EP3707435B1 - Pipe combustion chamber with ceramic cladding - Google Patents

Pipe combustion chamber with ceramic cladding Download PDF

Info

Publication number
EP3707435B1
EP3707435B1 EP18810907.8A EP18810907A EP3707435B1 EP 3707435 B1 EP3707435 B1 EP 3707435B1 EP 18810907 A EP18810907 A EP 18810907A EP 3707435 B1 EP3707435 B1 EP 3707435B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
jacket
ceramic
heat shield
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18810907.8A
Other languages
German (de)
French (fr)
Other versions
EP3707435A1 (en
Inventor
Matthias Gralki
Marvin Hümbs
Claus Krusch
Daniel Schmidt
Holger Grote
Marc Tertilt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3707435A1 publication Critical patent/EP3707435A1/en
Application granted granted Critical
Publication of EP3707435B1 publication Critical patent/EP3707435B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic
    • F23D2212/103Fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00018Means for protecting parts of the burner, e.g. ceramic lining outside of the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00017Assembling combustion chamber liners or subparts

Definitions

  • the invention relates to a tubular combustion chamber with a ceramic lining.
  • the careful integration of the fragile ceramic monoliths into the metal environment is particularly important, since the tubular combustion chamber is exposed to strong combustion oscillations or vibrations.
  • the vibration-damping, permanent storage of the ceramic is therefore one of the main structural tasks.
  • it is particularly important to ensure that the ceramic is not exposed to any critical tensile or shear stress when it is installed in the housing.
  • the ceramic insert experiences not only the bond stresses caused by the bearing, but also the load stresses caused by the combustion. These stresses, together with the production-related internal stresses, result in the overall stress distribution in which compressive stresses for the component can harmlessly superimpose critical tensile stresses.
  • a combustion chamber lined with an axially braced ceramic tube is in the WO2015038293 A1 disclosed.
  • a gas turbine combustion chamber with heat shield elements individually attached to the shell is known.
  • the object of the invention is to carefully build such a ceramic insert into the metallic jacket of a combustion chamber and, if necessary, to design an interface geometry between ceramic segments of such a combustion chamber in such a way that thermal expansions are not hindered.
  • the interface geometry must fulfill various additional functions, such as the transmission of axial and radial composite loads, the clear definition of the position and anti-twist protection of the individual elements, the sealing between Hot and cold gas side as well as the avoidance of tensile stresses in the interface area.
  • the invention solves the problem directed to a combustion chamber by providing that in such a combustion chamber, comprising a jacket arranged around a main axis of the combustion chamber and a ceramic tube arranged inside the jacket, an intermediate layer is arranged between the jacket and the ceramic tube, the jacket at least partially is conical and the ceramic tube is axially braced along the main axis in the jacket, the ceramic tube being a composite of several heat shield segments and individual heat shield segments of a row of segments, each having a hot side that can be exposed to a hot medium, a cold side opposite the hot side and facing the jacket and have an edge running around between the hot side and the cold side, in the cold state on the edge having contact surfaces adjoining the cold side and gaps opening towards the hot gas side.
  • the jacket is metallic.
  • the ceramic tube consists of a refractory material.
  • the intermediate layer is a ceramic swelling mat.
  • Swelling mats are mineral fiber mats that contain expandable particles. Due to their elastic restoring forces, they exert a holding force on the ceramic tube. The axial bracing of the heat shield segments generates radial forces that are reliably transmitted to the ceramic outer surface via these resilient elements.
  • the intermediate layer comprises spring and / or damping elements. These can be ceramic or metallic.
  • the jacket has fastening means at the opening with the largest opening diameter, with the aid of which a counterpart can be drawn against the opening.
  • the axial bracing can take place by means of a non-positively and / or positively joined metal ring.
  • the frictional connection takes place from the metal ring via the ceramic column and springs on the metallic conical counter surface.
  • the jacket comprises two conical partial jackets, i.e. the jacket is then separated into two conical components (e.g. with a parting plane shifted to the middle).
  • the ceramic tube itself can expediently be a full cylinder or a full cone, which, however, does not fall under the claims.
  • the end faces are not flat, but are designed in such a way that a form fit is created between the individual ceramic segments in the circumferential direction.
  • the interface geometry is preferably to be designed in a wave-shaped geometry or any other geometry that ensures positive locking.
  • preferably obtuse angles and comparatively large radii are to be used.
  • a ceramic composite composed of several refractory heat shield segments is provided for the lining of a tubular combustion chamber.
  • the resulting ring or cone made of refractory ceramic is stored in a metallic housing with the help of a resilient intermediate layer.
  • the attachment of the ceramic segments is realized via the external pressure, so that a construction without gaps is created.
  • basic construction principles of a ceramic-metal composite can be implemented in combination with a construction that is reduced in terms of components and costs.
  • an increase in the strength of the ceramic is made possible.
  • the use of refractory ceramics in a tubular combustion chamber leads to a reduction in new part and life cycle costs (by increasing the service life compared to the metallic solution).
  • an increase in the temperature resistance and a reduction in the consumption of cooling air are possible.
  • Figure 1 shows schematically and by way of example a composite solution of three elements for a combustion chamber 1 with jacket 3, a ceramic tube 4 made of refractory material arranged in jacket 3 and a high-temperature-resistant intermediate layer 5 arranged between jacket 3 and ceramic tube 4.
  • Figure 2 illustrates the inventive axial bracing 18 of the ceramic tube 4 in the jacket 3.
  • the axial bracing 18 of the ceramic tube in the direction of the main axis 2 of a conical metallic counter surface, ie the jacket, creates radial forces 19 generated, which are transferred to the ceramic outer surface via resilient elements, ie the intermediate layer 5. In this way, a ceramic composite that is under external pressure is produced.
  • the Figures 4 and 5 show by way of example how the axial bracing 18 can take place by means of a non-positively and / or positively joined metal ring as fastening means 7 in the area of the larger opening 6 of the cone.
  • the frictional connection takes place from the metal ring via the ceramic column and springs onto the metallic conical counter surface of the jacket 3.
  • the metallic component can be separated into two conical components (for example with a separating plane 20 shifted to the center, as shown in FIG Figure 6 shown).
  • the respective other partial jacket 9 with the corresponding ceramic tube 4 acts here as a counterpart 8 for the axial bracing 18.
  • Figure 7 shows a longitudinally cut tubular combustion chamber 1 with transition piece 21, in which a lining, as in FIG Figure 6 presented, offers.
  • FIGS. 8 to 10 show details of the geometry between individual ceramic heat shield segments 10 in a ceramic-metal composite under external pressure.
  • the Figure 8 shows two adjacent heat shield segments 10 in the installed state.
  • the heat shield segments 10 each have a hot side 11 that can be acted upon by a hot medium, one opposite the hot side 11 and facing the jacket 3 Cold side 12 and a peripheral edge 13 between hot side 11 and cold side 12.
  • the heat shield segments 10 On the edge 13, the heat shield segments 10 have contact surfaces 15 adjoining the cold side 12, which serve to transmit force in the tangential and axial directions, and gaps 16 opening towards the hot gas side 11.
  • the gaps 16 opening towards the hot gas side are sickle-shaped, similar to the function of a tongue and groove connection.
  • the gap 16 itself ensures unhindered thermal expansion, the shape of the gap 16 enables a form fit and thus a position definition in the radial direction.
  • Figure 9 shows the same two heat shield segments 10, as Figure 8 .
  • the difference is that the heat shield segments 10 of the Figure 8 in cold he Figure 9 are in a hot state and the gap 16 is closed due to the thermal expansion 22.
  • the end faces 17 of the heat shield segments 10 are not designed to be flat but in such a way that a form fit between the individual ceramic heat shield segments 10 is created in the circumferential direction.
  • the interface geometry is preferably in a wave-shaped geometry, as in FIG Figure 10 shown, or to execute any other geometry that ensures positive locking.
  • Figure 10 shows a section through a combustion chamber 1 with two rows of segments 14. The flow direction 23 of the hot gases during operation is also indicated.
  • the side and end face geometry is of course designed to be adapted to the expansion so that the gaps 16 and also between the segment rows 14 are minimized during operation in order to largely avoid the penetration of hot gas.
  • Preferably obtuse angles and large radii are to be used in order to avoid areas subject to tensile stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Rohrbrennkammer mit keramischer Auskleidung.The invention relates to a tubular combustion chamber with a ceramic lining.

Zur Herstellung einer keramisch ausgekleideten Rohrbrennkammer ist eine werkstoff- und montagegerechte Konstruktion notwendig.In order to produce a ceramic-lined tubular combustion chamber, a construction that is appropriate to the material and assembly is necessary.

Die sorgfältige Integration der bruchempfindlichen keramischen Monolithe in die Metallumgebung ist besonders wichtig, da die Rohrbrennkammer starken Verbrennungsschwingungen bzw. Vibrationen ausgesetzt ist. Die vibrationsdämpfende, dauerhafte Lagerung der Keramik stellt daher eine konstruktive Hauptaufgabe dar. Bei der Lagerung ist insbesondere darauf zu achten, dass die Keramik durch den Einbau in das Gehäuse keiner kritischen Zug- oder Schubbeanspruchung ausgesetzt ist. Beim Betrieb erfährt der keramische Einsatz neben den durch die Lagerung verursachten Verbundspannungen die durch die Verbrennung entstehenden Lastspannungen. Diese Beanspruchungen ergeben zusammen mit den herstellungsbedingten Eigenspannungen die Gesamtspannungsverteilung, bei der Druckspannungen für das Bauteil kritische Zugspannungen unschädlich überlagern können. Eine mit einem axial verspannten Keramikrohr ausgekleidete Brennkammer ist in der WO2015038293 A1 offenbart. Aus der WO2017025232 ist eine Gasturbinenbrennkammer mit einzeln am Mantel angebrachten Hitzeschildelementen bekannt. Aufgabe der Erfindung ist es, einen solchen keramischen Einsatz sorgfältig in den metallischen Mantel eine Brennkammer einzubauen und ggf. eine Schnittstellengeometrie keramischer Segmente einer solchen Brennkammer untereinander so zu gestalten, dass Wärmedehnungen nicht behindert werden. Ferner muss die Schnittstellengeometrie verschiedene zusätzliche Funktionen erfüllen, wie die Übertragung von axialen und radialen Verbundlasten, die eindeutige Definition der Lage und Verdrehsicherung der Einzelelemente, die Abdichtung zwischen Heiß- und Kaltgasseite sowie die Vermeidung von Zugspannungen im Schnittstellenbereich.The careful integration of the fragile ceramic monoliths into the metal environment is particularly important, since the tubular combustion chamber is exposed to strong combustion oscillations or vibrations. The vibration-damping, permanent storage of the ceramic is therefore one of the main structural tasks. When storing, it is particularly important to ensure that the ceramic is not exposed to any critical tensile or shear stress when it is installed in the housing. During operation, the ceramic insert experiences not only the bond stresses caused by the bearing, but also the load stresses caused by the combustion. These stresses, together with the production-related internal stresses, result in the overall stress distribution in which compressive stresses for the component can harmlessly superimpose critical tensile stresses. A combustion chamber lined with an axially braced ceramic tube is in the WO2015038293 A1 disclosed. From the WO2017025232 a gas turbine combustion chamber with heat shield elements individually attached to the shell is known. The object of the invention is to carefully build such a ceramic insert into the metallic jacket of a combustion chamber and, if necessary, to design an interface geometry between ceramic segments of such a combustion chamber in such a way that thermal expansions are not hindered. Furthermore, the interface geometry must fulfill various additional functions, such as the transmission of axial and radial composite loads, the clear definition of the position and anti-twist protection of the individual elements, the sealing between Hot and cold gas side as well as the avoidance of tensile stresses in the interface area.

Die Erfindung löst die auf eine Brennkammer gerichtete Aufgabe, indem sie vorsieht, dass bei einer derartigen Brennkammer, umfassend einen um eine Hauptachse der Brennkammer angeordneten Mantel und ein innerhalb des Mantels angeordnetes Keramikrohr, zwischen Mantel und Keramikrohr eine Zwischenschicht angeordnet ist, der Mantel zumindest teilweise konisch ist und das Keramikrohr entlang der Hauptachse in den Mantel axial verspannt ist, wobei das Keramikrohr ein Verbund aus mehreren Hitzeschildsegmenten ist und wobei einzelne Hitzeschildsegmente einer Segmentreihe, welche jeweils eine mit einem heißen Medium beaufschlagbare Heißseite, eine der Heißseite gegenüberliegende, dem Mantel zugewandte Kaltseite und einen zwischen Heißseite und Kaltseite umlaufenden Rand aufweisen, im kalten Zustand auf dem Rand an die Kaltseite anschließende Anlageflächen und sich zur Heißgasseite öffnende Spalte aufweisen.The invention solves the problem directed to a combustion chamber by providing that in such a combustion chamber, comprising a jacket arranged around a main axis of the combustion chamber and a ceramic tube arranged inside the jacket, an intermediate layer is arranged between the jacket and the ceramic tube, the jacket at least partially is conical and the ceramic tube is axially braced along the main axis in the jacket, the ceramic tube being a composite of several heat shield segments and individual heat shield segments of a row of segments, each having a hot side that can be exposed to a hot medium, a cold side opposite the hot side and facing the jacket and have an edge running around between the hot side and the cold side, in the cold state on the edge having contact surfaces adjoining the cold side and gaps opening towards the hot gas side.

Bei der erfindungsgemäßen Ausführung mit einzelnen Segmenten werden diese form- und kraftschlüssig in Position gehalten (Torbogenprinzip) und bilden so einen druckvorgespannten Keramikring. Die Realisierung einer Druckvorspannung wird durch axiales Spannen der Hitzeschildsegmente in einer konischen Gegenfläche erreicht. Wärmedehnungsunterschiede treten insbesondere zwischen Heiß- und Kaltseite der keramischen Segmente auf. Dabei ist es besonders vorteilhaft, wenn die Spalte sichelförmig sind. Die kaltseitigen Anlageflächen der Einzelsegmente dienen zur Kraftübertragung in Tangential- und Axialrichtung. Die sich zur Heißseite öffnenden sichelförmigen Spalte, ähnlich einer Nut- und Federverbindung, gewährleisten zum einen unbehinderte Wärmedehnungen und zum anderen einen Formschluss und somit eine Lagedefinition in radialer Richtung. Die Seiten- und Stirnflächengeometrie ist derart auszuführen, dass deren Spaltgeometrie dehnungsangepasst ist und damit eine Minimierung der Spalte während des Betriebs realisiert um das Eindringen von Heißgas weitestgehend zu vermeiden.In the embodiment according to the invention with individual segments, these are held in position with a positive and non-positive fit (arched principle) and thus form a pressure-pretensioned ceramic ring. A compressive pre-tensioning is achieved by axially tensioning the heat shield segments in a conical mating surface. Differences in thermal expansion occur in particular between the hot and cold sides of the ceramic segments. It is particularly advantageous if the gaps are sickle-shaped. The cold-side contact surfaces of the individual segments are used to transmit power in the tangential and axial directions. The sickle-shaped gaps that open on the hot side, similar to a tongue and groove connection, ensure, on the one hand, unhindered thermal expansion and, on the other hand, a form fit and thus a position definition in the radial direction. The side and face geometry is to be designed in such a way that the gap geometry is adapted to the expansion and thus minimized the gap is realized during operation in order to avoid the penetration of hot gas as far as possible.

Es ist zweckmäßig, wenn zwischen Segmentreihen unebene Stirnflächen vorgesehen sind, so dass im heißen Zustand ein Formschluss zwischen einzelnen Hitzeschildsegmenten in Umfangsrichtung entsteht. Für die Schnittstellengeometrie sind vorzugsweise stumpfe Winkel und vergleichsweise große Radien zu verwenden, um zugspannungsbeanspruchte Zonen zu vermeiden.It is expedient if uneven end faces are provided between the rows of segments, so that in the hot state there is a form fit between individual heat shield segments in the circumferential direction. For the interface geometry, preferably obtuse angles and comparatively large radii are to be used in order to avoid zones subject to tensile stress.

In einer vorteilhaften Ausführungsform der Erfindung ist der Mantel metallisch.In an advantageous embodiment of the invention, the jacket is metallic.

In einer weiteren vorteilhaften Ausführungsform besteht das Keramikrohr aus feuerfestem Werkstoff.In a further advantageous embodiment, the ceramic tube consists of a refractory material.

Es ist vorteilhaft, wenn die Zwischenschicht eine keramische Quellmatte ist. Quellmatten sind Mineralfasermatten, die expandierbare Partikel enthalten. Aufgrund ihrer elastischen Rückstellkräfte üben sie eine Haltekraft auf das Keramikrohr aus. Über das axiale Verspannen der Hitzeschildsegmente werden Radialkräfte erzeugt, die über diese federnden Elemente zuverlässig auf die keramische Außenfläche übertragen werden.It is advantageous if the intermediate layer is a ceramic swelling mat. Swelling mats are mineral fiber mats that contain expandable particles. Due to their elastic restoring forces, they exert a holding force on the ceramic tube. The axial bracing of the heat shield segments generates radial forces that are reliably transmitted to the ceramic outer surface via these resilient elements.

Alternativ ist es vorteilhaft, wenn die Zwischenschicht Feder- und/oder Dämpfungselemente umfasst. Diese können keramisch oder metallisch sein.Alternatively, it is advantageous if the intermediate layer comprises spring and / or damping elements. These can be ceramic or metallic.

In einer vorteilhaften Ausführungsform weist der Mantel an der Öffnung mit dem größten Öffnungsdurchmesser Befestigungsmittel auf, mit deren Hilfe ein Gegenstück gegen die Öffnung gezogen werden kann. Beispielsweise kann das axiale Verspannen durch einen kraft- und/oder formschlüssig gefügten Metallring erfolgen. Der Kraftschluss erfolgt vom Metallring über die Keramiksäule und Federn auf die metallische konische Gegenfläche.In an advantageous embodiment, the jacket has fastening means at the opening with the largest opening diameter, with the aid of which a counterpart can be drawn against the opening. For example, the axial bracing can take place by means of a non-positively and / or positively joined metal ring. The frictional connection takes place from the metal ring via the ceramic column and springs on the metallic conical counter surface.

Mit dem Ziel die Fügekräfte zu begrenzen und variable Geometrien auszukleiden, kann es vorteilhaft sein, wenn der Mantel zwei konische Teilmäntel umfasst, d.h. der Mantel ist dann in zwei konische Bauteile getrennt (z.B. mit einer in die Mitte verschobenen Trennebene).With the aim of limiting the joining forces and lining variable geometries, it can be advantageous if the jacket comprises two conical partial jackets, i.e. the jacket is then separated into two conical components (e.g. with a parting plane shifted to the middle).

Das Keramikrohr selbst kann zweckmäßigerweise ein Vollzylinder oder ein Vollkonus sein, was jedoch nicht unter die Patentansprüche fällt.The ceramic tube itself can expediently be a full cylinder or a full cone, which, however, does not fall under the claims.

Um zwischen den Segmentreihen eine Verdrehung in Umfangsrichtung zu verhindern, sind die Stirnflächen nicht eben, sondern derart auszuführen, dass ein Formschluss zwischen den keramischen Einzelsegmenten in Umfangsrichtung entsteht. Dazu ist die Schnittstellengeometrie vorzugsweise in einer wellenförmigen Geometrie oder jeder anderen formschlussgewährleistenden Geometrie auszuführen. Auch hier sind vorzugsweise stumpfe Winkel und vergleichsweise große Radien zu verwenden.In order to prevent rotation in the circumferential direction between the rows of segments, the end faces are not flat, but are designed in such a way that a form fit is created between the individual ceramic segments in the circumferential direction. For this purpose, the interface geometry is preferably to be designed in a wave-shaped geometry or any other geometry that ensures positive locking. Here, too, preferably obtuse angles and comparatively large radii are to be used.

Für die Auskleidung einer Rohrbrennkammer wird also nach der Erfindung ein Keramikverbund aus mehreren Feuerfest-Hitzeschildsegmenten vorgesehen. Der so entstehende Ring oder Konus aus Feuerfestkeramik wird mithilfe einer federnden Zwischenschicht in einem metallischen Gehäuse gelagert. Die Befestigung der keramischen Segmente wird über den Außendruck realisiert, sodass eine Konstruktion ohne Spalte entsteht. Mit der Erfindung lassen sich grundlegende Konstruktionsprinzipien eines Keramik-Metall-Verbunds in Kombination mit einer bauteil- und kostenreduzierten Konstruktion realisieren. Mit der Erzeugung von Druckvorspannungen in der Keramikauskleidung wird eine Erhöhung der Beanspruchbarkeit der Keramik ermöglicht. Die Verwendung von Feuerfestkeramik in einer Rohrbrennkammer führt zu einer Reduzierung der Neuteil- und Lebenszykluskosten (durch Erhöhung der Lebensdauer gegenüber der metallischen Lösung). Zusätzlich sind eine Erhöhung der Temperaturbeanspruchbarkeit sowie eine Reduzierung des Kühlluftverbrauchs möglich.According to the invention, a ceramic composite composed of several refractory heat shield segments is provided for the lining of a tubular combustion chamber. The resulting ring or cone made of refractory ceramic is stored in a metallic housing with the help of a resilient intermediate layer. The attachment of the ceramic segments is realized via the external pressure, so that a construction without gaps is created. With the invention, basic construction principles of a ceramic-metal composite can be implemented in combination with a construction that is reduced in terms of components and costs. With the generation of compressive stresses in the ceramic lining, an increase in the strength of the ceramic is made possible. The use of refractory ceramics in a tubular combustion chamber leads to a reduction in new part and life cycle costs (by increasing the service life compared to the metallic solution). In addition, an increase in the temperature resistance and a reduction in the consumption of cooling air are possible.

Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch und nicht maßstäblich:

Figur 1
einen Ausschnitt einer Verbundlösung für eine Brennkammer aus den Elementen Mantel, Keramikrohr und Zwischenschicht,
Figur 2
eine Darstellung der wirkenden Kräfte der Verbundlösung der Figur 1 in der Seitensicht und
Figur 3
eine Darstellung der wirkenden Kräfte der Verbundlösung der Figur 1 in der Längssicht,
Figur 4
axiales Spannen am Beispiel eines Metallrings in geöffnetem Zustand und
Figur 5
axiales Spannen am Beispiel eines Metallrings in geschlossenem Zustand,
Figur 6
das Prinzip zweier konischer Komponenten mit mittiger Trennebene,
Figur 7
eine aufgeschnittene Rohrbrennkammer mit Übergangsstück,
Figur 8
eine Nut-Feder-ähnliche Verbindung von Hitzeschildsegmenten mit Anlagefläche im kalten Zustand,
Figur 9
eine Nut-Feder-ähnliche Verbindung von Hitzeschildsegmenten mit Anlagefläche und geschlossenem Spalt im heißen Zustand und
Figur 10
eine wellenförmige Geometrie zwischen verschiedenen Segmentreihen als Verdrehsicherung.
The invention is explained in more detail by way of example with reference to the drawings. They show schematically and not to scale:
Figure 1
a section of a composite solution for a combustion chamber made of the elements jacket, ceramic tube and intermediate layer,
Figure 2
a representation of the forces acting in the composite solution of Figure 1 in the side view and
Figure 3
a representation of the forces acting in the composite solution of Figure 1 in the longitudinal view,
Figure 4
axial clamping using the example of a metal ring in the open state and
Figure 5
axial clamping using the example of a metal ring in the closed state,
Figure 6
the principle of two conical components with a central parting plane,
Figure 7
a cut-open tubular combustion chamber with transition piece,
Figure 8
a tongue and groove-like connection of heat shield segments with contact surface in the cold state,
Figure 9
a tongue and groove-like connection of heat shield segments with contact surface and closed gap in the hot state and
Figure 10
a wave-shaped geometry between different rows of segments to prevent rotation.

Figur 1 zeigt schematisch und beispielhaft eine Verbundlösung aus drei Elementen für eine Brennkammer 1 mit Mantel 3, einem im Mantel 3 angeordneten Keramikrohr 4 aus feuerfestem Werkstoff und einer hochtemperaturfesten Zwischenschicht 5, die zwischen Mantel 3 und Keramikrohr 4 angeordnet ist. Figure 1 shows schematically and by way of example a composite solution of three elements for a combustion chamber 1 with jacket 3, a ceramic tube 4 made of refractory material arranged in jacket 3 and a high-temperature-resistant intermediate layer 5 arranged between jacket 3 and ceramic tube 4.

Die sorgfältige Integration des Keramikrohrs 4 in die Metallumgebung ist besonders wichtig. Figur 2 veranschaulicht hierzu das erfindungsgemäße axiale Verspannen 18 des Keramikrohrs 4 im Mantel 3. Durch das axiale Verspannen 18 des Keramikrohrs in Richtung der Hauptachse 2 einer konischen metallischen Gegenfläche, d.h. des Mantels, werden Radialkräfte 19 erzeugt, die über federnde Elemente, d.h. die Zwischenschicht 5, auf die keramische Außenfläche übertragen werden. Auf diese Weise wird ein unter Außendruck stehender Keramikverbund erzeugt.The careful integration of the ceramic tube 4 into the metal environment is particularly important. Figure 2 illustrates the inventive axial bracing 18 of the ceramic tube 4 in the jacket 3. The axial bracing 18 of the ceramic tube in the direction of the main axis 2 of a conical metallic counter surface, ie the jacket, creates radial forces 19 generated, which are transferred to the ceramic outer surface via resilient elements, ie the intermediate layer 5. In this way, a ceramic composite that is under external pressure is produced.

Bei der erfindungsgemäßen Ausführung mit einzelnen Hitzeschildsegmenten 10 werden diese form- und kraftschlüssig in Position gehalten (Torbogenprinzip) und bilden so einen druckvorgespannten Ring aus keramischen Hitzeschildsegmenten 10, wie er in der Figur 3 als Segmentreihe 14 gezeigt ist.In the embodiment according to the invention with individual heat shield segments 10, these are held positively and non-positively in position (archway principle) and thus form a pressure-biased ring of ceramic heat shield segments 10, as shown in FIG Figure 3 is shown as segment row 14.

Die Figuren 4 und 5 zeigen beispielhaft, wie das axiale Verspannen 18 durch einen kraft- und / oder formschlüssig gefügten Metallring als Befestigungsmittel 7 im Bereich der größeren Öffnung 6 des Konus erfolgen kann. Der Kraftschluss erfolgt vom Metallring über die Keramiksäule und Federn auf die metallische konische Gegenfläche des Mantels 3.the Figures 4 and 5 show by way of example how the axial bracing 18 can take place by means of a non-positively and / or positively joined metal ring as fastening means 7 in the area of the larger opening 6 of the cone. The frictional connection takes place from the metal ring via the ceramic column and springs onto the metallic conical counter surface of the jacket 3.

Mit dem Ziel, die Fügekräfte zu begrenzen und variable Geometrien auszukleiden, kann die metallische Komponente in zwei konische Bauteile getrennt werden (beispielsweise mit einer in die Mitte verschobenen Trennebene 20, wie sie in der Figur 6 gezeigt ist). Der jeweils andere Teilmantel 9 mit dem entsprechenden Keramikrohr 4 wirkt hier als Gegenstück 8 für die axiale Verspannung 18.With the aim of limiting the joining forces and lining variable geometries, the metallic component can be separated into two conical components (for example with a separating plane 20 shifted to the center, as shown in FIG Figure 6 shown). The respective other partial jacket 9 with the corresponding ceramic tube 4 acts here as a counterpart 8 for the axial bracing 18.

Figur 7 zeigt eine in Längsrichtung aufgeschnittene Rohrbrennkammer 1 mit Übergangsstück 21, bei der sich eine Auskleidung, wie in Figur 6 dargestellt, anbietet. Figure 7 shows a longitudinally cut tubular combustion chamber 1 with transition piece 21, in which a lining, as in FIG Figure 6 presented, offers.

Die Figuren 8 bis 10 zeigen Details der Geometrie zwischen einzelnen keramischen Hitzeschildsegmenten 10 in einem unter Außendruck stehenden Keramik-Metall-Verbund.the Figures 8 to 10 show details of the geometry between individual ceramic heat shield segments 10 in a ceramic-metal composite under external pressure.

Die Figur 8 zeigt zwei benachbarte Hitzeschildsegmente 10 im Einbauzustand. Die Hitzeschildsegmente 10 weisen jeweils eine mit einem heißen Medium beaufschlagbare Heißseite 11, eine der Heißseite 11 gegenüberliegende, dem Mantel 3 zugewandte Kaltseite 12 und einen zwischen Heißseite 11 und Kaltseite 12 umlaufenden Rand 13 auf. Die Hitzeschildsegmente 10 weisen auf dem Rand 13 an die Kaltseite 12 anschließende Anlageflächen 15, die zur Kraftübertragung in Tangential- und Axialrichtung dienen, und sich zur Heißgasseite 11 hin öffnende Spalte 16 auf. Die sich zur Heißgasseite hin öffnenden Spalte 16 sind sichelförmig, ähnlich der Funktion einer Nut- und Federverbindung. Der Spalt 16 an sich gewährleistet eine unbehinderte Wärmedehnung, die Form des Spalts 16 ermöglicht einen Formschluss und somit eine Lagedefinition in radialer Richtung.the Figure 8 shows two adjacent heat shield segments 10 in the installed state. The heat shield segments 10 each have a hot side 11 that can be acted upon by a hot medium, one opposite the hot side 11 and facing the jacket 3 Cold side 12 and a peripheral edge 13 between hot side 11 and cold side 12. On the edge 13, the heat shield segments 10 have contact surfaces 15 adjoining the cold side 12, which serve to transmit force in the tangential and axial directions, and gaps 16 opening towards the hot gas side 11. The gaps 16 opening towards the hot gas side are sickle-shaped, similar to the function of a tongue and groove connection. The gap 16 itself ensures unhindered thermal expansion, the shape of the gap 16 enables a form fit and thus a position definition in the radial direction.

Figur 9 zeigt dieselben beiden Hitzeschildsegmente 10, wie Figur 8. Der Unterschied besteht darin, dass sich die Hitzeschildsegmente 10 der Figur 8 in kaltem, die er Figur 9 in heißem Zustand befinden und der Spalt 16 aufgrund der Wärmedehnung 22 geschlossen ist. Figure 9 shows the same two heat shield segments 10, as Figure 8 . The difference is that the heat shield segments 10 of the Figure 8 in cold he Figure 9 are in a hot state and the gap 16 is closed due to the thermal expansion 22.

Um zwischen den Segmentreihen 14 aus in Umfangsrichtung angeordneten Hitzeschildsegmenten 10 eine Verdrehung in Umfangsrichtung zu verhindern, sind die Stirnflächen 17 der Hitzeschildsegmente 10 nicht eben sondern derart auszuführen, dass ein Formschluss zwischen den einzelnen keramischen Hitzeschildsegmenten 10 in Umfangsrichtung entsteht. Dazu ist die Schnittstellengeometrie vorzugsweise in einer wellenförmigen Geometrie, wie in Figur 10 dargestellt, oder jeder anderen formschlussgewährleistenden Geometrie auszuführen. Figur 10 zeigt einen Schnitt durch eine Brennkammer 1 mit zwei Segmentreihen 14. Die Strömungsrichtung 23 der Heißgase im Betrieb ist ebenfalls angedeutet.In order to prevent circumferential rotation between the segment rows 14 of heat shield segments 10 arranged in the circumferential direction, the end faces 17 of the heat shield segments 10 are not designed to be flat but in such a way that a form fit between the individual ceramic heat shield segments 10 is created in the circumferential direction. For this purpose, the interface geometry is preferably in a wave-shaped geometry, as in FIG Figure 10 shown, or to execute any other geometry that ensures positive locking. Figure 10 shows a section through a combustion chamber 1 with two rows of segments 14. The flow direction 23 of the hot gases during operation is also indicated.

Die Seiten- und Stirnflächengeometrie ist selbstverständlich dehnungsangepasst auszuführen, damit eine Minimierung der Spalte 16 und auch zwischen den Segmentreihen 14 während des Betriebs realisiert wird, um das Eindringen von Heißgas weitestgehend zu vermeiden. Dabei sind vorzugsweise stumpfe Winkel und große Radien zu verwenden, um zugspannungsbeanspruchte Zonen zu vermeiden.The side and end face geometry is of course designed to be adapted to the expansion so that the gaps 16 and also between the segment rows 14 are minimized during operation in order to largely avoid the penetration of hot gas. Preferably obtuse angles and large radii are to be used in order to avoid areas subject to tensile stress.

Claims (11)

  1. Combustion chamber (1) comprising a jacket (3) which is arranged around a principal axis (2) of the combustion chamber (1), and a ceramic tube (4) which is arranged inside the jacket (3), wherein an intermediate layer (5) is arranged between the jacket (3) and the ceramic tube (4), and the jacket (3) is at least partially conical, and the ceramic tube (4) is tensioned axially into the jacket (3) along the principal axis (2), characterized in that the ceramic tube (4) is an assembly of a plurality of heat shield segments (10), wherein the heat shield segments (10) each have a hot side (11) to which a hot medium can be applied, a cold side (12) which is opposite the hot side (11) and faces the jacket (3), and a circumferential rim (13) between the hot side (11) and the cold side (12), and, in the cold state, individual heat shield segments (10) of a segment row (14) have, on the rim (13), bearing surfaces (15) that adjoin the cold side (12) and gaps (16) opening toward the hot gas side (11).
  2. Combustion chamber (1) according to Claim 1, wherein the gaps (16) are sickle-shaped.
  3. Combustion chamber (1) according to either of Claims 1 and 2, wherein uneven end surfaces (17) are provided between segment rows (14), and therefore, in the hot state, a form fit arises between individual heat shield segments (10) in the circumferential direction.
  4. Combustion chamber (1) according to one of the preceding claims, wherein the jacket (3) is metallic.
  5. Combustion chamber (1) according to one of the preceding claims, wherein the ceramic tube (4) is composed of fireproof material.
  6. Combustion chamber (1) according to one of the preceding claims, wherein the intermediate layer (5) is a ceramic swellable mat.
  7. Combustion chamber (1) according to one of Claims 1 to 5, wherein the intermediate layer (5) comprises spring and/or damping elements.
  8. Combustion chamber (1) according to Claim 7, wherein the spring and/or damping elements are ceramic.
  9. Combustion chamber (1) according to Claim 7, wherein the spring and/or damping elements are metallic.
  10. Combustion chamber (1) according to one of the preceding claims, wherein the jacket (3) has fastening means (7) at the opening (6) having the largest opening diameter, which fastening means can be used to draw a counterpart (8) against the opening (6).
  11. Combustion chamber (1) according to one of the preceding claims, wherein the jacket (3) comprises two conical partial jackets (9).
EP18810907.8A 2017-12-12 2018-11-15 Pipe combustion chamber with ceramic cladding Active EP3707435B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17206622.7A EP3499125A1 (en) 2017-12-12 2017-12-12 Pipe combustion chamber with ceramic cladding
PCT/EP2018/081305 WO2019115129A1 (en) 2017-12-12 2018-11-15 Tubular combustion chamber with ceramic cladding

Publications (2)

Publication Number Publication Date
EP3707435A1 EP3707435A1 (en) 2020-09-16
EP3707435B1 true EP3707435B1 (en) 2021-09-15

Family

ID=60673474

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17206622.7A Withdrawn EP3499125A1 (en) 2017-12-12 2017-12-12 Pipe combustion chamber with ceramic cladding
EP18810907.8A Active EP3707435B1 (en) 2017-12-12 2018-11-15 Pipe combustion chamber with ceramic cladding

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17206622.7A Withdrawn EP3499125A1 (en) 2017-12-12 2017-12-12 Pipe combustion chamber with ceramic cladding

Country Status (4)

Country Link
US (1) US20210190319A1 (en)
EP (2) EP3499125A1 (en)
KR (1) KR102364131B1 (en)
WO (1) WO2019115129A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204544A1 (en) 2019-04-01 2020-10-01 Siemens Aktiengesellschaft Tube combustion chamber system and gas turbine system with such a tube combustion chamber system
DE102020203017A1 (en) * 2020-03-10 2021-09-16 Siemens Aktiengesellschaft Combustion chamber with ceramic heat shield and seal
CN112228903B (en) * 2020-09-18 2022-07-01 西北工业大学 Three-channel type combustion chamber flame tube wall surface structure with longitudinal vortex generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4838030A (en) * 1987-08-06 1989-06-13 Avco Corporation Combustion chamber liner having failure activated cooling and dectection system
DE4343319A1 (en) * 1993-12-18 1995-06-22 Abb Patent Gmbh Combustion chamber with a ceramic lining
US9127565B2 (en) * 2008-04-16 2015-09-08 Siemens Energy, Inc. Apparatus comprising a CMC-comprising body and compliant porous element preloaded within an outer metal shell
DE102012204162A1 (en) * 2012-03-16 2013-09-19 Siemens Aktiengesellschaft Ring combustor bypass
WO2015038293A1 (en) * 2013-09-11 2015-03-19 United Technologies Corporation Combustor liner
GB2540769A (en) * 2015-07-27 2017-02-01 Rolls Royce Plc Combustor for a gas turbine engine
DE102015215208B3 (en) * 2015-08-10 2016-11-03 Siemens Aktiengesellschaft A combustor for a gas turbine and method for detecting heat shield element loss in the combustor
US10648669B2 (en) * 2015-08-21 2020-05-12 Rolls-Royce Corporation Case and liner arrangement for a combustor

Also Published As

Publication number Publication date
EP3707435A1 (en) 2020-09-16
KR20200093045A (en) 2020-08-04
US20210190319A1 (en) 2021-06-24
EP3499125A1 (en) 2019-06-19
WO2019115129A1 (en) 2019-06-20
KR102364131B1 (en) 2022-02-18

Similar Documents

Publication Publication Date Title
EP3707435B1 (en) Pipe combustion chamber with ceramic cladding
EP2238315B1 (en) Assembly with sealing segment
EP3208433B1 (en) Mid turbine frame made from ceramic fiber composite materials
DE2952117B1 (en) Piston pin
EP3208428B1 (en) Sealing assembly made from ceramic fiber composite materials
DE2609366C2 (en) Hot air piping for aircraft
EP3385506B1 (en) Sealing arrangement for a gas turbine engine
DE19858197B4 (en) engine
DE102014110907A1 (en) sliding bearing device
EP2893204A1 (en) Shaft made of fibre composite material with fireproof bulkhead feedthrough
DE2427688A1 (en) STORAGE OF OUTER RINGS AND BEARING SHELLS IN A LIGHT ALLOY HOUSING
EP1674685A1 (en) Connecting element for non-rigidly connecting the end portions of two pipes
EP0446422A1 (en) Soot filter for diesel engines
DE3635837A1 (en) SLIDING BEARING WITH EXPANSION COMPENSATING ELEMENTS
EP3921576B1 (en) Resonator, method for producing such a resonator, and combustor arrangement equipped with such a resonator
DE102015210014B4 (en) Housing structure of a turbomachine with a component with directed microstructure
DE102004018987A1 (en) Protective device against bursting turbochargers comprises an endless looped belt of textile fiber material which has a high penetration resistance, and covers at least a part of the turbocharger circumference
EP3070278A2 (en) Protection device for a turbo engine
EP2397709B1 (en) Ball joint and method for mounting same
EP3267143B1 (en) Bullet
WO2020200609A1 (en) Tubular combustion chamber system and gas turbine unit having a tubular combustion chamber system of this type
DE102007048527B4 (en) Thruster
DE19923114C2 (en) Roll for a heat treatment furnace
DE19920655A1 (en) High temperature insulation used for lining combustion chambers and inner components of gas turbines has a multilayer structure whose first layer is in contact with a hot medium
DE10233881B4 (en) By thermal effects radially variable ring element

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRALKI, MATTHIAS

Inventor name: GROTE, HOLGER

Inventor name: TERTILT, MARC

Inventor name: SCHMIDT, DANIEL

Inventor name: KRUSCH, CLAUS

Inventor name: HUEMBS, MARVIN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210422

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007117

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1430786

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007117

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

26N No opposition filed

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181115

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 6

Ref country code: FR

Payment date: 20231123

Year of fee payment: 6

Ref country code: DE

Payment date: 20231127

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915