EP3700969A1 - Method for dyeing elastomer particle foams - Google Patents
Method for dyeing elastomer particle foamsInfo
- Publication number
- EP3700969A1 EP3700969A1 EP18789179.1A EP18789179A EP3700969A1 EP 3700969 A1 EP3700969 A1 EP 3700969A1 EP 18789179 A EP18789179 A EP 18789179A EP 3700969 A1 EP3700969 A1 EP 3700969A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- elastomer
- foamed particles
- carrier liquid
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002245 particle Substances 0.000 title claims abstract description 238
- 238000000034 method Methods 0.000 title claims abstract description 100
- 229920001971 elastomer Polymers 0.000 title claims abstract description 79
- 239000000806 elastomer Substances 0.000 title claims abstract description 79
- 239000006260 foam Substances 0.000 title description 86
- 238000004043 dyeing Methods 0.000 title 1
- 239000007788 liquid Substances 0.000 claims abstract description 186
- 239000000203 mixture Substances 0.000 claims abstract description 49
- 238000001179 sorption measurement Methods 0.000 claims abstract description 18
- 230000001681 protective effect Effects 0.000 claims abstract description 7
- 239000000975 dye Substances 0.000 claims description 79
- 230000008569 process Effects 0.000 claims description 42
- 150000002148 esters Chemical class 0.000 claims description 41
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 40
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 40
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 29
- 238000002360 preparation method Methods 0.000 claims description 17
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 16
- 229920000570 polyether Polymers 0.000 claims description 16
- 229920000728 polyester Chemical class 0.000 claims description 12
- 229920001169 thermoplastic Polymers 0.000 claims description 12
- 239000004416 thermosoftening plastic Substances 0.000 claims description 12
- 229920002614 Polyether block amide Polymers 0.000 claims description 11
- 238000003466 welding Methods 0.000 claims description 11
- 150000002334 glycols Chemical class 0.000 claims description 10
- 150000002314 glycerols Chemical class 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 8
- 239000000049 pigment Substances 0.000 claims description 8
- 229920001400 block copolymer Polymers 0.000 claims description 7
- 230000000386 athletic effect Effects 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 6
- 239000000839 emulsion Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000005253 cladding Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 23
- 239000008187 granular material Substances 0.000 description 22
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- -1 glycerol ester Chemical class 0.000 description 15
- 238000005187 foaming Methods 0.000 description 13
- 239000003380 propellant Substances 0.000 description 12
- 230000005855 radiation Effects 0.000 description 12
- 239000004604 Blowing Agent Substances 0.000 description 11
- 235000013773 glyceryl triacetate Nutrition 0.000 description 11
- 238000005470 impregnation Methods 0.000 description 11
- 229960002622 triacetin Drugs 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 229920002725 thermoplastic elastomer Polymers 0.000 description 10
- 229920005983 Infinergy® Polymers 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 9
- 239000001087 glyceryl triacetate Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 229920002635 polyurethane Polymers 0.000 description 8
- 239000004814 polyurethane Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- WNLRTRBMVRJNCN-UHFFFAOYSA-N hexanedioic acid Natural products OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 7
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- 238000004040 coloring Methods 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 150000003077 polyols Chemical class 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 5
- 150000002009 diols Chemical class 0.000 description 5
- 125000001033 ether group Chemical group 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- 239000001361 adipic acid Substances 0.000 description 4
- 235000011037 adipic acid Nutrition 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000010097 foam moulding Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910001872 inorganic gas Inorganic materials 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000434 metal complex dye Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical class CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229940091181 aconitic acid Drugs 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- IHLIVAHFDOAPFC-UHFFFAOYSA-N cyclohex-2-ene-1,4-dicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)C=C1 IHLIVAHFDOAPFC-UHFFFAOYSA-N 0.000 description 2
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 150000003951 lactams Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 2
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 2
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 2
- ORTVZLZNOYNASJ-UPHRSURJSA-N (z)-but-2-ene-1,4-diol Chemical compound OC\C=C/CO ORTVZLZNOYNASJ-UPHRSURJSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- QBBTZXBTFYKMKT-UHFFFAOYSA-N 2,3-diacetyloxypropyl acetate Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O.CC(=O)OCC(OC(C)=O)COC(C)=O QBBTZXBTFYKMKT-UHFFFAOYSA-N 0.000 description 1
- UWOVWIIOKHRNKU-UHFFFAOYSA-N 2,6-diphenyl-4-(2,4,6-triphenylpyridin-1-ium-1-yl)phenolate Chemical compound [O-]C1=C(C=2C=CC=CC=2)C=C([N+]=2C(=CC(=CC=2C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C=CC=CC=2)C=C1C1=CC=CC=C1 UWOVWIIOKHRNKU-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- UFHFFHGGXLDGGT-UHFFFAOYSA-N 4-methyl-1,3-dioxolan-2-one;4-methyl-1,3-dioxol-2-one Chemical compound CC1COC(=O)O1.CC1=COC(=O)O1 UFHFFHGGXLDGGT-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 238000006887 Ullmann reaction Methods 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical group CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical class CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- 125000002348 vinylic group Chemical group 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P3/00—Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
- D06P3/02—Material containing basic nitrogen
- D06P3/04—Material containing basic nitrogen containing amide groups
- D06P3/24—Polyamides; Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/224—Surface treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/236—Forming foamed products using binding agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/052—Closed cells, i.e. more than 50% of the pores are closed
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/22—Thermoplastic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/26—Elastomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2309/00—Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
- C08J2309/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2353/00—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2353/02—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
- C08J2375/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
- C08J2377/06—Polyamides derived from polyamines and polycarboxylic acids
Definitions
- the present invention relates to a process for the preparation of colored foamed particles consisting of an elastomer (E), comprising at least the provision of foamed particles of at least one elastomer (E), and contacting the particles with a mixture (M) containing a dye ( F) and a carrier liquid (TF) to give colored foamed particles, wherein the carrier liquid (TF) has a
- the present invention relates to colored foamed particles obtained or obtainable by such a process and to the use of the colored foamed particles according to the invention for the production of moldings, in particular of
- Shoe soles parts of a shoe sole, bicycle saddles, upholstery, mattresses, pads, handles, protective films, floor coverings, and components in the automotive interior and exterior.
- thermoplastic polyurethane particle foams which are produced by autoclaving or by the extruder process, show good mechanical properties and in some cases good rebound resilience. Also
- Hybrid foams of particles of thermoplastic elastomers and system foam or binders are known. Depending on the foam density, the method of manufacture and the
- Matrix material can be a total of a relatively wide level of rigidity mapped. Also by a subsequent treatment of the foam such as tempering the properties of the foam can be influenced.
- Particle foams or particle foams, particle foam
- shaped articles based thereon on the basis of thermoplastic polyurethane or other elastomers are known (for example WO 94/20568, WO 2007/082838 A1, WO2017030835, WO 2013/153190 A1 WO2010010010) and can be used in a variety of ways.
- TPU foams or foam particles based on thermoplastic polyurethane are disclosed in WO 94/20568.
- a disadvantage of the TPU foams described in WO 94/20568 A1 is the high energy consumption in the production and processing. It is applied a water vapor pressure of 4.5 bar to 7 bar at temperatures of 145 ° C to 165 ° C.
- WO 94/20568 A1 describes expanded, ie foamed, TPU particles which can be processed into shaped parts. These TPU foam particles are produced at temperatures of 150 ° C and higher and, according to the examples, have a bulk density between 55 and 180 g / L, which is disadvantageous during transport and storage of these particles because of the increased space requirement.
- WO 2007/082838 A1 discloses an expandable, preferably particulate, blowing agent-containing thermoplastic polyurethane, wherein the thermoplastic polyurethane has a Shore hardness between A 44 and A 84. The Shore hardness of the TPU is measured on the compact, ie non-expanded TPU.
- WO 2007/082838 A1 discloses processes for the production of expandable, preferably particulate, propellant-containing thermoplastic polyurethane and also processes for the production of expanded polymer
- thermoplastic polyurethane and process for the production of foam based on thermoplastic polyurethane, and thus obtainable foams or expanded thermoplastic polyurethanes.
- Particle foam or particle foam in the context of the present invention refers to a foam in the form of a particle, wherein the average diameter of the particle foam is between 0.2 to 20, preferably 0.5 to 15 and in particular between 1 to 12 mm.
- non-spherical, e.g. elongated or cylindrical particle foam is meant by diameter the longest dimension.
- the prior art also discloses the production of foamed particles from mass-colored TPU.
- the coloring of these mostly black particles is poor because the color intensity of the coloring changes with the density of the particles. High density particles appear darker, those with lower density appear lighter.
- a coating of the molded parts made of foamed particles, for example, with a thermoplastic polyurethane is also possible and durable, but the molded body obtained thereby always a homogeneous coloring (WO 2015/165724 A1). The mixing of different colored particles is not possible.
- One object of the present invention was therefore to provide foam particles or shaped bodies produced from foam particles, the particles being simple can be colored and then processed, for example, in a molding machine to produce products.
- Coloring of the foam particles regardless of the manufacturing process allows this and allows high flexibility of the production facilities by first colorless, so uncoloured, particles are produced, which can be specifically dyed and further processed in a downstream process.
- this object is achieved by a process for the preparation of colored foamed particles consisting of an elastomer (E), at least comprising the
- the process according to the invention comprises the steps (i) and (ii).
- step (i) foamed particles of at least one elastomer (E) are provided.
- step (ii) of the method according to the invention the particles are brought into contact with a mixture (M) containing a dye (F) and a carrier liquid (TF) to give dyed foamed particles.
- M mixture
- F dye
- TF carrier liquid
- Mixture (M) are brought into contact, that the dye contained in the mixture (M) can be absorbed by the particles.
- the mixture (M) can be used in the form of a solution, an emulsion or a dispersion.
- the present invention therefore relates to a method as described above, wherein the mixture (M) is a solution, emulsion or dispersion.
- foamed particles of an elastomer in particular foamed particles of thermoplastic elastomers, can be coated with a mixture of pigments and / or dyes with a compatible carrier liquid which is absorbed by the elastomer in a short time. From the coated particles, single or multi-colored components can be produced by means of steam, HF or microwave welding, which have a permanent coloration.
- the mixture (M) is prepared from the carrier liquid (TF) and the dye (F) by methods known per se. It has been found that a good coloration can be achieved if the carrier liquid used (TF) has a polarity which is suitable for sorption of the
- Carrier liquid in the elastomer takes place.
- Suitable carrier liquids are known per se to the person skilled in the art. Suitable examples are those liquids which have a boiling point in the range of 80 ° C to 300 ° C. Such liquids are also used, for example, in the production of elastomers (E) as plasticizers.
- the carrier liquid is liquid at room temperature.
- the present invention therefore relates to a method as described above, wherein the carrier liquid has a boiling point in the range of 80 ° C to 300 ° C.
- the carrier liquid is preferably a colorless liquid. More preferably, the carrier liquid in the context of the present invention is not harmful to health and non-corrosive, more preferably non-oxidizing. Preferably, the carrier liquid in the scope of the present invention has no free acid groups.
- the Ei (30) value is defined as the transition energy of the longest wavelength Vis / NIR absorption band in a solution with the negative solvatochromic Reichardt dye (Betain 30) under normal conditions in kcal-mol -1 .
- the He N value is the one on the
- the carrier liquid (TF) used according to the invention has an E T (30) value of greater than or equal to 150 kJ / mol, preferably in the range from 150 to 250 kJ / mol, particularly preferably in the range from 200 to 250 kJ / mol.
- the present invention therefore relates to a method as described above, wherein the carrier liquid (TF) has a ⁇ (30) value greater than or equal to 150 kJ / mol.
- Suitable carrier liquids are, for example, selected from the group consisting of acetone, 1-butanol, dibutyl ether, diethylene glycol, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, acetic acid ester, ethyl acetate, water, ethanol, ethylene glycol, ethylene glycol dimethyl ether, 2-propanol (isopropyl alcohol) , 3-methyl-1-butanol (isoamyl alcohol), 2-methyl-2-propanol (fe-butanol), methyl ethyl ketone (butanone, propanol, propylene carbonate (4-methyl-1,3-dioxol-2-one), triethylene glycol, Triethylene glycol dimethyl ether (triglyme), glycerol ester, phthalic acid ester, adipic acid ester, citric acid ester,
- glycols polypropylene glycols.
- glycols and esters are suitable.
- mono-, di- or trialcohols such as ethanol, propanol, butanol, ethylene glycol, butanediol, glycerol and of mono- or dicarboxylic acid having 1 to 8 C atoms, such as acetic acid, adipic acid, citric acid, phthalic acid, isophthalic acid, terephthalic acid.
- the present invention therefore relates to a method as described above, wherein the carrier liquid is selected from the group consisting of glycols and esters of citric acid and glycerol esters.
- the carrier liquid is selected from the group consisting of glycols and esters of citric acid and glycerol esters.
- the carrier liquid is suitable as a carrier liquid, for example
- Triacetin a glycerol ester
- Carrier liquids are used.
- the mixture (M) is used in an amount which is sufficient to wet the foamed particles used at least 80%, preferably at least 90%, more preferably 100%.
- the mixture (M) is preferably used in an amount in the range of 0.1 to 10% by weight, more preferably in an amount in the range of 0.2 to 5% by weight, particularly preferably in the range of 0.3 up to 3% by weight, in each case based on the weight of the foamed particles used.
- Foamed particles vary widely.
- the shape of the particles may be, for example, a tetrahedron, cylinder, sphere, lens or polyhedron such as cubes or octahedrons.
- the foamed particles are preferably at least approximately spherical and usually have an average diameter at the narrowest point of 1 mm to 20 mm, preferably 2 mm to 12 mm and in particular 3 mm to 10 mm.
- step (ii) takes place for a time sufficient to allow sorption of the mixture (M) on the particle or in the elastomer.
- the mixture (M) is applied to the particles by, for example, mixing, spraying, tumbling or other conventional methods.
- the impregnation time in the context of the present invention is less than or equal to 1 hour, for example less than or equal to 30 minutes, more preferably less than or equal to 10 minutes.
- the process is preferably conducted such that the dye used penetrates into the foamed particles and remains close to the surface in the particles.
- the dyes may have a penetration of greater than ⁇ ⁇ , especially greater than ⁇ ⁇ , especially greater than 500 ⁇ .
- the dye in the particle it is also possible to achieve a homogeneous distribution of the dye in the particle by a suitable choice of the reaction conditions, such as, for example, the type of dye used or the duration of the contacting.
- the distribution of the dye or the penetration depth can be determined, for example, by measuring under a microscope, preferably an electron microscope, at a gate of the particle
- the particles are brought into contact with the mixture (M) and, for example, stirred.
- the mixture (M) is finely distributed on the surface of the particles by the choice of the carrier liquid (TF) and adheres to this preferably.
- the carrier liquid for example, also penetrates the particles and thus does not interfere with the adhesion between the individual particles when they are processed into shaped bodies.
- the carrier liquid can fix the dye on the surface of the foamed particles.
- Carrier liquid entrains the dye in the foam particles and both components remain in the foam particles.
- the present invention therefore relates to a method as described above, wherein the carrier liquid is introduced into the dye in the foam particles and both components remain in the foam particles.
- the mixture (M) contains at least one dye.
- the mixture (M) contains at least one dye.
- Dyes are used. Suitable are both liquid and solid dyes or pigments, provided that a sufficient miscibility with the carrier liquid (TF) is given, so that a mixture (M) is obtained. According to a further embodiment, the present invention therefore relates to a method as described above, wherein the dye is selected from the group consisting of liquid dyes and solid pigments.
- the amount of dye used and the concentration of the dye in the mixture (M) can vary widely.
- the amount used or concentration of the dye in the mixture (M) can vary widely.
- the amount used or concentration of the dye in the mixture (M) can vary widely.
- Dye can be adjusted to adjust the color intensity of the colored particles.
- the dye in the mixture (M) is in an amount in the range of 0.1 to 50 % By weight, more preferably in the range from 1 to 30% by weight, particularly preferably in the range from 2 to 20% by weight, in each case based on the total mixture (M).
- dyes for example
- Metal complex dyes are used which have good solubility in polar solvents, such as Neozapon® dyes. It is also possible to use cationic dyes which have good solubility in alcohols and glycol ethers. Suitable dyes are, for example, Basonyl® dyes. Also suitable are, for example, commercially available dyes, for example under the trade names Neozapon® Black X55, Neozapon® Black X51, Neozapon® Red 335,
- Dyes selected from the group consisting of Neozapon® Black X55, Neozapon® Red 335, Neozapon® Orange 251, Basonyl® Green 830 liquid, Basonyl® Blue 644 liquid, Basonyl® Red 545 liquid, Basonyl® Red are preferred in the context of the present invention 555 liquid, Basonyl® Green 830 liquid, Basonyl® Blue 636, and Neptun Yellow 075 used. More preferably, a dye selected from the group consisting of Basonyl® Blue 644, Basonyl® Red 545, Basonyl® Green 830 and Neozapon® black X55, and Neptun Yellow 075 is used.
- foamed particles which consist of at least one
- Elastomer (E) exist.
- the particles can be open-celled or
- the closed cell density of the foam is greater than 60%, determined according to DIN ISO 4590: 2016.
- the foamed particles preferably have a closed shell.
- the elastomer (E) can vary within wide limits. Suitable, for example
- thermoplastic elastomers such as thermoplastic block copolymers.
- thermoplastic elastomers are known per se to the person skilled in the art.
- the thermoplastic elastomer may be a thermoplastic polyurethane, a thermoplastic
- Polyetheramide a polyether ester, a polyester ester or a thermoplastic styrene butadiene block copolymer. Particularly suitable are within the scope of the present
- thermoplastic polyurethanes polyether esters, polyester esters and polyether amides.
- the present invention therefore relates to a method as described above, wherein the elastomer is a thermoplastic block copolymer. According to a further embodiment, the present invention therefore relates to a method as described above, wherein the elastomer is selected from the group consisting of thermoplastic polyurethanes, polyether esters, polyester esters and polyetheramides.
- thermoplastic elastomers used to produce the foam particles have for example a Shore hardness in the range of 30A to 82D, preferably in the range of 65A to 96A, determined according to DIN 53505.
- the thermoplastic elastomers used have an elongation at break of greater than 50%, preferably in the range from 200 to 800%, measured according to DIN EN ISO 527-2.
- thermoplastic polyether esters and polyester esters can be prepared by all conventional processes known from the literature by transesterification or esterification of aromatic and aliphatic dicarboxylic acids having 4 to 20 carbon atoms or esters thereof with suitable aliphatic and aromatic diols and polyols (cf., "Polymer Chemistry ", Interscience Publ., New York, 1961, p.1 1 1-127; Kunststoffhandbuch, Volume VIII, C. Hanser Verlag, Kunststoff 1973 and Journal of Polymer Science, Part A1, 4, pages 1851 -1859 (1966))
- Suitable aromatic dicarboxylic acids include, for example, phthalic acid, iso and
- Suitable aliphatic dicarboxylic acids include but are not limited to e.g. Cyclohexane-1, 4-dicarboxylic acid, adipic acid, sebaconic acid, azelaic acid and
- Decanedicarboxylic acid as saturated dicarboxylic acids and maleic acid, fumaric acid,
- Aconitic acid, itoconic acid, tetrahydrophthalic acid and tetrahydroterephthalic acid as
- Polyetherols of the general formula HO- (CH 2) n -O- (CH 2) m -OH, where n is equal to or different than m and n or m 2 to 20, unsaturated diols and polyetherols such as butenediol (1, 4) ; Diols and polyetherols containing aromatic moieties; as well as polyesterols.
- thermoplastic polyether amides can be used according to all known, literature
- R organic radical (aliphatic and / or aromatic).
- Classes of compounds can be used to provide the polyetheramine used according to the invention.
- thermoplastic elastomers having a block copolymer structure used according to the invention preferably contain vinylaromatic, butadiene and isoprene and also polyolefin and vinylic units, for example ethylene, propylene and vinyl acetate units. Preference is given to styrene-butadiene copolymers.
- thermoplastic elastomers having a block copolymer structure, polyetheramides, polyether esters and polyester esters used according to the invention are preferably selected such that their melting points are ⁇ 300 ° C., preferably ⁇ 250 ° C., in particular ⁇ 220 ° C.
- thermoplastic elastomers having a block copolymer structure, polyetheramides, polyether esters and polyester esters used according to the invention may be partially crystalline or amorphous.
- Thermoplastic polyurethanes are also known from the prior art. They are usually prepared by reacting a polyisocyanate composition with a
- Obtained polyol composition wherein the polyol composition usually comprises a polyol and a chain extender.
- thermoplastic polyurethanes are usually used which are prepared by reacting a polyisocyanate composition with a
- the expanded particles of the invention can be, for example, by suspension or extrusion processes directly or indirectly via expandable particles and foaming in produce a DruckvorJumer with steam or hot air. Suitable methods are known per se to the person skilled in the art.
- the particle foams according to the invention generally have a bulk density of from 50 g / l to 200 g / l, preferably from 60 g / l to 180 g / l, particularly preferably from 80 g / l to 150 g / l.
- Bulk density is measured analogously to DIN ISO 697, using a 10 l volume vessel instead of a 0.5 l volume vessel in determining the above values, unlike the standard, especially for the low density, high mass foam particles a measurement with only 0.5 l volume is too inaccurate.
- the diameter of the particle foams is between 0.5 to 30;
- elongated or cylindrical particle foam is meant by diameter the longest dimension.
- the method may comprise further steps, for example
- the present invention also relates to colored foamed particles obtained or obtainable by a process as described above.
- the present invention relates to colored foamed particles obtained or obtainable by a process comprising at least the steps
- the carrier liquid (TF) has a polarity which is suitable that a sorption of the carrier liquid takes place in the elastomer.
- the present invention relates to colored particles as described above, wherein the elastomer is selected from the group consisting of thermoplastic polyurethanes, polyether esters, polyester esters and polyetheramides.
- the amount of blowing agent is preferably 0.1 to 40, in particular 0.5 to 35 and particularly preferably 1 to 30 parts by weight, based on 100 parts by weight of the amount of the elastomer used.
- Another embodiment of the above-mentioned method comprises a further step: a. Providing the elastomer in the form of granules;
- the granulate preferably has an average minimum diameter of 0.2-10 mm (determined via 3D evaluation of the granulate, for example via dynamic image analysis with the use of an optical measuring apparatus named PartAn 3D from Microtrac).
- the individual granules generally have an average mass in the range from 0.1 to 50 mg, preferably in the range from 4 to 40 mg and more preferably in the range from 7 to 32 mg.
- This average mass of the granules is determined as an arithmetic mean by weighing 3 times each of 10 granular particles.
- An embodiment of the above method comprises impregnating the granules with a propellant under pressure and then expanding the granules in step (b) and (c): b. Impregnating the granules in the presence of a propellant under pressure at elevated temperatures in a suitable closed reaction vessel (e.g., autoclave);
- a suitable closed reaction vessel e.g., autoclave
- the impregnation in step (b) can be carried out in the presence in the presence of water and optionally suspension aids or only in the presence of the blowing agent and absence of water.
- Suitable suspension aids are, for example, water-insoluble inorganic stabilizers, such as tricalcium phosphate, magnesium pyrophosphate, metal carbonates; also polyvinyl alcohol and Surfactants, such as sodium dodecylarylsulfonate. They are usually used in amounts of 0.05 to 10 wt .-%, based on the elastomer.
- the impregnation temperatures are in the range of 100-200 ° C., depending on the selected pressure, the pressure in the reaction vessel being between 2 and 150 bar, preferably between 5 and 100 bar, more preferably between 20 and 60 bar, the impregnation time is general 0.5 to 10 hours.
- Suitable propellants for carrying out the process in a suitable closed reaction vessel are e.g. organic liquids and gases used in the
- Processing conditions in a gaseous state such as hydrocarbons or inorganic gases or mixtures of organic liquids or gases and inorganic gases, and these can also be combined.
- Hydrocarbons are, for example, halogenated or non-halogenated, saturated or unsaturated aliphatic hydrocarbons, preferably non-halogenated, saturated or unsaturated aliphatic hydrocarbons.
- Preferred organic blowing agents are saturated, aliphatic hydrocarbons, especially those having 3 to 8 carbon atoms, such as butane or pentane.
- Suitable inorganic gases are nitrogen, air, ammonia or carbon dioxide, preferably nitrogen or carbon dioxide or mixtures of the abovementioned gases.
- the impregnation of the granules with a propellant under pressure comprises processes and subsequent expansion of the granules in steps (b) and (c):
- Suitable propellants in this process variant are volatile organic compounds having a boiling point at atmospheric pressure of 1013 mbar from -25 to 150, in particular -10 to 125 ° C.
- Well suited are hydrocarbons (preferably halogen-free), especially C4-10 alkanes, for example the isomers of butane, pentane, hexane, heptane and octane, particularly preferably iso-pentane.
- blowing agents are also sterically more demanding compounds or functionalized hydrocarbons such as alcohols, ketones, esters, ethers and organic carbonates.
- the elastomer is mixed in step (b) in an extruder while melting with the blowing agent under pressure, which is fed to the extruder.
- propellant-containing mixture is under pressure, preferably with moderately controlled
- Counter pressure e.g., underwater granulation
- the melt strand foams and granules give the particle foams.
- Suitable extruders are all conventional screw machines, in particular
- Single screw and twin screw extruders e.g., ZSK type from Werner & Pfleiderer
- co-kneaders e.g., ZSK type from Werner & Pfleiderer
- Kombiplast machines e.g., MPC kneading mixers, FCM mixers, KEX kneading screw extruders and shear roll extruders, e.g. in Saechtling (ed.), plastic paperback, 27.
- the extruder is usually operated at a temperature at which the MATERIAL is in the form of a melt, for example at 120 ° C. to 250 ° C., in particular 150 to 210 ° C. and a pressure after the addition of the blowing agent of 40 to 200 bar, preferably 60 to 150 bar, particularly preferably 80 to 120 bar to ensure homogenization of the blowing agent with the melt.
- the implementation can be carried out in an extruder or an arrangement of one or more extruders.
- the implementation can be carried out in an extruder or an arrangement of one or more extruders.
- the implementation can be carried out in a first extruder.
- the impregnated melt is homogenized and adjusted the temperature and or the pressure. If, for example, three extruders are combined with one another, the mixing of the components and the injection of the blowing agent can likewise be subdivided into two different process parts. If, as preferred, only one extruder is used, then all process steps will melt, mix, inject the
- Particle foam produced by soaking the appropriate granules with a supercritical fluid is removed from the supercritical fluid followed by
- Suitable supercritical fluids are, for example, those described in WO 2014/150122 or described, for example carbon dioxide, nitrogen dioxide, ethane, ethylene, oxygen or nitrogen, preferably carbon dioxide or nitrogen.
- the supercritical fluid may also contain a polar fluid having a Hildebrand solubility parameter equal to or greater than 9 MPa 1/2 .
- the supercritical fluid or the heated fluid may also contain a dye, whereby a dyed, foamed article is obtained.
- Another object of the present invention is a molded article produced from the particle foams according to the invention.
- Shaped articles can be produced from the foamed particles dyed according to the invention, for example by welding them together in a closed mold under the action of heat.
- the particles are filled into the mold and, after closing the mold, initiates steam or hot air, whereby the particles expand further and weld together to the foam, preferably with a density in the range of 8 to 600 g / l.
- the foams can be semi-finished products, such as plates, profiles or webs, or finished moldings with simple or complicated geometry. Accordingly, the term includes foam, semi-finished foam products and foam moldings.
- the present invention also relates to a method for producing a shaped article from the colored foamed particles according to the invention or to the use of the colored foamed particles for producing a shaped article.
- the shaped body can be produced from the foam particles according to the invention in a manner known per se.
- a suitable method is, for example, welding by means of steam, hot air or high-energy radiation.
- Foam molding comprises the following steps:
- step (b) fusing the particle foams according to the invention from step (a).
- the fusing in step (b) is preferably carried out in a closed mold, wherein the fusing by gases such as water vapor, hot air (as described for example in EP1979401 B1
- energetic radiation microwaves or radio waves
- the temperature at the fusing of the particle foam is preferably below or close to the melting temperature of the polymer from which the particle foam was made.
- the temperature for fusing the particle foam between 100 ° C and 180 ° C, preferably between 120 and 150 ° C.
- temperature profiles / residence times can be determined individually, e.g. in analogy to the methods described in US20150337102 or EP2872309B1.
- the welding via energetic radiation is generally carried out in the frequency range of microwaves or radio waves, if necessary in the presence of water or other polar liquids, e.g. polar group-containing, microwave-absorbing
- Hydrocarbons such as esters of carboxylic acids and diols or triols or glycols and liquid polyethylene glycols
- Hydrocarbons such as esters of carboxylic acids and diols or triols or glycols and liquid polyethylene glycols
- the present invention also relates to the use of the foamed particles as described above, wherein the production of the shaped body takes place by means of welding or adhesive bonding of the particles to one another.
- the present invention also relates to the use of foamed particles as described above for producing a shaped body by welding the particles by means of superheated steam, hot air, heat radiation, electromagnetic radiation, such as radio frequency radiation, microwave radiation, NIR radiation, infrared radiation.
- the temperature in the welding of the expanded particles is preferably between 100 ° C and 140 ° C.
- the present invention thus also relates to processes for the production of foam based on thermoplastic polyurethane, wherein the expanded thermoplastic polyurethane according to the invention is welded by means of steam at a temperature between 100 ° C and 140 ° C to form a shaped body.
- the invention also provides the use of the expanded particles for the production of foams, as well as foams, obtainable from the expanded particles.
- the present invention also relates to shaped articles obtainable or obtained according to the process according to the invention for producing a shaped article as described above.
- Such moldings have in addition to good mechanical
- the present invention also relates to a shaped body as described above, wherein the shaped body has an elongation at break of greater than 100%, determined according to DIN 53504.
- the present invention also relates to the use of the foam particles or foam particles according to the invention obtainable or obtained according to a method according to the invention for the production of shoe soles, bicycle saddles, bicycle tires, damping elements, upholstery, mattresses, underlays, handles, protective films, in components in Automotive interior and exterior area, in balls and
- the present invention relates to the use of the colored foamed particles according to the invention or of foamed particles obtainable by a method according to the invention for use in balls and sports equipment or as a floor covering and wall cladding, in particular for sports surfaces,
- the invention further relates to the use of an inventive
- the foams according to the invention can be easily recycled thermoplastically.
- the foamed materials are extruded using an extruder with a degassing device, wherein the extrusion may optionally precede a mechanical comminution. Thereafter, they can be re-processed into foams in the manner described above.
- the present invention also provides such embodiments which result from the following references and combinations thereof.
- Sorption of the carrier liquid takes place in the elastomer.
- glycols and esters of citric acid and glycerol esters are selected from the group consisting of glycols and esters of citric acid and glycerol esters.
- Triacetin is. 7. The method according to any one of embodiments 1 to 6, wherein the dye is selected from the group consisting of liquid dyes and solid pigments.
- the dye is selected from the group consisting of Neozapon® Black X55, Neozapon® Black X51, Neozapon® Red 335, Neozapon® Yellow 141, Neozapon® Red 471, Neozapon® Blue 807 , Neozapon® Orange 251, Basonyl® Green 830 liquid, Basonyl® Blue 644 liquid, Basonyl® Red 545 liquid, Basonyl® Red 555 liquid, Basonyl® Green 830 liquid, Basonyl® Blue 636,
- Basantol® Yellow 099 liquid Basantol® Black X82 liquid, Neptun Yellow 075, Heliogen® Blue L 6930, Basacid® Orange 282 liquid, Basacid® Yellow 093 liquid, Isopur SU
- thermoplastic polyurethanes is selected from the group consisting of thermoplastic polyurethanes, polyether esters, polyester esters and polyetheramides.
- thermoplastic polyurethanes is selected from the group consisting of thermoplastic polyurethanes.
- Sorption of the carrier liquid takes place in the elastomer.
- thermoplastic polyurethanes polyether esters, polyester esters and polyetheramides.
- Triacetin is. Particles according to any of embodiments 15 to 21, wherein the dye is selected from the group consisting of liquid dyes and solid pigments. Particles according to any of embodiments 15 to 22, wherein the dye is selected from the group consisting of metal complex dyes and cationic dyes. Particles according to any of embodiments 15 to 22, wherein the dye is selected from the group consisting of Neozapon® Black X55, Neozapon® Black X51, Neozapon® Red 335, Neozapon® Yellow 141, Neozapon® Red 471, Neozapon® Blue 807, Neozapon ® Orange 251, Basonyl® Green 830 liquid, Basonyl® Blue 644 liquid, Basonyl®
- the dye is selected from the group consisting of Basonyl® Blue 644, Basonyl® Red 545, Basonyl® Green 830, Neozapon® black X55, and Neptun Yellow 075.
- Shoe sole a part of a shoe sole, a bicycle saddle, a padding, a mattress,
- Wall cladding in particular for sports surfaces, athletic tracks, sports halls, children's playgrounds and sidewalks.
- the carrier liquid is selected from the group consisting of glycols and esters of citric acid and glycerol esters,
- the dye is selected from the group consisting of Neozapon® Black X55, Neozapon® Red 335, Neozapon® Orange 251, Basonyl® Green 830 liquid, Basonyl® Blue 644 liquid, Basonyl® Red 545 liquid, Basonyl® Red 555 liquid, Basonyl ® Green 830 liquid, Basonyl® Blue 636, and Neptun Yellow 075.
- carrier liquid is triacetin
- the dye is selected from the group consisting of Neozapon® Black X55, Neozapon® Red 335, Neozapon® Orange 251, Basonyl® Green 830 liquid, Basonyl® Blue 644 liquid, Basonyl® Red 545 liquid, Basonyl® Red 555 liquid, Basonyl ® Green 830 liquid, Basonyl® Blue 636, and Neptun Yellow 075.
- the carrier liquid is selected from the group consisting of glycols and esters of citric acid and glycerol esters,
- the dye is selected from the group consisting of Basonyl® Blue 644, Basonyl® Red 545, Basonyl® Green 830, Neozapon® black X55, and Neptun Yellow 075.
- the carrier liquid is triacetin
- the dye is selected from the group consisting of Basonyl® Blue 644, Basonyl® Red 545, Basonyl® Green 830, Neozapon® black X55, and Neptun Yellow 075.
- thermoplastic polyurethanes wherein the elastomer is selected from the group consisting of thermoplastic polyurethanes,
- the carrier liquid is selected from the group consisting of glycols and esters of citric acid and glycerol esters,
- the dye is selected from the group consisting of Neozapon® Black X55, Neozapon® Red 335, Neozapon® Orange 251, Basonyl® Green 830 liquid, Basonyl® Blue 644 liquid, Basonyl® Red 545 liquid, Basonyl® Red 555 liquid, Basonyl® Green 830 liquid, Basonyl® Blue 636, and Neptun Yellow 075.
- thermoplastic thermoplastic
- carrier liquid is triacetin
- the dye is selected from the group consisting of Neozapon® Black X55, Neozapon® Red 335, Neozapon® Orange 251, Basonyl® Green 830 liquid, Basonyl® Blue 644 liquid, Basonyl® Red 545 liquid, Basonyl® Red 555 liquid, Basonyl ® Green 830 liquid, Basonyl® Blue 636, and Neptun Yellow 075.
- thermoplastic polyurethanes wherein the elastomer is selected from the group consisting of thermoplastic polyurethanes,
- the carrier liquid is selected from the group consisting of glycols and esters of citric acid and glycerol esters,
- the dye is selected from the group consisting of Basonyl® Blue 644, Basonyl® Red 545, Basonyl® Green 830, Neozapon® black X55, and Neptun Yellow 075. 40.
- thermoplastic polyurethanes wherein the elastomer is selected from the group consisting of thermoplastic polyurethanes,
- the carrier liquid is triacetin
- the dye is selected from the group consisting of Basonyl® Blue 644,
- Basonyl® Red 545 Basonyl® Green 830, Neozapon® black X55, and Neptun Yellow 075.
- Embodiments 15 to 28 or 41 comprising
- step (b) fusing the particle foams from step (a). 47.
- the method according to embodiment 46 characterized in that the fusion in step (b) takes place in a closed mold.
- step (b) by means of steam, hot air or energy radiation takes place.
- Shaped bodies obtainable or obtained according to a method according to one of
- Thermoplastic polyurethane-based foam particles obtained by foaming granulated TPU 1 under pressure and high temperature,
- Thermoplastic polyurethane-based foam particles obtained by foaming granulated TPU 1 under pressure and high temperature,
- thermoplastic polyurethane obtained by foaming granulated TPU2 under pressure and high temperature, particle weight 32 mg, bulk density 90 g / l.
- expanded, predominantly closed-cell foam particles based on thermoplastic polyurethane obtained by foaming granulated TPU1 under pressure and high temperature, particle weight 5 mg, bulk densities 1 10 g / l.
- E-TPU5 expanded, partially closed-cell foam particles based on thermoplastic polyurethane, obtained by foaming granulated TPU3 under pressure and high temperature, particle weight 32 mg, bulk density 90 g / l.
- dyes in principle, all available colorants can be used. Soluble or liquid dyes penetrate into the particles and color them through, insoluble dyes, as pigments are fixed on the surface.
- the dyes were first dissolved in ethanol to identify 1% and the
- the dyed foam particles were then welded on a molding machine from Kurtz ersa GmbH (Boost Foamer) to square plates with a side length of 200 mm and a thickness of 10 mm thickness by application of water vapor.
- the welding parameters of the different materials were chosen so that the plate side of the final molding, which was facing the movable side (MI I) of the tool, collapsed as few as possible ETPU particles. If necessary, the Spaltbedampfung was carried out by the movable side of the tool. Regardless of the experiment, a cooling time of 100 s was always set at the end for a 10 mm thick plate of the fixed (MI) and the movable side of the tool.
- the respective ones were then welded on a molding machine from Kurtz ersa GmbH (Boost Foamer) to square plates with a side length of 200 mm and a thickness of 10 mm thickness by application of water vapor.
- the welding parameters of the different materials were chosen so that the plate side of the final molding, which was facing the movable side (MI
- Table 3 lists the vapor pressures.
- the weld quality of the panels can be determined by means of various test methods. The results are summarized in Table 4. Table 4: Results of various test methods on a 10 mm plate
- the particle foam E-TPU5 was processed by means of microwave radiation to a mold plate.
- E-TPU5 foam particles Forty-five parts by weight of the colored E-TPU5 foam particles were placed in a vessel together with 2.4 parts by weight of glycerol triacetate. By shaking the vessel the E-TPU foam particles were completely within 60 seconds
- Microwaveable mold with the dimensions 200mm x 200mm x 10mm filled.
- a height-adjustable lid exerted light pressure on the particles.
- This filled shape was slanted at a 30 ° angle on the outer edge of the
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Textile Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17198591 | 2017-10-26 | ||
PCT/EP2018/079293 WO2019081644A1 (en) | 2017-10-26 | 2018-10-25 | Method for dyeing elastomer particle foams |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3700969A1 true EP3700969A1 (en) | 2020-09-02 |
Family
ID=60382017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18789179.1A Withdrawn EP3700969A1 (en) | 2017-10-26 | 2018-10-25 | Method for dyeing elastomer particle foams |
Country Status (11)
Country | Link |
---|---|
US (1) | US20200270806A1 (en) |
EP (1) | EP3700969A1 (en) |
JP (1) | JP2021500460A (en) |
KR (1) | KR20200070377A (en) |
CN (1) | CN111263787A (en) |
BR (1) | BR112020006291A2 (en) |
CA (1) | CA3080255A1 (en) |
MX (1) | MX2020004316A (en) |
RU (1) | RU2020117049A (en) |
TW (1) | TW201932520A (en) |
WO (1) | WO2019081644A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022161994A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Preparation for a molded body |
WO2022161995A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Process for the manufacturing of a composite material |
WO2022161981A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Composite material for a molded body |
WO2022161978A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Construction of a molded body for non-pneumatic tires |
WO2022248558A1 (en) | 2021-05-27 | 2022-12-01 | Basf Se | Multilayered composite material comprising foamed granules |
WO2023208987A1 (en) | 2022-04-27 | 2023-11-02 | Basf Se | Local compaction of e-tpu particle foam material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210153395A (en) | 2020-06-10 | 2021-12-17 | 엘지디스플레이 주식회사 | Light emitting display device and method for sensing degradation of the same |
WO2021254807A1 (en) | 2020-06-15 | 2021-12-23 | Basf Se | Thermoplastic polyurethane composition with high mechanical properties, good resistance against uv radiation and low blooming and fogging |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4307648A1 (en) | 1993-03-11 | 1994-09-15 | Basf Ag | Foams based on thermoplastic polyurethanes as well as expandable, particulate, thermoplastic polyurethanes, particularly suitable for the production of foam molded articles |
ATE482991T1 (en) | 2006-01-18 | 2010-10-15 | Basf Se | FOAM BASED ON THERMOPLASTIC POLYURETHANES |
DK2109637T3 (en) | 2007-01-16 | 2018-11-12 | Frank Prissok | HYBRID SYSTEMS OF FOAMED THERMOPLASTIC ELASTOMERS AND POLYURETHANES |
WO2010010010A1 (en) | 2008-07-25 | 2010-01-28 | Basf Se | Thermoplastic polymer blends based on thermoplastic polyurethane and styrene polymer, foams produced therefrom and associated manufacturing methods |
WO2013153190A1 (en) | 2012-04-13 | 2013-10-17 | Basf Se | Method for producing expanded granules |
US8961844B2 (en) | 2012-07-10 | 2015-02-24 | Nike, Inc. | Bead foam compression molding method for low density product |
US9144956B2 (en) | 2013-02-12 | 2015-09-29 | Nike, Inc. | Bead foam compression molding method with in situ steam generation for low density product |
US9498927B2 (en) * | 2013-03-15 | 2016-11-22 | Nike, Inc. | Decorative foam and method |
US9375866B2 (en) | 2013-03-15 | 2016-06-28 | Nike, Inc. | Process for foaming thermoplastic elastomers |
ES2676440T3 (en) | 2014-04-30 | 2018-07-19 | Basf Se | Polyurethane particle foam with polyurethane coating |
DE102015202013B4 (en) | 2015-02-05 | 2019-05-09 | Adidas Ag | Process for producing a plastic molding, plastic molding and shoe |
JP6907133B2 (en) | 2015-03-13 | 2021-07-21 | ビーエイエスエフ・ソシエタス・エウロパエアBasf Se | A method for producing particle foams based on thermoplastic elastomers by thermal bonding using microwaves. |
JP2018510958A (en) * | 2015-03-13 | 2018-04-19 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Electrically conductive foamed particles based on thermoplastic elastomers |
CN107980048B (en) | 2015-08-19 | 2021-02-09 | 耐克创新有限合伙公司 | Process for preparing thermoplastic elastomer foam and foamed articles |
CN105837848B (en) * | 2016-05-19 | 2019-03-05 | 晋江国盛新材料科技有限公司 | A kind of colouring method of TPU expanded bead and the method that formed body is made with this bead |
CN108715648A (en) * | 2016-05-19 | 2018-10-30 | 晋江国盛新材料科技有限公司 | A kind of spray painting painting methods of TPU expanded beads formed body |
-
2018
- 2018-10-25 CN CN201880068552.2A patent/CN111263787A/en active Pending
- 2018-10-25 RU RU2020117049A patent/RU2020117049A/en unknown
- 2018-10-25 CA CA3080255A patent/CA3080255A1/en not_active Abandoned
- 2018-10-25 US US16/758,315 patent/US20200270806A1/en not_active Abandoned
- 2018-10-25 MX MX2020004316A patent/MX2020004316A/en unknown
- 2018-10-25 JP JP2020523760A patent/JP2021500460A/en not_active Withdrawn
- 2018-10-25 KR KR1020207014956A patent/KR20200070377A/en active Search and Examination
- 2018-10-25 WO PCT/EP2018/079293 patent/WO2019081644A1/en active Search and Examination
- 2018-10-25 BR BR112020006291-0A patent/BR112020006291A2/en not_active Application Discontinuation
- 2018-10-25 TW TW107137776A patent/TW201932520A/en unknown
- 2018-10-25 EP EP18789179.1A patent/EP3700969A1/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022161994A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Preparation for a molded body |
WO2022161995A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Process for the manufacturing of a composite material |
WO2022161981A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Composite material for a molded body |
WO2022161978A1 (en) | 2021-01-29 | 2022-08-04 | Basf Se | Construction of a molded body for non-pneumatic tires |
WO2022248558A1 (en) | 2021-05-27 | 2022-12-01 | Basf Se | Multilayered composite material comprising foamed granules |
WO2023208987A1 (en) | 2022-04-27 | 2023-11-02 | Basf Se | Local compaction of e-tpu particle foam material |
Also Published As
Publication number | Publication date |
---|---|
WO2019081644A1 (en) | 2019-05-02 |
MX2020004316A (en) | 2020-08-13 |
JP2021500460A (en) | 2021-01-07 |
CA3080255A1 (en) | 2019-05-02 |
CN111263787A (en) | 2020-06-09 |
RU2020117049A (en) | 2021-11-26 |
KR20200070377A (en) | 2020-06-17 |
TW201932520A (en) | 2019-08-16 |
RU2020117049A3 (en) | 2022-04-21 |
BR112020006291A2 (en) | 2020-10-13 |
US20200270806A1 (en) | 2020-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3700969A1 (en) | Method for dyeing elastomer particle foams | |
EP3055351B1 (en) | Method for the preparation of expanded polyester foam particles | |
EP1979401B1 (en) | Foams based on thermoplastic polyurethanes | |
EP3137539B1 (en) | Polyurethane particle foam with polyurethane coating | |
DE202015008971U1 (en) | Expanded polymer pellets | |
EP3755752B1 (en) | Joining of bodies by means of thermoplastic elastomer using high-frequency waves | |
DE60003367T2 (en) | Process for producing a porous product | |
WO2020136239A1 (en) | Higher-strength etpu | |
WO2022162048A1 (en) | Particle foam made of tpe with a shore hardness between 20d and 90d | |
DE3541513A1 (en) | METHOD FOR PRODUCING OBJECTS FROM POLYURETHANE FOAM AND ADDITIVES FOR CARRYING OUT THIS METHOD | |
EP3850037A1 (en) | Foams based on thermoplastic elastomers | |
EP3781616A1 (en) | Foams based on thermoplastic elastomers | |
EP3781618A1 (en) | Foams based on thermoplastic elastomers | |
WO2018015504A1 (en) | Microwave welding of elastomer powder | |
EP4110129A1 (en) | Tpu for inmold assembly of an outer shoe sole on etpu | |
WO2019202091A1 (en) | Foams based on thermoplastic elastomers | |
EP4083122B1 (en) | Polymer foam particle and method for producing the same based on polybutylene terephthalate | |
EP3902857A1 (en) | Particle foams consisting of an aromatic polyester-polyurethane multi-block copolymer | |
EP3983467A1 (en) | Novel particle foams | |
EP3781615A1 (en) | Foams based on thermoplastic elastomers | |
DE4309228A1 (en) | Process for the production of granules, extrudates, pellets and mouldings | |
DE1494231A1 (en) | Process for the production of molded plastic foams | |
WO2022043428A1 (en) | Foamed granules made of thermoplastic polyurethane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200526 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220215 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20231110 |