSA hh pour augmenter la production d’hydrogène de l’unité ou être traités dans un PSA H2 séparé.
Dans certains cas, il peut être nécessaire de produire du dioxyde de carbone de qualité alimentaire, ayant par exemple une pureté minimale de 99,8%.
Selon un objet de l’invention, il est prévu un procédé pour la production combinée d'hydrogène et de dioxyde de carbone à partir d’un mélange d'hydrocarbures comportant au moins les étapes suivantes :
une étape (a) de reformage ou d’oxydation partielle du mélange d'hydrocarbures pour l'obtention d'un gaz de synthèse contenant au moins de l’hydrogène, du monoxyde de carbone, du dioxyde de carbone, du méthane, de la vapeur d'eau et éventuellement des impuretés dont au moins l'un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol,
une étape (b) de refroidissement du gaz de synthèse avec récupération de la chaleur disponible,
- une étape (c) de réaction de conversion (en anglais « shift ») de tout ou partie du gaz de synthèse refroidi pour oxyder la majeure partie du monoxyde de carbone en dioxyde de carbone avec production correspondante d'hydrogène et d’un gaz de synthèse enrichi en H2 et CO2 et contenant des impuretés dont au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol, une étape (d) de refroidissement du gaz de synthèse enrichi en H2 et CO2 issu de l'étape (c) avec élimination de l'eau condensée,
une étape (e) facultative de séchage additionnel du gaz de synthèse refroidi pour obtenir un gaz de synthèse sec,
une étape (f) de séparation du gaz de synthèse sec dans une unité d'adsorption par modulation de pression (PSA H2) permettant l'obtention d'un flux H2 à haute pression enrichi en hydrogène et d'un flux de gaz résiduaire de PSA appauvri en hydrogène contenant au moins du dioxyde de carbone, de l'hydrogène et au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène,
une étape (g) facultative de séchage du flux de gaz résiduaire,
une étape (h) de séparation par perméation du flux du gaz résiduaire dans un premier système membranaire pour l’obtention d’un perméaf appauvri en au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol et enrichi en dioxyde de carbone et en hydrogène ainsi qu’un non-perméat enrichi en au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène et appauvri en dioxyde de carbone et en hydrogène, le perméat ayant une pression partielle de dioxyde de carbone supérieure à 519 kPa, de préférence supérieure à 1000 kPa, et
une étape (i) de condensation partielle et/ou de distillation dudit perméat pour l'obtention d'un flux liquide riche en CO2 et d'un flux gazeux résiduaire.
Selon d’autres étapes facultatives :
il n’y a aucune étape de compression du perméat entre les étapes (h) et (I). le non-perméat de l'étape (h) est séparé dans un deuxième système membranaire.
le non-perméat de l’étape (h) est partiellement condensé. le flux gazeux résiduaire est envoyé à l’unité d’adsorptlon par modulation de pression.
au moins une partie du non-perméat de l’étape (h) ou un gaz dérivé de ce non-perméat est envoyé à l’étape de reformage ou d’oxydation partielle, comme carburant pour un brûleur de cette étape.
au moins une partie du non-perméat de l’étape (h) ou un gaz dérivé de ce non-perméat est envoyé à l’étape de reformage ou d’oxydation partielle comme gaz d’alimentation.
le premier et/ou deuxième système membranaire élimine au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol de sorte qu’au moins 80%, voire au moins 90% de l’au moins un hydrocarbure alimentant le système membranaire se retrouve dans le non perméat du premier et /ou deuxième système membranaire.
le procédé peut comprendre une étape de compression dans un compresseur en amont du premier système membranaire.
un fluide dérivé du non perméat du premier système membranaire est recyclé en amont du compresseur.
le flux liquide riche en CO2 obtenu est de qualité alimentaire.
A cet effet, l'invention propose un procédé pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures comportant au moins les étapes suivantes :
une étape (a) de reformage ou d’oxydation partielle du mélange d'hydrocarbures pour l'obtention d'un gaz de synthèse contenant au moins de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone, du méthane, de la vapeur d'eau et éventuellement des impuretés dont au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol,
une étape (b) de refroidissement du gaz de synthèse avec récupération de la chaleur disponible,
une étape (c) de réaction de conversion (shift) de tout ou partie du gaz de synthèse refroidi pour oxyder la majeure partie du monoxyde de carbone présent en dioxyde de carbone avec production correspondante d'hydrogène et d’un gaz de synthèse enrichi en h½ et CO2 et contenant des impuretés dont au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol, une étape (d) de refroidissement du gaz de synthèse enrichi en h½ et CO2 issu de i'étape (c) avec élimination de l’eau condensée,
une étape (e) facultative de séchage additionnel du gaz de synthèse refroidi pour l'élimination des molécules d'eau et obtention d'un gaz de synthèse sec,
une étape (f) de séparation du gaz de synthèse sec dans une unité d'adsorption par modulation de pression (ou PSA hh) permettant l'obtention d'un flux Hl à haute pression enrichi en hydrogène et d'un flux Rpsa de gaz résiduaire de PSA contenant au moins du dioxyde de carbone, de l'hydrogène et des impuretés,
une étape (g) facultative de séchage du flux Rpsa,
une étape (h) de compression (l'étape (g) peut également être réalisée après l'étape de compression) et purification du flux Rpsa comprenant une première phase de séparation par perméation (membrane) pour l’obtention d’un perméat enrichi en hydrogène et en dioxyde de carbone et appauvri en la plupart des impuretés et une deuxième phase d’obtention d’un flux liquide ou super critique riche en CO2 et d'un flux gazeux résiduaire RI enrichi en hydrogène et
une étape (I) de capture de dioxyde de carbone via une étape de compression et purification du flux Rpsa pour l'obtention d'un flux liquide ou supercritique riche en CO2 et d'un flux gazeux résiduaire RI enrichi en hydrogène.
L'étape de séchage (g) peut être réalisée avant l'étape de compression de l'étape (h) ; lorsque l'étape de compression comporte des compressions intermédiaires successives, le séchage peut être réalisé pendant l'étape de compression, entre deux compressions intermédiaires ; i'étape (g) peut également être réalisée après i'étape de compression.
Les impuretés dont au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, métbanol peuvent se trouver dans le gaz de synthèse dès l’étape a) et/ou peuvent être produites pendant l’étape de shift c).
De préférence
plus que 90% du méthane rentrant dans le premier système membranaire se retrouve dans le non-perméat du premier système membranaire,
plus que 90% de l’éthylène rentrant dans le premier système membranaire se retrouve dans le non-perméat du premier système membranaire,
plus que 90% du méthanoi rentrant dans le premier système membranaire se retrouve dans le non-perméat du premier système membranaire, plus que 98% de l’éthane rentrant dans le premier système membranaire se retrouve dans le non-perméat du premier système membranaire,
plus que 98% du propane rentrant dans le premier système membranaire se retrouve dans ie non-perméat du premier système membranaire,
plus que 98% du propène rentrant dans ie premier système membranaire se retrouve dans ie non-perméat du premier système membranaire
plus que 98% du benzène rentrant dans ie premier système membranaire se retrouve dans ie non-perméat du premier système membranaire.
Selon un autre objet de l’invention, il est prévu un appareil pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures comportant :
des moyens de refroidissement d’un gaz de synthèse provenant d’un appareil de reformage ou d’oxydation partielle d’un mélange d'hydrocarbures pour l'obtention du gaz de synthèse contenant au moins de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone, du méthane, de la vapeur d'eau et éventuellement des impuretés dont au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol avec récupération de la chaleur disponible, un réacteur de conversion (en anglais « shift ») de tout ou partie du gaz de synthèse refroidi pour oxyder la majeure partie du monoxyde de carbone en dioxyde de carbone avec production correspondante d'hydrogène et d’un gaz de synthèse enrichi en H2 et CO2 et contenant des impuretés dont au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol,
des moyens de refroidissement du gaz de synthèse enrichi en H2 et CO2 issu de l’étape (c) avec des moyens pour éliminer l'eau condensée,
des moyens facultatifs de séchage additionnel du gaz de synthèse refroidi pour obtenir un gaz de synthèse sec,
une unité d'adsorption par modulation de pression (PSA H2) pour séparer le gaz de synthèse éventuellement sec permettant l'obtention d'un flux h½ à haute pression enrichi en hydrogène et d'un flux de gaz résiduaire de PSA appauvri en hydrogène contenant au moins du dioxyde de carbone, de l'hydrogène et au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène,
un premier système membranaire pour séparer par perméation du flux ie gaz résiduaire pour l’obtention d’un perméat appauvri en au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol et enrichi en dioxyde de carbone et en hydrogène ainsi qu’un non-perméat enrichi en au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène et appauvri en dioxyde de carbone et en hydrogène, le perméat ayant une pression partielle de dioxyde de carbone supérieure à 519 kPa, de préférence supérieure à 1000 kPa, et des moyens de séparation par condensation partielle et/ou de distillation dudit perméat pour l'obtention d'un flux liquide riche en CO2 et d’un flux gazeux résiduaire.
L’appareil peut comprendre :
un deuxième système membranaire dans lequel le non-perméat du premier système membranaire,
des moyens pour condenser partiellement le non-perméat du premier système membranaire,
des moyens pour envoyer le flux gazeux résiduaire à l’unité d’adsorption par modulation de pression,
des moyens pour envoyer au moins une partie du non-perméat du premier système membranaire ou un gaz (26) dérivé de ce non-perméat à un appareil de reformage ou d’oxydation partielle.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description ci-après d'exemples de mise en œuvre non limitatifs, descriptions faites en référence aux figures annexées dans lesquelles :
La Figure 1 est une vue schématique d'un procédé pour la production combinée d'hydrogène et de dioxyde de carbone telle que décrite dans W02006/054008 (état de l’art).
La Figure 2 est une vue schématique d'un procédé pour la production combinée d'hydrogène et de dioxyde de carbone selon une configuration de base de l'invention.
La Figure 3 est une vue schématique d’un procédé selon l'invention qui diffère de celui de la Figure 2 en ce qu’un deuxième étage de membrane permet d’améliorer la récupération d’hydrogène et de dioxyde de carbone.
La Figure 4 est une vue schématique d'un procédé selon l'invention qui diffère de celui de la Figure 2 en ce qu’une deuxième condensation partielle et un deuxième étage de membrane permet d’améliorer encore plus la récupération d’hydrogène et de dioxyde de carbone du gaz. On a représenté également le cas où la fraction riche en hydrogène est purifiée dans un PSA H2 indépendant de manière à éviter une modification supplémentaire de l’unité initiale en cas de rénovation.
Les Figures 3A et 4A montrent en plus de détail la dernière partie des procédés respectifs des Figures 3 et 4.
La Figure 1 décrit l’état de l’art dans lequel une charge d'hydrocarbures 1 mélangée à de la vapeur d'eau (non représentée) alimente un reformeur 2 pour générer un gaz de synthèse 3 contenant au moins du monoxyde de carbone, de l'hydrogène, du dioxyde de carbone, du méthane n'ayant pas réagi et des impuretés. Cette étape de reformage à la vapeur est réalisée dans un four de vapo-reformage contenant des tubes remplis de catalyseurs, la chaleur nécessaire au reformage étant apportée par combustion.
Le gaz de synthèse 3 est alors refroidi en 4, le gaz de synthèse refroidi 5 étant ensuite soumis en 6 à une réaction de shift durant laquelle le monoxyde de carbone réagit avec de l’eau (représentée mais non référencée) pour être - pour partie - transformé en hydrogène et dioxyde de carbone. La réaction mise en jeu (CO + H2O -> CO2 + H2) est appelée réaction de gaz à l’eau ou réaction de shift. Cette réaction de conversion est en générai conduite sur le gaz de synthèse à haute température (HT shift) ou à moyenne température (MT shift), une seconde étape 6b de shift peut être réalisée en aval de ia précédente, sur le gaz de synthèse partiellement converti, à température plus basse (en anglais « low température shift ») - cette seconde étape de conversion 6b est représentée en traits discontinus, elle n'est pas obligatoire. Le gaz de synthèse obtenu 7 - en sortie de l'étape 6 ou de l'étape 6b lorsque l’étape 6 est suivie d'une étape 6b - est enrichi en H2 et CO2 et appauvri en CO ; il est refroidi en 8, puis le gaz refroidi 9 est séché en 10 (par exemple en utilisant un procédé d'adsorption type TSA) pour éliminer les molécules d’eau et obtenir ainsi un mélange gazeux 1 1 sec - eu égard au traitement aval du gaz - lequel mélange gazeux sec est ensuite soumis à une étape de séparation dans une unité 12 d'adsorption par modulation de pression ou PSA H2 pour produire un courant gazeux 16 d’hydrogène produit et un courant gazeux 14 de résiduaire de PSA (résiduaire Rpsa). Le courant 14 est ensuite traité pour en capturer le dioxyde de carbone ; pour cela, Il est comprimé (sous-étape 13a) de telle sorte que sa pression soit comprise entre 20 et 100 bar et il subit une sous-étape 13 b de purification par absorption de manière à éliminer certaines impuretés lourdes comme le benzène ou le métbanol. Ensuite, il subit une ou plusieurs étapes successives de condensation/séparation dans l'unité CPU 21 pour obtenir un flux liquide 22 enrichi en CO2, et un courant gazeux 20 (résiduaire RI), enrichi en hydrogène et en autres constituants incondensables, notamment en monoxyde de carbone et méthane. Le courant 20 est ensuite soumis à une étape de séparation dans une unité 8 de perméation au travers d’une membrane pour produire un courant gazeux 23 (perméat) enrichi en hydrogène (flux Hii) et un courant gazeux 19 enrichi en monoxyde de carbone et en méthane. Ce courant gazeux 19 pourra par exemple être envoyé en tant que combustible vers le reformeur 2. Le séchage du gaz de synthèse, en amont et/ou en aval du PSA (non représenté) permet d'éliminer l’eau nuisible au bon déroulement du procédé aval.
Dans la Figure 2, selon l’invention, une charge d'hydrocarbures 1 mélangée à de la vapeur d'eau (non représentée) alimente un reformeur 2 pour générer un gaz de synthèse 3 contenant au moins du monoxyde de carbone, de l'hydrogène, du dioxyde de carbone, du méthane n'ayant pas réagi et des impuretés dont au moins des hydrocarbures suivants : éthane, propane, éthylène, propène.
Cette étape de reformage à la vapeur est réalisée dans un four de vapo- reformage contenant des tubes remplis de catalyseurs, la chaleur nécessaire au reformage étant apportée par combustion. Le gaz de synthèse 3 est alors refroidi en 4, le gaz de synthèse refroidi 5 étant ensuite soumis en 6 à une réaction de shift durant laquelle le monoxyde de carbone réagit avec de l'eau (représentée mais non référencée) pour être - pour partie - transformé en hydrogène et dioxyde de carbone. La réaction mise en jeu (CO + h½G -> CO2 + Fb) est appelée réaction de gaz à l'eau ou réaction de shift. Cette réaction de conversion est en général conduite sur le gaz de synthèse à haute température (HT shift) ou à moyenne température (MT shift), une seconde étape 8b de shift peut être réalisée en aval de la précédente, sur le gaz de synthèse partiellement converti, à température plus basse (en anglais « iow température shift ») - cette seconde étape de conversion 6b est représentée en traits discontinus, elle n’est pas obligatoire. Le gaz de synthèse obtenu 7 - en sortie de l'étape 6 ou de l'étape 6b lorsque l'étape 6 est suivie d'une étape 6b - est enrichi en H2 et CO2 et appauvri en CO ; il est refroidi en 8, puis le gaz refroidi 9 est séché en 10 (par exemple en utilisant un procédé d'adsorption type TSA) pour éliminer les molécules d'eau et obtenir ainsi un mélange gazeux 1 1 sec - eu égard au traitement aval du gaz - lequel mélange gazeux sec est ensuite soumis à une étape de séparation dans une unité 12 d'adsorption par modulation de pression ou PSA H2 pour produire un courant gazeux 16 d'hydrogène produit et un courant gazeux 14 de résiduaire de PSA (résiduaire Rpsa). Le courant 14 est ensuite traité pour en capturer le dioxyde de carbone ; pour cela, il est comprimé dans un compresseur 13 de telle sorte que sa pression soit comprise entre 20 et 100 bar pour produire le gaz 17. Il peut subir une sous-étape de purification par adsorption de manière à éliminer certaines impuretés lourdes comme le benzène ou le méthanol. Ensuite, il est séparé dans un système membranaire 8 pour produire un perméat 20 enrichi en dioxyde de carbone et en hydrogène et un non-perméat appauvri en dioxyde de carbone et en hydrogène et contenant au moins 90% de i’au moins un hydrocarbure présent dans le gaz 17. Le perméat 20, ayant une pression partielle en CO2 d’au moins 519 kPa, n’est pas comprimé et subit une ou plusieurs étapes successives de condensation/séparation dans l'unité CPU 21 pour obtenir un flux liquide 22 enrichi en CO2, et un courant gazeux 23, enrichi en hydrogène et en autres constituants incondensables, notamment en monoxyde de carbone et méthane. Le courant 23 est renvoyé à l’unité d’adsorption 12 pour le séparer avec le gaz 1 1 .
Le non-perméat 19 enrichi en au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène et appauvri en dioxyde de carbone et en hydrogène est envoyé comme combustible au four 2.
La membrane du système membranaire 17 peut fonctionne entre la température ambiante de 100°C, de préférence aux alentours de 80°C, par exemple entre 70 et 90°C. La membrane peut être une membrane polymérique capable de séparer l’hydrogène pouvant être un polyamide, polyaramide, poiybenzimidazoles, mélange de polybenzimidazole et polyimdes.
Dans la Figure 3, seules les différences avec la Figure 2 seront décrites. Le non- perméat 19 du premier système membranaire 17 est envoyé à un deuxième système membranaire 24. Le non-perméat 19 enrichi en au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène et appauvri en dioxyde de carbone et en hydrogène se sépare dans le deuxième système membranaire 24. Le perméat 25 du deuxième système membranaire 24 enrichi en CO2 par rapport au non-perméat 19 est renvoyé à l’étape d’absorption 13. Le non-perméat 26 du deuxième système membranaire 24 envoyé au reformage 2.
A la Figure 3A, les étapes de traitement 4, 6, 8 et 10 de la Figure 3 sont omises : par contre les étapes 12 à 24 sont illustrées en plus de détail. Après l’étape d’adsorpîion dans l’unité 12 produisant de l’hydrogène 16 et un débit 14 appauvri en hydrogène, le débit 14 est comprimé par le compresseur 13A, épuré en eau (cas où le séchage est en aval du PSA) et/ou en méthanol et/ou en benzène dans l’adsorbeur 13C et comprimé de nouveau par le compresseur 13B. Le débit 17 produit par le compresseur 13B est séparé pour produire un débit 20 enrichi en CO2 et appauvri en au moins un hydrocarbure 20. Le débit 20 est refroidi par le refroidisseur 31 , le débit refroidi 33 est partiellement condensé et séparé dans un séparateur de phases 32 dont le gaz 23 est renvoyé à i’adsorption 12. Le liquide 34 est séparé par distillation dans une colonne de distillation 35 pour produire un gaz 36 et un liquide riche en dioxyde de carbone 22. Le non-perméat 19 du premier système membranaire 8 est envoyé à un deuxième système membranaire 24 dont le perméat 25 est envoyé en amont du compresseur 13B et le non-perméat 26 est envoyé au reformeur 2.
Le tableau suivant montre des données pour le procédé des Figures 3 et 3A.
Tableau 1
Ainsi nous constatons que plus que 90% du méthane, de l’éthylène et du méthanol dans le débit 17 et plus que 98% de l’éthane, du propane, du propène et du benzène dans le débit 17 se retrouve dans le non-perméat 19 du premier système membranaire 8.
Le deuxième système membranaire 24 sert à éliminer plus que 98% de l’éthane, du propane, du propène et du benzène dans le débit 17 se retrouvant dans le non perméat 28.
Dans la Figure 4, le non perméat 19 subit une condensation 15 pour recycler un condensai enrichi en CO2 15B vers la compression 13 et les incondensables 15A passent dans une deuxième membrane 24 pour séparer une fraction riche en hydrogène 26 recyclée en amont du PSA et une fraction 25 riche en monoxyde de carbone et méthane qui va aux brûleurs du reformeur 2.
A la Figure 4A, les étapes de traitement 4, 6, 8 et 10 de la Figure 4 sont omises : par contre les étapes 12 à 24 sont illustrées en plus de détail.
Après l’étape d’adsorption dans l’unité 12 produisant de l’hydrogène 16 et un débit 14 appauvri en hydrogène, le débit 14 est comprimé par le compresseur 13A, épuré en eau (cas où le séchage est en aval du PSA) et/ou en méthanol et/ou en benzène dans l’adsorbeur 13C et comprimé de nouveau par le compresseur 13B. Le débit 17 produit par le compresseur 13B est séparé pour produire un débit 20 enrichi en CO2 et appauvri en au moins un hydrocarbure 20. Le débit 20 est refroidi par le refroidisseur 31 , le débit refroidi 33 est partiellement condensé et séparé dans un séparateur de phases 32 dont le gaz 23 est renvoyé à i’adsorption 12. Le liquide 34 est séparé par distillation dans une colonne de distillation 35 pour produire un gaz 38 et un liquide riche en dioxyde de carbone 22. Ce liquide peut contenir 99,8% de dioxyde de carbone au moins, étant de qualité alimentaire.
Le non-perméat 19 du premier système membranaire 8 est envoyé à un échangeur de chaleur 37 pour se condenser partiellement et est séparé dans un séparateur de phases 15. Le gaz formé 15A est réchauffé dans l’échangeur 37 et envoyé à un deuxième système membranaire 24 dont le perméat 25 est envoyé en amont du PSA 12 et le non-perméat 26 est envoyé au reformeur 2.
Le liquide 15B du séparateur de phases 15 est détendu puis vaporisé dans l’échangeur 37 pour être envoyé en amont du compresseur 13B

Claims

Revendications
1 . Procédé pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures comportant au moins les étapes suivantes :
une étape (a) de reformage ou d'oxydation partielle du mélange d'hydrocarbures (1 ) pour l'obtention d'un gaz de synthèse (3) contenant au moins de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone, du méthane, de la vapeur d'eau et au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol
une étape (b) de refroidissement du gaz de synthèse avec récupération de la chaleur disponible,
une étape (c) de réaction de conversion (en anglais « shift ») de tout ou partie du gaz de synthèse refroidi (5) pour oxyder la majeure partie du monoxyde de carbone en dioxyde de carbone avec production correspondante d'hydrogène et d’un gaz de synthèse enrichi en hh et CO2 et contenant des impuretés dont au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol, une étape (d) de refroidissement du gaz de synthèse enrichi en H2 et CO2 (7) issu de l’étape (c) avec élimination de l'eau condensée,
une étape (e) facultative de séchage additionnel du gaz de synthèse refroidi pour obtenir un gaz de synthèse sec (1 1 ),
une étape (f) de séparation du gaz de synthèse éventuellement sec (1 1 ) dans une unité d'adsorption par modulation de pression (PSA H2) (12) permettant l'obtention d'un flux h (16) à haute pression enrichi en hydrogène et d'un flux de gaz résiduaire de PSA (14) appauvri en hydrogène contenant au moins du dioxyde de carbone, de l'hydrogène et au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène,
une étape (g) facultative de séchage du flux de gaz résiduaire,
une étape (h) de séparation par perméation du flux du gaz résiduaire (17) dans un premier système membranaire (8) pour l’obtention d’un perméat (20) appauvri en au moins l'un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol et enrichi en dioxyde de carbone et en hydrogène ainsi qu’un non- perméat (19) enrichi en au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène et appauvri en dioxyde de carbone et en hydrogène, le perméat ayant une pression partielle de dioxyde de carbone supérieure à 519 kPa, de préférence supérieure à 1000 kPa, et
une étape (i) de condensation partielle et/ou de distillation dudit perméat pour l'obtention d'un flux liquide riche en CO2 (22) et d'un flux gazeux résiduaire (23, 36).
2. Procédé selon la revendication 1 dans lequel il n’y a aucune étape de compression du perméat entre les étapes (h) et (i).
3. Procédé selon la revendication 1 ou 2 dans lequel le non-perméat (19) de l’étape (h) est séparé dans un deuxième système membranaire (15, 24).
4. Procédé selon l’une des revendications 1 à 3 dans lequel le non-perméat (19) de l’étape (h) est partiellement condensé.
5. Procédé selon l’une des revendications précédentes dans lequel le flux gazeux résiduaire (17) est envoyé à l’unité d’adsorption par modulation de pression (12).
6. Procédé selon l’une des revendications précédentes dans lequel au moins une partie du non-perméat (19) de l’étape (h) ou un gaz (26) dérivé de ce non-perméat est envoyé à l’étape de reformage ou d’oxydation partielle, comme carburant pour un brûleur de cette étape.
7. Procédé selon l’une des revendications précédentes dans lequel au moins une partie du non-perméat (19) de l’étape (h) ou un gaz (26) dérivé de ce non-perméat est envoyé à l’étape de reformage ou d’oxydation partielle comme gaz d’alimentation.
8. Procédé selon l’une des revendications précédentes dans lequel le premier et/ou deuxième système membranaire (8,15,24) élimine au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanoi de sorte qu’au moins 80%, voire au moins 90% de i’au moins un hydrocarbure alimentant le système membranaire se retrouve dans le non perméat du premier et/ou deuxième système membranaire.
9. Procédé selon l’une des revendications précédentes comprenant une étape de compression dans un compresseur (13B) en amont du premier système membranaire (8).
10. Procédé selon ia revendication 9 dans lequel un fluide (15B, 25) dérivé du non perméat du premier système membranaire (8) est recyclé en amont du compresseur (13B).
1 1 . Appareil pour ia production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures comportant :
des moyens de refroidissement (4) d’un gaz de synthèse (3) provenant d’un appareil de reformage ou d’oxydation partielle (1 ) d’un mélange d'hydrocarbures (1 ) pour l'obtention du gaz de synthèse contenant au moins de l’hydrogène, du monoxyde de carbone, du dioxyde de carbone, du méthane, de ia vapeur d'eau et au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol avec récupération de la chaleur disponible,
un réacteur de conversion (en anglais « shift ») (6, 6b) de tout ou partie du gaz de synthèse refroidi pour oxyder la majeure partie du monoxyde de carbone en dioxyde de carbone avec production correspondante d'hydrogène et d’un gaz de synthèse enrichi en h½ et CO2 et contenant des impuretés dont au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol, des moyens de refroidissement (8) du gaz de synthèse enrichi en H2 et CO2 (7) issu de l’étape (c) avec des moyens pour éliminer l’eau condensée,
des moyens (10) facultatifs de séchage additionnel du gaz de synthèse refroidi pour obtenir un gaz de synthèse sec,
une unité d'adsorption par modulation de pression (PSA h½) (12) pour séparer le gaz de synthèse éventuellement sec (1 1 ) permettant l'obtention d'un flux H2 (16) à haute pression enrichi en hydrogène et d'un flux de gaz résiduaire de PSA (14) appauvri en hydrogène contenant au moins du dioxyde de carbone, de l’hydrogène et au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène,
un premier système membranaire (8) pour séparer par perméation du flux le gaz résiduaire (14) pour l’obtention d’un perméat (20) appauvri en au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène, benzène, méthanol et enrichi en dioxyde de carbone et en hydrogène ainsi qu’un non-perméat (19) enrichi en au moins l’un des hydrocarbures suivants : éthane, propane, éthylène, propène et appauvri en dioxyde de carbone et en hydrogène, le perméat ayant une pression partielle de dioxyde de carbone supérieure à 519 kPa, de préférence supérieure à 1000 kPa, et
- des moyens de séparation (21 ) par condensation partielle et/ou de distillation dudit perméat pour l'obtention d'un flux liquide riche en CO2 (22) et d'un flux gazeux résiduaire (23, 36).
12 Appareil selon la revendication 11 comprenant un deuxième système membranaire (15, 24) dans lequel le non-perméat (19) du premier système membranaire
13 Appareil selon la revendication 11 ou12 comprenant des moyens pour condenser partiellement le non-perméat (19) du premier système membranaire.
14. Appareil selon l'une des revendications précédentes 11 à 13 comprenant des moyens pour envoyer le flux gazeux résiduaire (17) à l'unité d’adsorption par modulation de pression (12).
15. Appareil selon l’une des revendications précédentes 11 à 14 comprenant des moyens pour envoyer au moins une partie du non-perméat (19) du premier système membranaire ou un gaz (26) dérivé de ce non-perméat à un appareil de reformage ou d’oxydation partielle.
EP18867317.2A 2017-11-22 2018-11-08 Procédé et appareil pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures Active EP3713870B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761066A FR3073835B1 (fr) 2017-11-22 2017-11-22 Procede et appareil pour la production combinee d'hydrogene et de dioxyde de carbone a partir d'un melange d'hydrocarbures
PCT/FR2018/052774 WO2019102094A2 (fr) 2017-11-22 2018-11-08 Procédé et appareil pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures

Publications (2)

Publication Number Publication Date
EP3713870A2 true EP3713870A2 (fr) 2020-09-30
EP3713870B1 EP3713870B1 (fr) 2024-05-01

Family

ID=61258381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18867317.2A Active EP3713870B1 (fr) 2017-11-22 2018-11-08 Procédé et appareil pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures

Country Status (4)

Country Link
US (1) US11554955B2 (fr)
EP (1) EP3713870B1 (fr)
FR (1) FR3073835B1 (fr)
WO (1) WO2019102094A2 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212137B1 (ko) 2016-04-21 2021-02-03 퓨얼 셀 에너지, 인크 이산화탄소 포획을 위해 용융 탄산염 연료 전지 애노드 배기를 후가공처리하는 방법
EP3538746A1 (fr) 2016-11-09 2019-09-18 8 Rivers Capital, LLC Systèmes et procédés de production d'énergie à production intégrée d'hydrogène
KR102651575B1 (ko) 2017-11-09 2024-03-27 8 리버스 캐피탈, 엘엘씨 수소 및 이산화탄소의 생산 및 분리를 위한 시스템들 및 방법들
KR102610181B1 (ko) 2018-11-30 2023-12-04 퓨얼셀 에너지, 인크 향상된 co2 이용률로 작동되는 연료 전지를 위한 촉매 패턴의 개질
US12109527B2 (en) * 2019-05-30 2024-10-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of two gaseous streams each containing carbon monoxide, hydrogen and at least one acid gas
KR20220020842A (ko) 2019-06-13 2022-02-21 8 리버스 캐피탈, 엘엘씨 추가 생성물들의 공동 발생을 구비하는 동력 생산
CN110980645A (zh) * 2019-12-27 2020-04-10 乔治洛德方法研究和开发液化空气有限公司 一种蒸汽烃类重整方法
EP4118029A1 (fr) * 2020-03-11 2023-01-18 Fuelcell Energy, Inc. Unité de reformage de méthane à la vapeur pour la capture de carbone
CA3214940A1 (fr) 2021-04-15 2022-10-20 Iogen Corporation Procede et systeme de production d'hydrogene renouvelable a faible intensite de carbone
WO2022221954A1 (fr) 2021-04-22 2022-10-27 Iogen Corporation Procédé et système de production de combustible
FR3125434A1 (fr) * 2021-07-26 2023-01-27 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation membranaire d’un mélange contenant comme composants principaux de l’hydrogène et du dioxyde de carbone
CA3238610A1 (fr) 2021-11-18 2023-05-25 Rodney John Allam Appareil de production d'hydrogene
US11807530B2 (en) 2022-04-11 2023-11-07 Iogen Corporation Method for making low carbon intensity hydrogen
FR3139478A1 (fr) * 2022-09-08 2024-03-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation membranaire d’un mélange contenant majoritairement de l’hydrogène et du dioxyde de carbone
FR3139477A1 (fr) * 2022-09-12 2024-03-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de séparation
FR3141077B1 (fr) * 2022-10-19 2024-09-06 Air Liquide Procédé et appareil de séparation d’un mélange d’hydrogène et de dioxyde de carbone
EP4420753A1 (fr) * 2023-02-21 2024-08-28 Linde GmbH Procédé et installation pour fournir une fraction d'hydrogène

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877939B1 (fr) 2004-11-16 2007-02-02 Air Liquide Procede et installation pour la production combinee d'hydrogene et de dioxyde de carbone
WO2008016361A1 (fr) * 2006-08-03 2008-02-07 Utc Fuel Cells, Llc Traitement de combustible de charge d'alimentation ayant des concentrations en oléfine élevées
FR2904780B1 (fr) 2006-08-10 2009-10-09 Air Liquide Procede de separation d'un gaz de synthese contenant de l'hydrogene et du monoxyde de carbone mais aussi au moins du dioxyde de carbone et de la vapeur d'eau
EP2366447B1 (fr) * 2007-03-29 2014-12-17 Nippon Oil Corporation Procédé et appareil pour la production d'hydrogène et la récupération de dioxyde de carbone
GB0901472D0 (en) * 2009-01-30 2009-03-11 Johnson Matthey Plc Hydrogen process
FR2953505B1 (fr) * 2009-12-03 2012-02-10 Air Liquide Procede pour une production d'hydrogene combinee a une capture de dioxyde de carbone
EP2873939B1 (fr) * 2013-11-19 2019-02-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil pour la production de CO et CO2

Also Published As

Publication number Publication date
WO2019102094A3 (fr) 2019-07-25
US20200307997A1 (en) 2020-10-01
US11554955B2 (en) 2023-01-17
FR3073835A1 (fr) 2019-05-24
WO2019102094A2 (fr) 2019-05-31
FR3073835B1 (fr) 2022-10-21
EP3713870B1 (fr) 2024-05-01

Similar Documents

Publication Publication Date Title
EP3713870B1 (fr) Procédé et appareil pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures
CA2792012C (fr) Procede pour une production d'hydrogene avec emission de co2 reduite
EP1890961B1 (fr) Procede pour la production simultanee d'hydrogene et de monoxyde de carbone
EP2931655B1 (fr) Procédé pour une production d'hydrogène par reformage d'hydrocarbures utilisant de la vapeur, associé à une capture de dioxyde de carbone et à une production de vapeur
US9481573B2 (en) Steam reformer based hydrogen plant scheme for enhanced carbon dioxide recovery
EP2931654B1 (fr) Procédé pour une production d'hydrogène par reformage d'hydrocarbures utilisant de la vapeur, associé à une capture de dioxyde de carbone et à une production de vapeur
FR2953505A1 (fr) Procede pour une production d'hydrogene combinee a une capture de dioxyde de carbone
FR2961802A1 (fr) Procede de production d'hydrogene combinee a une capture de dioxyde de carbone
US11168045B2 (en) Process for methanol production
EP2864240A1 (fr) Procédé et installation pour la production combinée de gaz de synthèse d'ammoniac et de dioxyde de carbone
WO2016174317A1 (fr) Production d'hélium à partir d'un courant gazeux contenant de l'hydrogène
WO2010109106A1 (fr) Procede et installation de production d'hydrogene
EP3142967B1 (fr) Procédé de traitement pour la séparation de dioxyde de carbone et d'hydrogène d'un mélange
EP1097903B1 (fr) Procédé et installation pour la production d'hydrogène pur à partir d'un gaz contenant de l'hélium
FR2847568A1 (fr) Procede et installation de production d'un melange krypton/xenon a partir d'air
FR2897052A1 (fr) Procede de production d'un gaz de synthese
WO2023164500A2 (fr) Reformage avec capture de carbone
WO2024064741A1 (fr) Combustion d'oxycombustible dans une méthode de récupération d'un produit enrichi en hydrogène et de co2 dans une unité de production d'hydrogène
EP4410401A1 (fr) Procédé et appareil de séparation d'un mélange d hydrogène et de dioxyde de carbone

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200622

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230314

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20230906

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018069085

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240902

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1682160

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240501