EP3711071B1 - Hochspannungsdurchführung - Google Patents
Hochspannungsdurchführung Download PDFInfo
- Publication number
- EP3711071B1 EP3711071B1 EP17837948.3A EP17837948A EP3711071B1 EP 3711071 B1 EP3711071 B1 EP 3711071B1 EP 17837948 A EP17837948 A EP 17837948A EP 3711071 B1 EP3711071 B1 EP 3711071B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage bushing
- voltage
- insulating body
- bushing
- electrode element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 claims description 37
- 238000004804 winding Methods 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 8
- 229920005989 resin Polymers 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 4
- 230000005684 electric field Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000009422 external insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/26—Lead-in insulators; Lead-through insulators
- H01B17/28—Capacitor type
Definitions
- the invention relates to a high-voltage bushing with an inner conductor which extends in a longitudinal direction between a first and a second high-voltage connection of the high-voltage bushing, and with an insulating body which at least partially encloses the inner conductor, wherein the insulating body comprises control inserts which are arranged in a control insert region and control the electric field, which are separated from one another by insulating layers, and wherein the control inserts are suitably arranged concentrically around the inner conductor.
- such a high-voltage bushing has the task of isolating the inner conductor of the high-voltage bushing, which is at a high-voltage potential when the high-voltage bushing is in operation, from an environment at earth potential, for example a wall of a high-voltage system.
- the voltage differences to the earth potential are, for example, more than 300 kV, in particular more than 600 kV.
- the inner conductor is passed through the insulating body.
- the conductive control inserts embedded in the insulating body serve to control the electric field so that the electrical stress is evened out radially and axially inside and outside the insulating body. In this way, critical electrical stresses on the surface and inside the insulating body can be avoided or at least reduced.
- Such a high-voltage bushing is from the WO 2015/172806 A1
- the insulating layers of the known high-voltage bushing comprise resin-impregnated crepe paper.
- the control insert area is the area of the insulating body in which the control inserts are arranged.
- the control insert area usually extends along a part of the inner conductor.
- the high-voltage connection is generally understood as a suitably designed connection point that is suitable for connection to other power lines.
- the axial control path of the high-voltage bushing depends on the voltage to be insulated.
- the higher the voltage to be insulated the longer the insulating body must be designed in order to achieve a uniform permissible electrical load along the longitudinal direction of the high-voltage bushing.
- the material costs therefore increase with the voltage to be insulated.
- Appropriate production facilities and assembly halls must also be provided in order to be able to produce the necessary lengths.
- long lengths require costly adjustments with regard to mechanical, for example seismic, stress.
- the EP 2 264 719 A1 discloses a capacitively controlled high-voltage feedthrough in which a field gradient reduction electrode is provided to support the field control effect.
- Another isolation device with capacitive field control is from the JP-S58172817 A known.
- the object of the invention is therefore to propose a high-voltage bushing of the type in question which is as inexpensive and light as possible.
- a conductive, low-resistance electrode element is electrically connected to a defined control insert of the field control of the insulating body.
- the field control can be capacitive and/or resistive, for example.
- the potential can thus be axially shifted to the desired position by means of the electrode element. This can advantageously achieve a uniformization of the electrical load on the high-voltage bushing and its surroundings.
- a largely cylindrical electrical field is created for the inner conductor. Due to the potential shift, this field only emerges at an end of the electrode element axially opposite the control insert area.
- the connection of the at least one electrode element to the control insert can be made, for example, by means of a suitable potential tap.
- the potential tap can be implemented using suitable conductive components, such as a copper strip.
- the mechanical fastening of the electrode element can expediently be provided using the insulating body.
- the high-voltage bushing according to the invention can be used in stationary electric fields (DC), quasi-stationary electric fields (AC) as well as in surge processes.
- An advantage of the high-voltage bushing according to the invention is that the control insert area of the insulating body can be shortened axially by using the electrode element. In this way, the previously described disadvantages, for example due to the high weight of the insulating body and thus the High-voltage bushings can be avoided.
- the high-voltage bushing according to the invention can enable new applications, e.g. in the voltage range above 1000 kV.
- the electrode element is cylindrical, conical or similar at least in sections and extends in the longitudinal direction of the high-voltage bushing and concentrically to the inner conductor.
- the electrode element has a rounded portion at its end facing away from the control insert area to avoid excessive field strength increases.
- the rounded portion By means of the rounded portion, disadvantageous field strength increases at the end of the electrode element can be avoided.
- any rounded profile is considered to be rounded, e.g. also in the sense of a Rogowski profile known to the person skilled in the art.
- a further electrode element is provided, the two electrode elements being arranged opposite one another at or in the area of the two axial ends of the control insert area, both electrode elements extending in the longitudinal direction of the high-voltage bushing and concentrically to the inner conductor.
- the insulating body or the control insert area can be made shorter at both ends.
- the high-voltage bushing is a wall bushing
- the two high-voltage connections being external connections for connecting to a high-voltage conductor each.
- the external connections can be outdoor connections, for example.
- the two electrode elements can be constructed in the same way.
- the further electrode element is also led out axially from the control insert area of the insulating body.
- the high-voltage conductor can, for example, be part of an overhead line or a busbar or the connection between both.
- the insulating body usually comprises a single winding body, which is formed from control inserts and insulating layers wound on a winding core.
- the insulating body comprises two concentric winding bodies.
- the electrode element is led out of the control insert area at a connection point of the winding bodies.
- the two winding bodies can, for example, be pushed into one another during the production of the high-voltage bushing.
- the electrode element can, for example, be mechanically fastened at a point between the winding bodies.
- the high-voltage bushing can be designed as a pluggable high-voltage bushing.
- the high-voltage bushing has a plug-in section which is designed for plugging the high-voltage bushing into a device connection part of an electrical device, wherein the control inserts extend into the plug-in section.
- the electrical device can be a high-voltage transformer, for example.
- the plug-in section of the high-voltage bushing and the device connection part are designed in such a way that a reliable electrical contact can be established between the inner conductor of the high-voltage bushing and the device connection part, wherein the device connection part is electrically connected to other elements of the electrical device, such as a transformer winding arranged within the housing.
- connection at the interfaces between the device connection part and the plug-in section is sufficiently dielectrically strengthened so that operation at high voltage level is possible.
- the control inserts extend into the plug-in section of the high-voltage bushing. In this way, the The electric field can also be effectively controlled in the plug-in area, so that the sensitive area of the connection between the device connection part and the high-voltage bushing has improved electrical properties.
- the insulating body further comprises a hardened resin.
- the high-voltage bushing can be impregnated with a hardenable resin during the manufacturing process, for example after winding up the insulating layers. After the resin has hardened, an insulating body with improved electrical insulation can be obtained.
- the insulating body with the resin as the main insulator is in the form of a compact block.
- the insulating body advantageously provides a mechanical support for the inner conductor of the high-voltage bushing as a solid block. In this way, bending of the inner conductor due to its own weight can be avoided or reduced.
- the inner conductor supported by the insulating body can thus always maintain the intended radial distance from the electrode element along its length, so that the electrical properties are not adversely affected by possible bending of the inner conductor.
- the insulating body also serves as a mechanical support element for the electrode elements.
- the high-voltage bushing has an outer housing which at least partially encloses the insulating body on the outside, wherein the housing consists at least partially of a composite material, wherein an additional insulation is provided between the housing and the insulating body.
- the additional insulation preferably comprises an insulating gas. Suitable insulating gases are, for example, SF 6 or air under high pressure.
- the composite material can be, for example, a fiber-reinforced plastic.
- the housing element consists of glass fiber-reinforced plastic, which ensures particularly high stability.
- the housing element can be a tube made of glass fiber reinforced plastic.
- An external insulation can also be attached to the tubular housing element, which comprises, for example, annular silicone shields.
- the insulating layers of the insulating body can comprise paper.
- the insulating layers can also be made of a plastic.
- the insulating layers can comprise a plastic nonwoven fabric, which preferably consists of so-called continuous filaments.
- the high-voltage bushing 1 is designed as a wall bushing. It is used to guide a high-voltage conductor, which is at a high voltage of, for example, over 500 kV, through a wall or partition. For example, this is the wall of a HVDC hall.
- the high-voltage bushing 1 comprises an inner conductor 2, which is connected to both a first axial end 3 and a second axial end 4 of the high-voltage bushing 1 with the high-voltage conductor (which is Figure 1 not explicitly shown).
- the high-voltage conductor can be part of an overhead line or a supply line to a transformer winding or to a valve group.
- the inner conductor 2 is partially enclosed by a spindle-shaped insulating body 5.
- the insulating body 5 comprises control inserts 27a-e, which are Figure 3 are shown in more detail.
- the control inserts 27a-e are arranged concentrically around the inner conductor 2 (in general, control inserts that are arranged almost concentrically due to the manufacturing process are also understood to be concentric).
- the control inserts are used for capacitive and/or resistive field control. They are separated from one another by insulating layers that comprise paper or a plastic, for example a plastic nonwoven.
- the insulating layers are wound onto the inner conductor 2. In general, the insulating layers can also be wound onto a separate remaining or removable winding carrier.
- the insulating body 5 is soaked in a resin and hardened so that the insulating body forms a compact block that mechanically supports the inner conductor 2.
- the insulating body 5 is often also referred to as the main insulation.
- the area of the insulating body 5 in which the control inserts are arranged is referred to as the control insert area 26 (cf. Figure 3 ).
- the high-voltage bushing 1 further comprises a fastening flange 6 for fastening the high-voltage bushing to the wall or wall at ground potential.
- the fastening flange 6 engages mechanically, for example by means of a clamp connection, directly on the insulating body 5.
- the high-voltage bushing 1 is equipped with a housing 7.
- the housing 7 can, for example, consist at least in part of a composite material, for example of a fiber-reinforced plastic.
- a secondary insulation 9 which consists for example of an insulating gas such as SF 6 , is arranged in a gap 8 between the housing 7 and the insulating body 5.
- An outer layer in the form of silicone shields 13 is attached to the outside of the housing 7.
- the high-voltage feedthrough comprises a first electrode element 12a and a second electrode element 12b.
- the two electrode elements 12a and 12b are cylindrical and arranged concentrically to the inner conductor 2. Both electrode elements 12a and 12b are electrically connected to one of the control inserts and mechanically to the insulating body.
- Each of the electrode elements 12a and 12b is led out axially from the insulating body 5.
- the first electrode element 12a is led out of the insulating body 5 in the direction of the first axial end 3 and the second electrode element 12b in the direction of the second axial end 4.
- each of the two electrode elements 12a and 12b extends axially beyond the conically tapered ends 5a and 5b of the insulating body 5.
- the insulating body 5 forms a mechanical support for the electrode elements 12a, b.
- Each of the two electrode elements 12a or 12b has a rounded portion 14a or 14b at one of its ends, which serves to prevent excessive field strength increases.
- FIG 2 shows another high-voltage bushing 15, which is designed as a device bushing.
- the high-voltage bushing 1 of the Figure 1 and the high-voltage bushing 15 are partly constructed in the same way. To avoid repetition, only the differences between them will be discussed in more detail below. are equal and similar elements in the Figures 1 and 2 provided with the same reference symbols.
- the high-voltage bushing 15 comprises a first axial end 3, which in this case is also referred to as the open-air end, and a device-side end 16.
- the inner conductor 2 is led out of the high-voltage bushing 15 and is designed to be connected to a conductor inside an electrical device, for example a high-voltage transformer.
- an electrical device for example a high-voltage transformer.
- the high-voltage bushing 15 has an electrode element 12a arranged on the open air side.
- FIG 3 An enlarged section of a high-voltage bushing 20 is shown.
- the high-voltage bushing 20 is identical in construction to the two previously shown in the Figures 1 and 2 shown high-voltage bushings 1 and 15 respectively. Therefore, the representation of the Figure 3 also serve as an illustration of the corresponding section of the high-voltage bushings 1 and 15.
- identical and similar components and elements of the high-voltage bushings 20, 1 and 15 are shown in the Figures 1 to 3 provided with the same reference symbols.
- the insulating body 5 comprises conductive control inserts 27a-e.
- the control inserts shown graphically are an example, but they can basically be any type and adapted to the respective application.
- the control inserts are arranged concentrically to each other and to the inner conductor 2. They are separated from each other by insulating layers 28a-d, whereby the insulating layers are wound onto the inner conductor 2 (or onto a winding core surrounding the inner conductor) so that a winding body 22 is formed which is impregnated with resin and hardened during the manufacturing process.
- the control inserts 27a-e are each of different lengths, whereby the length of the control inserts decreases with the radial distance from the inner conductor 2.
- the limit of the control insert area 26 within the winding body 22, i.e. the area up to which control inserts are provided in the winding body 22 or extend axially, is in Figure 3 marked with a line.
- the electrode element 12a is arranged with one end at the connection point 24 to the insulating body 5.
- the electrode element 12a is electrically connected to the control insert 27b by means of a potential tap 25.
- the electrode element 12a is also mechanically held in position by the resin body of the insulating body 5.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Insulators (AREA)
Description
- Die Erfindung betrifft eine Hochspannungsdurchführung mit einem Innenleiter, der sich in einer Längsrichtung zwischen einem ersten und einem zweiten Hochspannungsanschluss der Hochspannungsdurchführung erstreckt, sowie mit einem Isolierkörper, der den Innenleiter zumindest teilweise umschließt, wobei der Isolierkörper in einem Steuereinlagenbereich angeordnete, das elektrische Feld steuernde Steuereinlagen umfasst, die voneinander durch Isolierlagen getrennt sind, und wobei die Steuereinlagen geeigneterweise konzentrisch um den Innenleiter angeordnet sind.
- Im Allgemeinen hat eine solche Hochspannungsdurchführung die Aufgabe, den im Betrieb der Hochspannungsdurchführung auf einem Hochspannungspotential liegenden Innenleiter der Hochspannungsdurchführung von einer auf Erdpotential befindlichen Umgebung, beispielsweise einer Wandung einer Hochspannungsanlage, zu isolieren. Die Spannungsdifferenzen zum Erdpotenzial betragen dabei beispielsweise mehr als 300 kV, insbesondere mehr als 600 kV. Dazu ist der Innenleiter durch den Isolierkörper hindurchgeführt. Die im Isolierkörper eingebetteten leitenden Steuereinlagen dienen zur Steuerung des elektrischen Feldes, so dass eine Vergleichmäßigung der elektrischen Beanspruchung radial als auch axial innerhalb und auch außerhalb des Isolierkörpers erreicht ist. Auf diese Weise können kritische elektrische Belastungen auf der Oberfläche und innerhalb des Isolierkörpers vermieden oder zumindest vermindert werden.
- Eine solche Hochspannungsdurchführung ist aus der
WO 2015/172806 A1 bekannt. Die Isolierlagen der bekannten Hochspanungsdurchführung umfassen harzgetränktes Krepppapier. - Der Steuereinlagenbereich ist derjenige Bereich des Isolierkörpers, in dem die Steuereinlagen angeordnet sind. Üblicherweise erstreckt sich der Steuereinlagenbereich entlang eines Teils des Innenleiters. Der Hochspannungsanschluss wird im Allgemeinen als ein geeignet ausgebildeter Verbindungspunkt verstanden, der zur Verbindung mit weiteren Stromleitungen geeignet ist.
- Im Allgemeinen gilt, dass die axiale Steuerstrecke der Hochspannungsdurchführung, also insbesondere die Länge des Isolierkörpers von der zu isolierenden Spannung abhängt. Je höher die zu isolierende Spannung ist, desto länger muss der Isolierkörper ausgelegt sein, um eine vergleichmäßigte zulässige elektrische Belastung entlang der Längsrichtung der Hochspannungsdurchführung zu erreichen. Mit der zu isolierenden Spannung wachsen demnach die Materialkosten. Ebenso müssen entsprechende Fertigungsanlagen und Montagehallen bereitgestellt werden, um die notwendigen Baulängen herstellen zu können. Zudem erfordern große Baulängen kostenintensive Anpassungen bezüglich mechanischer, zum Beispiel seismischer, Beanspruchung.
- Die
EP 2 264 719 A1 offenbart eine kapazitiv gesteuerte Hochspannungsdurchführung, bei der zur Unterstützung des Feldsteuerungseffektes eine Feldgradientreduktionselektrode vorgesehen ist. - In der
US 3 617 606 A ist eine gesteuerte Transformatordurchführung beschrieben, die zur Reduzierung des Feldgradienten eine leitende transformatorseitige Ringelektrode umfasst, die mit einer der Steuereinlagen verbunden ist. - Eine weitere Isolationsvorrichtung mit kapazitiver Feldsteuerung ist aus der
JP S58172817 A - Die Aufgabe der Erfindung besteht damit, eine artgemäße Hochspannungsdurchführung vorzuschlagen, die möglichst kostengünstig und leicht ist.
- Die Aufgabe wird durch eine Hochspannungsdurchführung gemäß Anspruch 1 gelöst.
- Demnach wird ein leitendes, niederohmiges Elektrodenelement an eine definierte Steuereinlage der Feldsteuerung des Isolierkörpers elektrisch angeschlossen. Die Feldsteuerung kann beispielsweise kapazitiv und/oder resistiv sein. Das Potenzial kann damit mittels des Elektrodenelementes axial in die gewünschte Position verschoben werden. Damit kann vorteilhaft eine Vergleichsmäßigung der elektrischen Belastung der Hochspannungsdurchführung und deren Umgebung erreicht werden. Innerhalb des Elektrodenelements und außerhalb des Steuereinlagenbereichs ergibt sich ein weitgehend zylindrisches elektrisches Feld zum Innenleiter. Dieses Feld tritt durch die Potenzialverschiebung erst an einem axial dem Steuereinlagenbereich gegenüberliegenden Ende des Elektrodenelements aus. Die Verbindung des wenigstens einen Elektrodenelements mit der Steuereinlage kann beispielsweise mittels einer geeigneten Potenzialanzapfung erfolgen. Die Potenzialanzapfung kann unter Verwendung geeigneter leitender Bauteile, wie beispielsweise eines Kupferbandes, realisiert sein. Die mechanische Befestigung des Elektrodenelements kann zweckmäßigerweise unter Verwendung des Isolierkörpers bereitgestellt sein.
- Die erfindungsgemäße Hochspannungsdurchführung ist sowohl bei stationären elektrischen Feldern (DC), quasi stationären elektrischen Feldern (AC) als auch bei Stoßvorgängen anwendbar.
- Ein Vorteil der erfindungsgemäßen Hochspannungsdurchführung besteht darin, dass durch die Verwendung des Elektrodenelements der Steuereinlagenbereich des Isolierkörpers axial verkürzt werden kann. Auf diese Weise können die zuvor beschriebenen Nachteile, beispielsweise aufgrund des hohen Gewichts des Isolierkörpers und damit der Hochspannungsdurchführung, vermieden werden. Zusätzlich können mit der erfindungsgemäßen Hochspannungsdurchführung neue Anwendungen ermöglicht werden, z. B. im Spannungsbereich oberhalb von 1000 kV.
- Erfindungsgemäß ist das Elektrodenelement zumindest abschnittsweise zylindrisch, konusförmig oder dergleichen und erstreckt sich in der Längsrichtung der Hochspannungsdurchführung und konzentrisch zum Innenleiter. Mit dieser Ausgestaltung des Elektrodenelements kann eine besonders vorteilhafte Feldverteilung erreicht werden.
- Erfindungsgemäß weist das Elektrodenelement an seinem dem Steuereinlagenbereich abgewandten Ende eine Abrundung zur Vermeidung von Feldstärkeüberhöhungen auf. Mittels der Abrundung können nachteilige Feldstärkenüberhöhungen am Ende des Elektrodenelements vermieden werden. Als Abrundung gilt in diesem Zusammenhang jedes abgerundete Profil, z. B. auch im Sinne eines dem Fachmann an sich gekannten Rogowski-Profils.
- Gemäß einer Ausführungsform der Erfindung ist ein weiteres Elektrodenelement vorgesehen, wobei die beiden Elektrodenelemente einander gegenüberliegend an den beziehungsweise im Bereich der beiden axialen Enden des Steuereinlagenbereiches angeordnet sind, wobei sich beide Elektrodenelemente in der Längsrichtung der Hochspannungsdurchführung und konzentrisch zum Innenleiter erstrecken. Auf diese Weise kann der Isolierkörper beziehungsweise der Steuereinlagenbereich an beiden Enden verkürzt ausgeführt werden. Besonders vorteilhaft ist eine solche Ausführungsform, wenn die Hochspannungsdurchführung eine Wanddurchführung ist, wobei die beiden Hochspannungsanschlüsse äußere Anschlüsse zum Verbinden mit jeweils einem Hochspannungsleiter sind. Die äußeren Anschlüsse können zum Beispiel Freiluftanschlüsse sein. Die beiden Elektrodenelemente können gleichartig aufgebaut sein. Insbesondere ist hierbei das weitere Elektrodenelement ebenfalls aus dem Steuereinlagenbereich des Isolierkörpers axial herausgeführt. Der Hochspannungsleiter kann beispielsweise Teil einer Freiluftleitung oder eine Stromschiene oder die Verbindung beider sein.
- Üblicherweise umfasst der Isolierkörper einen einzelnen Wickelkörper, der aus auf einem Wickelkern aufgewickelten Steuereinlagen und Isolierlagen gebildet ist. Gemäß einer Ausführungsform der Erfindung umfasst der Isolierkörper zwei konzentrische Wickelkörper. Das Elektrodenelement ist dabei an einer Verbindungsstelle der Wickelkörper aus dem Steuereinlagenbereich herausgeführt. Die beiden Wickelkörper können bei der Herstellung der Hochspannungsdurchführung beispielsweise ineinander geschoben werden. Das Elektrodenelement kann zum Beispiel an einer Stelle zwischen den Wickelkörpern mechanisch befestigt sein.
- Die Hochspannungsdurchführung kann als eine steckbare Hochspannungsdurchführung ausgeführt sein. Dazu weist die Hochspannungsdurchführung einen Steckabschnitt auf, der zum Einstecken der Hochspannungsdurchführung in ein Geräteanschlussteil eines elektrischen Gerätes eingerichtet ist, wobei die Steuereinlagen sich in den Steckabschnitt hinein erstrecken. Das elektrische Gerät kann beispielsweise ein Hochspannungstransformator sein. Der Steckabschnitt der Hochspannungsdurchführung und das Geräteanschlussteil sind derart ausgestaltet, dass ein zuverlässiger elektrischer Kontakt zwischen dem Innenleiter der Hochspannungsdurchführung und dem Geräteanschlussteil herstellbar ist, wobei das Geräteanschlussteil mit weiteren Elementen des elektrischen Gerätes, wie beispielsweise einer innerhalb des Gehäuses angeordneten Transformatorwicklung, elektrisch verbunden ist. Zugleich ist die Verbindung an den Grenzflächen zwischen dem Geräteanschlussteil und dem Steckabschnitt dielektrisch ausreichend verfestigt, so dass ein Betrieb auf Hochspannungsniveau ermöglicht ist. Die Steuereinlagen erstrecken sich in den Steckabschnitt der Hochspannungsdurchführung hinein. Auf diese Weise kann das elektrische Feld auch im Steckbereich effektiv gesteuert werden, so dass der sensible Bereich der Verbindung zwischen dem Geräteanschlussteil und der Hochspannungsdurchführung verbesserte elektrische Eigenschaften aufweist.
- Vorzugsweise umfasst der Isolierkörper ferner ein ausgehärtetes Harz. Beispielsweise kann die Hochspannungsdurchführung während des Herstellungsprozesses, beispielsweise nach einem Aufwickeln der Isolierlagen, mit einem aushärtbaren Harz getränkt werden. Nach dem Aushärten des Harzes kann damit ein verbessert elektrisch isolierender Isolierkörper erhalten werden. Der Isolierkörper mit dem Harz als Hauptisolator liegt dabei in Form eines kompakten Blocks vor. Vorteilhaft stellt gemäß dieser Ausführungsvariante der Isolierkörper als fester Block eine mechanische Stütze für den Innenleiter der Hochspannungsdurchführung bereit. Auf diese Weise kann eine Verbiegung des Innenleiters aufgrund des Eigengewichts vermieden bzw. vermindert werden. Der durch den Isolierkörper gestützte Innenleiter kann somit entlang dessen Länge stets den vorgesehenen radialen Abstand zum Elektrodenelement beibehalten, so dass die elektrischen Eigenschaften nicht durch eine mögliche Verbiegung des Innenleiters nachteilig beeinflusst werden. Auf ähnliche Weise dient der Isolierkörper auch als mechanisches Stützelement für die Elektrodenelemente.
- Gemäß einer weiteren Ausführungsform der Erfindung weist die Hochspannungsdurchführung ein äußeres Gehäuse auf, das den Isolierkörper außen zumindest teilweise umschließt, wobei das Gehäuse zumindest teilweise aus einem Verbundwerkstoff besteht, wobei zwischen dem Gehäuse und dem Isolierkörper eine Nebenisolation vorgesehen ist. Die Nebenisolation umfasst vorzugsweise ein Isoliergas. Geeignete Isoliergase sind z. B. SF6 oder Luft unter hohem Druck. Der Verbundwerkstoff kann beispielsweise ein faserverstärkter Kunststoff sein. Vorzugsweise besteht das Gehäuseelement aus glasfaserverstärktem Kunststoff, wodurch eine besonders hohe Stabilität gewährleistet wird. Gemäß einer Variante der Erfindung kann das Gehäuseelement ein Rohr aus dem glasfaserverstärktem Kunststoff sein. Auf das rohrförmige Gehäuseelement kann ferner eine Außenisolation angebracht sein, die beispielsweise ringförmige Silikonschirme umfasst.
- Die Isolierlagen des Isolierkörpers können Papier umfassen. Die Isolierlagen können aber auch aus einem Kunststoff gefertigt sein. Zum Beispiel können die Isolierlagen einen Kunststoff-Vliesstoff umfassen, der vorzugsweise aus sogenannten Endlos-Filamenten besteht.
- Die Erfindung soll im Folgenden anhand von in den
Figuren 1 bis 3 gezeigten Ausführungsbeispielen weiter erläutert werden. -
Figur 1 zeigt ein erstes Ausführungsbeispiel einer erfindungsgemäßen Hochspannungsdurchführung in einer schematischen Querschnittsansicht; -
Figur 2 zeigt zweites Ausführungsbeispiel einer erfindungsgemäßen Hochspannungsdurchführung in einer schematischen Querschnittsansicht; -
Figur 3 zeigt eine vergrößerte Teilansicht der Hochspannungsdurchführungen derFiguren 1 und 2 in einer schematischen Querschnittsansicht. - In
Figur 1 ist eine Hochspannungsdurchführung 1 dargestellt. Die Hochspannungsdurchführung 1 ist als eine Wanddurchführung ausgestaltet. Die dient zur Durchführung eines im Betrieb auf einer Hochspannung von beispielsweise über 500 kV liegenden Hochspannungsleiters durch eine Wandung bzw. Wand. Beispielsweise handelt es sich dabei um die Wand einer HGÜ-Halle. - Die Hochspannungsdurchführung 1 umfasst einen Innenleiter 2, der sowohl an einem ersten axialen Ende 3 als auch an einem zweiten axialen Ende 4 der Hochspannungsdurchführung 1 mit dem Hochspannungsleiter (der in
Figur 1 nicht explizit dargestellt ist) verbindbar ist. Der Hochspannungsleiter kann dabei z. B. Teil einer Freiluftleitung oder eine Zuleitung zu einer Transformatorwicklung oder zu einer Ventilgruppe sein. - Der Innenleiter 2 ist teilweise von einem spindelförmigen Isolierkörper 5 umschlossen. Der Isolierkörper 5 umfasst Steuereinlagen 27a-e, die in
Figur 3 näher dargestellt sind. Die Steuereinlagen 27a-e sind konzentrisch um den Innenleiter 2 angeordnet (als konzentrisch werden im Allgemeinen auch solche Steuereinlagen verstanden, die herstellungsbedingt nahezu konzentrisch angeordnet sind). Die Steuereinlagen dienen zur kapazitiven und/oder resistiven Feldsteuerung. Sie sind voneinander durch Isolierlagen getrennt, die Papier oder einen Kunststoff, beispielsweise einen Kunststoff-Vliesstoff umfassen. Die Isolierlagen sind auf den Innenleiter 2 gewickelt. Im Allgemeinen können die Isolierlagen auch auf einen separaten verbleibenden oder entfernbaren Wickelträger aufgewickelt sein. Der Isolierkörper 5 ist nach dem Aufwickeln der Isolierlagen in ein Harz getränkt und ausgehärtet, so dass der Isolierkörper einen kompakten Block bildet, der den Innenleiter 2 mechanisch stützt. Der Isolierkörper 5 wird oftmals auch als Hauptisolation bezeichnet. Der Bereich des Isolierkörpers 5, in dem die Steuereinlagen angeordnet sind, ist als Steuereinlagenbereich 26 bezeichnet (vgl.Figur 3 ). - Die Hochspannungsdurchführung 1 umfasst ferner einen Befestigungsflansch 6 zur Befestigung der Hochspannungsdurchführung an der sich auf Erdpotenzial befindenden Wandung oder Wand. Der Befestigungsflansch 6 greift mechanisch, beispielsweise mittels einer Klemmverbindung, direkt am Isolierkörper 5 an.
- Die Hochspannungsdurchführung 1 ist mit einem Gehäuse 7 ausgestattet. Das Gehäuse 7 kann dabei beispielsweise zumindest zu einem Teil aus einem Verbundwerkstoff bestehen, beispielsweise aus einem faserverstärkten Kunststoff. In einem Zwischenraum 8 zwischen dem Gehäuse 7 und dem Isolierkörper 5 ist eine Nebenisolation 9 angeordnet, die beispielsweise aus einem Isoliergas wie SF6 besteht. Außen am Gehäuse 7 ist eine äußere Schicht in Form von Silikonschirmen 13 angebracht.
- An den beiden axialen Enden 3, 4 der Hochspannungsdurchführung 1 befinden sich zwei Schirmelektroden 10 und 11 zur weiteren Feldabschirmung.
- Die Hochspannungsdurchführung umfasst ein erstes Elektrodenelement 12a und ein zweites Elektrodenelement 12b. Die beiden Elektrodenelemente 12a und 12b sind zylinderförmig und konzentrisch zum Innenleiter 2 angeordnet. Beide Elektrodenelemente 12a bzw. 12b sind elektrisch mit einer der Steuereinlagen und mechanisch mit dem Isolierkörper verbunden. Jedes der Elektrodenelemente 12a bzw. 12b ist axial aus dem Isolierkörper 5 herausgeführt. Dabei ist das erste Elektrodenelement 12a in Richtung des ersten axialen Endes 3 und das zweite Elektrodenelement 12b in Richtung des zweiten axialen Endes 4 aus dem Isolierkörper 5 herausgeführt. Insbesondere erstreckt sich jedes der beiden Elektrodenelemente 12a bzw. 12b axial über die konusförmig zulaufenden Enden 5a bzw. 5b des Isolierkörpers 5 hinaus. Der Isolierkörper 5 bildet eine mechanische Stütze für die Elektrodenelemente 12a, b.
- Jedes der beiden Elektrodenelemente 12a bzw. 12b verfügt an einem Ihrer Enden über eine Abrundung 14a bzw. 14b, die zur Vermeidung von Feldstärkeüberhöhungen dienen.
-
Figur 2 zeigt eine weitere Hochspannungsdurchführung 15, die als Gerätedurchführung ausgestaltet ist. Die Hochspannungsdurchführung 1 derFigur 1 und die Hochspannungsdurchführung 15 sind teilweise gleichartig aufgebaut. Um Wiederholungen zu vermeiden, wird im Folgenden lediglich auf deren Unterschiede näher eingegangen. Dabei sind gleiche und gleichartige Elemente in denFiguren 1 und 2 mit gleichen Bezugszeichen versehen. - Im Unterschied zur Hochspannungsdurchführung 1 der
Figur 1 umfasst die Hochspannungsdurchführung 15 außer einem ersten axialen Ende 3, das in diesem Fall auch als Freiluftende bezeichnet wird, ein geräteseitiges Ende 16. Am geräteseitigen Ende 16 ist der Innenleiter 2 aus der Hochspannungsdurchführung 15 herausgeführt und dazu eingerichtet, mit einem Leiter im Inneren eines elektrischen Gerätes, beispielsweise eines Hochspannungstransformators verbunden zu werden. Zur Befestigung der Hochspannungsdurchführung 15 an einem Gerätegehäuse des elektrischen Gerätes, das inFigur 2 mittels einer unterbrochenen Linie 17 angedeutet ist, dient ein Befestigungsflansch 18. - Die Hochspannungsdurchführung 15 weist ein freiluftseitig angeordnetes Elektrodenelement 12a auf.
- In
Figur 3 ist ein vergrößerter Ausschnitt einer Hochspannungsdurchführung 20 dargestellt. Im inFigur 3 dargestellten Ausschnitt ist die Hochspanungsdurchführung 20 baugleich mit den beiden zuvor in denFiguren 1 und 2 gezeigten Hochspannungsdurchführungen 1 bzw. 15 ausgeführt. Daher kann die Darstellung derFigur 3 auch als eine Illustration des entsprechenden Ausschnitts der Hochspannungsdurchführungen 1 bzw. 15 dienen. Aus Gründen der Übersichtlichkeit sind gleiche und gleichartige Bauteile und Elemente der Hochspannungsdurchführungen 20, 1 und 15 in denFiguren 1 bis 3 mit gleichen Bezugszeichen versehen. - Der Isolierkörper 5 umfasst leitende Steuereinlagen 27a-e. Es ist hierbei anzumerken, dass die Anzahl der in
Figur 3 grafisch dargestellten Steuereinlagen ein Beispiel darstellt, sie aber grundsätzlich beliebig und an die jeweilige Anwendung angepasst sein kann. Die Steuereinlagen sind konzentrisch zueinander und zum Innenleiter 2 angeordnet. Sie sind dabei voneinander durch Isolierlagen 28a-d getrennt, wobei die Isolierlagen auf den Innenleiter 2 (oder auf einen den Innenleier umgebenden Wickelkern) aufgewickelt sind, so dass ein Wickelkörper 22 gebildet ist, der im Herstellungsprozess harzgetränkt und ausgehärtet ist. Die Steuereinlagen 27a-e sind jeweils unterschiedlich lang, wobei die Länge der Steuereinlagen mit der radialen Entfernung zum Innenleiter 2 sinkt. Die Grenze des Steuereinlagenbereiches 26 innerhalb des Wickelkörpers 22, das heißt des Bereiches, bis zu welcher Steuereinlagen im Wickelkörper 22 vorgesehen sind bzw. sich axial erstrecken, ist inFigur 3 mit einer Linie gekennzeichnet. - Das Elektrodenelement 12a ist mit einem Ende an der Verbindungsstelle 24 zum Isolierkörper 5 angeordnet. Das Elektrodenelement 12a ist mittels einer Potenzialanzapfung 25 mit der Steuereinlage 27b elektrisch verbunden. Das Elektrodenelement 12a ist zudem mechanisch vom Harzkörper des Isolierkörpers 5 in Position gehalten.
Claims (8)
- Hochspannungsdurchführung (1) mit- einem Innenleiter (2), der sich in einer Längsrichtung zwischen einem ersten und einem zweiten Hochspannungsanschluss (3,4) der Hochspannungsdurchführung (1) erstreckt,- einem Isolierkörper (5), der den Innenleiter (2) zumindest teilweise umschließt, wobei der Isolierkörper (5) in einem Steuereinlagenbereich (26) feldsteuernde Steuereinlagen (27a-e) umfasst, die voneinander durch Isolierlagen (28a-d) getrennt sind, wobei die Hochspannungsdurchführung ferner wenigstens einem Elektrodenelement (12a) umfasst, das mit wenigstens einer der Steuereinlagen elektrisch verbunden und aus dem Steuereinlagenbereich (26) axial herausgeführt ist, dadurch gekennzeichnet, dass das wenigstens eine Elektrodenelement (12a) zumindest abschnittsweise zylindrisch und/oder konusförmig ist und sich in der Längsrichtung der Hochspannungsdurchführung (1) und konzentrisch zum Innenleiter (2) erstreckt, wobei das wenigstens eine Elektrodenelement (12a) an seinem dem Steuereinlagenbereich (26) abgewandten Ende eine Abrundung (14a, 14b) zur Vermeidung von Feldstärkeerhöhungen aufweist.
- Hochspannungsdurchführung (1) nach Anspruch 1, wobei ein weiteres Elektrodenelement (12b) vorgesehen ist, wobei die beiden Elektrodenelemente (12a,b) einander gegenüberliegend an den beiden axialen Enden des Steuereinlagenbereiches (26) angeordnet sind, wobei sich beide Elektrodenelemente (12a, 12b) in einer Längsrichtung der Hochspannungsdurchführung (1) und konzentrisch zum Innenleiter (2) erstrecken.
- Hochspannungsdurchführung (1) nach Anspruch 2, wobei die Hochspannungsdurchführung (1) eine Wanddurchführung ist, wobei die beiden Hochspannungsanschlüsse (3,4) äußere Anschlüsse zum Verbinden mit jeweils einem Hochspannungsleiter sind.
- Hochspannungsdurchführung (1) nach einem der vorangehenden Ansprüche, wobei der Isolierkörper (5) zwei konzentrische Wickelkörper (22a,22b) umfasst, und das Elektrodenelement (12a,12b) an einer Verbindungsstelle (24) der Wickelkörper (22a,22b) aus dem Steuereinlagenbereich (26) herausgeführt ist.
- Hochspannungsdurchführung (15) nach einem der vorangehenden Ansprüche, wobei die Hochspannungsdurchführung einen Steckabschnitt aufweist, der zum Einstecken der Hochspannungsdurchführung in ein Geräteanschlussteil eines elektrischen Gerätes eingerichtet ist, wobei die Steuereinlagen sich in den Steckabschnitt hinein erstrecken.
- Hochspannungsdurchführung (1) nach einem der vorangehenden Ansprüche, wobei der Isolierkörper (5) ferner ein ausgehärtetes Harz umfasst.
- Hochspannungsdurchführung (1) nach Anspruch 6, wobei der Isolierkörper (5) als mechanisches Stützelement für das wenigstens eine Elektrodenelement (12a,b) dient.
- Hochspannungsdurchführung (1) nach einem der vorangehenden Ansprüche, wobei die Hochspannungsdurchführung (1) ein äußeres Gehäuse (7) aufweist, das den Isolierkörper (5) außen zumindest teilweise umschließt, wobei das Gehäuse (7) zumindest teilweise aus einem Verbundwerkstoff besteht, wobei zwischen dem Gehäuse (7) und dem Isolierkörper (5) eine Nebenisolation (9), insbesondere eine gasförmige Nebenisolation, vorgesehen ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2017/082450 WO2019114933A1 (de) | 2017-12-12 | 2017-12-12 | Hochspannungsdurchführung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3711071A1 EP3711071A1 (de) | 2020-09-23 |
EP3711071B1 true EP3711071B1 (de) | 2024-07-24 |
Family
ID=61148163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17837948.3A Active EP3711071B1 (de) | 2017-12-12 | 2017-12-12 | Hochspannungsdurchführung |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3711071B1 (de) |
CN (1) | CN213546021U (de) |
WO (1) | WO2019114933A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019220367A1 (de) | 2019-12-20 | 2021-06-24 | Siemens Aktiengesellschaft | Hochspannungsdurchführung und Verfahren zu deren Betriebsüberwachung |
EP4173100A1 (de) * | 2020-08-13 | 2023-05-03 | Siemens Energy Global GmbH & Co. KG | Tragestruktur für eine elektrische leitung |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3617606A (en) * | 1970-06-19 | 1971-11-02 | Gen Electric | Shielded bushing construction |
JPS58163111A (ja) * | 1982-03-23 | 1983-09-27 | 株式会社日立製作所 | ブツシング |
JPS58172817A (ja) * | 1982-04-02 | 1983-10-11 | 株式会社日立製作所 | ガスブツシング |
EP2264719B1 (de) * | 2009-06-18 | 2014-04-02 | ABB Technology Ltd | Hochspannungsvorrichtung |
US10014676B2 (en) | 2014-05-12 | 2018-07-03 | Siemens Aktiengesellschaft | High-voltage bushing |
-
2017
- 2017-12-12 EP EP17837948.3A patent/EP3711071B1/de active Active
- 2017-12-12 WO PCT/EP2017/082450 patent/WO2019114933A1/de unknown
- 2017-12-12 CN CN201790001831.8U patent/CN213546021U/zh active Active
Also Published As
Publication number | Publication date |
---|---|
WO2019114933A1 (de) | 2019-06-20 |
EP3711071A1 (de) | 2020-09-23 |
CN213546021U (zh) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1997117B1 (de) | Verbindungselement für eine elektrische abschirmungsanordnung | |
DE102012204052B4 (de) | Hochspannungsdurchführung mit leitenden Einlagen für Gleichspannung und Verfahren zu ihrer Herstellung | |
EP1991995B1 (de) | Elektrische abschirmanordnung | |
EP3144944A1 (de) | Elektrische wicklung, trockentransformator mit einer solchen elektrischen wicklung und verfahren zur herstellung einer elektrischen wicklung | |
EP3639282A1 (de) | Steckbare hochspannungsdurchführung und elektrisches gerät mit steckbarer hochspannungsdurchführung | |
EP3711071B1 (de) | Hochspannungsdurchführung | |
EP3180794A1 (de) | Elektrokabel | |
EP2661756A1 (de) | Transformatorwicklung mit kühlkanal | |
DE102014004284B4 (de) | Hochspannungsdurchführung | |
DE19542529C1 (de) | Festdrosselanordnung für die Prüfung von Hochspannungsanlagen | |
DE102017204935B4 (de) | Elektrodenanordnung sowie Elektroenergieübertragungseinrichtung | |
EP3093938B1 (de) | Hochspannungs-durchführungssystem | |
EP2351056B1 (de) | Barrierenanordnung für eine leitungsdurchführung | |
WO2019020311A1 (de) | Steckbare hochspannungsdurchführung und elektrisches gerät mit der steckbaren hochspannungsdurchführung | |
EP1921724B1 (de) | Distanzhalter zur Sicherstellung des Trennungsabstands für teilisolierte Blitzschutzanlagen | |
WO2020008058A1 (de) | Verbindungsmuffe | |
DE478394C (de) | Antennenanlage | |
EP3358690A1 (de) | Verbindungsmuffe | |
EP4173100A1 (de) | Tragestruktur für eine elektrische leitung | |
EP2947669A1 (de) | Stromkreisanordnung für eine Hochspannungsprüfanlage | |
EP3266085B1 (de) | Feldsteuerelement für endverschlüsse von kabeln zu energieübertragung | |
WO2000019453A1 (de) | Hochspannungs-durchführung | |
DE8225287U1 (de) | Rotationssymmetrischer Isolierköprer, insbesondere Endverschluß oder Durchführung | |
WO2020008056A1 (de) | Verbindungsmuffe mit konische aufnahmebereiche zur aufnahme von konisch abgementelten kabelenden | |
DE2653591A1 (de) | Hochleistungs-transformator fuer ultra-hochspannung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200528 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20221214 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240220 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HSP HOCHSPANNUNGSGERAETE GMBH |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Free format text: CASE NUMBER: APP_35061/2024 Effective date: 20240611 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: DE Ref legal event code: R096 Ref document number: 502017016294 Country of ref document: DE |