EP3702066A1 - Sintering device with source of shearing force, method for producing an electric contact material using the sintering device, electric contact material and use of same - Google Patents

Sintering device with source of shearing force, method for producing an electric contact material using the sintering device, electric contact material and use of same Download PDF

Info

Publication number
EP3702066A1
EP3702066A1 EP19160085.7A EP19160085A EP3702066A1 EP 3702066 A1 EP3702066 A1 EP 3702066A1 EP 19160085 A EP19160085 A EP 19160085A EP 3702066 A1 EP3702066 A1 EP 3702066A1
Authority
EP
European Patent Office
Prior art keywords
sintering
container
sintered
sintered material
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19160085.7A
Other languages
German (de)
French (fr)
Inventor
Hermann BÖDINGER
Roman Karmazin
Daniel Kupka
Carsten Schuh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP19160085.7A priority Critical patent/EP3702066A1/en
Publication of EP3702066A1 publication Critical patent/EP3702066A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/027Particular press methods or systems
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/048Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a sintering device with a pressure source for exerting sintering pressure on a sintered material accommodated in a sintering container and with a current source for introducing electrical sintering current into the sintering container during sintering / or in the sintered material received in the sintering container.
  • a method for producing an electrical contact material using the sintering device, as well as an electrical contact material which is produced according to the method, and a use of the electrical contact material are specified.
  • the electrical contact material is, for example, a copper-chromium contact material (Cu-Cr contact material) that is used for an electrical contact in a medium-voltage vacuum interrupter.
  • a contact material is produced, for example, by powder metallurgy by sintering.
  • a spark plasma sintering (SPS) system is used for this purpose.
  • SPS spark plasma sintering
  • Such a sintering device has, for example, a sintering unit for sintering sintered material (sintered body) with electrically conductive powder particles.
  • the electrically conductive powder particles are powder particles made of chromium and powder particles made of copper.
  • the sintered material is placed in a sintering container.
  • thermal sintering energy is introduced into the sintered material under sintering pressure (eg uniaxial pressing pressure).
  • sintering pressure eg uniaxial pressing pressure
  • electrical sintering current is generated through the Sinter container and / or passed through the sinter material.
  • the sintering container and / or the sintering material act as resistance heating. This means that Joule heat is distributed homogeneously in the sintered material and very high heating rates are achieved.
  • the sintering process takes place relatively quickly.
  • the additional action of the sintering pressure also results in a sintered body with high compression.
  • a pressing tool with a press punch is used to exert the sintering pressure on the sintered material. These press punches are used to apply the sintering pressure to the sintered material and to introduce the electrical sintering current into the sintered material.
  • the object of the present invention is to show how a further mechanical deformation possibility of a sintered material with a high degree of deformation can be achieved in a sintering device described above.
  • a sintering device with at least one sintering unit for sintering sintered material.
  • the sintered material has powder particles.
  • the sintering unit is equipped with at least one sintering container for receiving the sintered material, with at least one pressure source for exerting sintering pressure on the sintering material received in the sintering container during sintering, with at least one current Source for introducing electrical sintering current during sintering into the sintering container and / or into the sintering material received in the sintering container and with at least one sintering component for exerting the sintering pressure and for introducing the electrical sintering -Current.
  • shear source for exposing the sinter material received in the sintering container to a shear load (shear) during sintering.
  • the shear load is achieved, for example, by applying a torque.
  • the shear stress source acts as a torque source.
  • the sintered material is exposed to a torque during sintering.
  • the shear load source preferably has at least one rotation device for rotating the sintering container and / or for rotating the sintered component, so that the shearing load can be introduced into the sintered material during sintering. With the aid of the rotation device, the sintering container with the sintered material can be rotated during sintering.
  • a rotational movement of the sintering container and thus of the sintered material arranged in the sintering container can be carried out. This is achieved, for example, by rotating the sintered component in that the sintered container or the sintered material in the sintered container and the sintered component are connected to one another in a material or frictional connection.
  • a method for producing an electrical contact material using the sintering device is specified.
  • the method is used to produce a sintered material in the form of an electrical contact material.
  • the method has the following process steps: a) arranging sintering material with powder particles in the sintering container and b) sintering the sintering material arranged in the sintering container, with sintering pressure being exerted on the sintering material during sintering, electrical sintering current is introduced into the sintering container and / or into the sintering material and the sintering material is exposed to a shear load.
  • the sintered material is pressed and, during the sintering, electrical sintering current is passed through the sintering container and / or through the sintered material.
  • the sintering container is made of electrically conductive material such as copper or graphite, for example.
  • the sintered material is subjected to a shear load (shear) during sintering.
  • shear stress leads to a reduction in the porosity of the resulting sintered body (sintered component).
  • a considerable amount of deformation of the resulting body is achieved by the shear stress.
  • inventions are an electrical contact material produced in this way and its use for at least one electrical contact of a medium-voltage vacuum interrupter.
  • the electrical contact material is in particular a copper-chromium contact material.
  • the sintering device is a spark plasma sintering system.
  • a sintered product sintered body
  • electrically conductive powder particles are preferably powder particles of at least one metal or mixtures of powder particles of different metals.
  • the metals are copper and chromium and the sintered material has copper powder particles and chromium powder particles.
  • the resulting sintered body is made of a copper-chromium contact material.
  • the sintering container (sintering mold, sintering chamber, sintering die) for holding the sintered material with the powder particles is used to shape the sintered material.
  • a green body is formed with the powder particles. Pre-compression of the sintered material preferably takes place.
  • the resulting green body can have a relatively simple shape.
  • the green body is in the form of a disk.
  • a green body with a complex geometry is also conceivable.
  • the basic idea of the invention is to provide additional shaping during the sintering under sintering pressure including the introduction of the sintering current into the sintered material with the help of shear. This creates a further degree of freedom for the shaping.
  • a rotational movement of the sintered material is also carried out. The rotational movement causes a shear deformation of the sintered body.
  • the sintered container is made of an electrically conductive material, for example graphite.
  • Metals or metal alloys are also possible for the container material, for example a molybdenum alloy (MTZ).
  • the sintering is preferably carried out at a temperature which is selected from the range from 100.degree. C. to 1100.degree. C. and in particular from the range from 200.degree. C. to 1050.degree. Sintering takes place at a sintering temperature below the melting temperature of pure copper (1,085 ° C).
  • the pressure source has at least one pressing tool for exerting the sintering pressure on the sintering component.
  • the sintering pressure is passed on to the sintered material via the sintering component.
  • the press tool preferably has at least one press punch.
  • the sintered material arranged in the sintering container is pressed together with the powder particles with the aid of the pressure exerted on the press punch (s).
  • a sintering pressure is exerted on the sintered material, which is selected from the range of 300 N / mm 2 - 800 N / mm 2 .
  • the rotation device can be used to carry out an oscillating and / or unidirectional rotation.
  • a direction of rotation of the rotation can alternately be opposite or constant in one direction.
  • the sintered component is detachably connected to the sintered material and / or detachably to the sintered container on a contact surface.
  • the sintered component is roughened on a contact surface with the sintered material (sintered body).
  • the contact area is structured.
  • friction between the sintered material and the sintered component is increased.
  • the sintered component and the sintered body are connected to one another via a friction lock.
  • the releasable connection leads to an increased flexibility of the sintering device compared to a permanent connection (for example by a welded connection).
  • the press punch has an electrically conductive material.
  • the electrically conductive material is, for example, copper.
  • the press stamp With the electrically conductive material, which also has the necessary strength, it is possible to use the press stamp not only to apply the sintering pressure to the sintered material, but also to transfer the electrical sintering current into the sintered material (with electrical conductive powder particles). or to derive from the sintered material.
  • the press ram and electrically conductive powder particles of the sintered material are electrically isolated from one another, for example by using electrically insulating material for the press ram. In this case, the sintering current is introduced separately.
  • isostatic sintering pressure can be exerted on the sintered material.
  • uniaxial sintering pressure is applied during sintering.
  • the sintering pressure is therefore a uniaxial pressing pressure that can be exerted on the sintered material along a pressing axis.
  • the sinter container is preferably designed at least partially as a hollow cylinder with a cylinder front side and a cylinder longitudinal axis.
  • the cylinder front side of the hollow cylinder has the sintered component.
  • the pressing axis and the cylinder longitudinal axis are arranged next to one another in such a way that the uniaxial pressing pressure can be exerted on the sintered material indirectly via the sintering component along the cylinder longitudinal axis.
  • the cylinder front side of the hollow cylinder is bounded by the sintered component.
  • the pressing axis and the cylinder longitudinal axis are aligned with one another in such a way that the uniaxial pressing pressure can be exerted on the sintered material along the cylinder longitudinal axis.
  • the cylinder longitudinal axis and the press axis coincide.
  • the sintered material is poured into the hollow cylinder.
  • the filled sintered material is pressed by exerting a uniaxial pressing pressure along the longitudinal axis of the cylinder. Pre-pressing takes place.
  • sintering In this case, uniaxial sintering pressure (pressing pressure) is also exerted on the sintered material along the longitudinal axis of the cylinder. During sintering, electrical sintering current is introduced into the sintered material. This is guaranteed during the entire sintering process. At the same time, the rotation takes place around the cylinder's longitudinal axis. The rotation results in the torque. As a result, there is shear stress on the sintered material.
  • the sintering device can have a single sintering unit.
  • the sintering device has a large number of sintering units.
  • the sintering units are arranged in such a way that several sintering batches (green bodies) can be sintered in several sintering containers in parallel (that is, simultaneously) or in series (that is, one after the other).
  • you can the sintering units have common sintering components (eg a heat source for introducing thermal energy).
  • a copper-chromium contact material is accessible as the electrical contact material with the method.
  • a weight fraction of the chromium in the copper-chromium contact material is selected from the range from 10% by weight to 80% by weight and in particular from the range from 20% by weight to 60% by weight.
  • the proportion by weight of the chromium is preferably below 50% by weight.
  • a proportion by weight of the copper is selected accordingly from the range from 90% by weight to 20% by weight and in particular from the range from 80% by weight to 40% by weight.
  • the proportion by weight of copper is preferably above 50% by weight, for example between 55% by weight and 75% by weight.
  • a proportion of impurities in the copper-chromium contact material is as low as possible.
  • impurities are present in the electrical contact material and / or in the various phases with a weight fraction of less than 1% by weight and preferably less than 0.1% by weight.
  • the advantage of the invention can be summarized as follows: In addition to a translational movement for applying the uniaxial pressure, the sintering container and thus the sintering material is moved in a rotary manner. With the invention, a shear deformation of the sintered body is achieved during sintering. Depending on the choice of process conditions (sintering temperature, sintering pressure), massive reshaping of the sintered body can be achieved.
  • the sintering device 1 is suitable for producing a component in the form of an electrical contact 2001 of a medium-voltage vacuum interrupter 2000.
  • the electrical contact 2001 has the electrical contact material 2002.
  • the electrical contact material 2002 is a copper-chromium contact material.
  • the proportion by weight of copper is 50% by weight and the proportion by weight of chromium is 50% by weight.
  • the proportion by weight of copper is 55% by weight and that of chromium 45% by weight.
  • the sintering device 1 has one or more sintering units 10 for sintering 1002 of sintering material 2.
  • sintering unit 10 for sintering 1002 of sintering material 2.
  • metallic chrome particles and metallic copper particles form (electrically conductive) powder particles 20 of the sintered material 2.
  • the sintering unit 10 comprises a sintering container 11 made of graphite for receiving the sintering material 2, a pressure source 3 for exerting sintering pressure 30 on the sintering material 2 with the electrically conductive powder received in the sintering container 11 Particles 20 during sintering 1002 and an electrical current source 4 for introducing electrical sintering current 40 into the sintering container 11 and / or into the sintering material 2 with the electrically conductive powder particles received in the sintering container 11 20 during sintering 1002.
  • two sintering components 5 are present for exerting the sintering pressure 30 and for introducing the electrical sintering current 40 into the sintered material 2.
  • the sintered components 5 consist of electrically conductive material 51.
  • the electrically conductive material is stainless steel.
  • the shear load source 6 has at least one rotation device 61 for rotating 62 the sintering container 11 and / or for rotating 62 the sintered component 5, so that the shear load 60 during the sintering 1002 in the sintering Good 2 can be introduced.
  • the rotation includes an oscillating rotation 62 with the rotation direction 620. Additional frictional forces 600 occur.
  • the sintering components 5 are releasably connected to the sintered material 2 and / or releasably to the sintering container 11 on a respective contact surface 50. This is achieved in each case with a friction closure 51.
  • the contact surfaces 50 are structured.
  • the pressure source 3 comprises a pressing tool 31 for exerting the sintering pressure 30 on the sintered material 2 arranged in the sintering container 11.
  • the pressing tool 31 has a pressing punch 32.
  • the press plunger 32 comprises electrically conductive material 320, which is connected in an electrically conductive manner to the electrically conductive powder particles 20.
  • the electrically conductive material 320 of the press punch 32 is copper. The electrical sintering current 40 is thus introduced into the sintered material 2.
  • the sintered container 11 is at least partially configured as a hollow cylinder 12 with cylinder end faces 120 and with a cylinder longitudinal axis 121.
  • the cylinder end faces 120 of the hollow cylinder 12 have the sintered components 5 and are delimited by their structured contact surfaces 50.
  • the cylinder end faces 120 are formed by the contact surfaces 50 of the sintered components 5.
  • the pressing axis 302 and the cylinder longitudinal axis 121 are arranged next to one another in such a way that the uniaxial pressing pressure 301 is exerted on the sintered material 2 indirectly via the sintering components 5 along the cylinder longitudinal axis 121 can.
  • the Press axis 302 and cylinder longitudinal axis 121 coincide.
  • the rotation 62 takes place around the press axis 302 or around the cylinder longitudinal axis 121.
  • the sintered components 5 are each designed as full cylinders made of electrically conductive material 51.
  • the sintering components 5 and the current source 4 are connected to one another in an electrically conductive manner, so that the electrical sintering current 40 is introduced indirectly into the sintering material 2 via one of the sintering components 5 during the sintering 1002 and via the further sintering Component 5 can be derived from the sinter material 2 again.
  • the following method steps are carried out: a) arranging sintering material 2 with powder particles 20 in the sintering container 11 and b) sintering 1002 in the sinter -Container 11 arranged sinter material 2, wherein during the sintering 1002 sintering pressure 30 is exerted on the sinter material 2, electrical sintering current 40 is introduced into the sinter container 11 and / or into the sinter material 2 and the sinter -Good 2 is exposed to a shear load 60.
  • a spark plasma sintering process is carried out, in which, in addition to exerting the sintering pressure 30 on the sintered material 2 with the (electrically conductive) powder particles 20 and introducing the sintering current 40 into the sintering Good 2 the sintered good 2 is subjected to a shear load 60.
  • an oscillating rotational movement 63 is carried out with the aid of the rotation device 61.
  • the sintering device 1 has a large number of the described sintering units 10. A large number of the contact materials can thus be produced in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung betrifft eine Sinter-Vorrichtung mit mindestens einer Sinter-Einheit zum Sintern von Sinter-Gut. Das Sinter-Gut weist Pulver-Partikel auf. Ausgestattet ist die Sinter-Einheit mit mindestens einem Sinter-Behälter zur Aufnahme des Sinter-Guts, mit mindestens einer Druck-Quelle zum Ausüben von Sinter-Druck auf das im Sinter-Behälter aufgenommene Sinter-Gut während des Sinterns, mit mindestens einer StromQuelle zum Einleiten von elektrischem Sinter-Strom während des Sinterns in den Sinter-Behälter und/oder in das im Sinter-Behälter aufgenommene Sinter-Gut und mit mindestens einer Sinter-Komponente für das Ausüben des Sinter-Drucks und für das Einleiten des elektrischen Sinter-Stroms. Dabei ist mindestens eine Scher-Belastungs-Quelle zum Aussetzen des im Sinter-Behälter aufgenommenen Sinter-Guts einer Scher-Belastung während des Sinterns vorhanden. Vorzugsweise weist die Scher-Belastungs-Quelle zumindest eine Rotations-Vorrichtung zum Rotieren des Sinter-Behälters und/oder zum Rotieren der Sinter-Komponente auf, so dass die Scher-Belastung während des Sinterns in das Sinter-Gut eingebracht werden kann. Mit dem Einbringen von der Scher-Belastung während des Sinterns resultiert ein zusätzlicher Freiheitsgrad für eine Form-Gebung des Sinter-Köpers mit dem Sinter-Gut. Neben der Sinter-Vorrichtung wird ein Verfahren zum Herstellen eines elektrischen Kontakt-Werkstoffs unter Verwendung der Sinter-Vorrichtung angegeben, sowie ein auf diese Weise hergestellter elektrischer Kontakt-Werkstoff und dessen Verwendung für mindestens einen elektrischen Kontakt einer Mittelspannungs-Vakuum-Schaltröhre.

Figure imgaf001
The invention relates to a sintering device with at least one sintering unit for sintering sintered material. The sintered material has powder particles. The sintering unit is equipped with at least one sintering container for receiving the sintering material, with at least one pressure source for exerting sintering pressure on the sintering material received in the sintering container during sintering, with at least one power source for Introducing electrical sintering current during sintering into the sintering container and / or into the sintering material received in the sintering container and with at least one sintering component for exerting the sintering pressure and for introducing the electrical sintering current . There is at least one shear stress source for exposing the sintered material received in the sintering container to a shear stress during sintering. The shear stress source preferably has at least one rotation device for rotating the sintering container and / or for rotating the sintered component, so that the shear stress can be introduced into the sintered material during sintering. The introduction of the shear load during sintering results in an additional degree of freedom for shaping the sintered body with the sintered material. In addition to the sintering device, a method for producing an electrical contact material using the sintering device is specified, as well as an electrical contact material produced in this way and its use for at least one electrical contact of a medium-voltage vacuum interrupter.
Figure imgaf001

Description

Die Erfindung betrifft eine Sinter-Vorrichtung mit Druck-Quelle zum Ausüben von Sinter-Druck auf ein in einem Sinter-Behälter aufgenommenes Sinter-Gut und mit einer Strom-Quelle zum Einleiten von elektrischem Sinter-Strom während des Sinterns in den Sinter-Behälter und/oder in das im Sinter-Behälter aufgenommene Sinter-Gut. Daneben wird ein Verfahren zum Herstellen eines elektrischen Kontakt-Werkstoffs unter Verwendung der Sinter-Vorrichtung, sowie ein elektrischer Kontakt-Werkstoff, der gemäß dem Verfahren hergestellt wird, und eine Verwendung des elektrischen Kontakt-Werkstoffs angegeben.The invention relates to a sintering device with a pressure source for exerting sintering pressure on a sintered material accommodated in a sintering container and with a current source for introducing electrical sintering current into the sintering container during sintering / or in the sintered material received in the sintering container. In addition, a method for producing an electrical contact material using the sintering device, as well as an electrical contact material which is produced according to the method, and a use of the electrical contact material are specified.

Der elektrische Kontakt-Werkstoff ist beispielsweise ein Kupfer-Chrom-Kontakt-Werkstoff (Cu-Cr-Kontakt-Werkstoff), der für einen elektrischen Kontakt in einer Mittelspannungs-Vakuum-Schaltröhre eingesetzt wird. Ein solcher Kontakt-Werkstoff wird beispielsweise pulvermetallurgisch durch Sintern hergestellt. Dazu wird beispielswiese eine Spark-Plasma-Sinter(SPS) - Anlage verwendet. Eine solche Sinter-Vorrichtung weist beispielsweise eine Sinter-Einheit zum Sintern von Sinter-Gut (Sinter-Körper) mit elektrisch leitfähigen Pulver-Partikeln auf. Die elektrisch leitfähigen Pulver-Partikel sind im Fall des Kupfer-Chrom-Kontakt-Werkstoffs Pulver-Partikel aus Chrom und Pulver-Partikel aus Kupfer.The electrical contact material is, for example, a copper-chromium contact material (Cu-Cr contact material) that is used for an electrical contact in a medium-voltage vacuum interrupter. Such a contact material is produced, for example, by powder metallurgy by sintering. A spark plasma sintering (SPS) system is used for this purpose. Such a sintering device has, for example, a sintering unit for sintering sintered material (sintered body) with electrically conductive powder particles. In the case of the copper-chromium contact material, the electrically conductive powder particles are powder particles made of chromium and powder particles made of copper.

Das Sinter-Gut wird in einem Sinter-Behälter angeordnet. Zum Sintern wird unter Sinter-Druck (z.B. uniaxialer Press-Druck) thermische Sinter-Energie in das Sinter-Gut eingebracht. Während des Sinterns wird der Sinter-Druck auf das Sinter-Gut ausgeübt. Zusätzlich wird elektrischer Sinter-Strom durch den Sinter-Behälter und/oder durch das Sinter-Gut geleitet. Der Sinter-Behälter und/oder das Sinter-Gut wirken als Widerstands-Heizung. Damit wird Joul'scher Wärme homogen im Sinter-Gut verteilt und es werden sehr hohe Aufheizraten erzielt. Der Sinter-Vorgang findet relativ schnell statt. Durch das zusätzliche Einwirken des Sinter-Drucks resultiert zudem ein gesinterter Körper mit hoher Verdichtung.The sintered material is placed in a sintering container. For sintering, thermal sintering energy is introduced into the sintered material under sintering pressure (eg uniaxial pressing pressure). During sintering, the sintering pressure is exerted on the sintered material. In addition, electrical sintering current is generated through the Sinter container and / or passed through the sinter material. The sintering container and / or the sintering material act as resistance heating. This means that Joule heat is distributed homogeneously in the sintered material and very high heating rates are achieved. The sintering process takes place relatively quickly. The additional action of the sintering pressure also results in a sintered body with high compression.

Zum Ausüben des Sinter-Drucks auf das Sinter-Gut wird ein Press-Werkzeug mit Press-Stempel verwendet. Diese Press-Stempel dienen dem Aufbringen des Sinter-Drucks auf das Sinter-Gut und dem Einleiten des elektrischen Sinter-Stroms in das Sinter-Gut.A pressing tool with a press punch is used to exert the sintering pressure on the sintered material. These press punches are used to apply the sintering pressure to the sintered material and to introduce the electrical sintering current into the sintered material.

Bei bestimmten Anwendungen ist es erforderlich, das Sinter-Gut massiv mechanisch zu deformieren (z.B. Strangpressen von Kontakt-Werkstoffen). Die mechanische Deformation, die in einer Spark-Plasma-Sinter-Anlage erreicht werden kann, reicht nicht aus, um ähnliche Ausmaße an Umformgraden zu erzeugen.In certain applications it is necessary to mechanically deform the sintered material in a massive manner (e.g. extrusion of contact materials). The mechanical deformation that can be achieved in a spark plasma sintering system is not sufficient to generate similar degrees of deformation.

Aufgabe der vorliegenden Erfindung ist es, aufzuzeigen, wie eine weitere mechanische Deformations-Möglichkeit eines Sinter-Guts mit hohem Umformungs-Grad in einer eingangs beschriebenen Sinter-Vorrichtung erreicht werden kann.The object of the present invention is to show how a further mechanical deformation possibility of a sintered material with a high degree of deformation can be achieved in a sintering device described above.

Zur Lösung der Aufgabe wird eine Sinter-Vorrichtung mit mindestens einer Sinter-Einheit zum Sintern von Sinter-Gut angegeben. Das Sinter-Gut weist Pulver-Partikel auf. Ausgestattet ist die Sinter-Einheit mit mindestens einem Sinter-Behälter zur Aufnahme des Sinter-Guts, mit mindestens einer Druck-Quelle zum Ausüben von Sinter-Druck auf das im Sinter-Behälter aufgenommene Sinter-Gut während des Sinterns, mit mindestens einer Strom-Quelle zum Einleiten von elektrischem Sinter-Strom während des Sinterns in den Sinter-Behälter und/oder in das im Sinter-Behälter aufgenommene Sinter-Gut und mit mindestens einer Sinter-Komponente für das Ausüben des Sinter-Drucks und für das Einleiten des elektrischen Sinter-Stroms. Dabei ist mindestens eine Scher-Belastungs-Quelle (Scherungs-Quelle) zum Aussetzen des im Sinter-Behälter aufgenommenen Sinter-Guts einer Scher-Belastung (Scherung) während des Sinterns vorhanden. Die Scher-Belastung gelingt beispielsweise durch das Aufbringen eines Drehmoments. Die Scher-Belastungs-Quelle fungiert als Drehmoment-Quelle. Das Sinter-Gut ist während des Sinterns einem Drehmoment ausgesetzt. Vorzugsweise weist die Scher-Belastungs-Quelle zumindest eine Rotations-Vorrichtung zum Rotieren des Sinter-Behälters und/oder zum Rotieren der Sinter-Komponente auf, so dass die Scher-Belastung während des Sinterns in das Sinter-Gut eingebracht werden kann. Mit Hilfe der Rotations-Vorrichtung kann der Sinter-Behälter mit dem Sinter-Gut während des Sinterns rotiert werden. Es kann eine Rotations-Bewegung des Sinter-Behälters und damit des im Sinter-Behälter angeordneten Sinter-Guts ausgeführt werden. Dies gelingt beispielsweise durch ein Rotieren der Sinter-Komponente dadurch, dass der Sinter-Behälter bzw. das Sinter-Gut im Sinter-Behälter und die Sinter-Komponente stoff- oder reibschlüssig miteinander verbunden sind.To achieve the object, a sintering device with at least one sintering unit for sintering sintered material is specified. The sintered material has powder particles. The sintering unit is equipped with at least one sintering container for receiving the sintered material, with at least one pressure source for exerting sintering pressure on the sintering material received in the sintering container during sintering, with at least one current Source for introducing electrical sintering current during sintering into the sintering container and / or into the sintering material received in the sintering container and with at least one sintering component for exerting the sintering pressure and for introducing the electrical sintering -Current. There is at least one source of shear stress (Shear source) for exposing the sinter material received in the sintering container to a shear load (shear) during sintering. The shear load is achieved, for example, by applying a torque. The shear stress source acts as a torque source. The sintered material is exposed to a torque during sintering. The shear load source preferably has at least one rotation device for rotating the sintering container and / or for rotating the sintered component, so that the shearing load can be introduced into the sintered material during sintering. With the aid of the rotation device, the sintering container with the sintered material can be rotated during sintering. A rotational movement of the sintering container and thus of the sintered material arranged in the sintering container can be carried out. This is achieved, for example, by rotating the sintered component in that the sintered container or the sintered material in the sintered container and the sintered component are connected to one another in a material or frictional connection.

Neben der Sinter-Vorrichtung wird ein Verfahren zum Herstellen eines elektrischen Kontakt-Werkstoffs unter Verwendung der Sinter-Vorrichtung angegeben. Mit dem Verfahren wird ein Sinter-Werkstoff in Form eines elektrischen Kontakt-Werkstoffs hergestellt. Das Verfahren weist folgenden Verfahrensschritte auf: a) Anordnen von Sinter-Gut mit Pulver-Partikeln im Sinter-Behälter und b) Sintern des im Sinter-Behälter angeordneten Sinter-Guts, wobei während des Sinterns Sinter-Druck auf das Sinter-Gut ausgeübt, elektrischer Sinter-Strom in den Sinter-Behälter und/oder in das Sinter-Gut eigeleitet und das Sinter-Gut einer Scher-Belastung ausgesetzt wird. Während des Sinterns wird das Sinter-Gut verpresst und es wird während des Sinterns durch den Sinter-Behälter und/oder durch das Sinter-Gut elektrischer Sinter-Strom geleitet. Der Sinter-Behälter ist beispielsweise aus elektrisch leitfähigem Material wie Kupfer oder Graphit. Zusätzlich wird während des Sinterns das Sinter-Gut einer Scher-Belastung (Scherung) ausgesetzt. Die Scher-Belastung führt im Vergleich zum Stand der Technik zu einer Verringerung einer Porosität des resultierenden gesinterten Körpers (Sinter-Bauteils). Zudem wird durch die Scher-Belastung ein beträchtliches Maß an Umformung des resultierenden Körpers erzielt.In addition to the sintering device, a method for producing an electrical contact material using the sintering device is specified. The method is used to produce a sintered material in the form of an electrical contact material. The method has the following process steps: a) arranging sintering material with powder particles in the sintering container and b) sintering the sintering material arranged in the sintering container, with sintering pressure being exerted on the sintering material during sintering, electrical sintering current is introduced into the sintering container and / or into the sintering material and the sintering material is exposed to a shear load. During the sintering process, the sintered material is pressed and, during the sintering, electrical sintering current is passed through the sintering container and / or through the sintered material. The sintering container is made of electrically conductive material such as copper or graphite, for example. In addition, the sintered material is subjected to a shear load (shear) during sintering. The Compared to the prior art, shear stress leads to a reduction in the porosity of the resulting sintered body (sintered component). In addition, a considerable amount of deformation of the resulting body is achieved by the shear stress.

Weitere Aspekte der Erfindung sind ein auf diese Weise hergestellter elektrischer Kontakt-Werkstoff und dessen Verwendung für mindestens einen elektrischen Kontakt einer Mittelspannungs-Vakuum-Schaltröhre. Der elektrischer Kontakt-Werkstoff ist insbesondere ein Kupfer-Chrom-Kontakt-Werkstoff.Further aspects of the invention are an electrical contact material produced in this way and its use for at least one electrical contact of a medium-voltage vacuum interrupter. The electrical contact material is in particular a copper-chromium contact material.

Die Sinter-Vorrichtung ist eine Spark-Plasma-Sinter-Anlagen. In der Spark-Plasma-Sinter-Anlage kann ein Sinter-Gut (Sinter-Körper) mit elektrisch leifähigen Pulver-Partikeln gesintert werden. Während des Sinterns wir Strom durch das Sinter-Gut hindurchgeleitet. Die elektrisch leitfähigen Pulver-Partikel des Sinter-Guts sind vorzugsweise Pulver-Partikel mindestens eines Metalls oder Mischungen von Pulver-Partikeln verschiedener Metalle. Beispielsweise sind die Metalle Kupfer und Chrom und das Sinter-Gut weist KupferPulver-Partikel und Chrom-Pulver-Partikel auf. Der resultierende gesinterte Körper ist aus einem Kupfer-Chrom-Kontakt-Werkstoff.The sintering device is a spark plasma sintering system. In the spark plasma sintering system, a sintered product (sintered body) can be sintered with electrically conductive powder particles. During sintering, electricity is passed through the sintered material. The electrically conductive powder particles of the sintered material are preferably powder particles of at least one metal or mixtures of powder particles of different metals. For example, the metals are copper and chromium and the sintered material has copper powder particles and chromium powder particles. The resulting sintered body is made of a copper-chromium contact material.

Der Sinter-Behälter (Sinter-Form, Sinter-Kammer, Sinter-Matrize) zur Aufnahme des Sinter-Guts mit den Pulver-Partikeln dient einer Form-Gebung (Formung) des Sinter-Guts. Es wird ein Grünkörper mit den Pulver-Partikeln gebildet. Vorzugsweise findet dabei eine Vor-Verdichtung des Sinter-Guts statt. Der resultierende Grünkörper kann dabei eine relativ einfache Form aufweisen. Beispielsweise liegt der Grünkörper als Scheibe vor. Ein Grünkörper mit einer komplexen Geometrie ist aber auch denkbar.The sintering container (sintering mold, sintering chamber, sintering die) for holding the sintered material with the powder particles is used to shape the sintered material. A green body is formed with the powder particles. Pre-compression of the sintered material preferably takes place. The resulting green body can have a relatively simple shape. For example, the green body is in the form of a disk. However, a green body with a complex geometry is also conceivable.

Die grundliegende Idee der Erfindung ist es, während des Sinterns unter Sinter-Druck inklusive des Einleitens des Sinter-Stroms in das Sinter-Gut eine zusätzliche Formgebung mit Hilfe der Scherung zu ermöglichen. Dadurch entsteht ein weiterer Freiheitsgrad für die Form-Gebung. Es wird neben einer translatorischen Bewegung des Sinter-Guts (durch das Ausüben des Sinter-Drucks) beispielsweise auch eine rotatorische Bewegung des Sinter-Guts durchgeführt. Durch die rotatorische Bewegung wird eine Scher-Deformation des Sinter-Körpers erreicht.The basic idea of the invention is to provide additional shaping during the sintering under sintering pressure including the introduction of the sintering current into the sintered material with the help of shear. This creates a further degree of freedom for the shaping. In addition to a translational movement of the sintered material (by exerting the sintering pressure), for example, a rotational movement of the sintered material is also carried out. The rotational movement causes a shear deformation of the sintered body.

Mit Blick auf den einzubringenden Sinter-Strom wird vorzugsweise Sinter-Gut mit metallischen Pulver-Partikeln verwendet. Dadurch kann der Sinter-Strom kann durch das Sinter-Gut hindurch geleitet werden. Denkbar sind aber auch die Verwendung elektrisch isolierender (elektrisch nicht leitender) Pulver-Partikel. Der elektrische Sinter-Strom wird dann durch den Sinter-Behälter geleitet. Dazu ist der Sinter-Behälter aus elektrisch leitfähigem Material, beispielsweise Grafit. Möglich sind auch Metalle oder Metall-Legierungen für das Behälter-Material, beispielsweise eine Molybdän-Legierung (MTZ).With a view to the sintering stream to be introduced, sintering material with metallic powder particles is preferably used. As a result, the sintering current can be passed through the sintered material. However, the use of electrically insulating (electrically non-conductive) powder particles is also conceivable. The sintering electrical current is then passed through the sintering container. For this purpose, the sintered container is made of an electrically conductive material, for example graphite. Metals or metal alloys are also possible for the container material, for example a molybdenum alloy (MTZ).

Im Hinblick auf den erwähnten Kupfer-Chrom-Kontakt-Werkstoff wird das Sintern vorzugsweise bei einer Temperatur durchgeführt, die aus dem Bereich von 100°C bis 1100°C und insbesondere aus dem Bereich von 200°C bis 1050°C ausgewählt ist. Das Sintern erfolgt bei einer Sinter-Temperatur unter der Schmelz-Temperatur von reinem Kupfer (1.085 °C).With regard to the aforementioned copper-chromium contact material, the sintering is preferably carried out at a temperature which is selected from the range from 100.degree. C. to 1100.degree. C. and in particular from the range from 200.degree. C. to 1050.degree. Sintering takes place at a sintering temperature below the melting temperature of pure copper (1,085 ° C).

Gemäß einer besonderen Ausgestaltung weist die Druck-Quelle mindestens ein Press-Werkzeug zum Ausüben des Sinter-Drucks auf die Sinter-Komponente auf. Über die Sinter-Komponente wird der Sinter-Druck auf das Sinter-Gut weitergeleitet. Vorzugsweise weist dazu das Press-Werkzeug mindestens einen Press-Stempel auf. Während des Sinterns wird mit Hilfe des auf den oder die Press-Stempel ausgeübten Drucks das im Sinter-Behälter angeordnete Sinter-Gut mit den Pulver-Partikeln zusammengepresst. Dabei wird beispielsweise ein Sinter-Druck (Press-Druck) auf das Sinter-Gut ausgeübt, der aus dem Bereich von 300 N/mm2 - 800 N/mm2 ausgewählt ist.According to a particular embodiment, the pressure source has at least one pressing tool for exerting the sintering pressure on the sintering component. The sintering pressure is passed on to the sintered material via the sintering component. For this purpose, the press tool preferably has at least one press punch. During the sintering, the sintered material arranged in the sintering container is pressed together with the powder particles with the aid of the pressure exerted on the press punch (s). For example, a sintering pressure (pressing pressure) is exerted on the sintered material, which is selected from the range of 300 N / mm 2 - 800 N / mm 2 .

In einer besonderen Ausgestaltung können mit Hilfe der Rotations-Vorrichtung ein oszillierendes und/oder eine einsinniges Rotieren durchgeführt werden. Eine Rotations-Richtung des Rotierens kann abwechselnd entgegengesetzt oder in einer Richtung gleichbleibend sein.In a special embodiment, the rotation device can be used to carry out an oscillating and / or unidirectional rotation. A direction of rotation of the rotation can alternately be opposite or constant in one direction.

Dabei ist es besonders vorteilhaft, wenn Sinter-Komponente an einer Kontakt-Fläche lösbar mit dem Sinter-Gut und/oder lösbar mit dem Sinter-Behälter verbunden ist. Zum Beispiel ist die Sinter-Komponente an einer Kontakt-Fläche zum Sinter-Gut (Sinter-Körper) hin aufgeraut. Die Kontakt-Fläche ist strukturiert. Dadurch ist eine Reibung zwischen dem Sinter-Gut und der Sinter-Komponente erhöht. Die Sinter-Komponente und der Sinter-Körper sind über einen Reib-Schluss miteinander verbunden. Die lösbare Verbindung führt im Vergleich zu einer bleibenden Verbindung (beispielsweise durch eine Schweiß-Verbindung) zu einer erhöhten Flexibilität der Sinter-Vorrichtung.It is particularly advantageous if the sintered component is detachably connected to the sintered material and / or detachably to the sintered container on a contact surface. For example, the sintered component is roughened on a contact surface with the sintered material (sintered body). The contact area is structured. As a result, friction between the sintered material and the sintered component is increased. The sintered component and the sintered body are connected to one another via a friction lock. The releasable connection leads to an increased flexibility of the sintering device compared to a permanent connection (for example by a welded connection).

Insbesondere weist der Press-Stempel elektrisch leitendes Material auf. Das elektrisch leitende Material ist beispielsweise Kupfer. Mit dem elektrisch leitenden Material, das zudem über eine notwendige Festigkeit verfügt, ist es möglich, über den Press-Stempel nicht nur den Sinter-Druck auf das Sinter-Gut, sondern auch den elektrischen Sinter-Strom in das Sinter-Gut (mit elektrisch leitfähigen Pulver-Partikeln) ein-. bzw. aus dem Sinter-Gut auszuleiten. Denkbar ist aber auch, dass der Press-Stempel und elektrisch leitenden Pulver-Partikel des Sinter-Gut elektrisch voneinander isoliert sind, beispielsweise durch Verwendung von elektrisch isolierendem Material für den Press-Stempel. In diesem Fall erfolgt die Einleitung des Sinter-Stroms separat.In particular, the press punch has an electrically conductive material. The electrically conductive material is, for example, copper. With the electrically conductive material, which also has the necessary strength, it is possible to use the press stamp not only to apply the sintering pressure to the sintered material, but also to transfer the electrical sintering current into the sintered material (with electrical conductive powder particles). or to derive from the sintered material. However, it is also conceivable that the press ram and electrically conductive powder particles of the sintered material are electrically isolated from one another, for example by using electrically insulating material for the press ram. In this case, the sintering current is introduced separately.

Während des Sinterns kann isostatischer Sinter-Druck auf das Sinter-Gut ausgeübt werden. Vorzugsweise wird aber uniaxialer Sinter-Druck während des Sinterns eingebracht. In einer besonderen Ausgestaltung ist daher der Sinter-Druck ein uniaxialer Press-Druck, der entlang einer Press-Achse auf das Sinter-Gut ausgeübt werden kann.During sintering, isostatic sintering pressure can be exerted on the sintered material. Preferably, however, uniaxial sintering pressure is applied during sintering. In a particular embodiment, the sintering pressure is therefore a uniaxial pressing pressure that can be exerted on the sintered material along a pressing axis.

Grundsätzlich ist jede beliebige Form für den Sinter-Behälter denkbar. Vorzugsweise ist dabei der Sinter-Behälter zumindest teilweise als Hohl-Zylinder mit Zylinder-Stirn-Seite und mit Zylinder-Längs-Achse ausgestaltet. Die Zylinder-Stirn-Seite des Hohl-Zylinders weist dabei die Sinter-Komponente auf. Darüber hinaus sind die Press-Achse und die Zylinder-Längs-Achse derart aneinander angeordnet, dass der uniaxiale Press-Druck mittelbar über die Sinter-Komponente entlang der Zylinder-Längs-Achse auf das Sinter-Gut ausgeübt werden kann. Die Zylinder-Stirn-Seite des Hohl-Zylinders wird von der Sinter-Komponente begrenzt. Die Press-Achse und die Zylinder-Längs-Achse sind derart zueinander ausgerichtet, dass der uniaxiale Press-Druck entlang der Zylinder-Längs-Achse auf das Sinter-Gut ausgeübt werden kann. Die Zylinder-Längs-Achse und die Press-Achse fallen zusammen. Das Sinter-Gut wird in den Hohl-Zylinder eingefüllt. Das eingefüllte Sinter-Gut wird verpresst durch Ausüben eines uniaxialen Press-Drucks entlang der Zylinder-Längs-Achse. Es findet ein Vor-Verpressen statt.In principle, any desired shape for the sintering container is conceivable. The sinter container is preferably designed at least partially as a hollow cylinder with a cylinder front side and a cylinder longitudinal axis. The cylinder front side of the hollow cylinder has the sintered component. In addition, the pressing axis and the cylinder longitudinal axis are arranged next to one another in such a way that the uniaxial pressing pressure can be exerted on the sintered material indirectly via the sintering component along the cylinder longitudinal axis. The cylinder front side of the hollow cylinder is bounded by the sintered component. The pressing axis and the cylinder longitudinal axis are aligned with one another in such a way that the uniaxial pressing pressure can be exerted on the sintered material along the cylinder longitudinal axis. The cylinder longitudinal axis and the press axis coincide. The sintered material is poured into the hollow cylinder. The filled sintered material is pressed by exerting a uniaxial pressing pressure along the longitudinal axis of the cylinder. Pre-pressing takes place.

Nachfolgend wird gesintert. Dabei wird ebenfalls entlang der Zylinder-Längs-Achse uniaxialer Sinter-Druck (Press-Druck) auf das Sinter-Gut ausgeübt. Während des Sinterns wird elektrischer Sinter-Strom in das Sinter-Gut eingeleitet. Dies ist dabei während des gesamten Sinter-Prozesses gewährleitet. Gleichzeitig findet um die Zylinder-Längs-Achse die Rotation statt. Durch die Rotation resultiert das Drehmoment. In Folge davon kommt es zur Scher-Belastung des Sinter-Guts.This is followed by sintering. In this case, uniaxial sintering pressure (pressing pressure) is also exerted on the sintered material along the longitudinal axis of the cylinder. During sintering, electrical sintering current is introduced into the sintered material. This is guaranteed during the entire sintering process. At the same time, the rotation takes place around the cylinder's longitudinal axis. The rotation results in the torque. As a result, there is shear stress on the sintered material.

Die Sinter-Vorrichtung kann eine einzige Sinter-Einheit aufweisen. Denkbar ist insbesondere, dass die Sinter-Vorrichtung eine Vielzahl von Sinter-Einheiten aufweist. Die Die Sinter-Einheiten sind dabei derart angeordnet, dass mehrere Sinter-Chargen (Grünkörper) in mehreren Sinter-Behältern parallel (also gleichzeitig) oder seriell (also zeitlich nacheinander) gesintert werden können. Dabei können die Sinter-Einheiten gemeinsame Sinter-Bestandzeile (z.B. eine Wärme-Quelle zum Einbringen von thermischer Energie) aufweisen.The sintering device can have a single sintering unit. In particular, it is conceivable that the sintering device has a large number of sintering units. The sintering units are arranged in such a way that several sintering batches (green bodies) can be sintered in several sintering containers in parallel (that is, simultaneously) or in series (that is, one after the other). Here you can the sintering units have common sintering components (eg a heat source for introducing thermal energy).

Mit Hilfe der Sinter-Vorrichtung bzw. mit Hilfe des Verfahrens können verschiedenste Bauteile aus verschiedensten Werkstoffen bzw. aus verschiedenen Kontakt-Werkstoffen hergestellt werden. Insbesondere ist mit dem Verfahren als elektrischer Kontakt-Werkstoff ein Kupfer-Chrom-Kontakt-Werkstoff zugänglich. Dabei ist ein Gewichts-Anteil des Chroms an dem Kupfer-Chrom-Kontakt-Werkstoff aus dem Bereich von 10 Gew.% bis 80 Gew.% und insbesondere aus dem Bereich von 20 Gew.% bis 60 Gew.% gewählt. Vorzugsweise liegt der Gewichts-Anteil des Chroms unter 50 Gew.%. Ein Gewichts-Anteil des Kupfers ist entsprechend aus dem Bereich von 90 Gew,% bis 20 Gew% und insbesondere aus dem Bereich von 80 Gew.% bis 40 Gew.% ausgewählt. Der Gewichts-Anteil des Kupfers liegt vorzugsweise über 50 Gew.%, beispielweise zwischen 55 Gew.% bis 75 Gew.%. Ein Anteil an Verunreinigungen im Kupfer-Chrom-Kontakt-Werkstoff ist dabei möglichst gering. Beispielsweise liegen Verunreinigungen im elektrischen Kontakt-Werkstoff und/oder in den verschiedenen Phasen mit einem Gewichts-Anteil von unter 1 Gew.% und vorzugsweise von unter 0,1 Gew.% vor.With the help of the sintering device or with the help of the method, a wide variety of components can be produced from a wide variety of materials or from different contact materials. In particular, a copper-chromium contact material is accessible as the electrical contact material with the method. A weight fraction of the chromium in the copper-chromium contact material is selected from the range from 10% by weight to 80% by weight and in particular from the range from 20% by weight to 60% by weight. The proportion by weight of the chromium is preferably below 50% by weight. A proportion by weight of the copper is selected accordingly from the range from 90% by weight to 20% by weight and in particular from the range from 80% by weight to 40% by weight. The proportion by weight of copper is preferably above 50% by weight, for example between 55% by weight and 75% by weight. A proportion of impurities in the copper-chromium contact material is as low as possible. For example, impurities are present in the electrical contact material and / or in the various phases with a weight fraction of less than 1% by weight and preferably less than 0.1% by weight.

Der Vorteil der Erfindung lässt sich wie folgt zusammenfassen: Neben einer translatorischen Bewegung zum Aufbringen des uniaxialen Drucks wird der Sinter-Behälter und damit das Sinter-Gut rotatorisch bewegt. Mit der Erfindung wird während des Sinterns eine Scher-Deformation des Sinter-Körpers erreicht. Je nach Wahl der Prozessbedingungen (Sinter-Temperatur, Sinter-Druck) kann eine massive Umformung des Sinter-Körpers erreicht werden.The advantage of the invention can be summarized as follows: In addition to a translational movement for applying the uniaxial pressure, the sintering container and thus the sintering material is moved in a rotary manner. With the invention, a shear deformation of the sintered body is achieved during sintering. Depending on the choice of process conditions (sintering temperature, sintering pressure), massive reshaping of the sintered body can be achieved.

Anhand eines Ausführungsbeispiels und der dazugehörigen Figuren wird die Erfindung näher beschrieben. Die Figuren sind schematisch und stellen keine maßstabsgetreuen Abbildungen dar.

  • Figur 1 zeigt einen Ausschnitt einer Sinter-Vorrichtung.
  • Figur 2 zeigt ein Verfahren zum Sintern von Sinter-Gut unter Verwendung der Sinter-Vorrichtung.
  • Figur 3 zeigt einen Ausschnitt einer Mittelspannungs-Vakuum-Schaltröhre mit elektrischem Kontakt.
The invention is described in more detail using an exemplary embodiment and the associated figures. The figures are schematic and do not represent true-to-scale illustrations.
  • Figure 1 shows a section of a sintering device.
  • Figure 2 Fig. 10 shows a method of sintering sintering materials using the sintering device.
  • Figure 3 shows a section of a medium-voltage vacuum interrupter with electrical contact.

Die Sinter-Vorrichtung 1 ist zur Herstellung eines Bauteils in Form eines elektrischen Kontakts 2001 einer Mittelspannungs-Vakuum-Schaltröhre 2000 geeignet. Der elektrische Kontakt 2001 weist den elektrischen Kontakt-Werkstoff 2002 auf. Der elektrische Kontakt-Werkstoff 2002 ist ein Kupfer-Chrom-Kontakt-Werkstoff. Der Gewichtsanteil von Kupfer beträgt 50 Gew.% und der Gewichtsanteil von Chrom 50 Gew.%. Alternativ betragen der Gewichtsanteil von Kupfer 55 Gew.% und der des Chroms 45 Gew.%.The sintering device 1 is suitable for producing a component in the form of an electrical contact 2001 of a medium-voltage vacuum interrupter 2000. The electrical contact 2001 has the electrical contact material 2002. The electrical contact material 2002 is a copper-chromium contact material. The proportion by weight of copper is 50% by weight and the proportion by weight of chromium is 50% by weight. Alternatively, the proportion by weight of copper is 55% by weight and that of chromium 45% by weight.

Die Sinter-Vorrichtung 1 weist eine oder mehrere Sinter-Einheiten 10 zum Sintern 1002 von Sinter-Gut 2 auf. Für die Herstellung des Kupfer-Chrom-Kontakt-Werkstoffs bilden metallische Chrom-Partikel und metallische Kupfer-Partikel (elektrisch leitfähige) Pulver-Partikel 20 des Sinter-Guts 2.The sintering device 1 has one or more sintering units 10 for sintering 1002 of sintering material 2. For the production of the copper-chromium contact material, metallic chrome particles and metallic copper particles form (electrically conductive) powder particles 20 of the sintered material 2.

Die Sinter-Einheit 10 umfasst einen Sinter-Behälter 11 aus Grafit zur Aufnahme des Sinter-Guts 2, eine Druck-Quelle 3 zum Ausüben von Sinter-Druck 30 auf das im Sinter-Behälter 11 aufgenommene Sinter-Gut 2 mit den elektrisch leitfähigen Pulver-Partikeln 20 während des Sinterns 1002 und eine elektrische Strom-Quelle 4 zum Einleiten von elektrischem Sinter-Strom 40 in den Sinter-Behälter 11 und/oder in das im Sinter-Behälter 11 aufgenommene Sinter-Gut 2 mit den elektrisch leitfähigen Pulver-Partikeln 20 während des Sinterns 1002. Zudem sind zwei Sinter-Komponenten 5 für das Ausüben des Sinter-Drucks 30 und für das Einleiten des elektrischen Sinter-Stroms 40 in das Sinter-Gut 2 vorhanden. Die Sinter-Komponenten 5 bestehen aus elektrisch leitfähigem Material 51. Das elektrisch leitfähige Material ist Edelstahl.The sintering unit 10 comprises a sintering container 11 made of graphite for receiving the sintering material 2, a pressure source 3 for exerting sintering pressure 30 on the sintering material 2 with the electrically conductive powder received in the sintering container 11 Particles 20 during sintering 1002 and an electrical current source 4 for introducing electrical sintering current 40 into the sintering container 11 and / or into the sintering material 2 with the electrically conductive powder particles received in the sintering container 11 20 during sintering 1002. In addition, two sintering components 5 are present for exerting the sintering pressure 30 and for introducing the electrical sintering current 40 into the sintered material 2. The sintered components 5 consist of electrically conductive material 51. The electrically conductive material is stainless steel.

Zudem ist eine Scher-Belastung-Quelle 6 zum Aussetzen des im Sinter-Behälter 11 aufgenommenen Sinter-Guts 2 einer Scher-Belastung 60 während des Sinterns 1002 vorhanden. Die Scher-Belastungs-Quelle 6 weist zumindest eine Rotations-Vorrichtung 61 zum Rotieren 62 des Sinter-Behälters 11 und/oder zum Rotieren 62 der Sinter-Komponente 5 auf, so dass die Scher-Belastung 60 während des Sinterns 1002 in das Sinter-Gut 2 eingebracht werden kann. Das Rotieren umfasst ein oszillierendes Rotieren 62 mit der Rotations-Richtung 620 auf. Es treten zusätzliche Reibungs-Kräfte 600 auf.In addition, there is a shear stress source 6 for subjecting the sintered material 2 received in the sintering container 11 to a shear stress 60 during the sintering 1002. The shear load source 6 has at least one rotation device 61 for rotating 62 the sintering container 11 and / or for rotating 62 the sintered component 5, so that the shear load 60 during the sintering 1002 in the sintering Good 2 can be introduced. The rotation includes an oscillating rotation 62 with the rotation direction 620. Additional frictional forces 600 occur.

Dabei sind die Sinter-Komponenten 5 an einer jeweiligen Kontakt-Fläche 50 lösbar mit dem Sinter-Gut 2 und/oder lösbar mit dem Sinter-Behälter 11 verbunden. Dies gelingt jeweils mit einem Reib-Schluss 51. Dazu sind die Kontakt-Flächen 50 strukturiert.The sintering components 5 are releasably connected to the sintered material 2 and / or releasably to the sintering container 11 on a respective contact surface 50. This is achieved in each case with a friction closure 51. For this purpose, the contact surfaces 50 are structured.

Die Druck-Quelle 3 umfasst ein Press-Werkzeug 31 zum Ausüben des Sinter-Drucks 30 auf das im Sinter-Behälter 11 angeordnete Sinter-Gut 2. Das Press-Werkzeug 31 weist einen Press-Stempel 32 auf. Der Press-Stempel 32 umfasst elektrisch leitfähiges Material 320, das mit den elektrisch leitfähigen Pulver-Partikeln 20 elektrisch leitend verbunden ist. Das elektrisch leitfähige Material 320 des Press-Stempels 32 ist Kupfer. Damit wird der elektrische Sinter-Strom 40 in das Sinter-Gut 2 eingeleitet.The pressure source 3 comprises a pressing tool 31 for exerting the sintering pressure 30 on the sintered material 2 arranged in the sintering container 11. The pressing tool 31 has a pressing punch 32. The press plunger 32 comprises electrically conductive material 320, which is connected in an electrically conductive manner to the electrically conductive powder particles 20. The electrically conductive material 320 of the press punch 32 is copper. The electrical sintering current 40 is thus introduced into the sintered material 2.

Der Sinter-Behälter 11 ist zumindest teilweise als Hohl-Zylinder 12 mit Zylinder-Stirn-Seiten 120 und mit Zylinder-Längs-Achse 121 ausgestaltet. Die Zylinder-Stirn-Seiten 120 des Hohl-Zylinders 12 weisen die Sinter-Komponenten 5 auf und wird von deren strukturiertem Kontakt-Flächen 50 begrenzt. Die Zylinder-Stirn-Seiten 120 werden von den Kontakt-Flächen 50 der Sinter-Komponenten 5 gebildet. Dabei sind die Press-Achse 302 und die Zylinder-Längs-Achse 121 sind derart aneinander angeordnet, dass der uniaxiale Press-Druck 301 mittelbar über die Sinter-Komponenten 5 entlang der Zylinder-Längs-Achse 121 auf das Sinter-Gut 2 ausgeübt werden kann. Die Press-Achse 302 und die Zylinder-Längs-Achse 121 fallen zusammen. Um die Press-Achse 302 bzw. um die Zylinder-Längs-Achs 121 findet das Rotieren 62 statt.The sintered container 11 is at least partially configured as a hollow cylinder 12 with cylinder end faces 120 and with a cylinder longitudinal axis 121. The cylinder end faces 120 of the hollow cylinder 12 have the sintered components 5 and are delimited by their structured contact surfaces 50. The cylinder end faces 120 are formed by the contact surfaces 50 of the sintered components 5. The pressing axis 302 and the cylinder longitudinal axis 121 are arranged next to one another in such a way that the uniaxial pressing pressure 301 is exerted on the sintered material 2 indirectly via the sintering components 5 along the cylinder longitudinal axis 121 can. The Press axis 302 and cylinder longitudinal axis 121 coincide. The rotation 62 takes place around the press axis 302 or around the cylinder longitudinal axis 121.

Die Sinter-Komponenten 5 sind als jeweils als Voll-Zylinder aus elektrisch leitfähigem Material 51 ausgebildet. Die Sinter-Komponenten 5 und die Strom-Quelle 4 sind elektrisch leitend miteinander verbunden, so dass der elektrische Sinter-Strom 40 mittelbar über eine der Sinter-Komponenten 5 während des Sinterns 1002 in das Sinter-Gut 2 eingeleitet und über die weitere Sinter-Komponente 5 aus dem Sinter-Gut 2 wieder abgeleitet werden kann.The sintered components 5 are each designed as full cylinders made of electrically conductive material 51. The sintering components 5 and the current source 4 are connected to one another in an electrically conductive manner, so that the electrical sintering current 40 is introduced indirectly into the sintering material 2 via one of the sintering components 5 during the sintering 1002 and via the further sintering Component 5 can be derived from the sinter material 2 again.

Gemäß dem Verfahren 1000 zum Herstellen eines elektrischen Kontaktwerk-Stoffs 2002 unter Verwendung der Sinter-Vorrichtung 1 werden folgende Verfahrensschritte durchgeführt: a) Anordnen von Sinter-Gut 2 mit Pulver-Partikeln 20 im Sinter-Behälter 11 und b) Sintern 1002 des im Sinter-Behälter 11 angeordneten Sinter-Guts 2, wobei während des Sinterns 1002 Sinter-Druck 30 auf das Sinter-Gut 2 ausgeübt, elektrischer Sinter-Strom 40 in den Sinter-Behälter 11 und/oder in das Sinter-Gut 2 eigeleitet und das Sinter-Gut 2 einer Scher-Belastung 60 ausgesetzt wird.According to the method 1000 for producing an electrical contact material 2002 using the sintering device 1, the following method steps are carried out: a) arranging sintering material 2 with powder particles 20 in the sintering container 11 and b) sintering 1002 in the sinter -Container 11 arranged sinter material 2, wherein during the sintering 1002 sintering pressure 30 is exerted on the sinter material 2, electrical sintering current 40 is introduced into the sinter container 11 and / or into the sinter material 2 and the sinter -Good 2 is exposed to a shear load 60.

Es wird ein Spark-Plasma-Sinter-Verfahren durchgeführt, bei dem zusätzlich zum Ausüben des Sinter-Drucks 30 auf das Sinter-Gut 2 mit den (elektrisch leitfähigen) Pulver-Partikeln 20 und zum Einleiten des Sinter-Stroms 40 in das Sinter-Gut 2 das Sinter-Gut 2 einer Scher-Belastung 60 ausgesetzt wird. Dazu wird mit Hilfe der Rotations-Vorrichtung 61 eine oszillierende Rotations-Bewegung 63 durchgeführt.A spark plasma sintering process is carried out, in which, in addition to exerting the sintering pressure 30 on the sintered material 2 with the (electrically conductive) powder particles 20 and introducing the sintering current 40 into the sintering Good 2 the sintered good 2 is subjected to a shear load 60. For this purpose, an oscillating rotational movement 63 is carried out with the aid of the rotation device 61.

Gemäß einer nicht dargestellten Ausführungsform verfügt die Sinter-Vorrichtung 1 über eine Vielzahl der beschriebenen Sinter-Einheiten 10. Damit kann eine Vielzahl der Kontakt-Werkstoffe parallel hergestellt werden.According to an embodiment not shown, the sintering device 1 has a large number of the described sintering units 10. A large number of the contact materials can thus be produced in parallel.

Claims (14)

Sinter-Vorrichtung (1) mit mindestens einer Sinter-Einheit (10) zum Sintern (1002) von Sinter-Gut (2), das Pulver-Partikel (20) aufweist, mit - mindestens einem Sinter-Behälter (11) zur Aufnahme des Sinter-Guts (2), - mindestens einer Druck-Quelle (3) zum Ausüben von Sinter-Druck (30) auf das im Sinter-Behälter (11) aufgenommene Sinter-Gut (2) während des Sinterns (1002), - mindestens einer Strom-Quelle (4) zum Einleiten von elektrischem Sinter-Strom (40) während des Sinterns (1002) in den Sinter-Behälter (11) und/oder in das im Sinter-Behälter (11) aufgenommene Sinter-Gut (2) und - mindestens einer Sinter-Komponente (5) für das Ausüben des Sinter-Drucks (30) und für das Einleiten des elektrischen Sinter-Stroms (40),
wobei
- mindestens eine Scher-Belastungs-Quelle (6) zum Aussetzen des im Sinter-Behälter (11) aufgenommenen Sinter-Guts (2) einer Scher-Belastung (60) während des Sinterns (1002) vorhanden ist.
Sintering device (1) with at least one sintering unit (10) for sintering (1002) sintered material (2) which has powder particles (20) - At least one sinter container (11) for receiving the sintered material (2), - At least one pressure source (3) for exerting sintering pressure (30) on the sintered material (2) received in the sintering container (11) during sintering (1002), - At least one power source (4) for introducing electrical sintering current (40) during sintering (1002) into the sintering container (11) and / or into the sintering material received in the sintering container (11) ( 2) and - At least one sintering component (5) for exerting the sintering pressure (30) and for introducing the electrical sintering current (40),
in which
- At least one shear stress source (6) for subjecting the sintered material (2) received in the sintering container (11) to a shear stress (60) during sintering (1002) is present.
Sinter-Vorrichtung nach Anspruch 1,
wobei die Scher-Belastungs-Quelle (6) zumindest eine Rotations-Vorrichtung (61) zum Rotieren (62) des Sinter-Behälters (11) und/oder zum Rotieren der Sinter-Komponente (5) aufweist, so dass die Scher-Belastung (60) während des Sinterns (1002) in das Sinter-Gut (2) eingebracht werden kann.
Sintering device according to claim 1,
wherein the shear stress source (6) has at least one rotation device (61) for rotating (62) the sintering container (11) and / or for rotating the sintered component (5), so that the shearing stress (60) can be introduced into the sintered material (2) during sintering (1002).
Sinter-Vorrichtung nach Anspruch 2,
wobei mit Hilfe der Rotations-Vorrichtung (61) ein oszillierendes und/oder eine einsinniges Rotieren (62) durchgeführt werden können.
Sintering device according to claim 2,
with the aid of the rotation device (61) an oscillating and / or unidirectional rotation (62) can be carried out.
Sinter-Vorrichtung nach einem der Ansprüche 1 bis 3, wobei die Sinter-Komponente (5) an einer Kontakt-Fläche (50) lösbar mit dem Sinter-Gut (2) und/oder lösbar mit dem Sinter-Behälter (11) verbunden ist.Sintering device according to one of Claims 1 to 3, the sintering component (5) being detachably connected to the sintered material (2) and / or detachably to the sintering container (11) on a contact surface (50) . Sinter-Vorrichtung nach einem der Ansprüche 1 bis 4, wobei die Druck-Quelle (3) mindestens ein Press-Werkzeug (31) zum Ausüben des Sinter-Drucks (30) auf die Sinter-Komponente (5) aufweist.Sintering device according to one of Claims 1 to 4, the pressure source (3) having at least one pressing tool (31) for exerting the sintering pressure (30) on the sintering component (5). Sinter-Vorrichtung nach Anspruch 5,
wobei das Press-Werkzeug (31) mindestens einen Press-Stempel (32) aufweist.
Sintering device according to claim 5,
wherein the pressing tool (31) has at least one pressing punch (32).
Sinter-Vorrichtung nach Anspruch 6,
wobei der Press-Stempel (32) elektrisch leitendes Material (320) aufweist.
Sintering device according to claim 6,
wherein the press punch (32) comprises electrically conductive material (320).
Sinter-Vorrichtung nach einem der Ansprüche 1 bis 7, wobei der Sinter-Druck (30) ein uniaxialer Press-Druck (301) ist, der entlang einer Press-Achse (302) auf das Sinter-Gut (2) ausgeübt werden kann.Sintering device according to one of Claims 1 to 7, the sintering pressure (30) being a uniaxial pressing pressure (301) which can be exerted on the sintered material (2) along a pressing axis (302). Sinter-Vorrichtung nach Anspruch 8,
wobei - der Sinter-Behälter (11) zumindest teilweise als Hohl-Zylinder (12) mit Zylinder-Stirn-Seite (120) und mit Zylinder-Längs-Achse (121) ausgestaltet ist, - die Zylinder-Stirn-Seite (120) des Hohl-Zylinders (12) die Sinter-Komponente (5) aufweist und - die Press-Achse (322) und die Zylinder-Längs-Achse (121) derart aneinander angeordnet sind, dass der uniaxiale Press-Druck (301) mittelbar über die Sinter-Komponente (5) entlang der Zylinder-Längs-Achse (121) auf das Sinter-Gut (2) ausgeübt werden kann.
Sintering device according to claim 8,
in which - The sinter container (11) is at least partially designed as a hollow cylinder (12) with a cylinder front side (120) and with a cylinder longitudinal axis (121), - The cylinder end face (120) of the hollow cylinder (12) has the sintered component (5) and - The pressing axis (322) and the cylinder longitudinal axis (121) are arranged next to one another in such a way that the uniaxial pressing pressure (301) is applied indirectly via the sintering component (5) along the cylinder longitudinal axis (121 ) can be exercised on the sintered material (2).
Sinter-Vorrichtung nach einem der Ansprüche 1 bis 9 mit einer Vielzahl von Sinter-Einheiten (10).Sintering device according to one of Claims 1 to 9, having a plurality of sintering units (10). Verfahren (1000) zum Sintern von Sinter-Gut (2) unter Verwendung der Sinter-Vorrichtung (1) nach einem der Ansprüche 1 bis 10 mit folgenden Verfahrensschritten: a) Anordnen (1001) des Sinterguts (2) im Sinter-Behälter (11) und b) Sintern (1002) des im Sinter-Behälter (11) angeordneten Sinter-Guts (2), wobei während des Sinterns Sinter-Druck (30) auf das Sinter-Gut (2) ausgeübt wird, elektrischer Sinter-Strom (40) in den Sinter-Behälter (11) und/oder in das Sinter-Gut (2) eigeleitet wird und das Sinter-Gut (2) einer Scher-Belastung (60) ausgesetzt wird. Method (1000) for sintering sintering material (2) using the sintering device (1) according to one of Claims 1 to 10, with the following method steps: a) arranging (1001) the sintered material (2) in the sintering container (11) and b) sintering (1002) of the sintered material (2) arranged in the sintering container (11), sintering pressure (30) being exerted on the sintered material (2) during sintering, electrical sintering current (40) is introduced into the sintering container (11) and / or into the sintered material (2) and the sintered material (2) is subjected to a shear load (60). Elektrischer Kontakt-Werkstoff,
wobei der elektrische Kontakt-Werkstoff (2002) nach einem Verfahren gemäß Anspruch 11 hergestellt wird.
Electrical contact material,
wherein the electrical contact material (2002) is produced by a method according to claim 11.
Elektrischer Kontakt-Werkstoff nach Anspruch 12,
wobei der elektrische Kontakt-Werkstoff (2002) ein Kupfer-Chrom-Kontakt-Werkstoff ist.
Electrical contact material according to claim 12,
wherein the electrical contact material (2002) is a copper-chromium contact material.
Verwendung des elektrischen Kontakt-Werkstoffs nach Anspruch 12 oder 13 für mindestens einen elektrischen Kontakt (2001) einer Mittelspannungs-Vakuum-Schaltröhre (2000).Use of the electrical contact material according to claim 12 or 13 for at least one electrical contact (2001) of a medium-voltage vacuum interrupter (2000).
EP19160085.7A 2019-02-28 2019-02-28 Sintering device with source of shearing force, method for producing an electric contact material using the sintering device, electric contact material and use of same Withdrawn EP3702066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19160085.7A EP3702066A1 (en) 2019-02-28 2019-02-28 Sintering device with source of shearing force, method for producing an electric contact material using the sintering device, electric contact material and use of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19160085.7A EP3702066A1 (en) 2019-02-28 2019-02-28 Sintering device with source of shearing force, method for producing an electric contact material using the sintering device, electric contact material and use of same

Publications (1)

Publication Number Publication Date
EP3702066A1 true EP3702066A1 (en) 2020-09-02

Family

ID=65763258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19160085.7A Withdrawn EP3702066A1 (en) 2019-02-28 2019-02-28 Sintering device with source of shearing force, method for producing an electric contact material using the sintering device, electric contact material and use of same

Country Status (1)

Country Link
EP (1) EP3702066A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270718B1 (en) * 1998-12-31 2001-08-07 Materials Modification, Inc. Method of bonding a particle material to near theoretical density
US6309591B1 (en) * 1999-03-23 2001-10-30 Materials Modification, Inc. Apparatus for bonding a particle material to near theoretical density
WO2014202389A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switch contacts
WO2018083325A1 (en) * 2016-11-07 2018-05-11 Universite Pierre Et Marie Curie (Paris 6) Device for sintering by pulsating current and associated method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270718B1 (en) * 1998-12-31 2001-08-07 Materials Modification, Inc. Method of bonding a particle material to near theoretical density
US6309591B1 (en) * 1999-03-23 2001-10-30 Materials Modification, Inc. Apparatus for bonding a particle material to near theoretical density
WO2014202389A1 (en) * 2013-06-20 2014-12-24 Siemens Aktiengesellschaft Method and device for producing contact elements for electrical switch contacts
WO2018083325A1 (en) * 2016-11-07 2018-05-11 Universite Pierre Et Marie Curie (Paris 6) Device for sintering by pulsating current and associated method

Similar Documents

Publication Publication Date Title
DE4407593C1 (en) Process for the production of high density powder compacts
DE3013943C2 (en)
EP1438150B1 (en) Device and method for producing microcrystalline materials
DE2914254A1 (en) METHOD AND DEVICE FOR PRINTING Sintering
DE2914186C2 (en)
DE4019441A1 (en) METHOD FOR PRODUCING PRESSING BODIES
EP0032545A1 (en) Process and device for transforming material using high pressures and temperatures
DE1464128A1 (en) Elongated components and methods of making them
DE4019439A1 (en) METHOD FOR PRODUCING PRESSING BODIES
DE102004037511A1 (en) Multipole by wire erosion
DE1483706B2 (en) Multi-layer composite metal, especially for heavy-duty electrical contacts and processes for their manufacture
DE2709278B2 (en) Sintered impregnating material for electrical contact pieces and process for its production
EP2747917A1 (en) Method for producing a semifinished product for electrical contacts and contact piece
EP2524384B1 (en) Electrical contact element and method for producing it
EP3702066A1 (en) Sintering device with source of shearing force, method for producing an electric contact material using the sintering device, electric contact material and use of same
EP3116009A1 (en) Electric switch contact
EP2292343B1 (en) Device for electrohydraulic sheet metal forming
EP2856480A1 (en) Contact component and method for the production thereof
EP3147918B1 (en) Device and method of manufacturing annular permanent magnets
DE661132C (en) Method of making tools
EP3702065A1 (en) Sintering device with decoupled sinter pressure and sinter flow, method for producing an electric contact material using the sintering device, electric contact material and use of the electric contact material
DE2324317C2 (en) Electrode for a vacuum circuit breaker or a vacuum spark gap
DE69303313T2 (en) Manufacturing process for an anisotropic rare earth magnet
DE2162423A1 (en) Tungsten-copper solid solns - obtd without sintering from age-hardened materials, for contacts and electrodes
EP0693564B1 (en) Process for preparing articles composed of intermetallic phases from pulverulent ductile components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210303