EP3698015A2 - A system and method of cleaning an annular area in a well - Google Patents
A system and method of cleaning an annular area in a wellInfo
- Publication number
- EP3698015A2 EP3698015A2 EP18867925.2A EP18867925A EP3698015A2 EP 3698015 A2 EP3698015 A2 EP 3698015A2 EP 18867925 A EP18867925 A EP 18867925A EP 3698015 A2 EP3698015 A2 EP 3698015A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- holes
- pipe body
- annulus
- sets
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000004140 cleaning Methods 0.000 title claims abstract description 18
- 238000005406 washing Methods 0.000 claims abstract description 95
- 239000012530 fluid Substances 0.000 claims abstract description 78
- 239000000356 contaminant Substances 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims description 32
- 238000011010 flushing procedure Methods 0.000 claims description 20
- 238000007789 sealing Methods 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 239000004568 cement Substances 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005553 drilling Methods 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 5
- 239000011435 rock Substances 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B37/00—Methods or apparatus for cleaning boreholes or wells
- E21B37/08—Methods or apparatus for cleaning boreholes or wells cleaning in situ of down-hole filters, screens, e.g. casing perforations, or gravel packs
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B37/00—Methods or apparatus for cleaning boreholes or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/11—Perforators; Permeators
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/11—Perforators; Permeators
- E21B43/114—Perforators using direct fluid action on the wall to be perforated, e.g. abrasive jets
Definitions
- the invention concerns a system and a method of cleaning an annular area in a subterranean well, for example in a production well or an injection well.
- the invention may be used in context of plugging such a well, for example for plugging and abandoning (P&A) the well temporarily or permanently.
- P&A plugging and abandoning
- the present system and method is used in a well section containing a first pipe body surrounded by a second pipe body so as to form a pipe-in-pipe constellation.
- a first annulus is located between the pipe bodies and contains a substantially clean fluid, whereas a second annulus outwardly surrounds the second pipe body and contains contaminants in a solid, semi-solid or liquid state, or a mixture thereof.
- the second annulus is located between the second pipe body and a surrounding borehole wall formed through subterranean formations (rocks).
- the second annulus may be located between the second pipe body and one or more progressively larger pipe bodies located external to the second pipe body, each of these larger pipe bodies also having an annulus external thereto that is likely to contain such contaminants.
- the noted contaminants may comprise various particles, debris, deposits and/or well fluids, for example filter cake, formation particles, drill cuttings, drilling additives, e.g . barite, cement particles and/or residues and old drilling fluids (or similar), that have settled out or remain in the second annulus from previous well operations.
- the above-described pipe-in pipe constellation and annular content situation may exist in a production well containing an inner production tubing surrounded by a production casing or liner, or in an injection well containing an inner injection tubing surrounded by an injection casing or liner.
- the inner tubing generally extends between the surface and a permeable zone of the well and is used to convey fluids out of the well
- the so-called Perf-Wash-Cement method (“PWC®” and "PWC, Perf-Wash- Cement®”) has, since about year 2010, gained increasing interest and use in the oil and gas industry as a very efficient and environmentally safe method of plugging wells.
- the PWC® method does not require one or more pipe bodies (e.g. casings, liners) to be milled away and removed before placing a plugging material (e.g. cement) in an entire cross section (rock-to-rock) of a well.
- a plugging material e.g. cement
- One or more pipe bodies (casings/liners) located within a well section are instead perforated to gain access to one or more outwardly surrounding annuli. These perforations or holes are generally formed simultaneously, or substantially
- a perforating gun is typically used to do so, although other suitable perforating devices also may be used for this purpose.
- Various contaminants such as those described above, are typically present in such annuli and must be removed before placing the plugging material in the well section.
- a washing or jetting tool is therefore inserted into the (innermost) pipe body to wash away and remove contaminants present along the perforated section of the well .
- a washing fluid is discharged from the washing or jetting tool and flows through perforations previously formed in the one or more pipe bodies, thereby cleaning away contaminants present in the one or more surrounding annuli.
- the washing or jetting tool is typically moved down and then up along the perforated section during a washing operation, although washing only in one direction may prove sufficient.
- a suitable fluidized plugging material is then introduced in the (innermost) pipe body and is placed along the perforated and cleaned section, thereby forming a cross-sectional (rock-to-rock) barrier in the well.
- Cement slurry is typically used for this purpose, although other types of plugging materials may also be used.
- WO 2012/096580 Al discloses the PWC® method in general and more specific terms.
- This publication describes embodiments of a washing tool generally referred to as the HydraWashTM washing tool in the oil and gas industry.
- This washing tool may comprise spaced apart and radially extending flow guides which, in operation, cooperate with an inside of a casing to form a confined pressure compartment enclosing a limited number of holes in the casing .
- a washing fluid is supplied to the confined pressure compartment via a suitable work string extending to surface, for example a jointed pipe string (e.g. a drill string) or a coiled tubing string.
- the washing fluid which is located within the compartment, is then directed outward through the limited number of holes in the casing so as to clean away contaminants in an annulus surrounding the casing.
- the HydraWashTM washing tool is generally disclosed for use in a single casing, and for washing and cleaning in a single annulus external thereto.
- WO 2013/133719 Al discloses a more specific variant of the PWC® method.
- the PWC® method is used to form a cross-sectional plug in a well section containing at least two substantially concentric pipe bodies (e.g. casing strings) having at least two corresponding annuli external thereto (i.e. a pipe-in-pipe constellation).
- the washing operation is carried out using a washing tool generally referred to as the HydraHemeraTM jetting tool in the oil and gas industry.
- the jetting tool is typically connected to a work string extending to surface, for example a jointed pipe string or a coiled tubing string.
- the jetting tool also features a plurality of outlets, e.g. nozzles, angled at different angles.
- a flushing fluid discharges at high velocity from the differently angled outlets so as to produce flushing jets directed in different directions relative to a longitudinal axis of the pipe bodies.
- the angled flushing jets therefore penetrate holes formed in the pipe bodies and enter the surrounding annuli from different directions.
- the flushing jets gain better access to the annuli and contaminants therein so as to effectively dislodge and remove the contaminants within the annuli.
- the noted holes are typically of a relatively large size. As such, the holes used with the
- HydraHemeraTM jetting tool may have a diameter in the order of 20-35 millimetres, which is substantially larger than the hole diameters, typically in the order of 8-15 millimetres, commonly used with the HydraWashTM washing tool in a single casing setting.
- WO 2013/133719 Al discloses yet another variant of the PWC® method used for plugging and abandoning a well.
- the noted HydraHemeraTM jetting tool is typically used in a well setting with a single pipe string having only one surrounding annulus, which contains contaminants to be removed therefrom. This is also a different starting point than that of the present invention.
- the primary object of the present invention is to provide a cleaning technology for removing contaminants in an annulus outwardly surrounding two pipe bodies arranged in a pipe-in-pipe fashion and having an intermediate annulus containing a substantially clean fluid, which is defined herein as a fluid being substantially devoid of flow- inhibiting contaminants, as explained in further detail below.
- a further object of the present invention is to provide a useful alternative to the above-described prior art variants of the PWC® method .
- the present invention comprises a system for cleaning an annular area in a well, the system comprising :
- first annulus located between the first and second pipe bodies, the first annulus containing a clean fluid defined as a fluid being substantially devoid of flow-inhibiting contaminants;
- each set of holes comprising holes aligned substantially radially through the first and second pipe bodies
- washing tool positioned in the first pipe body at the longitudinal section, the washing tool comprising a set of spaced apart flow guides configured to enclose of a limited number of sets of holes along the longitudinal section, the flow guides cooperating with an inside of the first pipe body to form a confined pressure compartment for the limited number of sets of holes when operational in the well.
- the present invention employs a washing tool resembling the HydraWashTM washing tool disclosed in e.g. WO 2012/096580 Al .
- the present pipe constellation resembles the multiple casing (and annuli) setting disclosed in e.g. WO 2013/133719 Al, where the
- HydraHemeraTM jetting tool is used for simultaneous cleaning in multiple annuli .
- the present invention employs a HydraWashTM type of washing tool in a HydraHemeraTM type of well setting, i.e. in a setting with multiple pipes and multiple annuli (pipe-in-pipe constellation) .
- the present invention exhibits distinct differences relative to the technologies disclosed in the noted prior art publications.
- a set of holes is defined herein as a first hole formed through the tubular wall of the first pipe body, wherein the first hole is aligned substantially in a radial direction with a second hole formed through the tubular wall of the second pipe body, which surrounds the first pipe body.
- the plurality of sets of holes are dispersed in a substantially regular fashion along the longitudinal section, for example having a substantially even distance between (spacing) and number per unit length (density) of sets of holes along and around all or part of the longitudinal section.
- the sets of holes may be formed simultaneously, or substantially simultaneously, through the wall(s) of the pipe bodies.
- the clean fluid present in the first annulus between the first and second pipe bodies is defined as a fluid being substantially devoid of contaminants of the above-mentioned types.
- the clean fluid could comprise a common completion fluid, typically a type of brine, or seawater, diesel or similar.
- Such clean fluids, e.g. completion fluids, would be familiar to the skilled well practitioner.
- first pipe body would typically comprise a production tubing or an injection tubing
- second pipe body would typically comprise a production casing or liner, or an injection casing or liner.
- present invention would also be applicable with other types of pipe bodies, e.g. various casing/liner sizes, and other types of pipe-in-pipe constellations, e.g. casing-in-casing or liner-in casing constellations.
- a pressurized washing fluid When operating the present system, a pressurized washing fluid is supplied to the confined pressure compartment.
- the pressurized washing fluid then discharges from the confined pressure compartment as high velocity flushing jets passing through respective radially aligned holes of the limited sets of holes, which are located within the confined compartment.
- the flushing jets also pass through the clean fluid present in the first annulus. Owing to lack of flow-inhibiting contaminants in the clean fluid, a significant amount of kinetic energy is preserved in the flushing jets when entering the second annulus, which allows the flushing jets to engage and clean away
- the contaminants located in the second annulus.
- the contaminants may be removed via other holes located along the longitudinal section, and via the first pipe string and/or the first annulus. It is therefore conceivable that the contaminants may be conducted to the surface of the well for removal . Alternatively, the contaminants may be deposited deeper in the well or may even be injected (i.e. "bullheaded") into a deeper formation in the well.
- the washing tool may be connected to a lower end of a suitable tubular work string for operation of the washing tool.
- the work string may, for example, be a jointed pipe string (e.g. a drill string) or a coiled tubing string extending to the surface of the well for supplying a pressurized washing fluid to the confined pressure compartment during operation of the present system.
- a suitable downhole pump to be connected to the confined pressure compartment for supplying pressurized washing fluid thereto.
- the sets of holes may have a hole diameter in the order of 2-15 millimetres. More particularly, the hole diameter may be in the order of 2,5-10 millimetres. Still more particularly, the hole diameter may be in the order of 2,5-7 millimetres.
- the density of sets of holes along and around all or part of the longitudinal section may be in the order of 30-80 sets of holes per meter, more particularly in the order of 50-70 sets of holes per meter, for example 60 sets of holes per meter.
- the flow guide spacing (distance between the flow guides) may be in the order of 10-45 centimetres (4-18 inches), more particularly in the order of 15-35 centimetres (6-14 inches), for example 30 centimetres (12 inches).
- a perforating gun which is furnished with shaped explosive charges capable of generating narrow and long perforations, so-called production perforations, through the first and second pipe bodies, is considered to be appropriate for making such hole sizes in the pipe bodies.
- the hole diameters employed herein would generally be smaller than the hole diameters typically used with the noted HydraWashTM washing tool.
- the generally smaller hole sizes used in the present sets of holes allow the smaller holes to function as nozzle-resembling outlets similar to those embodied in the noted HydraHemeraTM jetting tool.
- the present sets of holes are not angled as in the jetting tool and instead extend in a substantially radial direction relative to a longitudinal axis of the pipe bodies.
- the limited number of holes within the confined compartment therefore discharge high velocity fluid jets capable of penetrating through the substantially radially aligned holes of both pipe bodies and into the second annulus to facilitate cleaning therein.
- the first hole in the first pipe body has a different diameter than the diameter of the second hole in the second pipe body.
- the first hole may have a smaller diameter than the diameter of the second hole, which would provide easier access for the fluid jets into the second annulus.
- one or more sets of holes at a bottom part of the longitudinal section have a hole diameter being larger than the hole diameter of said majority of sets of holes. Larger holes at the bottom part of the longitudinal section may prove advantageous for facilitating subsequent displacement of a fluidized plugging material into the first and second annuli, as specified below in an
- one or more sets of holes at an upper part of the longitudinal section may have a hole diameter being larger than the diameter of said majority of sets of holes. Larger holes at the upper part of the longitudinal section may prove advantageous for facilitating removal of contaminants dislodged and washed away from the second annulus at the beginning of the washing operation. This is particularly useful when the washing operation (typically) is initiated in a top-down fashion along the longitudinal section.
- the flow guides may comprise radially extending collars.
- one or more of the radially extending collars are structured for sealing, at least partially, against the surrounding first pipe body.
- Such radially extending collars may comprise cup-shaped elements, typically termed “swab cups” in the industry.
- Such cups may be formed of rubber or elastomer materials.
- the radially extending collars comprise one or more radially expandable sealing devices structured for selective activation and expansion towards the first pipe body.
- the one or more of the radially expandable sealing devices may comprise an inflatable element, for example an inflatable packer.
- These radially expandable sealing devices may also be structured for selective deactivation and retraction from the first pipe body, which may allow the sealing devices to be set and unset multiple times within the first pipe body, thereby also allowing the sealing devices to be moved with relative ease when in a retracted position.
- one or more flow guides may be structured for partial bypassing of fluid in a longitudinal direction within the first pipe body.
- a partial flow of the washing fluid may therefore pass the flow guide(s), however without imparting a significant pressure drop in the confined pressure compartment, which otherwise might negatively affect the washing function of the washing tool.
- the noted flow guides may therefore include, or be furnished with, one or more bypass conduits.
- one or more peripheral sectors of the flow guides may have a smaller diameter than the inner diameter of the first pipe body, thereby providing bypass channels between the flow guide(s) and the first pipe body. Such bypassing of washing fluid during operation will create a limited longitudinal flow of fluid inside the first pipe, which may prove advantageous for facilitating removal of contaminants via the first pipe.
- one or more flow guides above the confined pressure compartment are structured for partial bypassing of fluid in an upward direction within the first pipe body. During operation, this will create a limited upwardly directed flow of fluid inside the first pipe body for facilitating removal of contaminants to the surface of the well.
- the present invention comprises a method of cleaning an annular area in a well, the well comprising :
- first annulus located between the first and second pipe bodies, the first annulus containing a clean fluid defined as a fluid being substantially devoid of flow- inhibiting contaminants;
- washing tool positioning a washing tool in the first pipe body at the longitudinal section, the washing tool comprising a set of spaced apart flow guides configured to enclose a limited number of sets of holes along the longitudinal section, the flow guides cooperating with an inside of the first pipe body to form a confined pressure compartment for the limited number of sets of holes;
- the method comprises connecting the washing tool to a lower end of a suitable tubular work string, for example a jointed pipe string (e.g. a drill string) or a coiled tubing string, for operation of the washing tool.
- a suitable tubular work string for example a jointed pipe string (e.g. a drill string) or a coiled tubing string, for operation of the washing tool.
- the method may comprise discharging the washing fluid from the holes in the first pipe body at a discharge velocity of at least 15 metres per second . More particularly, the method may comprise discharging the washing fluid at a discharge velocity of at least 50 metres per second. Discharge velocities in the order of 75-200 metres per second may also prove appropriate in some well scenarios.
- the washing fluid used in the method may comprise drilling mud or some other suitable fluid, e.g. water or even diesel .
- the method may comprise a subsequent step (E) of displacing, e.g.
- the method would therefore represent a variant of the noted Perf-Wash-Cement method ("PWC®” and "PWC, Perf-Wash-Cement®”) .
- the fluidized plugging material may comprise any suitable material or combinations of such materials. Therefore, the fluidized plugging material may comprise at least one material chosen from a group comprising cementitious materials, particulate masses, polymer or epoxy materials (resins).
- the method comprises displacing, e.g. pumping, the fluidized plugging material via the washing tool. This may offer more controlled displacement of the plugging material into the surrounding annuli.
- the method comprises pumping the fluidized plugging material out of a lower end of a suitable tubular work string, typically a jointed pipe string (e.g. a drill string) or a coiled tubing string.
- a suitable tubular work string typically a jointed pipe string (e.g. a drill string) or a coiled tubing string.
- the noted work string which may be used with the washing tool, may also be employed for pumping the fluidized plugging material.
- the method may comprise forming, between steps (D) and (E), one or more second sets of holes within the longitudinal section and through walls of the first and second pipe bodies, the second sets of holes having a larger hole diameter than the hole diameter of the sets of holes formed in step (A). The larger hole diameter of the second sets of holes allow better fluid communication for displacing the fluidized plugging material into the first and second annuli.
- the method may comprise using, in step (A), a perforating gun to form said sets of holes in the first and second pipe bodies.
- the perforating gun may include explosive charges for generating narrow and long perforations, so-called production perforations, through the first and second pipe bodies.
- the method may comprise using, in step (A), a mechanical cutting device to form said sets of holes in the first and second pipe bodies.
- a mechanical cutting device may be structured for cutting, drilling or punching holes through the pipe bodies.
- the method may comprise using, in step (A), an abrasive jetting device to form said sets of holes in the first and second pipe bodies.
- a jetting device may be structured for discharging one or more abrasive cutting jets at a high velocity for cutting holes through the pipe bodies.
- the jets are formed from a suitable fluid containing abrasive materials, for example fine grained sand materials.
- the method may comprise forming, in step (A), one or more sets of holes at a bottom part of the longitudinal section, the one or more bottom sets of holes having a larger hole diameter than the hole diameter of a majority of the sets of holes.
- this may prove advantageous for facilitating displacement of the fluidized plugging material into the first and second annuli along the longitudinal section.
- the method may comprise forming, in step (A), one or more sets of holes at an upper part of the longitudinal section, the one or more upper sets of holes having a larger hole diameter than the hole diameter of a majority of the sets of holes.
- step (A) may prove advantageous for facilitating removal of contaminants dislodged and washed away from the second annulus at the beginning of the washing operation.
- Figure 1 shows, in side view, a well to be plugged and abandoned using a system and a method according to the present invention
- Figure 2 shows, in side view, the well after having lowered a perforating gun into the well, and after having made holes through two pipe bodies along a section of the well ;
- Figure 3 shows, in side view, the well after having lowered a washing tool into the well, and whilst operating the washing tool at a top part of the well section;
- Figure 4 shows, in side view, the washing tool whilst washing at a lower part of the well section, and after having moved the washing tool in a top-down fashion within the well section;
- Figure 5 shows, in side view, the well after having pumped a fluidized plugging material into the well section, and after having formed a cross-sectional plug along the well section.
- Figure 1 shows a well 2 to be plugged and abandoned using a system and a method according to the present invention.
- the well 2 comprises a first pipe body 4 and a surrounding second pipe body 6.
- a first annulus 8 is located between the first and second pipe bodies 4, 6 and contains a clean fluid 10, here in the form of a
- a second annulus 12 outwardly surrounds the second pipe body 6 and contains contaminants 14 to be removed therefrom in a subsequent washing operation.
- the second annulus 12 is located between the second pipe body 6 and a surrounding borehole wall 16 formed through subterranean formations 18.
- the first pipe body 4 could be a production tubing or an injection tubing extending between the surface of the well 2 and a deeper formation (not shown) .
- the second pipe body 6, however, could be a production casing or an injection casing extending between the surface and a shallower level in the well 2 so as to surround a shallower section of said production or injection tubing, as shown in the figures.
- a sealing material e.g. cement or similar, could also be present in the second annulus 12 at a bottom section (shoe) of the first pipe body 4 (not shown).
- the first pipe body 4 may contain produced or injected fluids.
- FIG. 2 shows the well 2 after having lowered a perforating gun 20 down to a section of the well 2.
- the gun 20 may be tubing-conveyed or wireline-conveyed, as would be familiar to the skilled well practitioner.
- the perforating gun 20 is shown connected to a lower end of a tubular work string 36, here in the form of a coiled tubing string.
- a plurality of sets of holes 22 are formed and dispersed along a longitudinal section L of the well 2.
- the extent of the hole sets 22 formed along the first pipe body 4 define the longitudinal section L. In this embodiment, these particular charges generate holes having a diameter of ca. 5 millimetres.
- the sets of holes 22 are formed through walls of the first and second pipe bodies 4,6 for allowing fluid communication between the first pipe body 4 and the second annulus 12.
- Each set of holes 20 comprises a first hole 22a formed through the first pipe body 4, and a second hole 22b formed through the second pipe body 6.
- the first and second holes 22a, 22b are aligned in a substantially radial direction relative to a longitudinal axis of the first and second pipe bodies 4, 6.
- the sets of holes 22 are dispersed in a substantially regular and even fashion along the longitudinal section L, having a substantially even hole set spacing and density along the longitudinal section L.
- Figure 3 shows the well 2 after having set a mechanical plug 24 inside the first pipe body 4, and below the longitudinal section L, and after having lowered a washing tool 26 into the first pipe body 4 and having positioned it at a top part of the longitudinal section L.
- the washing tool 26 comprises a set of spaced apart flow guides 28a, 28b configured to enclose of a limited number of sets of holes 22 along the longitudinal section L.
- the spaced apart flow guides 28a, 28b comprise radially extending collars in the form of so-called swab cups sealing, at least partially, against an inside of first pipe body 4.
- the flow guides 28a, 28b cooperate with the inside of the first pipe body 4 to form a confined pressure compartment 30 for enclosing said limited number of sets of holes 22 when operational in the well 2.
- the washing tool 26 also includes a central mandrel 32 furnished with discharge openings 34 for allowing fluid communication between the pressure compartment 30 and an upper end of the mandrel 32.
- Said tubular work string 36 (coiled tubing string) is shown connected to the upper end of the mandrel 32 for operation of the washing tool 26.
- FIG 3 also shows the washing tool 26 whilst being supplied a pressurized washing fluid 38, here in the form of drilling mud, from the surface via the work string 36 and into the confined compartment 30 via the mandrel 32 and the discharge openings 34 therein.
- the pressurized washing fluid 38 discharges from the compartment 30 as high velocity flushing jets 40 passing through respective aligned holes 22a, 22b of the limited sets of holes 22 located within the confined compartment 30.
- the flushing jets 40 also pass through the clean fluid 10 in the first annulus 8, thereby allowing the flushing jets 40 to engage and clean away contaminants 14 located within a top part of the second annulus 12.
- the flushing jets 40 are shown as straight arrows through the aligned holes 22a, 22b.
- the liberated contaminants 14 entrained with the washing fluid 38 are removed via other hole sets 22, and via the second annulus 12, at this top part of the longitudinal section L.
- the returning washing fluid 38 with liberated contaminants 14 then enter the first pipe body 4 above the location of the washing tool 26 and flows to the surface of the well 2.
- the flow path of the returning washing fluid 38 is indicated with curved arrows in Figures 3 and 4.
- Figure 4 shows the washing tool 26 whilst washing at a bottom part of the longitudinal section L, and after having moved the washing tool 26 successively downward inside the first pipe body 4.
- the flushing jets 40 have dislodged and cleaned away contaminants 14 within substantially the entire second annulus 12 along the perforated longitudinal section L.
- the washing tool 26 is typically moved upward along the longitudinal section L to facilitate further (residual) cleaning within the second annulus 12.
- the down-and-up washing procedure may be repeated one or more times, if desired or required.
- Figure 5 shows the well 2 after having completed a subsequent step of pumping a fluidized plugging material 42 into the first pipe body 4 and placing the plugging material 42 along at least the longitudinal section L of the well 2.
- the fluidized plugging material 42 is also allowed to displace into the first annulus 8 and the cleaned second annulus 12 via the sets of holes 22 in the first and second pipe bodies 4, 6, thereby forming a cross-sectional plug in the well 2.
- the plugging material 42 may be displaced into the well 2 in any suitable manner, as would be known to the skilled well practitioner.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Cleaning In General (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Threshing Machine Elements (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20171650A NO345810B1 (en) | 2017-10-17 | 2017-10-17 | A system and method of cleaning an annular area of a second annulus in a well |
PCT/NO2018/050247 WO2019078728A2 (en) | 2017-10-17 | 2018-10-17 | A system and method of cleaning an annular area in a well |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3698015A2 true EP3698015A2 (en) | 2020-08-26 |
EP3698015A4 EP3698015A4 (en) | 2021-07-14 |
EP3698015B1 EP3698015B1 (en) | 2024-05-22 |
Family
ID=62091592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18867925.2A Active EP3698015B1 (en) | 2017-10-17 | 2018-10-17 | A system and method of cleaning an annular area in a well |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3698015B1 (en) |
AU (1) | AU2018351422B2 (en) |
DK (1) | DK3698015T3 (en) |
NO (1) | NO345810B1 (en) |
WO (1) | WO2019078728A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO345811B1 (en) * | 2018-07-10 | 2021-08-16 | Hydra Systems As | A method of performing abrasive perforation and washing in a well |
NO346193B1 (en) * | 2019-06-17 | 2022-04-11 | Archer Oiltools As | Toolstring assembly and method for releasing and removing a stuck casing |
NO346617B1 (en) | 2020-03-09 | 2022-10-31 | Hydra Systems As | A fluid diverter tool, system and method of diverting a fluid flow in a well |
NO346276B1 (en) * | 2021-04-12 | 2022-05-16 | Archer Oiltools As | Packing assembly |
NO346642B1 (en) * | 2021-12-13 | 2022-11-14 | Archer Oiltools As | Casing annulus washing tool and method for use in restricted well tubing |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2512801A (en) * | 1947-02-17 | 1950-06-27 | Shell Dev | Perforation washer |
US3396798A (en) * | 1966-11-14 | 1968-08-13 | Burns Tool Co | Circulating washer tool |
US4899821A (en) * | 1989-01-12 | 1990-02-13 | Hydro-Tool Company, Inc. | Method and apparatus for servicing well casing and the like |
GB2275282B (en) * | 1993-02-11 | 1996-08-07 | Halliburton Co | Abandonment of sub-sea wells |
NO335972B1 (en) * | 2011-01-12 | 2015-04-07 | Hydra Systems As | Procedure for combined cleaning and plugging in a well, washing tool for directional flushing in a well, and use of the washing tool |
EP2805010B1 (en) * | 2012-01-17 | 2017-02-01 | Halliburton Energy Services, Inc. | Methods of isolating annular areas formed by multiple casing strings in a well |
NO339082B1 (en) * | 2012-03-09 | 2016-11-14 | Hydra Systems As | Procedure for combined cleaning and plugging in a well |
NO337162B1 (en) * | 2013-03-20 | 2016-02-01 | Hydra Panda As | Method, system and application for plugging a well |
NO20140209A1 (en) * | 2014-02-18 | 2015-06-29 | Well Tech As | Hydraulic cutting tool, system and method for controlled hydraulic cutting through a pipe wall in a well, as well as applications of the cutting tool and the system |
NO340959B1 (en) | 2015-06-10 | 2017-07-31 | Hydra Systems As | A method of plugging and abandoning a well |
-
2017
- 2017-10-17 NO NO20171650A patent/NO345810B1/en unknown
-
2018
- 2018-10-17 WO PCT/NO2018/050247 patent/WO2019078728A2/en unknown
- 2018-10-17 DK DK18867925.2T patent/DK3698015T3/en active
- 2018-10-17 AU AU2018351422A patent/AU2018351422B2/en active Active
- 2018-10-17 EP EP18867925.2A patent/EP3698015B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
NO345810B1 (en) | 2021-08-16 |
WO2019078728A3 (en) | 2019-08-01 |
WO2019078728A2 (en) | 2019-04-25 |
NO20171650A1 (en) | 2018-03-01 |
AU2018351422B2 (en) | 2021-04-29 |
EP3698015B1 (en) | 2024-05-22 |
EP3698015A4 (en) | 2021-07-14 |
AU2018351422A1 (en) | 2020-03-05 |
DK3698015T3 (en) | 2024-06-17 |
BR112020004380A2 (en) | 2020-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018351422B2 (en) | A system and method of cleaning an annular area in a well | |
RU2390623C2 (en) | Single-trip downhole device equipped with means of minimising sand ingress | |
RU2564427C2 (en) | Device and method for plug installation and well abandonment | |
AU2013228113B2 (en) | A method for combined cleaning and plugging in a well and a flushing tool for flushing in a well | |
NO20191344A1 (en) | Improvements in or relating to well abandonment | |
EP3042035B1 (en) | Method for isolation of a permeable zone in a subterranean well | |
CA3026613C (en) | A method of plugging and abandoning a well | |
WO2015105427A2 (en) | Method and device for cutting, perforating, washing and pulling of casing pipes in a well | |
EP4118300B1 (en) | A fluid diverter tool, system and method of diverting a fluid flow in a well | |
EP2795056A2 (en) | Method of fracturing while drilling | |
US11920418B2 (en) | Apparatus and method for behind casing washout | |
RU2282714C1 (en) | Method for secondary productive formation exposing by slot hydraulic jet perforation and well putting in operation | |
BR112020004380B1 (en) | SYSTEM AND METHOD OF CLEANING AN RING AREA IN A WELL | |
RU2720722C1 (en) | Method of packer installation inside casing string of well | |
RU2562639C1 (en) | Method of secondary drilling of productive formations | |
RU94624U1 (en) | SCRAPER FROM ROPE WIRE MODERNIZED SKP 220M | |
NO345811B1 (en) | A method of performing abrasive perforation and washing in a well | |
EA027173B1 (en) | Method of hydromechanical perforation of boreholes at depression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200219 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20210610 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E21B 37/08 20060101AFI20210604BHEP Ipc: E21B 21/00 20060101ALI20210604BHEP Ipc: E21B 33/13 20060101ALI20210604BHEP Ipc: E21B 37/00 20060101ALI20210604BHEP Ipc: E21B 43/11 20060101ALI20210604BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240221 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240502 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018069895 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20240610 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240923 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1688917 Country of ref document: AT Kind code of ref document: T Effective date: 20240522 |