EP3706934A1 - Dispositif et procédé de fabrication d'une ébauche en alliage métallique par coulée centrifuge - Google Patents

Dispositif et procédé de fabrication d'une ébauche en alliage métallique par coulée centrifuge

Info

Publication number
EP3706934A1
EP3706934A1 EP18804376.4A EP18804376A EP3706934A1 EP 3706934 A1 EP3706934 A1 EP 3706934A1 EP 18804376 A EP18804376 A EP 18804376A EP 3706934 A1 EP3706934 A1 EP 3706934A1
Authority
EP
European Patent Office
Prior art keywords
rotation
metal alloy
axis
mold
centrifugal casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18804376.4A
Other languages
German (de)
English (en)
Other versions
EP3706934B1 (fr
Inventor
Laurent Ferrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3706934A1 publication Critical patent/EP3706934A1/fr
Application granted granted Critical
Publication of EP3706934B1 publication Critical patent/EP3706934B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/06Centrifugal casting; Casting by using centrifugal force of solid or hollow bodies in moulds rotating around an axis arranged outside the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • B22D13/026Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/06Centrifugal casting; Casting by using centrifugal force of solid or hollow bodies in moulds rotating around an axis arranged outside the mould
    • B22D13/066Centrifugal casting; Casting by using centrifugal force of solid or hollow bodies in moulds rotating around an axis arranged outside the mould several moulds being disposed in a circle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C

Definitions

  • the present invention relates to the manufacture of metal alloy blanks by centrifugal casting of a molten metal alloy, and in particular blade blanks for turbomachines, in particular blades for aeronautical turbojet engines.
  • Figure 1 shows a known manufacturing device that can be used for this manufacture.
  • the manufacturing device 100 comprises, in a chamber 150 closed and sealed, a crucible 110 and a centrifugal casting wheel 120.
  • the crucible 110 is adapted to perform the melting of the metal alloy, which is for example provided in the form of a metal alloy ingot 116. Once this fusion has been performed, the molten metal alloy is poured into the wheel centrifugal casting 120.
  • the centrifugal casting wheel 120 is rotatable about an axis of rotation A and comprises a mold 122 for receiving the molten metal alloy.
  • the mold 122 extends in a radial direction R with respect to the axis of rotation A.
  • the centrifugal casting wheel 120 is rotated about its axis of rotation A. During this rotation, the molten metal alloy is rapidly driven by the centrifugal force at the bottom of the mold 122.
  • the rotational speed of the casting wheel Centrifugal 120 is chosen such that this centrifugal force is significantly greater than the force of gravity.
  • the molten metal alloy solidifies gradually, at a solidification rate lower than the filling rate of the mold 122; thus, the solidification takes place on the entire mold 122, until the desired metal alloy blank.
  • the blank metal alloy is then extracted from the mold 122, and can subsequently undergo subsequent industrial steps (heat treatment, machining, forging ...) to reach a final piece.
  • the foundry step that has just been described has the advantage of reducing the porosity due to the removal of the metal alloy during the solidification of the metal alloy blank. However, it also has drawbacks, which will be understood with reference to FIGS. 2 and 3.
  • FIG. 2 schematically represents the solidified metal blank in section along the plane C-C of Figure 1 and allows to observe the metallurgical microstructure (the walls of the mold 122 and the centrifugal wheel 120 have been omitted to simplify the drawing).
  • the solidified metal blank 146 has a central region B1 consisting of coarsely equiaxed grains.
  • the blank 146 Near its walls, the blank 146 has a "skin" B3 consisting of equiaxial grains of smaller dimensions than in the central region B1.
  • the blank 146 has an intermediate region B2 consisting of columnar grains (also known as basaltic grains).
  • This intermediate region B2 is better visible in FIGS. 3A and 3B, which are photographs of cuts in the radial direction R of two metal blanks made of TA6V (titanium-based alloy comprising by weight 6% of aluminum and 4% of vanadium ) obtained according to the method just described, and where the regions B1, B2 and B3 have been indicated.
  • TA6V titanium-based alloy comprising by weight 6% of aluminum and 4% of vanadium
  • the columnar grains of the intermediate region B2 induce a very strong anisotropy, which is problematic for subsequent industrial stages.
  • the mechanical and dynamic properties of the blank in the intermediate region B2 are very different in the direction considered (perpendicular to the axis of the columnar grains or parallel to their axis), the responses of the material to the forces of the different machining as a function of the angle of cut with respect to the columnar grain axis.
  • the relaxations of the constraints of the machining are also anisotropic.
  • the machining of the blank must be designed to take into account the foregoing factors, which tends to complicate it.
  • the parts that one wishes to achieve by machining the blank must also be sized to take into account the factors that above, which frequently leads to a non-optimal use of the material of the blank.
  • the directions of the axes of the columnar grains may vary from one region of the blank to the other (as can be seen for example in FIG. 3B): in this case, the mechanical and dynamic properties of the The blank, even in a given direction, may differ from one region to another of the same blank and / or blank to another. The design of the machining is then even more complex. It may even be that some of the blanks are totally unusable for machining, in which case they must be discarded.
  • the blank since the blank has a complex and varied metallurgical microstructure, its use properties (especially mechanical) are widely dispersed. Parts made from this blank must be dimensioned accordingly, which tends to weigh them down. This is particularly undesirable when the part to be manufactured is a dawn for an aeronautical turbojet, because such vanes must be as light as possible in the interest of the turbojet engine's performance.
  • the anisotropy induced by the columnar grains of the intermediate region B2, and the interfaces between the intermediate region B2 with columnar grains and the regions B1 and B3 with equiaxial grains make it very difficult or even impractical to perform simple operations. hot shaping of the blank, such as forging, rolling or extruding. However, these operations can bring new mechanical properties to the material of the blank. There is therefore a need for a new process for manufacturing a metal alloy blank by centrifugal casting which makes it possible to reduce the anisotropy of the blank and to simplify and make less costly the subsequent operations to be performed on the blank.
  • the present invention provides a device for manufacturing a metal alloy blank by centrifugal casting of a molten metal alloy, comprising a centrifugal casting wheel, the centrifugal casting wheel being rotatable about an axis of rotation and comprising a mold for receiving the molten metal alloy, the mold extending in a radial direction relative to the axis of rotation, the device comprising at least one magnet arranged to induce a electric current in the mold during the rotation of the centrifugal casting wheel about the axis of rotation.
  • the electrical current induced by the magnet creates a Laplace force that tends to stir the molten metal alloy within the mold. Thanks to this stirring, the metal alloy blank has, after solidification, a homogeneous macrostructure, almost free of columnar grains, and therefore almost isotropic, which eliminates the disadvantages described above.
  • the blank has virtually no residual porosity after cooling. This avoids having to subject the blank to a hot isostatic pressing (HIP) step, which also makes it possible to reduce these residual porosities but has the disadvantage of being long and very expensive.
  • HIP hot isostatic pressing
  • the centrifugal casting wheel comprises a winding surrounding an internal volume of the mold and configured so that the magnet induces an electric current in the winding during said rotation of the centrifugal casting wheel around the axis of rotation.
  • an induced current is generated not only in the molten metal alloy (and possibly in the structure of the centrifugal casting wheel), but also in the winding.
  • the Laplace force acting on the molten metal alloy is more intense.
  • the mixing of the molten metal alloy inside the mold is more intense, which further improves the homogeneity of the metal alloy blank.
  • it is not necessary to connect the winding to a source of electricity since an induced current is generated remotely in the winding. This avoids providing a particular connection of the winding to a source of electricity not secured to the centrifugal casting wheel, which would be complex from the mechanical point of view (risk of blocking the centrifugal casting wheel by the supply son).
  • the magnet is an annular or circular magnet whose axis is parallel to the axis of rotation.
  • the magnetic field generated by the magnet is substantially uniform over the entire volume swept by the mold during the rotation of the centrifugal casting wheel.
  • the device comprises a plurality of magnets arranged spaced around the axis of rotation.
  • the magnetic field acting on the mold varies during the rotation of the centrifugal casting wheel. It follows that the electric current induced in the mold, and thus the Laplace force acting on the molten metal alloy, is variable during the rotation of the centrifugal casting wheel, which improves the stirring of the molten metal alloy within the mold.
  • the magnets are even in number, and the polarities of said magnets alternate regularly around the axis of rotation.
  • the magnetic field acting on the mold periodically changes direction during the rotation of the centrifugal casting wheel, which further improves the stirring of the molten metal alloy within the mold.
  • the magnet is not secured to the centrifugal casting wheel, and the device further comprises a permanent magnet integral with the centrifugal casting wheel and extending partly through the coil.
  • the magnet is an annular or circular magnet whose axis is parallel to the axis of rotation.
  • the poles of the permanent magnet and the magnet facing each other have opposite names.
  • the device comprises a plurality of magnets not integral with the centrifugal casting wheel and arranged spaced about the axis of rotation.
  • the non-integral magnets of the centrifugal casting wheel are even in number, and the polarities of said magnets alternate regularly around the axis of rotation.
  • the axis of rotation is vertical.
  • the balancing device of the centrifugal casting wheel is simpler.
  • the construction and operation of the device are therefore simplified.
  • the stirring of the molten metal alloy inside the mold is less disturbed. Indeed, during the rotation of the wheel, the molten metal alloy inside the mold is subjected to the centrifugal force and the force of gravity.
  • the centrifugal force is always radial to the axis of rotation. If the axis of rotation is vertical, the direction of the force of gravity also does not vary during the rotation of the wheel, so that the stirring is less disturbed.
  • the radial direction is parallel to the horizontal. In this way, the construction of the centrifugal casting wheel is simpler, especially if the axis of rotation is vertical.
  • the present invention also provides a method of manufacturing a metal alloy blank comprising the steps of:
  • centrifugal casting wheel pouring the molten metal alloy into a centrifugal casting wheel, the centrifugal casting wheel being rotatable about an axis of rotation and comprising a mold for receiving the metal alloy melting, the mold extending in a radial direction relative to the axis of rotation;
  • the centrifugal casting wheel comprises a coil surrounding an interior volume of the mold, and during the rotation step, the magnetic field induces an electric current in the coil.
  • the method according to the invention provides the same advantages as the device according to the invention.
  • the metal alloy is an alloy based on titanium or nickel.
  • titanium-based titanium (respectively “nickel-based) is meant that titanium (respectively nickel) is substantially, by weight, the majority element of the alloy.
  • Titanium-based or nickel-based metal alloys are among the alloys commonly used to make blanks of mechanically stressed parts, such as blades for a turbomachine, and more particularly blades for an aeronautical turbojet engine.
  • the metal alloy blank is a blade blank for a turbomachine, in particular a blade for an aeronautical turbojet engine.
  • FIG. 1 shows schematically a known centrifugal casting manufacturing device
  • FIG. 2 shows schematically the solidified metal blank obtained by the device of Figure 1, in section along the plane CC of Figure 1;
  • FIGS. 3A and 3B are photographs of sections of two metal blanks obtained by the device of FIG. 1, in the direction of FIG. 1;
  • FIG. 4 schematically represents a device for manufacturing by centrifugal casting according to the invention
  • FIG. 5 is a partial perspective view and cut away of the device of Figure 4.
  • FIG. 6 is a top view of the centrifugal casting wheel and the magnet, according to another embodiment of the invention.
  • Figure 7 is a top view similar to Figure 6, according to yet another embodiment of the invention.
  • FIG. 8 is a top view similar to Figure 7, according to yet another variant of the invention.
  • FIG. 9 is a side view of a portion of the centrifugal casting wheel, according to yet another embodiment of the invention.
  • FIG. 10 is a perspective view of FIG. 9, showing a first possibility of implementing the variant of FIG. 9;
  • FIG. 11 is a perspective view of FIG. 9, showing another possibility of implementing the variant of FIG. 9.
  • FIG. 4 schematically represents a device 10 for manufacturing a metal alloy blank by centrifugal casting of a molten metal alloy.
  • the manufacturing device 10 comprises, in a closed and sealed enclosure 50, a melting device 610, a centrifugal casting wheel 20 (hereinafter referred to as “the wheel 20" for convenience) and a magnet 40.
  • the melter 610 is adapted to provide a molten metal alloy.
  • the merge device 610 performs the melting of a metal alloy provided in the form of a metal alloy ingot 616.
  • the various constituents of the metal alloy are introduced individually into the melter 610, and then melted together so as to obtain the molten metal alloy.
  • the metal alloy is selected from suitable alloys for the final piece to be made from the blank.
  • the metal alloy may be, for example, a ceramic-based alloy, a steel, a titanium-based alloy, or a nickel-based alloy.
  • Titanium-based alloys include:
  • conventional titanium alloys having a crystallographic structure identical to that of pure titanium, for example: TA6V, Ti-17, Ti 10-2-3, Ti-5553, ⁇ 16, ⁇ 21;; and
  • titanium-based intermetallic alloys having one or more crystallographic structure phases different from that of pure titanium.
  • titanium aluminides are particularly contemplated, among which:
  • phase titanium aluminides and ⁇ 2 columnar such as:
  • Ti-48AI-1V-0.3C Ti-48AI-2Cr-2Nb (also known as “GE 48-2-2") or Ti-48AI-2Nb-0.75Cr-0.3Si (also known as “Daido RNT650");
  • titanium aluminas with ⁇ and 2 equiaxed phases such as T-45Al-2Nb-2Mn + 0.8TiB 2 (also known as "Howmet
  • aluminides with ⁇ , ⁇ and ⁇ 2 equiaxed phases such as Ti-47.3-Al-2,2Nb-0,5Mn-0,4W-0,4Mo-0,23Si, Ti-46,5AI -3Nb-2Cr-0.2W-0,2Si-0, IC
  • the Ti-48Al-2 Cr-2 NB alloy comprises, in atomic percentage, 48% of Al, 2% of Cr, 2% of Nb, and titanium (Ti) in addition to 100%.
  • nickel-based alloys conventional nickel alloys such as René 77 or DS 200, or nickel superalloys such as AMI, are particularly contemplated.
  • the fusion device 610 can be, for example:
  • VAR Vacuum Arc Remelting
  • VIM Vacuum Induction Melting
  • EB Electro Bombardment
  • the enclosure 50 is controlled to provide the required atmosphere:
  • the molten metal alloy leaving the melting device 610 is poured into the wheel 20.
  • the wheel 20 comprises a hub 30 at least one mold 22 fixed to the hub 30.
  • the hub 30 comprises a central channel 32 and several supply channels 33 each communicating with a mold 22.
  • the hub 30 may be provided with a funnel 31 opening onto the central channel 32.
  • the hub 30 is capable of being rotated about an axis of rotation A, for example by means of a motor (not shown).
  • the wheel 20 is rotatable about the axis of rotation A.
  • the axis A is preferably vertical.
  • FIG. 5 shows in perspective a mold 22 fixed to the hub 30
  • the mold 22 extends in a radial direction R1 with respect to the axis A (see FIG. 4).
  • this radial direction RI is perpendicular to the axis A.
  • the radial direction RI is parallel to the horizontal.
  • the mold 22 is adapted to receive the molten metal alloy, here in a cavity 22B.
  • the mold 22 is typically made of a metal, a metal alloy or a ceramic sufficiently resistant to withstand the thermal stresses associated with contact with the molten mechanical alloy.
  • the cavity 22B may have a rectangular or cylindrical section. This section may advantageously be constant over the entire length of the cavity 22B.
  • the cavity 22B typically has a length substantially greater than the maximum dimension of its section, for example at least 3 times, and preferably at least 5 times greater than the maximum dimension of its section.
  • the metal alloy blank After solidification, the metal alloy blank then has the general shape of a bar.
  • the cavity 22B communicates with a supply channel 33 via a feed 22A, which is optionally of smaller section than the cavity 22B.
  • molds 22 may be attached to the hub 30 as can be seen in FIGS. 4 and 5. For example, several molds 22 may be evenly spaced about the axis A. The molds 22 may also be superimposed to form a plurality of molds 22. (two in FIGS. 4 and 5) mold levels 22. The molds 22 can be separable from the hub 30, so that they can be replaced individually and / or separated one by one from the hub 30 in order to extract the metal alloy blank after solidification.
  • the manufacturing device 10 also comprises at least one magnet.
  • the magnet designated by the reference 40; it should be noted, however, that the features presented in the following with respect to the magnet 40 may be applied to a single, all or some of the magnets.
  • the magnetic field generated by the magnet 40 is denoted H.
  • magnet includes both permanent magnets and electromagnets, unless otherwise stated.
  • the magnetic field H induces an electric current in the mold 22.
  • This electric current is induced in the walls 23 of the mold 22 (especially if it is made of a metal or a metal alloy), and also in the molten metal alloy contained in the cavity 22B.
  • This electric current generates a magnetic field induced in the mold 22.
  • this induced magnetic field creates a Laplace force.
  • This Laplace force tends to stir the molten metal alloy being solidified in the cavity 22B.
  • the stirring of the molten metal alloy in the cavity 22B has the following effects:
  • the stirring of the molten metal alloy considerably favors the formation of equiaxial grains with respect to the formation of columnar grains. Therefore, the alloy metal blank has a homogeneous macrostructure, almost without of columnar grains, and therefore almost isotropic, which eliminates the disadvantages discussed above.
  • the stirring makes it possible to constantly re-homogenize the chemical composition of the molten metal alloy, both in front of the solidification front and at the level of the solidification front. This makes it possible to avoid any local segregation, and consequently any aligned positive segregation or exudation in the blank.
  • the manufacturing device 10 thus makes it possible to obtain a metal blank with improved mechanical and structural properties, which can be more easily machined and / or subjected to hot forming operations (forging, rolling, extrusion, etc.). Furthermore, the subsequent operations to be performed on the blank are less expensive because the hot isostatic pressing step is no longer necessary.
  • the mold 22 may be provided with a coil 60, which is seen in FIG.
  • the coil 60 comprises one or more typically several turns electrically connected to each other.
  • the turns of the coil 60 surround an interior volume of the mold 22. In the example shown in FIG. 5, this interior volume is the entire cavity 22B. It could also be only part of the cavity 22B.
  • the turns of the coil 60 can be embedded in the walls
  • the turns extend parallel to the radial direction RI. This maximizes the area swept by the coil during the rotation of the wheel 20, particularly if the cavity 22B has a length significantly greater than the maximum dimension of its section as explained above.
  • the magnet 40 may be an annular magnet 40C whose axis is parallel to the axis A. It may also be a circular magnet.
  • the magnet 40C makes it possible to obtain a substantially uniform magnetic field H over the entire volume swept by the mold 22 during the rotation of the wheel 20.
  • the axis of the magnet 40C coincides with the axis A.
  • the magnetic field H is then more uniform over the entire volume swept by the mold 22 during the rotation of the wheel 20.
  • the device comprises a plurality (here three) magnets 40-1, 40-2, 40-3 each arranged to induce an electric current in the mold 22 and possibly in the winding 60.
  • the magnets 40-1, 40-2, 40-3 are arranged spaced about the axis A. In other words, between the magnets 40-1, 40-2, 40-3, there are gaps devoid of magnets. Consequently, the magnetic field H varies according to the angular position of the mold 22. It follows that the electric current induced by the magnet in the mold 22, and therefore the Laplace force, in the mold 22 is variable during the rotation of the wheel 30, which improves the stirring of the molten metal alloy inside the mold 22.
  • the magnets 40-1, 40-2, 40-3 are all identical.
  • magnets 40-1, 40-2, 40-3 are regularly spaced from each other.
  • the magnets 40-1, 40-2, 40-3 may have the shape of annular segments whose axis is parallel to the axis A as shown in Figure 7. It may also be circular segments. As in the variant of Figure 6, it is preferable that the axis of the annular or circular segments is coincident with the axis A.
  • the magnets are even in number (here, four magnets 40-1 to 40-4), and the polarities of the magnets alternate regularly around the axis A.
  • the pole of the magnets 40-1 to 40-4 facing the wheel 20 is alternately North, South, North, South, ....
  • the magnetic field H applying to the mold 22 periodically changes direction during the rotation of the wheel 20, which further improves the stirring of the molten metal alloy inside the mold
  • the magnetic field H is alternating.
  • the device 10 further comprises a permanent magnet 40M integral with the wheel 20.
  • the magnet 40 is in turn in the form of a magnet 40S not secured to the wheel 20.
  • the magnet 40S is fixed relative to the enclosure 50.
  • the permanent magnet 40M extends partly through the coil 60 of the mold 22.
  • the poles of the permanent magnet 40M and the facing magnet 40S have opposite names (i.e., if one of the poles is North, the other is South).
  • the magnetic field H is almost uniform, as shown schematically in FIG. 9.
  • the lines of the magnetic field H are aligned with the turns of the winding, which further increases the intensity of the current induced in the winding 60 and therefore the intensity of the brewing.
  • the magnet 40S may be an annular magnet whose axis is parallel to the axis A. It may also be a circular magnet.
  • annular or circular magnet makes it possible to obtain a substantially uniform magnetic field H over the entire volume swept by the mold 22 during the rotation of the wheel 20.
  • poles of the permanent magnet 40M and the annular or circular magnet 40S facing each other have opposite names.
  • the device comprises a plurality (here three) of magnets 40S-1, 40S-2, 40S-3 not integral with the wheel 20 and each arranged so as to induce an electric current in the mold 22 and possibly in the coil 60.
  • 40S-2, 40S-3 are such that their poles all have a name opposite to that of the 40M magnet they face (that is, if the poles of magnets 40S-1, 40S-2, 40S-3 are North, the pole of magnet 40 they face is South).
  • the non-integral magnets are even in number of the wheel 20 are even in number, and the polarities of said magnets regularly alternate around the axis A. In other words, following the direction of rotation of the wheel 20, the pole of these magnets facing the wheel 20 is alternately North, South, North,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Dispositif de fabrication (10) d'une ébauche en alliage métallique par coulée centrifuge d'un alliage métallique en fusion, comprenant une roue de coulée centrifuge (20), la roue de coulée centrifuge (20) étant rotative autour d'un axe de rotation (A) et comprenant un moule (22) pour recevoir l'alliage métallique en fusion, le moule s'étendant dans une direction radiale (RI) par rapport à l'axe de rotation (A). Le dispositif (10) comprend au moins un aimant arrangé de manière à induire un courant électrique induit dans le moule (22) lors de la rotation de la roue de coulée centrifuge (20) autour de l'axe de rotation (A).

Description

DISPOSITIF ET PROCÉDÉ DE FABRICATION D'U E ÉBAUCHE EN ALLIAGE MÉTALLIQUE PAR COULÉE CENTRIFUGE
Arrière-plan de l'invention
La présente invention concerne la fabrication d'ébauches en alliage métallique par coulée centrifuge d'un alliage métallique en fusion, et notamment d'ébauches d'aube pour turbomachine, en particulier d'aube pour turboréacteur aéronautique.
La figure 1 représente un dispositif de fabrication connu pouvant être utilisé pour cette fabrication. Le dispositif de fabrication 100 comprend, dans une enceinte 150 fermée et étanche, un creuset 110 et une roue de coulée centrifuge 120.
Le creuset 110 est adapté pour effectuer la fusion de l'alliage métallique, qui est par exemple fourni sous la forme d'un lingot d'alliage métallique 116. Une fois cette fusion effectuée, l'alliage métallique en fusion est versé dans la roue de coulée centrifuge 120.
La roue de coulée centrifuge 120 est rotative autour d'un axe de rotation A et comprend un moule 122 pour recevoir l'alliage métallique en fusion. Le moule 122 s'étend dans une direction radiale R par rapport à l'axe de rotation A. On pourra se référer par exemple au document FR 3 017 062 Al pour la construction du moule 122.
La roue de coulée centrifuge 120 est mise en rotation autour de son axe de rotation A. Durant cette rotation, l'alliage métallique en fusion est entraîné rapidement par la force centrifuge au fond du moule 122. La vitesse de rotation de la roue de coulée centrifuge 120 est choisie de telle sorte que cette force centrifuge est nettement supérieure à la force de gravité. L'alliage métallique en fusion se solidifie progressivement, à une vitesse de solidification inférieure à la vitesse de remplissage du moule 122 ; ainsi, la solidification s'effectue sur l'ensemble du moule 122, jusqu'à obtenir l'ébauche en alliage métallique désirée. L'ébauche en alliage métallique est ensuite extraite du moule 122, et peut par la suite subir des étapes industrielles ultérieures (traitements thermiques, usinage, forgeage...) pour aboutir à une pièce finale.
L'étape de fonderie qui vient d'être décrite présente l'avantage de diminuer la porosité due au retrait de l'alliage métallique lors de la solidification de l'ébauche en alliage métallique. Cependant, elle présente aussi des inconvénients, que l'on comprendra en se reportant aux figures 2 et 3.
La figure 2 représente schématiquement l'ébauche métallique solidifiée en coupe selon le plan C-C de la figure 1 et permet d'en observer la microstructure métallurgique (les parois du moule 122 et de la roue centrifuge 120 ont été omises pour simplifier le dessin).
Au niveau de son centre, l'ébauche métallique solidifiée 146 présente une région centrale Bl, constituée de grains grossièrement équiaxes.
Près de ses parois, l'ébauche 146 présente une « peau » B3 constituée de grains équiaxes de plus faibles dimensions que dans la région centrale Bl.
Entre la région centrale Bl et la « peau » B3, l'ébauche 146 présente une région intermédiaire B2 constituée de grains colonnaires (aussi connus sous la dénomination de grains basaltiques). Cette région intermédiaire B2 est mieux visible sur les figures 3A et 3B, qui sont des photographies de coupes selon la direction radiale R de deux ébauches métalliques en TA6V (alliage à base de titane comprenant en masse 6% d'aluminium et 4% de vanadium) obtenues selon le procédé qui vient d'être décrit, et où les régions Bl, B2 et B3 ont été indiquées.
Les grains colonnaires de la région intermédiaire B2 induisent une très forte anisotropie, qui est problématique pour les étapes industrielles ultérieures.
Notamment, lorsque l'on souhaite usiner l'ébauche, puisque les propriétés mécaniques et dynamiques de l'ébauche dans la région intermédiaire B2 sont très différentes selon la direction considérée (perpendiculairement à l'axe des grains colonnaires ou parallèlement à leur axe), les réponses du matériau aux efforts de l'usinage différent en fonction de l'angle de coupe par rapport à l'axe des grains colonnaires. Par ailleurs, les relaxations des contraintes de l'usinage sont également anisotropes.
L'usinage de l'ébauche doit être conçu pour tenir compte des facteurs qui précèdent, ce qui tend à le complexifier.
Les pièces que l'on souhaite réaliser par usinage de l'ébauche doivent aussi être dimensionnées pour tenir compte des facteurs qui précèdent, ce qui conduit fréquemment à une utilisation non-optimale du matériau de l'ébauche.
De plus, les directions des axes des grains colonnaires peuvent varier d'une région de l'ébauche à l'autre (ce que l'on voit par exemple sur la figure 3B) : dans ce cas, les propriétés mécaniques et dynamiques de l'ébauche, même dans une direction considérée, peuvent différer d'une région à l'autre d'une même ébauche et/ou d'une ébauche à l'autre. La conception de l'usinage est alors encore plus complexe. Il se peut même que certaines des ébauches soient totalement inutilisables pour l'usinage, auquel cas elles doivent être rebutées.
On voit donc que la fabrication par coulée centrifuge décrite ci- dessus n'est pas avantageuse du point de vue économique et industriel lorsque les ébauches doivent être usinées par la suite.
De plus, puisque l'ébauche présente une microstructure métallurgique complexe et variée, ses propriétés d'emploi (notamment mécaniques) sont très dispersées. Les pièces fabriquées à partir de cette ébauche doivent être dimensionnées en conséquence, ce qui tend à les alourdir. Ceci est particulièrement indésirable lorsque la pièce à fabriquer est une aube pour turboréacteur aéronautique, car de telles aubes doivent être le plus légères possible dans l'intérêt des performances du turboréacteur.
Par ailleurs, l'anisotropie induite par les grains colonnaires de la région intermédiaire B2, et les interfaces entre la région intermédiaire B2 à grains colonnaires et les régions Bl et B3 à grains équiaxes, rendent très difficiles, voire même impraticables, des opérations simples de mise en forme à chaud de l'ébauche, telles que le forgeage, le laminage ou l'extrusion. Or, ces opérations peuvent apporter de nouvelles propriétés mécaniques au matériau de l'ébauche. Il existe donc un besoin d'un nouveau procédé de fabrication d'une ébauche en alliage métallique par coulée centrifuge qui permette de diminuer l'anisotropie de l'ébauche et de simplifier et rendre moins coûteuses les opérations ultérieures à effectuer sur l'ébauche.
Les documents brevet CN 1 796 023 A, CN 100 999 804 A et JP 2001-096350 A, et les articles Yang et al., "Solidification of Alloys in Electromagnetic Field", Zeitschrift fur Metallkunde, Cari Hanser, Munich, DE, vol. 91, no. 4, 2000-04-01, pages 280-284, XP000931909, et Wu et al., "Structure Characteristics in Industrially Centrifugally Cast 25Cr20Ni Stainless Steel Tubes Solidified under Différent Electromagnetic Field Intensity", Journal of Materials Engineering and Performance, ASM International, Materials Park, OH, US, vol. 8, no. 5, 1999-10-01, pages 525-530, XP000877762, divulguent d'autre part des dispositifs de coulée dans lesquels le moule lui-même est entraîné en rotation autour de son propre axe.
Objet et résumé de l'invention
Pour répondre au moins partiellement à ce besoin, la présente invention fournit un dispositif de fabrication d'une ébauche en alliage métallique par coulée centrifuge d'un alliage métallique en fusion, comprenant une roue de coulée centrifuge, la roue de coulée centrifuge étant rotative autour d'un axe de rotation et comprenant un moule pour recevoir l'alliage métallique en fusion, le moule s'étendant dans une direction radiale par rapport à l'axe de rotation, le dispositif comprenant au moins un aimant arrangé de manière à induire un courant électrique dans le moule lors de la rotation de la roue de coulée centrifuge autour de l'axe de rotation.
Le courant électrique induit par l'aimant crée une force de Laplace qui tend à brasser l'alliage métallique en fusion à l'intérieur du moule. Grâce à ce brassage, l'ébauche en alliage métallique présente, après solidification, une macrostructure homogène, quasiment dépourvue de grains colonnaires, et donc quasiment isotrope, ce qui élimine les inconvénients décrits plus haut.
De plus, grâce à ce brassage, l'ébauche ne présente quasiment aucune porosité résiduelle après refroidissement. On évite ainsi de devoir faire subir à l'ébauche une étape de compression isostatique à chaud (« Hot Isostatic Pressing » ou HIP en anglais), étape qui permet également de résorber ces porosités résiduelles mais présente l'inconvénient d'être longue et très coûteuse.
Selon une possibilité, la roue de coulée centrifuge comprend un bobinage entourant un volume intérieur du moule et configuré de telle sorte que l'aimant induise un courant électrique dans le bobinage lors de ladite rotation de la roue de coulée centrifuge autour de l'axe de rotation. De cette manière, un courant induit est généré non seulement dans l'alliage métallique en fusion (et éventuellement dans la structure de la roue de coulée centrifuge), mais aussi dans le bobinage. La force de Laplace s'exerçant sur l'alliage métallique en fusion est plus intense. Il en résulte que le brassage de l'alliage métallique en fusion à l'intérieur du moule est plus intense, ce qui améliore encore l'homogénéité de l'ébauche en alliage métallique. On notera par ailleurs qu'il n'est pas nécessaire de raccorder le bobinage à une source d'électricité, puisqu'un courant induit est généré à distance dans le bobinage. Ceci évite de prévoir un raccordement particulier du bobinage à une source d'électricité non solidaire de la roue de coulée centrifuge, qui serait complexe du point de vue mécanique (risque de blocage de la roue de coulée centrifuge par les fils d'alimentation).
Selon une possibilité, l'aimant est un aimant annulaire ou circulaire dont l'axe est parallèle à l'axe de rotation.
De cette manière, le champ magnétique généré par l'aimant est sensiblement uniforme sur l'ensemble du volume balayé par le moule lors de la rotation de la roue de coulée centrifuge.
Selon une possibilité, le dispositif comprend une pluralité d'aimants disposés de façon espacée autour de l'axe de rotation.
De cette manière, le champ magnétique agissant sur le moule varie lors de la rotation de la roue de coulée centrifuge. Il s'ensuit que le courant électrique induit dans le moule, et donc la force de Laplace s'exerçant sur l'alliage métallique en fusion, est variable lors de la rotation de la roue de coulée centrifuge, ce qui améliore le brassage de l'alliage métallique en fusion à l'intérieur du moule.
Selon une possibilité, les aimants sont en nombre pair, et les polarités desdits aimants alternent régulièrement autour de l'axe de rotation.
De cette manière, le champ magnétique agissant sur le moule change périodiquement de sens lors de la rotation de la roue de coulée centrifuge, ce qui améliore encore le brassage de l'alliage métallique en fusion à l'intérieur du moule.
Selon une possibilité, l'aimant est non solidaire de la roue de coulée centrifuge, et le dispositif comprend en outre un aimant permanent solidaire de la roue de coulée centrifuge et s'étendant en partie à travers le bobinage.
Selon une possibilité, l'aimant est un aimant annulaire ou circulaire dont l'axe est parallèle à l'axe de rotation.
Selon une possibilité, les pôles de l'aimant permanent et de l'aimant se faisant face ont des noms contraires.
De cette manière, le champ magnétique agissant sur le moule est quasiment uniforme au niveau du bobinage. Ceci augmente l'intensité du courant électrique induit par l'aimant dans le bobinage, et donc du brassage de l'alliage métallique en fusion.
Selon une possibilité, le dispositif comprend une pluralité d'aimants non solidaires de la roue de coulée centrifuge et disposés de façon espacée autour de l'axe de rotation.
Selon une possibilité, les aimants non solidaires de la roue de coulée centrifuge sont en nombre pair, et les polarités desdits aimants alternent régulièrement autour de l'axe de rotation.
Selon une possibilité, l'axe de rotation est vertical.
De cette manière, le dispositif d'équilibrage de la roue de coulée centrifuge est plus simple. La construction et le fonctionnement du dispositif sont donc simplifiés. En outre, le brassage de l'alliage métallique en fusion à l'intérieur du moule est moins perturbé. En effet, lors de la rotation de la roue, l'alliage métallique en fusion à l'intérieur du moule est soumis à la force centrifuge et à la force de gravité. La force centrifuge est toujours radiale à l'axe de rotation. Si l'axe de rotation est vertical, la direction de la force de gravité ne varie pas non plus lors de la rotation de la roue, de sorte que le brassage est moins perturbé.
Selon une possibilité, la direction radiale est parallèle à l'horizontale. De cette manière, la construction de la roue de coulée centrifuge est plus simple, en particulier si l'axe de rotation est vertical.
La présente invention fournit également un procédé de fabrication d'une ébauche en alliage métallique, comprenant les étapes suivantes :
- fusion de l'alliage métallique ;
- versage de l'alliage métallique en fusion dans une roue de coulée centrifuge, la roue de coulée centrifuge étant rotative autour d'un axe de rotation et comprenant un moule pour recevoir l'alliage métallique en fusion, le moule s'étendant dans une direction radiale par rapport à l'axe de rotation ;
- rotation de la roue de coulée centrifuge autour de son axe de rotation et solidification de l'alliage métallique en fusion à l'intérieur du moule, de manière à obtenir l'ébauche en alliage métallique ; et
- extraction de l'ébauche en alliage métallique du moule,
dans lequel, pendant l'étape de rotation, on applique un champ magnétique au moule, de manière à induire un courant électrique dans le moule.
Selon une possibilité, la roue de coulée centrifuge comprend un bobinage entourant un volume intérieur du moule, et, pendant l'étape de rotation, le champ magnétique induit un courant électrique dans le bobinage.
Le procédé selon l'invention procure les mêmes avantages que le dispositif selon l'invention.
Selon une possibilité, l'alliage métallique est un alliage à base de titane ou de nickel. Par « à base de titane » (respectivement « à base de nickel »), on entend que le titane (respectivement le nickel) est sensiblement, en masse, l'élément majoritaire de l'alliage.
Les alliages métalliques à base de titane ou de nickel sont parmi les alliages couramment utilisés pour réaliser des ébauches de pièces fortement sollicitées mécaniquement, telles que des aubes pour turbomachine, et plus particulièrement des aubes pour turboréacteur aéronautique.
Selon une possibilité, l'ébauche en alliage métallique est une ébauche d'aube pour turbomachine, en particulier d'aube pour turboréacteur aéronautique.
Brève description des dessins
L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit de plusieurs modes de réalisations, représentés à titre d'exemples non limitatifs. La description se réfère aux dessins annexés sur lesquels :
- la figure 1 représente schématiquement un dispositif de fabrication par coulée centrifuge connu ; - la figure 2 représente schématiquement l'ébauche métallique solidifiée obtenue par le dispositif de la figure 1, en coupe selon le plan C-C de la figure 1 ;
- les figures 3A et 3B sont des photographies de coupes de deux ébauches métalliques obtenues par le dispositif de la figure 1, selon la direction de la figure 1 ;
- la figure 4 représente schématiquement un dispositif de fabrication par coulée centrifuge selon l'invention ;
- la figure 5 est une vue partielle en perspective et écorchée du dispositif de la figure 4;
- la figure 6 est une vue de dessus de la roue de coulée centrifuge et de l'aimant, selon une autre variante de l'invention ;
- la figure 7 est une vue de dessus analogue à la figure 6, selon encore une autre variante de l'invention ;
- la figure 8 est une vue de dessus analogue à la figure 7, selon encore une autre variante de l'invention ;
- la figure 9 est en vue de côté d'une partie de la roue de coulée centrifuge, selon encore une autre variante de l'invention ;
- la figure 10 est une vue en perspective de la figure 9, représentant une première possibilité de mise en uvre de la variante de la figure 9 ;
- la figure 11 est une vue en perspective de la figure 9, représentant une autre possibilité de mise en uvre de la variante de la figure 9.
Description détaillée de l'invention
La figure 4 représente schématiquement un dispositif de fabrication 10 d'une ébauche en alliage métallique par coulée centrifuge d'un alliage métallique en fusion.
Le dispositif de fabrication 10 comprend, dans une enceinte 50 fermée et étanche, un dispositif de fusion 610, une roue de coulée centrifuge 20 (qu'on appellera dans la suite « la roue 20 » par commodité) et un aimant 40.
Le dispositif de fusion 610 est adapté pour fournir un alliage métallique en fusion. Dans un exemple, le dispositif de fusion 610 effectue la fusion d'un alliage métallique fourni sous la forme d'un lingot d'alliage métallique 616. Dans un autre exemple, les différents constituants de l'alliage métallique sont introduits individuellement dans le dispositif de fusion 610, puis fondus ensemble de manière à obtenir l'alliage métallique en fusion.
L'alliage métallique est choisi parmi les alliages adaptés pour la pièce finale à fabriquer à partir de l'ébauche.
Sans vouloir limiter la portée du présent exposé, l'alliage métallique peut être, par exemple, un alliage à base céramique, un acier, un alliage à base de titane, ou encore un alliage à base de nickel.
Parmi les alliages à base de titane, on envisage notamment :
- les alliages de titane conventionnels présentant une structure cristallographique identique à celle du titane pur, comme par exemple : TA6V, Ti-17, Ti 10-2-3, Ti-5553, β16, β21≤ ; et
- les alliages intermétalliques à base de titane, présentant une ou plusieurs phases de structures cristallographiques différentes de celle du titane pur.
Parmi les alliages intermétalliques à base de titane, on envisage particulièrement les aluminures de titane, parmi lesquels :
- les aluminures de titane à phases γ et a2 colonnaire, tels que : le
Ti-48AI-lV-0,3C, le Ti-48AI-2Cr-2Nb (aussi connu sous la désignation « GE 48-2-2 ») ou le Ti-48AI-2Nb-0,75Cr-0,3Si (aussi connu sous la désignation « Daido RNT650 ») ;
- les aluminures de titane à phases γ et a2 équiaxe, tels que le Ti- 45AI-2Nb-2Mn + 0,8TiB2 (aussi connu sous la désignation « Howmet
45XD »), le Ti-47AI-2Nb-2Mn + 0,8TiB2 (aussi connu sous la désignation « Howmet 47XD »), le Ti-47AI-2W-0,5Si-0,5B (aussi connu sous la désignation « ABB-23 ») ou le Ti-48AI-l,3Fe-l,lV-0,3B ;
- les aluminures à phases β, γ et α2 équiaxe, tels que le Ti-47,3-AI- 2,2Nb-0,5Mn-0,4W-0,4Mo-0,23Si, le Ti-46,5AI-3Nb-2Cr-0,2W-0,2Si-0,lC
(aussi connu sous la désignation « K5SC »), le TI-46AI-5Nb-lW, le Ti- 47AI-3,7(Cr,Nb,Mn,Si)-0,5B (aussi connu sous la désignation « GKSS- TAB »), le Ti-45AI-8(Nb,B,C) (aussi connu sous la désignation « GKSS TNB »), le Ti-46,5AI-l,5Cr-2Nb-0,5Mo-0,13B-0,3C (aussi connu sous la désignation « 395M »), le Ti-46AI-2,5Cr-lNb-0,5Ta-0,01B (aussi connu sous la désignation « Plansee γ-ΜΕΤ »), le Ti-47AI-lRe-lW-0,2Si (aussi connu sous la désignation « Onera G4 »), le Ti-43AI-9V-0,3Y, le ΤΊ-42ΑΙ- 5Mn, le Ti-43AI-4Nb-lMo-0,lB, ou le Ti-45AI-4Nb-4Ta.
On précise que dans la liste ci-dessus, toutes les valeurs numériques désignent le pourcentage atomique (at%) de l'élément qu'elles précèdent. Ainsi, l'alliage Ti-48AI-2Cr-2Nb comprend, en pourcentage atomique, 48% d'AI, 2% de Cr, 2% de Nb, et du titane (Ti) en complément à 100%.
Parmi les alliages à base de nickel, on envisage notamment les alliages de nickel conventionnels tels que le René 77 ou DS 200, ou encore les superalliages de nickel tel que le AMI.
Le dispositif de fusion 610 peut être, par exemple :
- un four de fusion par arc électrique d'une électrode métallique dans un creuset froid sous vide ou sous pression réduite, dénommé plus couramment par les termes anglais « Vacuum Arc Remelting (VAR) furnace » ou « Skull VAR furnace » ;
- un four de fusion par induction sous vide ou sous pression réduite, dénommé plus couramment par le terme anglais « Vacuum Induction Melting (VIM) furnace » ;
- un four de fusion par torches plasma sous pression réduite, dénommé plus couramment par le terme anglais « Plasma Arc Melting (PAM) furnace » ;
- un four de fusion par bombardement électronique sous vide, dénommé plus couramment par le terme anglais « Electronic Bombardment (EB) furnace » ;
- ou une combinaison de ceux-ci.
Selon le type de dispositif de fusion 610 choisi, l'enceinte 50 est commandée pour fournir l'atmosphère requise :
- vide ; ou
- pression réduite et commandée d'un gaz inerte vis-à-vis de l'alliage métallique ; ou
- pression réduite et commandée d'un gaz réagissant avec l'alliage métallique, afin de modifier la composition chimique de l'alliage métallique pendant sa fusion.
L'alliage métallique en fusion sortant du dispositif de fusion 610 est versé dans la roue 20.
La roue 20 comprend un moyeu 30 au moins un moule 22 fixé au moyeu 30. Le moyeu 30 comprend un canal central 32 et plusieurs canaux d'amenée 33 communiquant chacun avec un moule 22.
Afin de faciliter le versage de l'alliage métallique en fusion, le moyeu 30 peut être pourvu d'un entonnoir 31 débouchant sur le canal central 32.
Le moyeu 30 est susceptible d'être entraîné en rotation autour d'un axe de rotation A, par exemple à l'aide d'un moteur (non représenté). Ainsi, la roue 20 est rotative autour de l'axe de rotation A.
Afin de simplifier le dispositif d'équilibrage de la roue 20, l'axe A est de préférence vertical.
La figure 5 montre en perspective un moule 22 fixé sur le moyeu 30
(l'entonnoir 31 a été omis pour ne pas surcharger le dessin).
Le moule 22 s'étend dans une direction radiale RI par rapport à l'axe A (voir figure 4). De préférence, afin de simplifier la construction de la roue 20, cette direction radiale RI est perpendiculaire à l'axe A. Ainsi, si l'axe A est vertical, la direction radiale RI est parallèle à l'horizontale.
Le moule 22 est apte à recevoir l'alliage métallique en fusion, ici dans une cavité 22B. Pour cela, le moule 22 est typiquement réalisé dans un métal, un alliage métallique ou une céramique suffisamment résistants pour résister aux contraintes thermiques liées au contact avec l'alliage mécanique en fusion.
La cavité 22B peut présenter une section rectangulaire ou cylindrique. Cette section peut avantageusement être constante sur toute la longueur de la cavité 22B.
Selon la direction radiale RI, la cavité 22B présente typiquement une longueur nettement supérieure à la dimension maximale de sa section, par exemple au moins 3 fois, et de préférence au moins 5 fois plus grande que la dimension maximale de sa section. Après solidification, l'ébauche en alliage métallique a alors la forme générale d'un barreau.
La cavité 22B communique avec un canal d'amenée 33 via une amenée 22A, qui est éventuellement de section plus réduite que la cavité 22B.
Plusieurs moules 22 peuvent être fixés au moyeu 30 comme on peut le voir sur les figures 4 et 5. Par exemple, plusieurs moules 22 peuvent être espacés régulièrement autour de l'axe A. Les moules 22 peuvent également être superposés de manière à former plusieurs (deux sur les figures 4 et 5) niveaux de moules 22. Les moules 22 peuvent être séparables du moyeu 30, de sorte qu'ils peuvent être remplacés individuellement et/ou séparés un à un du moyeu 30 afin d'en extraire l'ébauche en alliage métallique après solidification.
Comme on l'a mentionné plus haut, le dispositif de fabrication 10 comprend également au moins un aimant. Dans la suite, par commodité, on parlera de « l'aimant », désigné par la référence 40 ; il est toutefois à noter que les caractéristiques présentées dans la suite en rapport avec l'aimant 40 peuvent s'appliquer à un seul, tous ou certains des aimants.
Dans la suite, le champ magnétique généré par l'aimant 40 est noté H.
Dans la présente description, « aimant » englobe aussi bien les aimants permanents que les électro-aimants, sauf mention contraire.
Lorsque la roue 20 tourne autour de l'axe A (la direction de rotation D est indiquée sur les figures 6 à 11), le champ magnétique H induit un courant électrique dans le moule 22. Ce courant électrique est induit dans les parois 23 du moule 22 (tout particulièrement s'il est réalisé dans un métal ou un alliage métallique), et également dans l'alliage métallique en fusion contenu dans la cavité 22B. Ce courant électrique génère un champ magnétique induit dans le moule 22. Comme cela est connu, ce champ magnétique induit crée une force de Laplace.
Cette force de Laplace tend à brasser l'alliage métallique en fusion en cours de solidification dans la cavité 22B.
Le brassage de l'alliage métallique en fusion dans la cavité 22B a pour effets :
- à l'avant du front de solidification de l'alliage métallique (autrement dit dans sa partie encore en fusion), de permettre aux germes de grains de croître dans les trois dimensions, ce qui favorise la formation de grains équiaxes ;
- au niveau du front de solidification, de briser la pointe des éventuels grains colonnaires, ce qui défavorise la formation de grains colonnaires et a en plus l'avantage d'apporter de nouveaux germes de grains équiaxes.
On comprend donc que le brassage de l'alliage métallique en fusion favorise considérablement la formation de grains équiaxes par rapport à la formation de grains colonnaires. Par conséquent, l'ébauche en alliage métallique présente une macrostructure homogène, quasiment dépourvue de grains colonnaires, et donc quasiment isotrope, ce qui élimine les inconvénients discutés ci-dessus.
De plus, le brassage permet de constamment ré-homogénéiser la composition chimique de l'alliage métallique en fusion, aussi bien à l'avant du front de solidification qu'au niveau du front de solidification. Ceci permet d'éviter toute ségrégation locale, et par conséquent toute ségrégation positive alignée ou exsudation dans l'ébauche.
De plus, au niveau du front de solidification, le brassage permet d'améliorer l'alimentation en alliage métallique en fusion pendant le retrait de solidification. L'ébauche ne présente par conséquent quasiment aucune porosité résiduelle après refroidissement. On évite ainsi de devoir faire subir à l'ébauche une étape de compression isostatique à chaud (« Hot
Isostatic Pressing » ou HIP en anglais).
Le dispositif de fabrication 10 permet donc d'obtenir une ébauche métallique aux propriétés mécaniques et structurelles améliorées, qui peut être plus facilement usinée et/ou soumise à des opérations de mise en forme à chaud (forgeage, laminage, extrusion...). Par ailleurs, les opérations ultérieures à effectuer sur l'ébauche sont moins coûteuses, car l'étape de compression isostatique à chaud n'est plus nécessaire.
Afin de renforcer le brassage de l'alliage métallique en fusion, le moule 22 peut être pourvu d'un bobinage 60, que l'on voit sur la figure 5.
Le bobinage 60 comprend une, ou plus typiquement plusieurs, spires connectées électriquement entre elles. Les spires du bobinage 60 entourent un volume intérieur du moule 22. Dans l'exemple représenté sur la figure 5, ce volume intérieur est la cavité 22B toute entière. Il pourrait aussi s'agir d'une partie seulement de la cavité 22B.
Au sens de la présente description, le fait que les spires du bobinage
60 entourent un volume intérieur du moule 22 signifie que ledit volume intérieur est contenu dans le volume délimité par les spires du bobinage 60. Ainsi, les spires du bobinage 60 peuvent être noyées dans les parois
23 du moule 22 comme représenté sur la figure 5, ou bien disposées sur la surface extérieure des parois 23.
Lorsque la roue 20 tourne autour de l'axe A, un courant électrique I est induit dans le bobinage 60, en plus du courant induit dans les parois 23 du moule 22 et dans l'alliage métallique en fusion. La force de Laplace s'exerçant sur l'alliage métallique en fusion est donc plus intense, ce qui améliore le brassage de l'alliage métallique en fusion.
De préférence, les spires s'étendent parallèlement à la direction radiale RI. Ceci maximise l'aire balayée par le bobinage pendant la rotation de la roue 20, en particulier si la cavité 22B présente une longueur nettement supérieure à la dimension maximale de sa section comme expliqué ci-dessus.
Comme représenté sur la figure 6, l'aimant 40 peut être un aimant annulaire 40C dont l'axe est parallèle à l'axe A. Il peut également s'agir d'un aimant circulaire.
L'aimant 40C permet d'obtenir un champ magnétique H sensiblement uniforme sur l'ensemble du volume balayé par le moule 22 lors de la rotation de la roue 20.
De préférence, l'axe de l'aimant 40C est confondu avec l'axe A. Le champ magnétique H est alors davantage uniforme sur l'ensemble du volume balayé par le moule 22 lors de la rotation de la roue 20.
En variante, comme représenté sur la figure 7, le dispositif comprend une pluralité (ici trois) d'aimants 40-1, 40-2, 40-3 chacun arrangé de manière à induire un courant électrique dans le moule 22 et éventuellement dans le bobinage 60.
Les aimants 40-1, 40-2, 40-3 sont disposés de façon espacée autour de l'axe A. En d'autres termes, entre les aimants 40-1, 40-2, 40-3, il existe des espaces dépourvus d'aimants. Par conséquent, le champ magnétique H varie selon la position angulaire du moule 22. Il s'ensuit que le courant électrique induit par l'aimant dans le moule 22, et donc la force de Laplace, dans le moule 22 est variable lors de la rotation de la roue 30, ce qui améliore le brassage de l'alliage métallique en fusion à l'intérieur du moule 22.
De préférence, afin de simplifier la construction du dispositif de fabrication 10, les aimants 40-1, 40-2, 40-3 sont tous identiques.
Il est également préférable que les aimants 40-1, 40-2, 40-3 soient régulièrement espacés entre eux.
Les aimants 40-1, 40-2, 40-3 peuvent avoir la forme de segments annulaires dont l'axe est parallèle à l'axe A comme représenté sur la figure 7. Il peut également s'agir de segments circulaires. Comme dans la variante de la figure 6, il est préférable que l'axe des segments annulaires ou circulaires soit confondu avec l'axe A.
De préférence, comme représenté sur la figure 8, les aimants sont en nombre pair (ici, quatre aimants 40-1 à 40-4), et les polarités des aimants alternent régulièrement autour de l'axe A. En d'autres termes, en suivant le sens de rotation de la roue 20, le pôle des aimants 40-1 à 40-4 faisant face à la roue 20 est alternativement Nord, Sud, Nord, Sud, ... .
Ainsi, le champ magnétique H s'appliquant au moule 22 change périodiquement de sens lors de la rotation de la roue 20, ce qui améliore encore le brassage de l'alliage métallique en fusion à l'intérieur du moule
22. Si les aimants 40-1 à 40-4 sont régulièrement espacés et identiques, le champ magnétique H est alternatif.
Selon encore une autre variante représentée schématiquement sur la figure 9, le dispositif 10 comprend en outre un aimant permanent 40M solidaire de la roue 20. L'aimant 40 se présente quant à lui sous la forme d'un aimant 40S non solidaire de la roue 20. Typiquement, l'aimant 40S est fixe par rapport à l'enceinte 50. L'aimant permanent 40M s'étend en partie à travers le bobinage 60 du moule 22.
De préférence, les pôles de l'aimant permanent 40M et de l'aimant 40S se faisant face ont des noms contraires (c'est-à-dire que si l'un des pôles est Nord, l'autre est Sud). Ainsi, au niveau des spires situées entre l'aimant permanent 40M et l'aimant 40S, le champ magnétique H est quasiment uniforme, comme représenté schématiquement sur la figure 9.
Ceci augmente l'intensité du courant électrique induit dans le bobinage 60 et donc l'intensité du brassage.
En outre, si les spires du bobinage 60 s'étendent parallèlement à la direction radiale RI, les lignes du champ magnétique H sont alignées avec les spires du bobinage, ce qui augmente encore l'intensité du courant induit dans le bobinage 60 et donc l'intensité du brassage.
Comme représenté sur la figure 10, l'aimant 40S peut être un aimant annulaire dont l'axe est parallèle à l'axe A. Il peut également s'agir d'un aimant circulaire.
Un tel aimant annulaire ou circulaire permet d'obtenir un champ magnétique H sensiblement uniforme sur l'ensemble du volume balayé par le moule 22 lors de la rotation de la roue 20. Comme représenté sur les figures 9 et 10, il est préférable que les pôles de l'aimant permanent 40M et de l'aimant annulaire ou circulaire 40S se faisant face aient des noms contraires.
En variante, comme représenté sur la figure 11, le dispositif comprend une pluralité (ici trois) d'aimants 40S-1, 40S-2, 40S-3 non solidaires de la roue 20 et chacun arrangé de manière à induire un courant électrique dans le moule 22 et éventuellement dans le bobinage 60.
Dans la variante représentée sur la figure 11, les aimants 40S-1,
40S-2, 40S-3 sont tels que leurs pôles ont tous un nom contraire à celui de l'aimant 40M auquel ils font face (c'est-à-dire que si les pôles des aimants 40S-1, 40S-2, 40S-3 sont Nord, le pôle de l'aimant 40 auquel ils font face est Sud).
Dans une autre variante (non représentée), les aimants non solidaires sont en nombre pair de la roue 20 sont en nombre pair, et les polarités desdits aimants alternent régulièrement autour de l'axe A. En d'autres termes, en suivant le sens de rotation de la roue 20, le pôle de ces aimants faisant face à la roue 20 est alternativement Nord, Sud, Nord,
Sud, ... .
Quoique la présente invention ait été décrite en se référant à des exemples de réalisation spécifiques, il est évident que des modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En outre, des caractéristiques individuelles des différents modes de réalisation évoqués peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.

Claims

REVENDICATIONS
1. Dispositif de fabrication (10) d'une ébauche en alliage métallique par coulée centrifuge d'un alliage métallique en fusion, comprenant une roue de coulée centrifuge (20), la roue de coulée centrifuge (20) étant rotative autour d'un axe de rotation (A) et comprenant un moule (22) pour recevoir l'alliage métallique en fusion, le moule s'étendant dans une direction radiale (RI) par rapport à l'axe de rotation (A),
le dispositif étant caractérisé en ce qu'il comprend au moins un aimant (40, 40S) arrangé de manière à induire un courant électrique dans le moule (22) lors de la rotation de la roue de coulée centrifuge (20) autour de l'axe de rotation (A).
2. Dispositif selon la revendication 1, dans lequel la roue de coulée centrifuge (20) comprend un bobinage (60) entourant un volume intérieur du moule (22) et configuré de telle sorte que l'aimant (40, 40S) induise un courant électrique dans le bobinage (60) lors de ladite rotation de la roue de coulée centrifuge (20) autour de l'axe de rotation (A).
3. Dispositif selon la revendication 1 ou 2, dans lequel l'aimant (40, 40S) est un aimant annulaire ou circulaire dont l'axe est parallèle à l'axe de rotation (A).
4. Dispositif selon la revendication 1 ou 2, comprenant une pluralité d'aimants (40-1, 40-2, 40-3) disposés de façon espacée autour de l'axe de rotation (A).
5. Dispositif selon la revendication 4, dans lequel les aimants (40-
1, 40-2, 40-3, 40-4) sont en nombre pair, et les polarités desdits aimants alternent régulièrement autour de l'axe de rotation (A).
6. Dispositif selon la revendication 2, dans lequel l'aimant (40S) est non solidaire de la roue de coulée centrifuge (20), et comprenant en outre un aimant permanent (40M) solidaire de la roue de coulée centrifuge (20) et s'étendant en partie à travers le bobinage (60).
7. Dispositif selon la revendication 6, dans lequel l'aimant (40S) est un aimant annulaire ou circulaire dont l'axe est parallèle à l'axe de rotation (A), et les pôles de l'aimant permanent (40M) et de l'aimant (40S) se faisant face ont des noms contraires.
8. Dispositif selon la revendication 6, comprenant une pluralité d'aimants (40S-1, 40S-2, 40S-3) non solidaires de la roue de coulée centrifuge (20) et disposés de façon espacée autour de l'axe de rotation (A).
9. Dispositif selon la revendication 8, dans lequel les aimants non solidaires de la roue de coulée centrifuge (20) sont en nombre pair, et les polarités desdits aimants alternent régulièrement autour de l'axe de rotation (A).
10. Procédé de fabrication d'une ébauche en alliage métallique, comprenant les étapes suivantes :
- fusion de l'alliage métallique ;
- versage de l'alliage métallique en fusion dans une roue de coulée centrifuge (20), la roue de coulée centrifuge étant rotative autour d'un axe de rotation (A) et comprenant un moule (22) pour recevoir l'alliage métallique en fusion, le moule s'étendant dans une direction radiale (RI) par rapport à l'axe de rotation (A) ;
- rotation de la roue de coulée centrifuge (20) autour de son axe de rotation et solidification de l'alliage métallique en fusion à l'intérieur du moule (22), de manière à obtenir l'ébauche en alliage métallique ; et
- extraction de l'ébauche en alliage métallique du moule (22), le procédé étant caractérisé en ce que, pendant l'étape de rotation, on applique un champ magnétique (H) au moule (22), de manière à induire un courant électrique induit dans le moule (22).
11. Procédé selon la revendication 10, dans lequel la roue de coulée centrifuge (20) comprend un bobinage (60) entourant un volume intérieur du moule (22), et dans lequel, pendant l'étape de rotation, le champ magnétique (H) induit un courant électrique dans le bobinage (60).
12. Procédé selon la revendication 10 ou 11, dans lequel l'alliage métallique est un alliage à base de titane.
EP18804376.4A 2017-11-07 2018-11-06 Dispositif et procédé de fabrication d'une ébauche en alliage métallique par coulée centrifuge Active EP3706934B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760453A FR3073163B1 (fr) 2017-11-07 2017-11-07 Dispositif et procede de fabrication d'une ebauche en alliage metallique par coulee centrifuge
PCT/FR2018/052736 WO2019092354A1 (fr) 2017-11-07 2018-11-06 Dispositif et procédé de fabrication d'une ébauche en alliage métallique par coulée centrifuge

Publications (2)

Publication Number Publication Date
EP3706934A1 true EP3706934A1 (fr) 2020-09-16
EP3706934B1 EP3706934B1 (fr) 2021-10-27

Family

ID=61599295

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18804376.4A Active EP3706934B1 (fr) 2017-11-07 2018-11-06 Dispositif et procédé de fabrication d'une ébauche en alliage métallique par coulée centrifuge

Country Status (5)

Country Link
US (1) US11433453B2 (fr)
EP (1) EP3706934B1 (fr)
CN (1) CN111372703B (fr)
FR (1) FR3073163B1 (fr)
WO (1) WO2019092354A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110722123B (zh) * 2019-11-29 2021-04-02 哈尔滨工业大学 薄壁圆环截面合金铸件原位离心铸造设备及离心铸造方法
CN112605369B (zh) * 2020-11-10 2022-05-03 西北矿冶研究院 一种提高铜阳极板质量的浇铸装置
CN114749622A (zh) * 2022-04-27 2022-07-15 中南大学 双轴离心搅拌铸造装置以及混合金属熔炼铸造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963758A (en) * 1958-06-27 1960-12-13 Crucible Steel Co America Production of fine grained metal castings
JPH084898B2 (ja) * 1990-02-09 1996-01-24 株式会社クボタ 超電導遠心鋳造機
JPH03281052A (ja) * 1990-03-27 1991-12-11 Kubota Corp 遠心鋳造装置
JP3830697B2 (ja) * 1999-09-29 2006-10-04 株式会社クボタ 圧延用複合ロールの製造方法
US6755239B2 (en) * 2001-06-11 2004-06-29 Santoku America, Inc. Centrifugal casting of titanium alloys with improved surface quality, structural integrity and mechanical properties in isotropic graphite molds under vacuum
CN1327992C (zh) * 2004-12-24 2007-07-25 中国科学院金属研究所 卧式真空电磁离心铸造炉
CN100500919C (zh) * 2006-12-21 2009-06-17 清华大学深圳研究生院 一种高碳高钨高速钢轧辊
CN103357839A (zh) 2012-03-26 2013-10-23 卓然(靖江)设备制造有限公司 旋转式电磁离心铸造机
US9364890B2 (en) * 2013-03-11 2016-06-14 Ati Properties, Inc. Enhanced techniques for centrifugal casting of molten materials
FR3017062B1 (fr) * 2014-01-31 2023-03-17 Snecma Moule centrifuge chemise a inertie thermique controlee
KR101713400B1 (ko) 2014-02-07 2017-03-08 한국생산기술연구원 다중 가압 주조 금형 및 이를 이용한 성형물 제조방법
FR3019561B1 (fr) * 2014-04-08 2017-12-08 Snecma Traitement thermique d'un alliage a base d'aluminure de titane

Also Published As

Publication number Publication date
FR3073163A1 (fr) 2019-05-10
CN111372703A (zh) 2020-07-03
FR3073163B1 (fr) 2022-07-15
CN111372703B (zh) 2022-05-27
US11433453B2 (en) 2022-09-06
EP3706934B1 (fr) 2021-10-27
US20200316682A1 (en) 2020-10-08
WO2019092354A1 (fr) 2019-05-16

Similar Documents

Publication Publication Date Title
EP3706934B1 (fr) Dispositif et procédé de fabrication d'une ébauche en alliage métallique par coulée centrifuge
EP3020055B1 (fr) Aimant fritte annulaire a aimantation radiale, presentant une tenue mecanique renforcee
US8136573B2 (en) Method for production of turbine blades by centrifugal casting
EP3129516B1 (fr) Traitement thermique d'un alliage à base d'aluminure de titane
EP2906374B1 (fr) Procédé de fabrication d'au moins une pièce métallique de turbomachine
EP2983849B1 (fr) Moule de fonderie monocristalline
CA2986788A1 (fr) Procede de fabrication d'une aube de turbomachine en tial
EP0005676A2 (fr) Procédé de brassage électromagnétique de billettes ou blooms coulés en continu
EP3099438B1 (fr) Moule chemisé pour coulée centrifuge
EP3119544B1 (fr) Moule centrifuge chemisé à inertie thermique contrôlée
EP3475012B1 (fr) Four de refroidissement par solidification dirigée et procédé de refroidissement utilisant un tel four
EP3083133B1 (fr) Procédé de fabrication d'une pièce de turbomachine, ébauche intermédiaire et moule obtenus
EP3465873B1 (fr) Machine électrique tournante munie d'aimants en terre rare à faible taux de dysprosium
EP2086705B1 (fr) Procédé de production d'aubes de turbine par coulée par centrifugation
FR2623210A1 (fr) Procede de production de gelees metalliques thixotropes par rotation electromagnetique
FR2506640A1 (fr) Procede et appareil de moulage de pieces complexes par centrifugation, en particulier de rotors pour pompes
JP2014124641A (ja) 遠心鋳造装置

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1441352

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018025822

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211027

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1441352

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220128

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018025822

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211106

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231020

Year of fee payment: 6

Ref country code: IT

Payment date: 20231019

Year of fee payment: 6

Ref country code: FR

Payment date: 20231020

Year of fee payment: 6

Ref country code: DE

Payment date: 20231019

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027