EP3706946A1 - Procédé de fabrication de pièce tournante magnétisée, pièce tournante et système de mesure de rotation d'une pièce tournante - Google Patents

Procédé de fabrication de pièce tournante magnétisée, pièce tournante et système de mesure de rotation d'une pièce tournante

Info

Publication number
EP3706946A1
EP3706946A1 EP18808449.5A EP18808449A EP3706946A1 EP 3706946 A1 EP3706946 A1 EP 3706946A1 EP 18808449 A EP18808449 A EP 18808449A EP 3706946 A1 EP3706946 A1 EP 3706946A1
Authority
EP
European Patent Office
Prior art keywords
rotating part
sensor
magnetic material
manufacturing
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18808449.5A
Other languages
German (de)
English (en)
Inventor
Florian RAPPAPORT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Transmission Systems SAS
Original Assignee
Safran Transmission Systems SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Transmission Systems SAS filed Critical Safran Transmission Systems SAS
Publication of EP3706946A1 publication Critical patent/EP3706946A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method of manufacturing a rotating part, in particular so as to obtain a rotating part whose rotational speed can be measured by a suitable measuring system.
  • the method and system are particularly suited to the industrial field of aircraft, more generally vehicles, and to rotating parts subject to significant constraints, in particular rotating gearbox parts which are in an environment that can be subjected to fog. oil, at a wide temperature range (especially between -54 ° C and 200 ° C), and vibration.
  • Rotational speed measurement systems exist in many forms.
  • a first known form is a rotational speed measurement system phonic wheel composed of toothing and equipping the rotating part.
  • a proximity sensor arranged opposite the phonic wheel, makes it possible to detect the passage of each of the teeth of the toothing of the phonic wheel, thus making it possible to determine the speed of rotation of the rotating part with a fine resolution.
  • this type of measurement system requires the use of a specific toothing (if the piece does not already have one that can be exploitable) adding mass to the piece. This type of measuring system is for example described in the French applications FR2633722, FR2891361 and FR2896882.
  • Another form is a rotational encoder rotation speed measuring system, where a sensor (inductive, capacitive, optical or magnetic) allows the reading of a band or hole disk forming an encoding system.
  • a processing unit then converts the encoding into a signal representative of the rotation.
  • the measurement method is expensive to implement, at a low frequency amplitude and when an optical sensor is used, is not compatible with an environment of oil mist type.
  • a last form has been studied but still poses several problems: the addition of a magnet type insert to a rotating part conjugated to a sensor for detecting the passage of the room in front of the sensor.
  • the addition of a part causes several problems, such as the formation of an unbalance on the rotating part and the need to have a solid attachment between the rotating part and the insert so as to withstand the centrifugal force due to the rotation of the rotating part.
  • the aim of the invention is to overcome at least some of the disadvantages of rotary speed measurement systems of known rotating parts.
  • the invention aims to provide, in at least one embodiment of the invention, a method of manufacturing a rotating part, the rotating part thus manufactured being particularly adapted so that its speed of rotation is measured by a measuring system.
  • the invention also aims to provide, in at least one embodiment, a method of manufacturing a rotating part to obtain a rotating part whose rotational speed can be measured without significant addition of mass or insert generating potential fixation problems.
  • the invention also aims to provide, in at least one embodiment of the invention, a method of manufacturing a rotating part to obtain a rotating part whose rotational speed can be measured without generating an imbalance on the rotating part.
  • the invention also aims to provide, in at least one embodiment of the invention, a method of manufacturing a rotating part to obtain a rotating part whose rotational speed can be measured at high temperatures and / or or in a vibratory environment.
  • the invention also aims to provide, in at least one embodiment of the invention, a method of manufacturing a rotating part making it possible to obtain a rotating part whose rotational speed can be measured in the presence of oil mist or other atmosphere that does not allow a satisfactory optical reading.
  • the invention also aims to provide, in at least one embodiment, a rotating part whose rotation speed can be easily measured at low cost.
  • the invention also aims to provide, in at least one embodiment, a rotating speed measurement system of a rotating part at low cost, accurate and adding little mass.
  • the invention relates to a method for manufacturing a rotating part along an axis, comprising:
  • the method comprises a step of incorporating a magnetic material to the powder during the production of the formed part, in a predefined area of the formed part, called magnetized zone, the magnetic material having the following characteristics:
  • T c Curie temperature
  • a method according to the invention thus makes it possible to obtain a rotating part having a magnetized zone in which there is a magnetic material, without the addition of an insert since the magnetized zone is directly formed by incorporating magnetic material during the production. from the piece itself from the powder.
  • the magnetized zone thus introduces no significant unbalance in the rotating part, and the hardness in the zone is significantly homogeneous in and around of the magnetized zone.
  • the hardness is preferably expressed in Vickers hardness, or according to others types of hardness depending on the measurement mode.
  • the magnetized zone forms a local magnetization of the rotating part. It also has no risk of coming off due to the centrifugal force when the part is rotating.
  • x the density of the magnetic material
  • D the hardness of the formed part
  • X the density of the formed part
  • d D ⁇ ((kD) / 100)
  • k 25 or 20 or 15 or 10 or 5
  • x X ⁇ ((nX) / 100)
  • n 20 or 15 or 10 or 5
  • the magnetic remanence commonly identified by the term Br in the literature greater than or equal to 0.1 T results in a high magnetic power that makes it possible to ensure detection of the magnetic field disturbance caused by the magnetized zone during the first time.
  • the Curie temperature (commonly identified by the term T c in the literature) greater than or equal to 250 ° C makes it possible to ensure that the magnetized zone maintains a sufficient magnetization in the temperature range to which the piece is subjected. rotation, for example typically [-54 ° C; 200 ° C] in a gear box.
  • the rise in temperature does not involve demagnetization.
  • the temperature coefficient of the remanence should be low (less than or equal to 1% / ° C) so as to limit the variations of the magnetic remanence in case of temperature variations.
  • the magnetized zone is a predetermined zone, for example by calculation, so that the presence of the magnetic material impacts at least the mechanical stresses in operation of the rotating part.
  • the material for making the formed part is for example a metal or a metal alloy, for example a steel alloy (for example 16NCD13, 32CDV13, or 40CDV12).
  • the formed part is the result of the transformation of the powder, and the formed part is then transformed again if necessary to obtain the rotating part.
  • the step of obtaining the rotating part comprises a step of machining the formed part and / or an assembly step with another part so as to form the rotating part.
  • a rotating part is also called a rotating part, and designates a part whose main operation requires its rotation, in particular to transmit a torque or a movement.
  • the rotating part is for example a shaft (including a transmission shaft), a pinion, etc.
  • the magnetic material is a samarium-cobalt alloy, Neodymium, or AINiCo.
  • the samarium-cobalt alloy, Neodymium, or AINiCo frequently used in the manufacture of magnets and having the characteristics set out above.
  • the magnetic material is incorporated in the form of particles or a pellet.
  • the particle or pellet shape allows for easier incorporation of the magnetic material to the powder during manufacture of the formed part.
  • the particles are mixed with the powder forming the material and making it heterogeneous, while the pellet is a small piece of variable size and shape forming a homogeneous whole, integrated into the part formed during its manufacture.
  • the magnetized zone is an area of the part corresponding to an eccentric zone of the axis of the rotating part.
  • the magnetized zone rotates about the axis due to the rotation of the rotating part. It is thus possible to detect the passage of the magnetized zone in front of a sensor receptive to magnetic changes, as explained below.
  • the step of producing the rotating part from the powder and the integration of the magnetic material are carried out by additive manufacturing, preferably by sintering or laser melting.
  • additive manufacturing in particular sintering or laser melting, is particularly suitable for producing objects from a powder, and allows the easy incorporation of the magnetic material during the production of the formed part.
  • the invention also relates to a rotating part obtained by a method according to the invention, characterized in that it comprises an integrated magnetized zone.
  • a rotating part according to the invention therefore has no unbalance and is suitable for use in an environment such as that of a gearbox. In addition, it is possible to easily measure its rotational speed.
  • the magnetic zone is eccentric from the axis of the rotating part.
  • the magnetic zone describes a circular movement during the rotation of the rotating part, and the time between two passes of the magnetic zone in front of a sensor is representative of the speed of rotation of the rotating part.
  • the invention also relates to a system for measuring the speed of rotation of a rotating part according to the invention, characterized in that it comprises a plurality of sensors arranged near the region of the rotating part comprising the magnetic material and configured to each detect a passage of the magnetic zone in front of each sensor in different angular sectors during rotation of the rotating part.
  • a measuring system makes it possible to measure the speed of a rotating part obtained by the method according to the invention, thanks to the presence of at least one sensor arranged in such a way that it detects the passages of the magnetized zone in its vicinity, by variation of the magnetic field.
  • the sensor is for example an active sensor (Hall effect type or magnetoresistance), or a passive sensor (current type of eddy).
  • the sensor is for example a fixed sensor, or a mobile sensor whose position is known at any time with respect to the position of the magnetized sector of the rotating part.
  • the measurement of the speed of rotation is thus obtained without contact, and can be carried out in an environment comprising an oil mist, a range of high operating temperature (especially [-54 ° C, 200 ° C] in a gearbox), and a vibratory environment.
  • At least one sensor is disposed in a hollow core of the rotating part.
  • the size of the measurement system is reduced because at least one sensor (preferably all the sensors) is disposed inside the rotating part.
  • the sensor may be disposed at the axis of rotation of the rotating part.
  • a measurement system according to the invention comprises a plurality of sensors configured so as to each detect a passage of a plurality of magnetic zones in different angular sectors.
  • the plurality of sensors and the plurality of magnetic zones make it possible to increase the resolution of the measurement system.
  • a measurement system comprises at least one mobile sensor whose position is known at any time with respect to the zone of the rotating part comprising the magnetic material, disposed near the magnetic zone, the system being configured so as to detect a passage of the magnetic zone in front of each sensor during the rotation of the rotating part.
  • the mobile sensor may itself be rotated, in particular in the opposite direction of the rotating part, and thus further detect the magnetized zone, to increase the resolution of the measurement system without adding sensor or magnetized area.
  • the invention also relates to a method, a rotating part and a measuring system characterized in combination by all or some of the characteristics mentioned above or below.
  • FIG. 1 is a schematic view of a method for manufacturing a rotating part according to one embodiment of the invention
  • FIG. 2 is a schematic partial perspective view of a rotating part according to an embodiment of the invention, obtained by the manufacturing method,
  • Figure 3 is a schematic sectional view in perspective of a rotating part and a system for measuring the rotational speed of the rotating part, according to one embodiment of the invention.
  • Figure 1 shows schematically a method 10 for manufacturing a rotating part according to an embodiment of the invention.
  • the circles represent products and the rectangles represent steps allowing the passage from one product to another.
  • a first step shown is a step 12 of producing a formed part 16 from a material in powder form 14.
  • This production step is preferably done by additive manufacturing, for example by sintering or laser melting.
  • a second step shown is a step 18 for obtaining a rotating part 20 from the part 16 formed.
  • This step comprises for example a machining step of the formed part 16, but may also include other processing steps known in the manufacture of industrial parts.
  • the peculiarity of the process according to the invention is that it comprises a step 21 of incorporating a magnetic material 22, for example in the form of particles or a pellet, into the powder during the step of producing the part 16 formed, in a predefined area (for example by calculation) of the formed part 16, said magnetized zone.
  • a magnetic material 22 for example in the form of particles or a pellet
  • the invention allows the incorporation directly during the production of the part.
  • FIG. 2 schematically and partially in perspective shows a rotating part according to one embodiment of the invention, obtained by the manufacturing method as described above.
  • the rotating part here a pinion
  • the rotating part thus comprises a magnetized zone 24, here visible on an outer face of the pinion.
  • the rotating part 20 here comprises a magnetized zone 24 disposed inside a hollow core 26 of the rotating part 20.
  • a sensor 28 of the measuring system is disposed at the axis of rotation of the rotating part.
  • the sensor 28 is arranged so as to detect a passage of the magnetized zone 24 in front of it. , thus making it easy to determine the rotational speed of the rotating part as a function of the time elapsed between each passage of the magnetized zone 24.
  • the arrangement of the sensor in the hollow core 26 of the rotating part makes it possible to reduce the size of the measuring system.
  • the sensor is a sensor that can detect a variation of the surrounding magnetic field, in particular that caused by the magnetized zone.
  • the sensor is for example an active sensor type Hall or magnetoresistance, or a passive sensor type current eddy. More generally, the sensor makes it possible, for example, to supply an output signal having a value of 0 when the magnetic field measured is below a reference value and a value 1 when the magnetic field measured is above a value of reference.
  • the measuring system also comprises conventional elements for recovering the output signal, determining the speed of rotation of the rotating part from the output signal (calculation unit for example), to provide the value of the rotational speed. to other equipment, power the sensor if necessary, etc.
  • the senor may be disposed outside the rotating part and not in a hollow core thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une pièce tournante selon un axe, comprenant une étape d'incorporation d'un matériau magnétique à la poudre pendant la fabrication de la pièce tournante, dans au moins une zone prédéfinie de la pièce formée. L'invention concerne également une pièce tournante obtenue par ce procédé et un système de mesure de rotation d'une pièce tournante obtenue par ce procédé, grâce à au moins un capteur permettant la détection du passage de la zone dans laquelle le matériau magnétique est incorporé.

Description

PROCÉDÉ DE FABRICATION DE PIÈCE TOURNANTE MAGNÉTISÉE, PIÈCE TOURNANTE ET SYSTÈME DE MESURE DE ROTATION D'UNE PIÈCE TOURNANTE
1. Domaine technique de l'invention
L'invention concerne un procédé de fabrication d'une pièce tournante, en particulier de sorte à obtenir une pièce tournante dont on peut mesurer la vitesse de rotation par un système de mesure adapté. Le procédé et le système sont particulièrement adaptés au domaine industriel des aéronefs, plus généralement des véhicules, et aux pièces tournantes soumises à des contraintes importantes, notamment les pièces tournantes de boites de vitesse qui sont dans un environnement pouvant être soumis à un brouillard d'huile, à une grande plage de température (notamment entre - 54°C et 200°C), et à des vibrations.
2. Arrière-plan technologique
L'état de la technique comporte notamment les documents WO-A1- 2015/062592 et F -A1-3 049 385.
Les systèmes de mesure de la vitesse de rotation des pièces tournantes existent sous plusieurs formes.
Une première forme connue est un système de mesure de vitesse de rotation à roue phonique composée de denture et équipant la pièce tournante. Un capteur de proximité, disposé en regard de la roue phonique, permet de détecter le passage de chacune des dents de la denture de la roue phonique, permettant ainsi de déterminer la vitesse de rotation de la pièce tournante avec une résolution fine. Toutefois, ce type de système de mesure impose l'utilisation d'une denture spécifique (si la pièce n'en présente pas déjà une pouvant être exploitable) ajoutant de la masse à la pièce. Ce type de système de mesure est par exemple décrit dans les demandes françaises FR2633722, FR2891361 et FR2896882.
Une autre forme est un système de mesure de vitesse de rotation à codeur rotatif, où un capteur (inductif, capacitif, optique ou magnétique) permet la lecture d'un disque à bande ou à trous formant un système d'encodage. Une unité de traitement convertit ensuite l'encodage en signal représentatif de la rotation. Ce type de système de mesure est toutefois cher à mettre en œuvre, à une faible amplitude fréquentielle et lorsqu'un capteur optique est utilisé, n'est pas compatible avec un environnement de type brouillard d'huile.
Une dernière forme a été étudiée mais pose encore plusieurs problèmes : l'ajout d'une pièce rapportée de type aimant à une pièce tournante conjuguée à un capteur permettant de détecter le passage de la pièce devant le capteur. Toutefois, l'ajout d'une pièce entraine plusieurs problèmes, comme la formation d'un balourd sur la pièce tournante et la nécessité d'avoir une fixation solide entre la pièce tournante et la pièce rapportée de façon à résister à la force centrifuge due à la rotation de la pièce tournante.
3. Objectifs de l'invention
L'invention vise à pallier au moins certains des inconvénients des systèmes de mesures de vitesse de rotation de pièces tournantes connus.
En particulier, l'invention vise à fournir, dans au moins un mode de réalisation de l'invention, un procédé de fabrication d'une pièce tournante, la pièce tournante ainsi fabriquée étant particulièrement adaptée pour que sa vitesse de rotation soit mesurée par un système de mesure.
L'invention vise aussi à fournir, dans au moins un mode de réalisation, un procédé de fabrication d'une pièce tournante permettant d'obtenir une pièce tournante dont la vitesse de rotation peut être mesurée sans ajout important de masse ou de pièce rapportée engendrant des problèmes potentiels de fixation.
L'invention vise aussi à fournir, dans au moins un mode de réalisation de l'invention, un procédé de fabrication d'une pièce tournante permettant d'obtenir une pièce tournante dont la vitesse de rotation peut être mesurée sans engendrer un balourd sur la pièce tournante.
L'invention vise aussi à fournir, dans au moins un mode de réalisation de l'invention, un procédé de fabrication d'une pièce tournante permettant d'obtenir une pièce tournante dont la vitesse de rotation peut être mesurée à des hautes températures et/ou dans un environnement vibratoire.
L'invention vise aussi à fournir, dans au moins un mode de réalisation de l'invention, un procédé de fabrication d'une pièce tournante permettant d'obtenir une pièce tournante dont la vitesse de rotation peut être mesurée en présence de brouillard d'huile ou d'une autre atmosphère ne permettant pas une lecture optique satisfaisante.
L'invention vise aussi à fournir, dans au moins un mode de réalisation, une pièce tournante dont la vitesse de rotation peut être mesurée facilement à faible coût.
L'invention vise aussi à fournir, dans au moins un mode de réalisation, un système de mesure de vitesse de rotation d'une pièce tournante à faible coût, précis et ajoutant peu de masse.
4. Exposé de l'invention
Pour ce faire, l'invention concerne un procédé de fabrication d'une pièce tournante selon un axe, comprenant :
une étape de réalisation d'une pièce formée à partir d'un matériau sous forme de poudre,
une étape d'obtention de la pièce tournante à partir de la pièce formée, caractérisé en ce que le procédé comprend une étape d'incorporation d'un matériau magnétique à la poudre pendant la réalisation de la pièce formée, dans une zone prédéfinie de la pièce formée, dite zone magnétisée, le matériau magnétique ayant les caractéristiques suivantes :
une rémanence magnétique (Br) supérieure ou égale à 0,1 T ;
une température de Curie (Tc) supérieure ou égale à 250°C ;
- une dureté comprise entre 75% et 125% de la dureté du matériau de la pièce formée et une masse volumique comprise entre 80% et 120% de la masse volumique du matériau de la pièce formée.
Un procédé selon l'invention permet donc d'obtenir une pièce en rotation disposant d'une zone magnétisée dans laquelle se trouve un matériau magnétique, sans ajout de pièce rapportée car la zone magnétisée est directement réalisée par incorporation de matériau magnétique lors de la réalisation de la pièce elle-même à partir de la poudre. En choisissant un matériau de dureté et de masse volumique idéalement identique et au minimum proche du matériau de la pièce formée, la zone magnétisée n'introduit ainsi aucun balourd significatif dans la pièce tournante, et la dureté dans la zone est significativement homogène dans et autour de la zone magnétisée. La dureté est de préférence exprimée en dureté Vickers, ou selon d'autres types de dureté en fonction du mode de mesure. La zone magnétisée forme une magnétisation locale de la pièce tournante. Elle ne présente en outre pas de risque de se détacher du fait de la force centrifuge lorsque la pièce est en rotation.
De préférence avec d la dureté du matériau magnétique, x la masse volumique du matériau magnétique, D la dureté de la pièce formée et X la masse volumique de la pièce formée, d=D±((kD)/100), avec k = 25 ou 20 ou 15 ou 10 ou 5, le plus faible étant le mieux, et x=X±((nX)/100), avec n = 20 ou 15 ou 10 ou 5, le plus faible étant le mieux.
En outre, la rémanence magnétique communément identifiée par le terme Br dans la littérature) supérieure ou égale à 0,1 T entraine un fort pouvoir magnétique qui permet d'assurer une détection de la perturbation du champ magnétique provoquée par la zone magnétisée lors de l'utilisation de la pièce tournante avec un système de mesure de la vitesse de rotation de la pièce tournante.
Enfin, la température de Curie (communément identifiée par le terme Tc dans la littérature) supérieure ou égale à 250°C permet de s'assurer que la zone magnétisée conserve une aimantation suffisante dans la plage de température à laquelle est soumise la pièce en rotation, par exemple typiquement [-54°C ; 200°C] dans une boite de vitesse. La montée en température n'entraine ainsi pas de démagnétisation. De préférence, le coefficient de température de la rémanence doit être faible (inférieur ou égal à 1%/°C) de sorte à limiter les variations de la rémanence magnétique en cas de variations de la température.
En outre, la zone magnétisée est une zone prédéterminée, par exemple par calcul, de sorte à ce que la présence du matériau magnétique impacte au minimum les contraintes mécaniques en fonctionnement de la pièce tournante.
Le matériau pour fabriquer la pièce formée est par exemple un métal ou un alliage de métal, par exemple un alliage d'acier (par exemple 16NCD13, 32CDV13, ou 40CDV12).
La pièce formée est le résultat de la transformation de la poudre, et la pièce formée est ensuite transformée de nouveau si nécessaire pour obtenir la pièce tournante. Avantageusement et selon l'invention, l'étape d'obtention de la pièce tournante comprend une étape d'usinage de la pièce formée et/ou une étape d'assemblage avec une autre pièce de manière à former la pièce tournante. Une pièce tournante est aussi appelée une pièce en rotation, et désigne une pièce dont le fonctionnement principal nécessite sa mise en rotation, notamment pour transmettre un couple ou un mouvement. La pièce tournante est par exemple un arbre (notamment un arbre de transmission), un pignon, etc.
Avantageusement et selon l'invention, le matériau magnétique est un alliage samarium-cobalt, Neodyme, ou AINiCo.
Selon cet aspect de l'invention, l'alliage samarium-cobalt, Neodyme, ou AINiCo, fréquemment utilisé dans la fabrication d'aimant et présentant les caractéristiques énoncées précédemment.
Avantageusement et selon l'invention, le matériau magnétique est incorporé sous forme de particules ou d'une pastille.
Selon cet aspect de l'invention, la forme de particules ou de pastille permet une incorporation facilitée du matériau magnétique à la poudre durant la fabrication de la pièce formée. Les particules sont mélangées à la poudre formant le matériau et le rendant hétérogène, tandis que la pastille est une petite pièce de dimension et de forme variable formant un tout homogène, intégré dans la pièce formée lors de sa fabrication. Avantageusement et selon l'invention, la zone magnétisée est une zone de la pièce correspondant à une zone excentrée de l'axe de la pièce tournante.
Selon cet aspect de l'invention, lors de la rotation de la pièce tournante, la zone magnétisée tourne autour de l'axe du fait de la rotation de la pièce tournante. Il est ainsi possible de détecter le passage de la zone magnétisée devant un capteur réceptif aux changements magnétiques, comme expliqué plus loin.
Avantageusement et selon l'invention, l'étape de réalisation de la pièce tournante à partir de la poudre et l'intégration du matériau magnétique sont effectuées par fabrication additive, de préférence par frittage ou fusion laser.
Selon cet aspect de l'invention, la fabrication additive, en particulier le frittage ou la fusion laser, est particulièrement adaptée à la fabrication d'objet à partir d'une poudre, et permet l'incorporation facile du matériau magnétique lors de la réalisation de la pièce formée.
L'invention concerne également une pièce tournante obtenue par un procédé selon l'invention, caractérisée en ce qu'elle comprend une zone magnétisée intégrée.
Une pièce tournante selon l'invention ne présente donc pas de balourd et est adaptée pour une utilisation dans un environnement tel que celui d'une boîte de vitesse. En outre, il est possible de mesurer facilement sa vitesse de rotation.
Avantageusement et selon l'invention, la zone magnétique est excentrée de l'axe de la pièce tournante.
Selon cet aspect de l'invention, la zone magnétique décrit un mouvement circulaire lors de la rotation de la pièce tournante, et le temps entre deux passages de la zone magnétique devant un capteur est représentatif de la vitesse de rotation de la pièce tournante.
L'invention concerne également un système de mesure de la vitesse de rotation d'une pièce tournante selon l'invention, caractérisé en ce qu'il comprend une pluralité de capteurs disposés à proximité de la zone de la pièce tournante comprenant le matériau magnétique et configurés de sorte à détecter chacun un passage de la zone magnétique devant chaque capteur dans des secteurs angulaires différents lors de la rotation de la pièce tournante.
Un système de mesure selon l'invention permet la mesure de la vitesse d'une pièce tournante obtenue par le procédé selon l'invention, grâce à la présence d'au moins un capteur disposé de telle façon qu'il détecte les passages de la zone magnétisée à sa proximité, par variation du champ magnétique. Le capteur est par exemple un capteur actif (type effet Hall ou magnétorésistance), ou un capteur passif (type courant de Foucault). Le capteur est par exemple un capteur fixe, ou un capteur mobile dont la position est connue en tout moment par rapport à la position du secteur magnétisé de la pièce tournante.
La mesure de la vitesse de rotation est ainsi obtenue sans contact, et peut être réalisée dans un environnement comprenant un brouillard d'huile, une plage de température de fonctionnement importante (notamment [-54°C ; 200°C] dans une boite de vitesse), et un environnement vibratoire.
Pour augmenter la résolution du système de mesure, il est possible d'utiliser plusieurs capteurs détectant chacun un passage de la zone magnétisée dans un secteur angulaire différent, et/ou magnétiser plusieurs secteurs angulaires de la pièce tournante, et/ou d'utiliser un ou des capteurs mobiles.
Avantageusement et selon l'invention, au moins un capteur est disposé dans une âme creuse de la pièce tournante.
Selon cet aspect de l'invention, l'encombrement du système de mesure est réduit car au moins un capteur (de préférence tous les capteurs) est disposé à l'intérieur de la pièce tournante. Par exemple, le capteur peut être disposé au niveau l'axe de rotation de la pièce tournante. Avantageusement, un système de mesure selon l'invention comprend une pluralité de capteurs configurés de sorte à détecter chacun un passage d'une pluralité de zones magnétiques dans des secteurs angulaires différents.
Selon cet aspect de l'invention, la pluralité de capteurs et la pluralité de zones magnétiques permettent d'augmenter la résolution du système de mesure.
Avantageusement, un système de mesure selon l'invention comprend au moins un capteur mobile dont la position est connue à tout instant par rapport à la zone de la pièce tournante comprenant le matériau magnétique, disposé à proximité de la zone magnétique, le système étant configuré de sorte à détecter un passage de la zone magnétique devant chaque capteur lors de la rotation de la pièce tournante.
Selon cet aspect de l'invention, le capteur mobile peut être lui-même en rotation, notamment dans le sens inverse de la pièce tournante, et ainsi détecter davantage la zone magnétisée, permettant d'augmenter la résolution du système de mesure sans ajouter de capteur ou de zone magnétisée. L'invention concerne également un procédé, une pièce tournante et un système de mesure caractérisés en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après.
5. Liste des figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement non limitatif et qui se réfère aux figures annexées dans lesquelles :
la figure 1 est une vue schématique d'un procédé de fabrication d'une pièce tournante selon un mode de réalisation de l'invention,
- la figure 2 est une vue partielle schématique en perspective d'une pièce tournante selon un mode de réalisation de l'invention, obtenue par le procédé de fabrication,
la figure 3 est une vue schématique en coupe et en perspective d'une pièce tournante et d'un système de mesure de la vitesse de rotation de la pièce tournante, selon un mode de réalisation de l'invention.
6. Description détaillée d'un mode de réalisation de l'invention
Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées pour fournir d'autres réalisations. Sur les figures, les échelles et les proportions ne sont pas strictement respectées et ce, à des fins d'illustration et de clarté. La figure 1 représente schématiquement un procédé 10 de fabrication d'une pièce tournante selon un mode de réalisation de l'invention. Les cercles représentent des produits et les rectangles représentent des étapes permettant le passage d'un produit à un autre.
Une première étape représentée est une étape 12 de réalisation d'une pièce formée 16 à partir d'un matériau sous forme de poudre 14. Cette étape de réalisation, connue de l'art antérieur, se fait de préférence par fabrication additive, par exemple par frittage ou fusion laser.
Une deuxième étape représentée est une étape 18 d'obtention d'une pièce 20 tournante à partir de la pièce 16 formée. Cette étape comprend par exemple une étape d'usinage de la pièce 16 formée, mais peut aussi comprendre d'autres étapes de traitement connue dans la fabrication de pièce industrielle.
La particularité du procédé selon l'invention est qu'il comprend une étape 21 d'incorporation d'un matériau 22 magnétique, par exemple sous forme de particules ou d'une pastille, à la poudre pendant l'étape de réalisation de la pièce 16 formée, dans une zone prédéfinie (par exemple par calcul) de la pièce 16 formée, dite zone magnétisée. Contrairement aux techniques de l'art antérieur où une pièce magnétique était ajoutée à la pièce tournante, l'invention permet l'incorporation directement lors de la réalisation de la pièce.
La figure 2 représente schématiquement et partiellement en perspective une pièce 20 tournante selon un mode de réalisation de l'invention, obtenue par le procédé de fabrication tel que décrit précédemment. La pièce 20 tournante, ici un pignon, comprend ainsi une zone 24 magnétisée, ici visible sur une face extérieure du pignon.
La figure 3 représente schématiquement en coupe et en perspective une pièce tournante et un système de mesure de la vitesse de rotation de la pièce tournante, selon un mode de réalisation de l'invention. La pièce 20 tournante comprend ici une zone 24 magnétisée disposée à l'intérieur d'une âme 26 creuse de la pièce 20 tournante. Au centre de l'âme 26 creuse, un capteur 28 du système de mesure est disposé au niveau de l'axe de rotation de la pièce 20 tournante Le capteur 28 est disposé de sorte à pouvoir détecter un passage de la zone 24 magnétisée devant lui, permettant ainsi de déterminer facilement la vitesse de rotation de la pièce 20 tournante en fonction du temps écoulé entre chaque passage de la zone 24 magnétisée. Pour améliorer la résolution de la mesure, il est possible d'utiliser plusieurs capteurs détectant chacun le passage de la zone 24 magnétisée selon un secteur angulaire différent. La disposition du capteur dans l'âme 26 creuse de la pièce tournante permet de réduire l'encombrement du système de mesure. Le capteur est un capteur pouvant détecter une variation du champ magnétique environnant, notamment celle provoquée par la zone magnétisée. Le capteur est par exemple un capteur actif de type effet Hall ou magnétorésistance, ou un capteur passif de type courant de Foucault. Plus généralement, le capteur permet par exemple de fournir un signal de sortie présentant une valeur 0 lorsque le champ magnétique relevé est en dessous d'une valeur de référence et une valeur 1 lorsque le champ magnétique relevé est au-dessus d'une valeur de référence.
Le système de mesure comprend aussi des éléments classiques permettant de récupérer le signal de sortie, de déterminer la vitesse de rotation de la pièce tournante à partir du signal de sortie (unité de calcul par exemple), de fournir la valeur de la vitesse de rotation à d'autres équipements, d'alimenter le capteur si nécessaire, etc.
Avec une pièce tournante selon d'autres modes de réalisation, par exemple telle que décrite en référence avec la figure 2, le capteur peut être disposé à l'extérieur de la pièce tournante et non dans une âme creuse de celle-ci.

Claims

REVENDICATIONS
Procédé de fabrication d'une pièce tournante selon un axe, comprenant :
une étape de réalisation d'une pièce formée à partir d'un matériau sous forme de poudre,
une étape d'obtention de la pièce tournante à partir de la pièce formée, caractérisé en ce que le procédé comprend une étape d'incorporation d'un matériau magnétique à la poudre pendant la réalisation de la pièce formée, dans au moins une zone prédéfinie de la pièce formée, dite zone magnétisée, le matériau magnétique ayant les caractéristiques suivantes :
une rémanence magnétique (Br) supérieure ou égale à 0,1 T ;
une température de Curie (Tc) supérieure ou égale à 250°C ;
une dureté comprise entre 75% et 125% de la dureté du matériau de la pièce formée et une masse volumique comprise entre 80% et 120% de la masse volumique du matériau de la pièce formée.
2. Procédé de fabrication selon la revendication 1, caractérisé en ce que le matériau magnétique est un alliage samarium-cobalt, Neodyne, ou AINiCo.
3. Procédé de fabrication selon l'une des revendications 1 ou 2, caractérisé en ce que le matériau magnétique est incorporé sous forme de particules ou d'une pastille.
4. Procédé de fabrication selon l'une des revendications 1 à 3, caractérisé en ce que la zone magnétisée est une zone de la pièce correspondant à une zone excentrée de l'axe de la pièce tournante.
5. Procédé de fabrication selon l'une des revendications 1 à 4, caractérisé en ce que l'étape de réalisation de la pièce tournante à partir de la poudre et l'intégration du matériau magnétique sont effectuées par fabrication additive, de préférence par frittage ou fusion laser.
6. Procédé de fabrication selon l'une des revendications 1 à 5, caractérisé en ce que l'étape d'obtention de la pièce tournante comprend une étape d'usinage de la pièce formée et/ou une étape d'assemblage avec une autre pièce de manière à former la pièce tournante.
7. Pièce tournante obtenue par un procédé selon l'une des revendications 1 à 6, caractérisée en ce qu'elle comprend au moins une zone magnétisée intégrée.
8. Système de mesure de la vitesse de rotation d'une pièce tournante selon la revendication 7, caractérisé en ce qu'il comprend une pluralité de capteurs disposés à proximité de la zone de la pièce tournante comprenant le matériau magnétique et configurés de sorte à détecter chacun un passage de la zone magnétique devant chaque capteur dans des secteurs angulaires différents lors de la rotation de la pièce tournante.
9. Système de mesure selon la revendication 8, caractérisé en ce qu'au moins un capteur est disposé dans une âme creuse de la pièce tournante.
10. Système de mesure selon l'une des revendications 8 ou 9, caractérisé en ce que les capteurs de la pluralité de capteurs sont configurés de sorte à détecter chacun un passage d'une pluralité de zones magnétiques dans des secteurs angulaires différents.
11. Système de mesure selon l'une des revendications 8 à 10, caractérisé en ce qu'au moins un capteur est mobile, la position dudit capteur étant connue à tout instant par rapport à la zone de la pièce tournante comprenant le matériau magnétique.
EP18808449.5A 2017-11-10 2018-11-05 Procédé de fabrication de pièce tournante magnétisée, pièce tournante et système de mesure de rotation d'une pièce tournante Pending EP3706946A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760603A FR3073435B1 (fr) 2017-11-10 2017-11-10 Procede de fabrication de piece tournante magnetisee, piece tournante et systeme de mesure de rotation d'une piece tournante
PCT/FR2018/052716 WO2019092344A1 (fr) 2017-11-10 2018-11-05 Procédé de fabrication de pièce tournante magnétisée, pièce tournante et système de mesure de rotation d'une pièce tournante

Publications (1)

Publication Number Publication Date
EP3706946A1 true EP3706946A1 (fr) 2020-09-16

Family

ID=61258354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18808449.5A Pending EP3706946A1 (fr) 2017-11-10 2018-11-05 Procédé de fabrication de pièce tournante magnétisée, pièce tournante et système de mesure de rotation d'une pièce tournante

Country Status (5)

Country Link
US (1) US20200360999A1 (fr)
EP (1) EP3706946A1 (fr)
CN (1) CN111405953B (fr)
FR (1) FR3073435B1 (fr)
WO (1) WO2019092344A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118080857B (zh) * 2024-04-29 2024-07-02 莱州云峰粉末冶金有限公司 一种粉末冶金齿轮烧结装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135521A (en) * 1975-05-20 1976-11-24 Fuji Photo Film Co Ltd Magnetic recording reproduction device
FR2633722B1 (fr) * 1988-06-30 1991-02-22 Messier Hispano Sa Generateur d'impulsions pour capteur de vitesse de rotation
US6789948B2 (en) * 2001-09-25 2004-09-14 Ntn Corporation Magnetic encoder and wheel bearing assembly using the same
FR2891361B1 (fr) 2005-09-23 2008-03-28 Hispano Suiza Sa Dispositif a reluctance variable pour mesurer la vitesse de rotation d'un organe tournant
FR2896882B1 (fr) 2006-01-30 2008-04-25 Hispano Suiza Sa Detecteur electromagnetique de vitesse de rotation d'un organe tournant
DE102013221943A1 (de) * 2013-10-29 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg Sensorsystem zur Drehzahlmessung mit einem Polrad mit linearisiertem Magnetfeld
WO2015087890A1 (fr) * 2013-12-13 2015-06-18 Ntn株式会社 Aimant lié par compression comportant un boîtier, et son procédé de production
JP6258689B2 (ja) * 2013-12-13 2018-01-10 Ntn株式会社 ケース付き圧縮ボンド磁石
CN106796835B (zh) * 2014-08-12 2019-05-21 Abb瑞士股份有限公司 具有不同磁性质的区域的磁体以及用于形成这种磁体的方法
FR3049385A1 (fr) * 2016-03-23 2017-09-29 Valeo Systemes De Controle Moteur Composant magnetique pour capteur a effet hall, ensemble electrique et compresseur de suralimentation electrique comprenant un tel composant magnetique

Also Published As

Publication number Publication date
FR3073435A1 (fr) 2019-05-17
CN111405953B (zh) 2022-08-05
CN111405953A (zh) 2020-07-10
FR3073435B1 (fr) 2021-07-16
US20200360999A1 (en) 2020-11-19
WO2019092344A1 (fr) 2019-05-16

Similar Documents

Publication Publication Date Title
EP0514530B1 (fr) Capteur magnetique de position et de vitesse a sonde de hall
EP1269133B1 (fr) Capteur de position, notamment destine a la detection de la torsion d'une colonne de direction
EP0838683B1 (fr) Dispositif de codeur pour capteur de vitesse de rotation et roulement équipé d'un tel dispositif
EP1157255B1 (fr) Capteur de position a sonde magneto-sensible
EP1549910A1 (fr) Capteur de position a reluctance variable
FR2936307A1 (fr) Capteur de position lineaire ou rotatifa aimant permanent pour la detection d'une cible ferromagnetique
WO2004005937A2 (fr) Dispositif de palier a roulement equipe d’un capteur et moteur electrique ainsi equipe
EP0421835B1 (fr) Codeur à haute résolution
FR3019892B1 (fr) Dispositif de mesure pour une saisie sans contact d'un angle de rotation
EP1857783B1 (fr) Codeur pour capteur de position, à effet stabilisateur pour le passage à zéro de l'induction magnétique
FR2762652A1 (fr) Palier a roulement a capteur d'informations
WO2019092344A1 (fr) Procédé de fabrication de pièce tournante magnétisée, pièce tournante et système de mesure de rotation d'une pièce tournante
EP3111173A1 (fr) Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure
FR2833663A1 (fr) Roulement comprenant un ensemble de transmission d'informations sans fil
EP1159623B1 (fr) Ensemble preassemble formant joint d'etancheite a codeur incorpore et roulement ou palier comportant un tel ensemble
WO2015097396A1 (fr) Ensemble pour turbomachine pour mesurer des vibrations subies par une pale en rotation
EP1452834A1 (fr) Capteur de rotation magnétique
FR3097329A1 (fr) Ensemble de roue et frein d’aéronef
FR2851650A1 (fr) Dispositif de detection de parametre de rotation et palier a roulement.
FR3080679A1 (fr) Dispositif de detection de la position angulaire d'un rotor d'une machine electrique tournante
EP4305385A1 (fr) Capteur à aimant et pôles ferromagnétiques
FR3104716A1 (fr) Méthode de détection du décalage angulaire entre une bague de roulement et un corps creux tournant en prise l’un dans l’autre
FR3135528A1 (fr) Tachymètre pour roue d’aéronef
FR2841978A1 (fr) Dispositif codeur pour detection de parametres de rotation, palier a roulement instrumente et moteur electrique ainsi equipe
FR3036764A1 (fr) Dispositif de mesure du regime d'un arbre rotatif, par exemple d'un arbre primaire de boite de vitesses de vehicule

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231103