EP3698048B1 - Compression device and method and refrigeration machine - Google Patents

Compression device and method and refrigeration machine Download PDF

Info

Publication number
EP3698048B1
EP3698048B1 EP18765154.2A EP18765154A EP3698048B1 EP 3698048 B1 EP3698048 B1 EP 3698048B1 EP 18765154 A EP18765154 A EP 18765154A EP 3698048 B1 EP3698048 B1 EP 3698048B1
Authority
EP
European Patent Office
Prior art keywords
gas
motor
compressor
line
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18765154.2A
Other languages
German (de)
French (fr)
Other versions
EP3698048A1 (en
Inventor
Fabien Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3698048A1 publication Critical patent/EP3698048A1/en
Application granted granted Critical
Publication of EP3698048B1 publication Critical patent/EP3698048B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements

Definitions

  • the invention relates to a compression device and method as well as to a refrigeration machine.
  • the invention relates more particularly to a device for centrifugal compression of a working gas, in particular for a refrigeration machine, comprising several centrifugal compressors forming several successive and / or parallel compression stages and several motors for driving the compressors, the device comprising a gas circuit comprising a first inlet pipe for gas to be compressed connected to an inlet of a first compressor for conveying gas to be compressed in the first compressor, the circuit comprising a second pipe connected to an outlet of said first compressor for evacuating the gas compressed in the latter, the second pipe being connected to an inlet of a second compressor for conveying the gas which has been compressed in the first compressor into the second compressor in order to achieve a second compression, the circuit comprising a third pipe cooling unit having an upstream end connected to an outlet of at least one of the compressors and a downstream end connected to an inlet of at least one first motor for transferring a fraction of the gas compressed in said compressor into said at least one first motor in order to limit its heating.
  • a centrifugal compressor using a direct drive between the motor (electric) and the compression wheel (s) requires a flow of gas in order to evacuate the heat generated in the engine. This heat is generated mainly by the losses of the engine and by the friction of the rotor with the gas which surrounds it.
  • This cooling flow is usually injected on one side of the engine (at an inlet) and discharged on the other side (at an outlet) with a higher temperature. It can also be injected in the middle of the engine and be evacuated on both sides of the latter.
  • a more or less significant part of the heat is also usually evacuated by a heat transfer fluid circulating in a circuit surrounding the stator part of the motor (water or air or any other heat transfer fluid making it possible to cool the stator).
  • a heat transfer fluid circulating in a circuit surrounding the stator part of the motor (water or air or any other heat transfer fluid making it possible to cool the stator).
  • the gas circulating in the engine to cool it usually has the same composition as the compressed gas.
  • the motive force necessary to circulate the gas through the engine (s), is generated by one or more compression stages (that is to say by one or more of the compressors ).
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the device according to the invention is essentially characterized in that the circuit comprises a fourth pipe having an upstream end connected to an outlet of the first engine to recover the gas having circulated in the first engine and a downstream end connected to an inlet of a second engine to transfer the gas therein with a view to limiting the heating of the second engine.
  • the invention also relates to a low-temperature refrigeration machine of between -100 ° C and -273 ° C comprising a working circuit containing a working fluid, the working circuit comprising a centrifugal compression device and a cooling device and expansion of the compressed gas in the compression device, the compression device conforming to any one of the characteristics above or below.
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below.
  • the compression device 18 shown schematically on figure 1 comprises two centrifugal compressors 1, 3 (that is to say two compressor wheels) forming two successive compression stages.
  • the two compressors 1, 3 are each driven by a respective drive motor 5, 6.
  • the compressors 1, 3 are rotated directly by their corresponding motor 5, 6.
  • the device 18 comprises a gas circuit comprising a first inlet pipe 16 for gas to be compressed connected to the inlet of a first compressor 1, in order to convey gas to be compressed in the first compressor 1.
  • the circuit comprises a second pipe 14 having an upstream end connected to an outlet of said first compressor 1 for discharging the gas compressed in the latter.
  • the second pipe 14 has a downstream end connected to an inlet of the second compressor 3, for conveying the compressed gas in the first compressor 1 in the second compressor 3 with a view to performing a second compression (a second compression stage).
  • the second pipe 14 preferably comprises a member 2 for cooling the gas, for example a heat exchanger cooled by a heat transfer fluid. This makes it possible to cool the compressed gas before it enters the second compressor 3.
  • the circuit preferably comprises a member 4 for cooling the gas at the outlet of the second compressor 3 (for example an exchanger in exchange with a coolant).
  • the circuit comprises a third pipe 10 having an upstream end connected to the outlet of a compressor 1 and a downstream end connected to a first 6 of the two motors.
  • the upstream end of the third pipe 10 can be connected to the outlet of the first compressor 1 via the second pipe 14. That is to say that the third pipe 10 is connected by branch to the second pipe 14 between the first 1 and second 3 compressors.
  • the third pipe 10 takes a fraction of the compressed gas intended to supply the second compressor 3 in order to sweep (cool) the first engine.
  • This fraction can correspond to one to forty percent of the gas flow leaving the first compressor 1.
  • the third pipe 10 may comprise a valve 8 for regulating the flow rate of the gas transferred into the first motor 6 (or any other suitable member, in particular a pressure reducing member such as an orifice, turbine, Ranque tube or vortex tube, orifice , capillary).
  • a valve 8 for regulating the flow rate of the gas transferred into the first motor 6 (or any other suitable member, in particular a pressure reducing member such as an orifice, turbine, Ranque tube or vortex tube, orifice , capillary).
  • the circuit comprises a fourth pipe 12 having an upstream end connected to an outlet of the first motor 6 to recover the gas having circulated in the first motor 6 and a first downstream end connected to an inlet of a second motor 5 in order to transfer the gas therein. in order to limit the heating of the second motor 5.
  • the fourth pipe 12 comprises a gas cooling member 13 for cooling the gas between its outlet from the first engine 6 and its entry into the second engine 5.
  • this cooling member 13 comprises a heat exchanger in exchange. thermal with a cooling heat transfer fluid.
  • the cooling gas which has circulated in the second motor 5 is discharged via a fifth pipe 7 having an upstream end connected to an outlet of the second motor 5 (to recover the gas having circulated in the second motor 5 and a downstream end connected to the inlet of the first compressor 1 with a view to its compression
  • the fifth line 7 can be connected to the inlet of the first compressor 1 via the first line 16.
  • the fifth pipe 7 (and possibly the fourth pipe 12) can also be used if necessary to recover the gas coming from any leaks (at the level for example of joints located near the engines, such as rotary joints for example).
  • the fifth pipe 7 may comprise a member 9 for cooling the gas, for example a heat exchanger in thermal exchange with a coolant coolant.
  • the fourth pipe 12 may include a second downstream end connected to the fifth pipe 7 and a valve system 11 for distributing the flow of gas coming from the first motor 6 between the second motor. 5 and the fifth line 7. That is to say that the gas leaving the first motor 6 (cooling gas) can be distributed between the second motor 5 (to cool it) and the inlet of the first compressor 1. This is obtained. via two parallel lines and at least one valve 11 (and / or any other pressure reducing device: turbine, orifice, etc.).
  • the valve 11 (or equivalent) can be arranged at the terminals of the motor 6 (or motors).
  • the valve 11 (or the valves) can be a piloted control valve.
  • a bypass line from the first motor 6 can be provided (for example between the third line 10 and the fourth line) to relatively reduce the quantity of cooling gas in the first motor 6 with respect to the quantity of cooling gas. of the second motor 5.
  • a bypass pipe can be provided between the second pipe 14 (for example after the cooling member 2) and the fourth pipe (upstream or downstream of the cooling member 13).
  • a pipe system (s) and valve (s) can be provided to distribute different quantities of cooling gas between the first motor 6 and the second motor 5 as required.
  • a bypass valve 11 can advantageously be placed between the inlet and the outlet of the cooling gas of the second motor 5 in order to limit the flow of cooling gas through this second motor 5 in the event that it is is too important.
  • the mechanical power required to compress for example a flow rate of 1.26 kg / s of gaseous nitrogen having an initial pressure of 5 bars absolute and a temperature of 288 K at a pressure of 18.34 bars absolute is 188 kW.
  • This compression power can be divided into 88kW for the motor 5 which drives the first compressor 1 and 100kW for the motor 6 which drives the second compressor 3.
  • the nitrogen is compressed for example up to 8.87 bar absolute in the first centrifugal compression stage 1 having a power of 83 kW and a typical isentropic efficiency of 86%. Then this compressed gas is cooled in the heat exchanger 2.
  • Part of the gas is withdrawn via valve 8 to cool the first motor 6.
  • the rest (the main flow) is then compressed again to 18.34 bar absolute in the second compression stage 3.
  • This second compressor 3 has for example a power of 95 kW and a typical isentropic efficiency of 86%.
  • the gas is cooled in the heat exchanger 4 at the outlet of the second compressor 3.
  • the gas is then brought to the outlet 15 of the device 18.
  • Part of the nitrogen flow at the outlet of the exchanger 2 will therefore be sent through the valve 8 and the third pipe 10 to supply the first engine 6 with cooling gas.
  • the nitrogen will then escape from the first motor 6 via the fourth pipe 12 and join the exchanger 13 to be cooled to a temperature preferably close to or equal to the inlet temperature of the first compressor 1.
  • This cooling is carried out before the gas enters the second engine 5.
  • the rise in the temperature of the gas through the second motor 5 is preferably of the same order of magnitude as that through the first motor 6 (the flow rate and the power to be extracted are preferably close).
  • the cooling gas After passing through the second engine 5, the cooling gas is sent to the downstream heat exchanger 9 via the fifth pipe 7 to be cooled before returning to the inlet 16 of the first compressor 1.
  • the solution according to the invention uses the same gas flow which is put into operation. circulation to cool two engines (in series on the cooling gas circuit). This allows the necessary cooling gas flow rate to be halved.
  • the invention allows efficient cooling (thermally and energetically) of a plurality of motors of a compression device.
  • the gas used for cooling the engines could be taken from the outlet of another or more compressors other than the first compression stage.
  • the device could include more than two compressors and more than two motors.
  • expansion turbines could be included in the device.
  • one or more expansion stages can be mounted on the same motor shaft as one or more compressors.
  • cooling members 9, 13 can be omitted (their use makes it possible to improve the efficiency of the system, but the latter are not necessary).
  • valve or valves 8, 11 can advantageously be adjustable so as to control, for example, the temperature of one or more motors and / or the cooling flow rate and / or the temperature of the cooling gas.
  • these expansion members 8, 11 can, if necessary, cool the gas before it enters the engine (s).
  • these expansion devices 8, 11 can be replaced (or supplemented) by any other pressure-reducing device such as an orifice, turbine or capillary, for example.
  • the valves 8, 11 can be replaced by or associated with one or more turbines and / or Ranque tubes (vortex tube).
  • the member 8 can be located alternately on the second pipe 14, for example.
  • the member 11 can be located alternately on the first pipe 16, for example.
  • rotary joints can be used between the engine (s) 5, 6 and the compression stage (s) 1, 3 or the expansion stage (s) so that the pressure in the cavities of the engine is close to zero.
  • lowest compressor pressure i.e. the compressor inlet pressure 13. This has the consequence of lowering the friction losses between the rotor (s) and the gas because these losses are proportional to the pressure in the engine cavity. Leaks recovered from this or these seal (s) will add to the flow of cooling gas from the third line.
  • the compression device 18 may form part of a refrigeration machine at low temperature, for example between -100 ° C and -273 ° C, and comprising a working circuit 10 containing a cooling fluid. work, the work circuit comprising a centrifugal compression device 18 and a device 19 for cooling and expanding the compressed gas in the compression device 18.
  • the working gas can include all or part of: nitrogen, helium, hydrogen, neon, argon, carbon monoxide, methane, krypton, xenon, l ethane, carbon dioxide, propane, butane, oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

L'invention concerne un dispositif et un procédé de compression ainsi qu'une machine de réfrigération.The invention relates to a compression device and method as well as to a refrigeration machine.

L'invention concerne plus particulièrement un dispositif de compression centrifuge d'un gaz de travail, notamment pour machine de réfrigération, comprenant plusieurs compresseurs centrifuges formant plusieurs étages de compression successifs et/ou parallèles et plusieurs moteurs d'entraînement des compresseurs, le dispositif comprenant un circuit de gaz comprenant une première conduite d'entrée de gaz à comprimer reliée à une entrée d'un premier compresseur pour acheminer du gaz à comprimer dans le premier compresseur, le circuit comprenant une seconde conduite reliée à une sortie dudit premier compresseur pour évacuer le gaz comprimé dans ce dernier, la seconde conduite étant reliée à une entrée d'un second compresseur pour acheminer le gaz qui a été comprimé dans le premier compresseur dans le second compresseur en vue de réaliser une seconde compression, le circuit comprenant une troisième conduite de refroidissement ayant une extrémité amont raccordée à une sortie d'au moins un des compresseurs et une extrémité aval raccordée à une entrée d'au moins un premier moteur pour transférer une fraction du gaz comprimé dans ledit compresseur dans ledit au moins un premier moteur en vue de limiter son échauffement.The invention relates more particularly to a device for centrifugal compression of a working gas, in particular for a refrigeration machine, comprising several centrifugal compressors forming several successive and / or parallel compression stages and several motors for driving the compressors, the device comprising a gas circuit comprising a first inlet pipe for gas to be compressed connected to an inlet of a first compressor for conveying gas to be compressed in the first compressor, the circuit comprising a second pipe connected to an outlet of said first compressor for evacuating the gas compressed in the latter, the second pipe being connected to an inlet of a second compressor for conveying the gas which has been compressed in the first compressor into the second compressor in order to achieve a second compression, the circuit comprising a third pipe cooling unit having an upstream end connected to an outlet of at least one of the compressors and a downstream end connected to an inlet of at least one first motor for transferring a fraction of the gas compressed in said compressor into said at least one first motor in order to limit its heating.

Un compresseur centrifuge utilisant un entrainement direct entre le moteur (électrique) et la ou les roues de compression (c'est-à-dire sans multiplicateur de vitesse) nécessite un débit de gaz afin d'évacuer la chaleur générée dans le moteur. Cette chaleur est générée principalement par les pertes du moteur et par le frottement du rotor avec le gaz qui l'entoure.A centrifugal compressor using a direct drive between the motor (electric) and the compression wheel (s) (that is to say without a speed multiplier) requires a flow of gas in order to evacuate the heat generated in the engine. This heat is generated mainly by the losses of the engine and by the friction of the rotor with the gas which surrounds it.

Ce débit de refroidissement est habituellement injecté d'un côté du moteur (au niveau d'une entrée) et évacué de l'autre côté (au niveau d'une sortie) avec une température plus élevée. Il peut aussi être injecté au milieu du moteur et être évacué des deux côtés de celui-ci.This cooling flow is usually injected on one side of the engine (at an inlet) and discharged on the other side (at an outlet) with a higher temperature. It can also be injected in the middle of the engine and be evacuated on both sides of the latter.

Une part plus ou moins importante de la chaleur est aussi habituellement évacuée pas un fluide caloporteur circulant dans un circuit entourant la partie statorique du moteur (eau ou air ou tout autre fluide caloporteur permettant de refroidir le stator).A more or less significant part of the heat is also usually evacuated by a heat transfer fluid circulating in a circuit surrounding the stator part of the motor (water or air or any other heat transfer fluid making it possible to cool the stator).

Dans le but de ne pas perdre ou de ne pas polluer le gaz comprimé, le gaz circulant dans le moteur pour le refroidir a habituellement la même composition que le gaz comprimé.In order not to lose or pollute the compressed gas, the gas circulating in the engine to cool it usually has the same composition as the compressed gas.

Dans le but de limiter le nombre d'équipement, la force motrice nécessaire pour faire circuler le gaz au travers du ou des moteurs, est générée par un ou plusieurs étages de compression (c'est-à-dire par un ou plusieurs des compresseurs).In order to limit the number of equipment, the motive force necessary to circulate the gas through the engine (s), is generated by one or more compression stages (that is to say by one or more of the compressors ).

Il existe plusieurs exemples connus utilisant cette technique de refroidissement.There are several known examples using this cooling technique.

Le document US6,64,469 décrit l'utilisation d'une partie du gaz sortant du premier étage de compression pour refroidir le moteur. Ce gaz est ensuite renvoyé vers l'entrée du compresseur.The document US6,64,469 describes the use of part of the gas exiting the first compression stage to cool the engine. This gas is then returned to the inlet of the compressor.

Le document US5,980,218 décrit l'utilisation d'une partie du gaz sortant de l'échangeur de refroidissement situé en aval du premier étage de compression pour refroidir le moteur. Ce gaz est ensuite renvoyé vers l'entrée du compresseur.The document US5,980,218 describes the use of part of the gas leaving the cooling exchanger located downstream of the first compression stage to cool the engine. This gas is then returned to the inlet of the compressor.

Le document US8899945 décrit une architecture à plusieurs moteurs.The document US8899945 describes a multi-engine architecture.

Ces solutions sont cependant peu adaptées à une architecture à plusieurs moteurs et/ou les performances sont insatisfaisantes.These solutions are however poorly suited to an architecture with several engines and / or the performance is unsatisfactory.

Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.

A cette fin, le dispositif selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est essentiellement caractérisé en ce que le circuit comprend une quatrième conduite ayant une extrémité amont reliée à une sortie du premier moteur pour récupérer le gaz ayant circulé dans le premier moteur et une extrémité aval reliée à une entrée d'un second moteur pour y transférer le gaz en vue de limiter l'échauffement du second moteur.To this end, the device according to the invention, moreover in accordance with the generic definition given in the preamble above, is essentially characterized in that the circuit comprises a fourth pipe having an upstream end connected to an outlet of the first engine to recover the gas having circulated in the first engine and a downstream end connected to an inlet of a second engine to transfer the gas therein with a view to limiting the heating of the second engine.

Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes :

  • la quatrième conduite comprend un organe de refroidissement du gaz pour refroidir le gaz entre sa sortie du premier moteur et son entrée dans le second moteur,
  • que le circuit comprend une cinquième conduite ayant une extrémité amont reliée à une sortie du second moteur pour récupérer le gaz ayant circulé dans le second moteur et une extrémité aval reliée à l'entrée du premier compresseur en vue de sa compression,
  • le dispositif comprend un système de conduite(s) et de vanne(s) pour répartir les quantités de de gaz de refroidissement entre le premier moteur et le second moteur,
  • la cinquième conduite comprend un organe de refroidissement du gaz,
  • la quatrième conduite a une seconde extrémité aval reliée à la cinquième conduite, le dispositif comprenant un système de de vanne pour répartir le flux de gaz provenant du premier moteur entre le second moteur et la cinquième conduite,
  • la seconde conduite comprend un organe de refroidissement du gaz,
  • l'organe de refroidissement de la seconde conduite comprend un échangeur de chaleur refroidi par un fluide caloporteur,
  • le circuit comprend un organe de refroidissement du gaz à une sortie du second compresseur,
  • la troisième conduite comprend une vanne de régulation de débit du gaz transféré dans le premier moteur,
  • le dispositif comprend au moins un moteur entraînent un ou plusieurs compresseurs et au moins un moteur accouplé à une ou plusieurs turbines de détente,
  • le dispositif comporte un ou des joints tournants entre le ou les moteurs et le ou les compresseurs ou un ou des étages de détente de manière à ce que la pression dans les cavités du ou des moteurs soit proche de la pression la plus basse du compresseur, c'est à dire la pression d'entrée du compresseur,
  • les compresseurs sont entraînés en rotation de façon directe par les moteurs correspondants,
  • le dispositif comprend plusieurs compresseurs entraînés par un même moteur,
  • le dispositif comprend un ou plusieurs étages de détente formés par un ou des turbines de détente, de préférence centripète et à accouplement direct avec le moteur.
Furthermore, embodiments of the invention may include one or more of the following characteristics:
  • the fourth pipe comprises a gas cooling member for cooling the gas between its exit from the first engine and its entry into the second engine,
  • that the circuit comprises a fifth pipe having an upstream end connected to an outlet of the second engine to recover the gas having circulated in the second engine and a downstream end connected to the inlet of the first compressor with a view to its compression,
  • the device comprises a pipe system (s) and valve (s) for distributing the quantities of cooling gas between the first engine and the second engine,
  • the fifth pipe comprises a gas cooling member,
  • the fourth pipe has a second downstream end connected to the fifth pipe, the device comprising a valve system for distributing the flow of gas coming from the first motor between the second motor and the fifth pipe,
  • the second pipe comprises a gas cooling member,
  • the cooling member of the second pipe comprises a heat exchanger cooled by a heat transfer fluid,
  • the circuit comprises a gas cooling member at an outlet of the second compressor,
  • the third pipe comprises a valve for regulating the flow of gas transferred to the first engine,
  • the device comprises at least one motor driving one or more compressors and at least one motor coupled to one or more expansion turbines,
  • the device comprises one or more rotating joints between the engine (s) and the compressor (s) or one or more expansion stages so that the pressure in the cavities of the engine (s) is close to the lowest pressure of the compressor, i.e. the compressor inlet pressure,
  • the compressors are directly driven in rotation by the corresponding motors,
  • the device comprises several compressors driven by the same motor,
  • the device comprises one or more expansion stages formed by one or more expansion turbines, preferably centripetal and with direct coupling with the engine.

L'invention concerne également une machine de réfrigération à basse température comprise entre -100°C et -273°C comprenant un circuit de travail contenant un fluide de travail, le circuit de travail comprenant un dispositif de compression centrifuge et un dispositif de refroidissement et de détente du gaz comprimé dans le dispositif de compression, le dispositif de compression étant conforme à l'une quelconque des caractéristiques ci-dessus ou ci-dessous.The invention also relates to a low-temperature refrigeration machine of between -100 ° C and -273 ° C comprising a working circuit containing a working fluid, the working circuit comprising a centrifugal compression device and a cooling device and expansion of the compressed gas in the compression device, the compression device conforming to any one of the characteristics above or below.

L'invention concerne également un procédé de compression centrifuge d'un gaz de travail, notamment pour machine de réfrigération utilisant plusieurs compresseurs centrifuges formant plusieurs étages de compression successifs et/ou parallèles et plusieurs moteurs d'entraînement des compresseurs, les compresseurs étant entraînés en rotation de façon directe par les moteurs, le procédé comprenant :

  • une étape de compression d'un gaz de travail dans un premier compresseur puis dans un second compresseur disposé en série ou en parallèle,
  • une étape prélèvement d'une fraction du gaz compressé sortant d'au moins un des compresseurs et de mise en circulation de ce gaz prélevé dans un premier un moteur en vue de son refroidissement, le procédé comportant une étape de refroidissement du gaz ayant servi à refroidir le premier moteur puis une étape de mise en circulation de ce gaz refroidi dans un second moteur en vue de son refroidissement.
The invention also relates to a method of centrifugal compression of a working gas, in particular for a refrigeration machine using several centrifugal compressors forming several successive and / or parallel compression stages and several compressors driving motors, the compressors being driven in rotation directly by the motors, the method comprising:
  • a step of compressing a working gas in a first compressor then in a second compressor arranged in series or in parallel,
  • a step of taking a fraction of the compressed gas leaving at least one of the compressors and of circulating this gas taken from a first engine with a view to its cooling, the method comprising a step of cooling the gas used for cooling the first engine and then a step of circulating this cooled gas in a second engine with a view to cooling it.

L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous.The invention may also relate to any alternative device or method comprising any combination of the characteristics above or below.

D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :

  • la figure 1 représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'un dispositif de compression selon l'invention,
  • la figure 2 représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'une machine de refroidissement comprenant un tel dispositif de compression.
Other features and advantages will become apparent on reading the description below, given with reference to the figures in which:
  • the figure 1 represents a schematic and partial view illustrating an example of the structure and operation of a compression device according to the invention,
  • the figure 2 represents a schematic and partial view illustrating an example of the structure and operation of a cooling machine comprising such a compression device.

Le dispositif de compression 18 représenté schématiquement à la figure 1 comprend deux compresseur 1, 3 centrifuges (c'est-à-dire deux roues de compresseur) formant deux étages de compression successifs.The compression device 18 shown schematically on figure 1 comprises two centrifugal compressors 1, 3 (that is to say two compressor wheels) forming two successive compression stages.

Les deux compresseurs 1, 3 sont entraînés chacun par un moteur 5, 6 d'entraînement respectif.The two compressors 1, 3 are each driven by a respective drive motor 5, 6.

De préférence, les compresseurs 1, 3 sont entraînés en rotation de façon directe par leur moteur 5, 6 correspondant.Preferably, the compressors 1, 3 are rotated directly by their corresponding motor 5, 6.

Le dispositif 18 comprend un circuit de gaz comprenant une première conduite 16 d'entrée de gaz à comprimer reliée à l'entrée d'un premier compresseur 1, pour acheminer du gaz à comprimer dans le premier compresseur 1.The device 18 comprises a gas circuit comprising a first inlet pipe 16 for gas to be compressed connected to the inlet of a first compressor 1, in order to convey gas to be compressed in the first compressor 1.

Le circuit comprend une seconde conduite 14 ayant une extrémité amont reliée à une sortie dudit premier compresseur 1 pour évacuer le gaz comprimé dans ce dernier. La seconde conduite 14 possède une extrémité aval reliée à une entrée du second compresseur 3, pour acheminer le gaz comprimé dans le premier compresseur 1 dans le second compresseur 3 en vue de réaliser une seconde compression (un deuxième étage de compression).The circuit comprises a second pipe 14 having an upstream end connected to an outlet of said first compressor 1 for discharging the gas compressed in the latter. The second pipe 14 has a downstream end connected to an inlet of the second compressor 3, for conveying the compressed gas in the first compressor 1 in the second compressor 3 with a view to performing a second compression (a second compression stage).

La seconde conduite 14 comprend de préférence un organe 2 de refroidissement du gaz, par exemple un échangeur de chaleur refroidi par un fluide caloporteur. Ceci permet de refroidir le gaz comprimé avant son entrée dans le second compresseur 3.The second pipe 14 preferably comprises a member 2 for cooling the gas, for example a heat exchanger cooled by a heat transfer fluid. This makes it possible to cool the compressed gas before it enters the second compressor 3.

Comme illustré le circuit comprend de préférence un organe 4 de refroidissement du gaz à la sortie du second compresseur 3 (par exemple un échangeur en échange avec un fluide caloporteur).As illustrated, the circuit preferably comprises a member 4 for cooling the gas at the outlet of the second compressor 3 (for example an exchanger in exchange with a coolant).

Le circuit comprend une troisième conduite 10 ayant une extrémité amont raccordée à la sortie d'un compresseur 1 et une extrémité aval raccordée à un premier 6 des deux moteurs.The circuit comprises a third pipe 10 having an upstream end connected to the outlet of a compressor 1 and a downstream end connected to a first 6 of the two motors.

Comme illustré, l'extrémité amont de la troisième conduite 10 peut être reliée à la sortie du premier compresseur 1 via la seconde conduite 14. C'est-à-dire que la troisième conduite 10 est raccordée en dérivation à la seconde conduite 14 entre les premier 1 et second 3 compresseurs.As illustrated, the upstream end of the third pipe 10 can be connected to the outlet of the first compressor 1 via the second pipe 14. That is to say that the third pipe 10 is connected by branch to the second pipe 14 between the first 1 and second 3 compressors.

C'est-à-dire que la troisième conduite 10 vient prélever une fraction du gaz comprimé destiné à alimenter le second compresseur 3 pour balayer (refroidir) le premier moteur. Cette fraction peut correspondre à un à quarante pourcent du débit de gaz sortant du premier compresseur 1.That is to say that the third pipe 10 takes a fraction of the compressed gas intended to supply the second compressor 3 in order to sweep (cool) the first engine. This fraction can correspond to one to forty percent of the gas flow leaving the first compressor 1.

De préférence, la troisième conduite 10 peut comprendre une vanne 8 de régulation de débit du gaz transféré dans le premier moteur 6 (ou tout autre organe approprié notamment un organe déprimogène tel qu'un orifice, turbine, tube de Ranque ou tube Vortex, orifice, capillaire...)..Preferably, the third pipe 10 may comprise a valve 8 for regulating the flow rate of the gas transferred into the first motor 6 (or any other suitable member, in particular a pressure reducing member such as an orifice, turbine, Ranque tube or vortex tube, orifice , capillary...)..

Le circuit comprend une quatrième conduite 12 ayant une extrémité amont reliée à une sortie du premier moteur 6 pour récupérer le gaz ayant circulé dans le premier moteur 6 et première extrémité aval reliée à une entrée d'un second moteur 5 pour y transférer le gaz en vue de limiter l'échauffement du second moteur 5.The circuit comprises a fourth pipe 12 having an upstream end connected to an outlet of the first motor 6 to recover the gas having circulated in the first motor 6 and a first downstream end connected to an inlet of a second motor 5 in order to transfer the gas therein. in order to limit the heating of the second motor 5.

C'est-à-dire que le même gaz de refroidissement est utilisé successivement pour refroidir les deux moteurs 6, 5.That is to say that the same cooling gas is used successively to cool the two engines 6, 5.

De préférence, la quatrième conduite 12 comprend un organe 13 de refroidissement du gaz pour refroidir le gaz entre sa sortie du premier 6 moteur et son entrée dans le second moteur 5. Par exemple, cet organe 13 de refroidissement comprend un échangeur de chaleur en échange thermique avec un fluide caloporteur de refroidissement.Preferably, the fourth pipe 12 comprises a gas cooling member 13 for cooling the gas between its outlet from the first engine 6 and its entry into the second engine 5. For example, this cooling member 13 comprises a heat exchanger in exchange. thermal with a cooling heat transfer fluid.

Le gaz de refroidissement qui a circulé dans le second moteur 5 est évacué via une cinquième conduite 7 ayant une extrémité amont reliée à une sortie du second moteur 5 (pour récupérer le gaz ayant circulé dans le second moteur 5 et une extrémité aval reliée à l'entrée du premier compresseur 1 en vue de sa compression. Comme illustré, la cinquième conduite 7 peut être reliée à l'entrée du premier compresseur 1 via la première conduite 16.The cooling gas which has circulated in the second motor 5 is discharged via a fifth pipe 7 having an upstream end connected to an outlet of the second motor 5 (to recover the gas having circulated in the second motor 5 and a downstream end connected to the inlet of the first compressor 1 with a view to its compression As illustrated, the fifth line 7 can be connected to the inlet of the first compressor 1 via the first line 16.

La cinquième conduite 7 (et éventuellement la quatrième conduite 12) peut être utilisée également le cas échéant pour récupérer le gaz provenant d'éventuelles fuites (au niveau par exemple de joints situés à proximité des moteurs, tels que des joints tournants par exemple).The fifth pipe 7 (and possibly the fourth pipe 12) can also be used if necessary to recover the gas coming from any leaks (at the level for example of joints located near the engines, such as rotary joints for example).

De même, la cinquième conduite 7 peut comprendre un organe 9 de refroidissement du gaz, par exemple un échangeur de chaleur en échange thermique avec un fluide caloporteur de refroidissement.Likewise, the fifth pipe 7 may comprise a member 9 for cooling the gas, for example a heat exchanger in thermal exchange with a coolant coolant.

Comme illustré également, la quatrième conduite 12 peut comporter une seconde extrémité aval reliée à la cinquième conduite 7 et un système de de vanne 11 pour répartir le flux de gaz provenant du premier moteur 6 entre le second moteur 5 et la cinquième conduite 7. C'est-à-dire que le gaz sortant du premier moteur 6 (gaz de refroidissement) peut être réparti entre le deuxième moteur 5 (pour le refroidir) et entrée du premier compresseur 1. Ceci est obtenu via deux lignes parallèles et au moins une vanne 11 (et/ou tout autre organe déprimogène : turbine, orifice...). Bien entendu la vanne 11 (ou équivalent) peut être disposée aux bornes du moteur 6 (ou des moteurs). La vanne 11 (ou les vannes) peut être une vanne de régulation pilotée.As also illustrated, the fourth pipe 12 may include a second downstream end connected to the fifth pipe 7 and a valve system 11 for distributing the flow of gas coming from the first motor 6 between the second motor. 5 and the fifth line 7. That is to say that the gas leaving the first motor 6 (cooling gas) can be distributed between the second motor 5 (to cool it) and the inlet of the first compressor 1. This is obtained. via two parallel lines and at least one valve 11 (and / or any other pressure reducing device: turbine, orifice, etc.). Of course the valve 11 (or equivalent) can be arranged at the terminals of the motor 6 (or motors). The valve 11 (or the valves) can be a piloted control valve.

De même il peut être prévu une conduite de dérivation du premier moteur 6 (par exemple entre la troisième conduite 10 et la quatrième conduite) pour diminuer relativement la quantité de gaz de refroidissement dans le premier moteur 6 par rapport à la quantité de gaz de refroidissement du second moteur 5.Likewise, a bypass line from the first motor 6 can be provided (for example between the third line 10 and the fourth line) to relatively reduce the quantity of cooling gas in the first motor 6 with respect to the quantity of cooling gas. of the second motor 5.

De même, il peut être prévu une conduite de dérivation entre la seconde conduite 14 (par exemple après l'organe 2 de refroidissement) et la quatrième conduite (en amont ou en aval de l'organe 13 de refroidissement).Likewise, a bypass pipe can be provided between the second pipe 14 (for example after the cooling member 2) and the fourth pipe (upstream or downstream of the cooling member 13).

Ainsi, un système de conduite(s) et de vanne(s) peut être prévu pour répartir des quantités différentes de gaz de refroidissement entre le premier moteur 6 et le second moteur 5 suivant les besoins.Thus, a pipe system (s) and valve (s) can be provided to distribute different quantities of cooling gas between the first motor 6 and the second motor 5 as required.

Par exemple, une vanne de by-pass 11 peut avantageusement être placée entre l'entrée et la sortie du gaz de refroidissement du second moteur 5 afin de limiter le débit de gaz de refroidissement au travers de ce second moteur 5 dans le cas où il est trop important.For example, a bypass valve 11 can advantageously be placed between the inlet and the outlet of the cooling gas of the second motor 5 in order to limit the flow of cooling gas through this second motor 5 in the event that it is is too important.

Exemple de fonctionnement avec de l'azote dans le circuit.Example of operation with nitrogen in the circuit.

Dans la configuration de la figure 1, la puissance mécanique nécessaire pour comprimer par exemple un débit de 1.26 kg/s d'azote gazeux ayant une pression initiale de 5 bars absolu et une température de 288 K à une pression de 18,34 bars absolu est de 188 kW. Cette puissance de compression peut se répartir en 88kW pour le moteur 5 qui entraîne le premier compresseur 1 et 100kW pour le moteur 6 qui entraîne le second compresseur 3.In the configuration of the figure 1 , the mechanical power required to compress for example a flow rate of 1.26 kg / s of gaseous nitrogen having an initial pressure of 5 bars absolute and a temperature of 288 K at a pressure of 18.34 bars absolute is 188 kW. This compression power can be divided into 88kW for the motor 5 which drives the first compressor 1 and 100kW for the motor 6 which drives the second compressor 3.

Ceci permet de diminuer la puissance par rapport aux solutions connues (typiquement 6% par rapport à l'état de l'art).This makes it possible to reduce the power compared to known solutions (typically 6% compared to the state of the art).

En effet, si l'on vient refroidir deux moteurs 5, 6 avec deux flux de gaz distincts (deux flux parallèles prélevés à la sortie d'un compresseur), la quantité de gaz prélevée pour le refroidissement des deux moteurs 5, 6 serait double par rapport à la quantité utilisée dans l'architecture décrite ci-dessus. Cette quantité double de gaz augmente le débit volumique du premier compresseur 1 et donc la puissance requise.Indeed, if one comes to cool two engines 5, 6 with two separate gas streams (two parallel streams taken from the outlet of a compressor), the quantity of gas taken for cooling the two engines 5, 6 would be double. through compared to the amount used in the architecture described above. This double quantity of gas increases the volume flow rate of the first compressor 1 and therefore the power required.

Selon un mode de réalisation, l'azote est comprimé par exemple jusqu'à 8,87 bar absolu dans le premier étage de compression 1 centrifuge ayant une puissance de 83 kW et un rendement isentropique typique de 86%. Puis ce gaz comprimé est refroidi dans l'échangeur 2 de chaleur.According to one embodiment, the nitrogen is compressed for example up to 8.87 bar absolute in the first centrifugal compression stage 1 having a power of 83 kW and a typical isentropic efficiency of 86%. Then this compressed gas is cooled in the heat exchanger 2.

Une partie du gaz est soutiré via la vanne 8 pour refroidir le premier moteur 6. Le reste (le débit principal) est ensuite à nouveau comprimé jusqu'à 18,34 bar absolu dans le deuxième étage de compression 3. Ce second compresseur 3 a par exemple une puissance de 95 kW et un rendement isentropique typique de 86%. Puis le gaz est refroidi dans l'échangeur 4 de chaleur en sortie du second compresseur 3. Le gaz est ensuite amené à la sortie 15 du dispositif 18.Part of the gas is withdrawn via valve 8 to cool the first motor 6. The rest (the main flow) is then compressed again to 18.34 bar absolute in the second compression stage 3. This second compressor 3 has for example a power of 95 kW and a typical isentropic efficiency of 86%. Then the gas is cooled in the heat exchanger 4 at the outlet of the second compressor 3. The gas is then brought to the outlet 15 of the device 18.

Sur les 88kW et 100kW de puissance fournies par les moteurs 5, 6, typiquement 5% seront transformés en chaleur (pertes du moteur électrique et pertes par frottement du rotor avec l'azote) soit environ 5kW par moteur.Of the 88kW and 100kW of power supplied by motors 5, 6, typically 5% will be transformed into heat (losses of the electric motor and losses by friction of the rotor with nitrogen), ie around 5kW per motor.

Une partie du débit d'azote à la sortie de l'échangeur 2 va donc être envoyé au travers de la vanne 8 et de la troisième conduite 10 pour alimenter le premier moteur 6 en gaz de refroidissement.Part of the nitrogen flow at the outlet of the exchanger 2 will therefore be sent through the valve 8 and the third pipe 10 to supply the first engine 6 with cooling gas.

L'élévation de la température du gaz au travers du premier moteur 6 va typiquement être limitée à 30 K (pour limiter l'échauffement du moteur) en pilotant la vanne 8. Ceci va se traduire par un débit massique = Puissance/Cp/deltaT = 5000/1048/30=0.159 kg/s.

  • Avec Puissance = les pertes thermiques du moteur à évacuer par le gaz en W
  • Cp= la capacité thermique du gaz (azote dans cet exemple) en J/kg/K.
  • Delta T = l'augmentation de température du gaz entre les conduites 10 et 12 en K (entre l'entrée et la sortie du moteur 6).
The rise in the temperature of the gas through the first motor 6 will typically be limited to 30 K (to limit the heating of the motor) by controlling the valve 8. This will result in a mass flow rate = Power / Cp / deltaT = 5000/1048/30 = 0.159 kg / s.
  • With Power = the thermal losses of the motor to be evacuated by the gas in W
  • Cp = the heat capacity of the gas (nitrogen in this example) in J / kg / K.
  • Delta T = the increase in gas temperature between pipes 10 and 12 in K (between the inlet and the outlet of motor 6).

L'azote va ensuite s'échapper du premier moteur 6 via la quatrième conduite 12 et rejoindre l'échangeur 13 pour être refroidi jusqu'à une température de préférence proche ou égale à la température d'entrée du premier compresseur 1.The nitrogen will then escape from the first motor 6 via the fourth pipe 12 and join the exchanger 13 to be cooled to a temperature preferably close to or equal to the inlet temperature of the first compressor 1.

Ce refroidissement est réalisé avant que le gaz n'entre dans le deuxième moteur 5.This cooling is carried out before the gas enters the second engine 5.

L'élévation de la température du gaz au travers du second moteur 5 est de préférence du même ordre de grandeur que celle au travers du premier moteur 6 (le débit et la puissance à extraire sont de préférence proches).The rise in the temperature of the gas through the second motor 5 is preferably of the same order of magnitude as that through the first motor 6 (the flow rate and the power to be extracted are preferably close).

Après avoir traversé le second moteur 5 le gaz de refroidissement est envoyé à l'échangeur 9 de chaleur en aval via la cinquième conduite 7 pour être refroidi avant de retourner à l'entrée 16 du premier compresseur 1.After passing through the second engine 5, the cooling gas is sent to the downstream heat exchanger 9 via the fifth pipe 7 to be cooled before returning to the inlet 16 of the first compressor 1.

Ainsi, par rapport à une solution où les deux moteurs 5, 6 seraient refroidis en parallèle (via deux flux de gaz de refroidissement distincts issu d'un compresseur), la solution selon l'invention utilise un même flux de gaz qui est mis en circulation pour refroidir deux moteurs (en série sur le circuit du gaz de refroidissement). Ceci permet de diviser par deux le débit de gaz de refroidissement nécessaire.Thus, compared to a solution where the two engines 5, 6 would be cooled in parallel (via two separate cooling gas flows coming from a compressor), the solution according to the invention uses the same gas flow which is put into operation. circulation to cool two engines (in series on the cooling gas circuit). This allows the necessary cooling gas flow rate to be halved.

Ainsi tout en étant de structure simple et peu coûteuse, l'invention permet un refroidissement efficace (thermiquement et énergétiquement) d'une pluralité de moteurs d'un dispositif de compression.Thus, while being of simple and inexpensive structure, the invention allows efficient cooling (thermally and energetically) of a plurality of motors of a compression device.

Bien entendu, l'invention n'est pas limitée à l'exemple de réalisation décrit ci-dessus.Of course, the invention is not limited to the exemplary embodiment described above.

Ainsi, le gaz utilisé pour le refroidissement des moteurs pourrait être prélevé à la sortie d'un autre ou plusieurs autres compresseurs que le premier étage de compression. De plus, le dispositif pourrait comprendre plus de deux compresseurs et plus de deux moteurs. De même, des turbines de détente pourraient être incluses dans le dispositif.Thus, the gas used for cooling the engines could be taken from the outlet of another or more compressors other than the first compression stage. In addition, the device could include more than two compressors and more than two motors. Likewise, expansion turbines could be included in the device.

De plus, plusieurs étages de compression pourraient être entrainés par un même moteur.In addition, several compression stages could be driven by the same engine.

En outre, un ou des étages de détente (turbine(s) de préférence centripète(s)) peuvent être montées sur le même arbre moteur qu'un ou plusieurs compresseurs.In addition, one or more expansion stages (preferably centripetal turbine (s)) can be mounted on the same motor shaft as one or more compressors.

De plus, tout ou partie des organes de refroidissement 9, 13 peuvent être omis (leur utilisation permet d'améliorer le rendement du système mais ces derniers ne sont pas nécessaires).In addition, all or part of the cooling members 9, 13 can be omitted (their use makes it possible to improve the efficiency of the system, but the latter are not necessary).

La ou les vannes 8, 11 peuvent avantageusement être réglable de manière à asservir par exemple la température d'un ou des moteurs et/ou le débit de refroidissement et/ou la température du gaz de refroidissement.The valve or valves 8, 11 can advantageously be adjustable so as to control, for example, the temperature of one or more motors and / or the cooling flow rate and / or the temperature of the cooling gas.

De plus ces organes de détente 8, 11 peuvent le cas échéant refroidir le gaz avant son entrée dans le ou les moteurs. De plus ces organes 8, 11 de détente peuvent être remplacés (ou suppléés) par tout autre organe déprimogène tel qu'un orifice, turbine ou capillaire par exemple. Ainsi, les vannes 8, 11 peuvent être remplacées par ou associées à une ou des turbines et/ou des tubes de Ranque (tube Vortex). De même l'organe 8 peut être situé alternativement sur la seconde conduite 14 par exemple. De même, l'organe 11 peut être situé alternativement sur la première conduite 16 par exemple.In addition, these expansion members 8, 11 can, if necessary, cool the gas before it enters the engine (s). In addition, these expansion devices 8, 11 can be replaced (or supplemented) by any other pressure-reducing device such as an orifice, turbine or capillary, for example. Thus, the valves 8, 11 can be replaced by or associated with one or more turbines and / or Ranque tubes (vortex tube). Likewise, the member 8 can be located alternately on the second pipe 14, for example. Likewise, the member 11 can be located alternately on the first pipe 16, for example.

De plus, des joints tournants peuvent être utilisés entre le ou les moteurs 5, 6 et le ou les étages de compression 1, 3 ou le ou les étages de détente de manière à ce que la pression dans les cavités du moteur soit proche de la pression la plus basse du compresseur, c'est à dire la pression d'entrée 13 du compresseur. Ceci a pour conséquence d'abaisser les pertes par friction entre le ou les rotors et le gaz car ces pertes sont proportionnelles à la pression dans la cavité du moteur. Les fuites récupérées de ce ou ces joints s'ajouteront au débit de gaz de refroidissement provenant de la troisième conduite.In addition, rotary joints can be used between the engine (s) 5, 6 and the compression stage (s) 1, 3 or the expansion stage (s) so that the pressure in the cavities of the engine is close to zero. lowest compressor pressure, i.e. the compressor inlet pressure 13. This has the consequence of lowering the friction losses between the rotor (s) and the gas because these losses are proportional to the pressure in the engine cavity. Leaks recovered from this or these seal (s) will add to the flow of cooling gas from the third line.

Comme schématisé à la figure 3, le dispositif 18 de compression peut faire partie d'une machine de réfrigération à basse température, par exemple comprise entre -100°C et -273°C, et comprenant un circuit de travail 10 contenant un fluide de travail, le circuit de travail comprenant un dispositif 18 de compression centrifuge et un dispositif 19 de refroidissement et de détente du gaz comprimé dans le dispositif 18 de compression.As shown diagrammatically in FIG. 3, the compression device 18 may form part of a refrigeration machine at low temperature, for example between -100 ° C and -273 ° C, and comprising a working circuit 10 containing a cooling fluid. work, the work circuit comprising a centrifugal compression device 18 and a device 19 for cooling and expanding the compressed gas in the compression device 18.

Le gaz de travail peut comprendre tout ou partie parmi : de l'azote, de l'hélium, de l'hydrogène, du néon, de l'argon, du monoxyde de carbone, du méthane, du krypton, du xénon, de l'éthane, du dioxyde de carbone, du propane, du butane, de l'oxygène.The working gas can include all or part of: nitrogen, helium, hydrogen, neon, argon, carbon monoxide, methane, krypton, xenon, l ethane, carbon dioxide, propane, butane, oxygen.

Selon d'autres particularités possible :

  • il peut être prévu une conduite munie d'un système de vanne reliant la seconde conduite 14 et la quatrième conduite 12,
  • l'organe 2 de refroidissement peut être configuré pour refroidir le gaz à une température plus basse, par exemple 0°C pour améliorer le refroidissement du moteur,
  • l'organe 2 de refroidissement peut le cas échéant être disposé sur la troisième conduite 10 (à la place ou en plus de la seconde conduite 14),
  • le sens de circulation du gaz de refroidissement peut être inversé (d'abord dans le second moteur 5 puis dans le premier 6),
  • le dispositif peut comporter plus de deux moteurs refroidis de la sorte,
  • le dispositif peut comporter plusieurs compresseurs montés sur un moteur et un ou plusieurs étages de détente sur ce moteur ou un autre moteur,
According to other possible features:
  • a pipe may be provided with a valve system connecting the second pipe 14 and the fourth pipe 12,
  • the cooling member 2 can be configured to cool the gas to a lower temperature, for example 0 ° C to improve the cooling of the engine,
  • the cooling member 2 can if necessary be placed on the third pipe 10 (instead of or in addition to the second pipe 14),
  • the direction of circulation of the cooling gas can be reversed (first in the second motor 5 then in the first 6),
  • the device may include more than two motors cooled in this way,
  • the device may include several compressors mounted on an engine and one or more expansion stages on this engine or on another engine,

Claims (14)

  1. Centrifugal compression device for a working gas, notably for a refrigeration machine, including several centrifugal compressors (1, 3) forming several successive and/or parallel compression stages and several drive motors (5, 6) for the compressors (1, 3), the device having a gas circuit comprising a first inlet line (16) for the gas to be compressed that is linked to an inlet of a first compressor (1) to convey the gas to be compressed into the first compressor (1), the circuit having a second line (14) linked to an outlet of said first compressor (1) to discharge the gas compressed in this latter, the second line (14) being linked to an inlet of a second compressor (3) to convey the gas that has been compressed in the first compressor (1) into the second compressor (3) in order to perform a second compression, the circuit having a third cooling line (10) with one upstream end connected to an outlet of at least one of the compressors (1, 3) and one downstream end connected to an inlet of at least one first motor (6) for transferring a fraction of the gas compressed in said compressor (1) into said at least one first motor (6) in order to limit the heating thereof, characterized in that the circuit includes a fourth line (12) having an upstream end linked to an outlet of the first motor (6) designed to recover the gas that has flowed through the first motor (6) and a downstream end linked to an inlet of a second motor (5) designed to transfer the gas there in order to limit the heating of the second motor (5).
  2. Device according to Claim 1, characterized in that the fourth line (12) includes a gas cooling member (13) to cool the gas between the outlet of the first motor (6) and the inlet of the second motor (5).
  3. Device according to Claim 1 or 2, characterized in that the circuit includes a fifth line (7) having an upstream end linked to an outlet of the second motor (5) to recover the gas that has flowed through the second motor (5) and a downstream end linked to the inlet of the first compressor (1) in order to compress same.
  4. Device according to Claim 3, characterized in that the fifth line (7) includes a gas cooling member (9).
  5. Device according to Claim 3 or 4, characterized in that the fourth line (12) has a second downstream end linked to the fifth line (7).
  6. Device according to any one of Claims 1 to 5, characterized in that it includes a line-and-valve system (11) designed to distribute the quantities of cooling gas between the first motor (6) and the second motor (5).
  7. Device according to any one of Claims 1 to 6, characterized in that the second line (14) includes a gas cooling member (2).
  8. Device according to Claim 7, characterized in that the cooling member (2) of the second line (14) includes a heat exchanger cooled by a heat-transfer fluid.
  9. Device according to any one of Claims 1 to 8, characterized in that the circuit includes a gas cooling member (4) at an outlet (15) of the second compressor (3) .
  10. Device according to any one of Claims 1 to 9, characterized in that the third line (10) includes a valve (8) designed to control the flow rate of the gas transferred to the first motor (6).
  11. Device according to any one of Claims 1 to 10, characterized in that it includes at least one motor driving one or more compressors and at least one motor coupled to one or more expansion turbines.
  12. Device according to any one of Claims 1 to 11, characterized in that it includes one or more rotary joints between the motor or motors (5, 6) and the compressor or compressors (1, 3) or one or more expansion stages such that the pressure in the cavities of the motor or motors is close to the lowest pressure in the compressor (1), i.e. the inlet pressure of the compressor (1).
  13. Refrigeration machine for low temperatures between -100°C and -273°C including a working circuit containing a working fluid, the working circuit including a centrifugal compression device (18) and a device (19) for cooling and expanding the gas compressed in the compression device (18), characterized in that the compression device (18) is according to any one of Claims 1 to 12.
  14. Centrifugal compression method for a working gas, notably for a refrigeration machine using several centrifugal compressors (1, 3) forming several successive and/or parallel compression stages and several drive motors (5, 6) for the compressors (1, 3), the compressors (1, 3) being driven in rotation directly by the motors (5, 6), the method comprising:
    - a compression step for a working gas in a first compressor (1) then in a second compressor (3) arranged in series or in parallel,
    - a step for drawing off a fraction of the compressed gas leaving at least one of the compressors (1) and causing this gas drawn off to flow through a first motor (6) in order to cool same, characterized in that it includes a cooling step for the gas that has been used to cool the first motor (6) followed by a step in which this cooled gas is caused to flow through a second motor (5) in order to cool same.
EP18765154.2A 2017-10-16 2018-08-01 Compression device and method and refrigeration machine Active EP3698048B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1701076A FR3072428B1 (en) 2017-10-16 2017-10-16 COMPRESSION DEVICE AND METHOD AND REFRIGERATION MACHINE
PCT/FR2018/051975 WO2019077212A1 (en) 2017-10-16 2018-08-01 Compression device and method and refrigeration machine

Publications (2)

Publication Number Publication Date
EP3698048A1 EP3698048A1 (en) 2020-08-26
EP3698048B1 true EP3698048B1 (en) 2021-10-20

Family

ID=60765664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18765154.2A Active EP3698048B1 (en) 2017-10-16 2018-08-01 Compression device and method and refrigeration machine

Country Status (11)

Country Link
US (1) US11384768B2 (en)
EP (1) EP3698048B1 (en)
JP (1) JP7234225B2 (en)
KR (1) KR102503137B1 (en)
CN (1) CN111212981B (en)
AU (1) AU2018350938B2 (en)
CA (1) CA3079027A1 (en)
DK (1) DK3698048T3 (en)
ES (1) ES2903562T3 (en)
FR (1) FR3072428B1 (en)
WO (1) WO2019077212A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151862A1 (en) 2022-02-10 2023-08-17 Cryostar Sas Multistage turbo machine system and method of operating

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425308B2 (en) 1996-09-17 2003-07-14 株式会社 日立インダストリイズ Multistage compressor
JPH11294879A (en) * 1998-02-16 1999-10-29 Daikin Ind Ltd Refrigerating system
JP2000087900A (en) * 1998-09-09 2000-03-28 Hitachi Ltd Cooling method for motor of compressor
EP1074746B1 (en) * 1999-07-16 2005-05-18 Man Turbo Ag Turbo compressor
GB2469015B (en) * 2009-01-30 2011-09-28 Compair Uk Ltd Improvements in multi-stage centrifugal compressors
EP2273130A1 (en) * 2009-07-08 2011-01-12 Siemens Aktiengesellschaft A gas compressor casing and a system comprising the casing
FR2966528B1 (en) * 2010-10-25 2016-12-30 Thermodyn CENTRIFUGAL COMPRESSOR GROUP
US9200643B2 (en) * 2010-10-27 2015-12-01 Dresser-Rand Company Method and system for cooling a motor-compressor with a closed-loop cooling circuit
DE102010053091A1 (en) * 2010-12-01 2012-06-06 Linde Aktiengesellschaft Multi-stage piston compressor
KR101318800B1 (en) * 2012-05-25 2013-10-17 한국터보기계(주) Turbo compressor of three step type
JP6276000B2 (en) 2013-11-11 2018-02-07 株式会社前川製作所 Expander-integrated compressor, refrigerator, and operation method of refrigerator
WO2015114136A1 (en) * 2014-02-03 2015-08-06 Nuovo Pignone Srl Multistage turbomachine with embedded electric motors
BE1022138B1 (en) * 2014-05-16 2016-02-19 Atlas Copco Airpower, Naamloze Vennootschap COMPRESSOR DEVICE AND A COOLER THAT IS APPLIED THEREOF
US20160003558A1 (en) * 2014-07-03 2016-01-07 General Electric Company Fluid processing system, heat exchange sub-system, and an associated method thereof
US20170174049A1 (en) * 2015-12-21 2017-06-22 Ford Global Technologies, Llc Dynamically controlled vapor compression cooling system with centrifugal compressor

Also Published As

Publication number Publication date
JP7234225B2 (en) 2023-03-07
US11384768B2 (en) 2022-07-12
FR3072428A1 (en) 2019-04-19
KR20190042463A (en) 2019-04-24
ES2903562T3 (en) 2022-04-04
AU2018350938B2 (en) 2023-12-07
US20200240437A1 (en) 2020-07-30
WO2019077212A1 (en) 2019-04-25
AU2018350938A1 (en) 2020-05-21
KR102503137B1 (en) 2023-02-22
DK3698048T3 (en) 2022-01-10
CN111212981A (en) 2020-05-29
JP2020537075A (en) 2020-12-17
CN111212981B (en) 2022-11-01
CA3079027A1 (en) 2019-04-25
FR3072428B1 (en) 2019-10-11
EP3698048A1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
EP2225501B1 (en) Cryogenic refrigeration method and device
FR2686654A1 (en) Improvements in aerospace propulsion
EP3414498B1 (en) Cryogenic refrigeration device
WO2021023428A1 (en) Refrigeration and/or liquefaction method, device and system
WO2021023458A1 (en) Cooling and/or liquefying system and method
WO2021023457A1 (en) Cooling and/or liquefying method and system
EP3698048B1 (en) Compression device and method and refrigeration machine
FR2919716A1 (en) Working gas i.e. pure gaseous helium, cooling/liquefying method for superconducting system, involves compressing gas along compression stages, where stages are realized by machine and flow of gas is higher than specific value
WO2021023459A1 (en) Refrigeration device and system
EP4010640A1 (en) Refrigeration device and system
EP3698049A1 (en) Compression device and method
FR3098574A1 (en) Refrigeration and / or liquefaction device
WO2024008434A1 (en) Fluid liquefaction method and device
WO2022171394A1 (en) Device and method for refrigerating or liquefying a fluid
WO2019150033A1 (en) Method for cooling an electrical storage device for a vehicle
FR2717253A1 (en) Non-contamination energy dissipator and method for optimizing the operation of turboexpanders.
FR3133404A1 (en) Air boost system for fuel conditioning system and method of use
WO2021014106A1 (en) Air conditioning system with cabin air recovery
BE424445A (en)
FR3013817A1 (en) METHOD AND DEVICE FOR COOLING / LIQUEFACTION AT LOW TEMPERATURE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210531

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20210827

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018025366

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1440168

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220107

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

Ref country code: NO

Ref legal event code: T2

Effective date: 20211020

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1440168

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211020

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2903562

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018025366

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230824

Year of fee payment: 6

Ref country code: IT

Payment date: 20230822

Year of fee payment: 6

Ref country code: GB

Payment date: 20230822

Year of fee payment: 6

Ref country code: FI

Payment date: 20230821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230821

Year of fee payment: 6

Ref country code: FR

Payment date: 20230828

Year of fee payment: 6

Ref country code: DK

Payment date: 20230823

Year of fee payment: 6

Ref country code: DE

Payment date: 20230821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231027

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180801