EP3697744A1 - Method for producing a pyrolytic carbon with predetermined microstructure - Google Patents

Method for producing a pyrolytic carbon with predetermined microstructure

Info

Publication number
EP3697744A1
EP3697744A1 EP18800703.3A EP18800703A EP3697744A1 EP 3697744 A1 EP3697744 A1 EP 3697744A1 EP 18800703 A EP18800703 A EP 18800703A EP 3697744 A1 EP3697744 A1 EP 3697744A1
Authority
EP
European Patent Office
Prior art keywords
pyrocarbon
precursor
temperature
alcohol
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18800703.3A
Other languages
German (de)
French (fr)
Other versions
EP3697744B1 (en
Inventor
Arnaud DELEHOUZE
Amandine LORRIAUX
Laurence Maille
Patrick David
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Safran Ceramics SA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Safran Ceramics SA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1759870A external-priority patent/FR3072606B1/en
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, Safran Ceramics SA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Centre National de la Recherche Scientifique CNRS
Priority to EP21183043.5A priority Critical patent/EP3907207B1/en
Publication of EP3697744A1 publication Critical patent/EP3697744A1/en
Application granted granted Critical
Publication of EP3697744B1 publication Critical patent/EP3697744B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained by impregnation of carbon products with a carbonisable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • a pyrocarbon coating on the external surface of a substrate by caulking by immersing said substrate in a bath of cyclohexane in the liquid state, and by heating said substrate to a temperature greater than decomposition temperature of the precursor.
  • the liquid in contact with hot surfaces, vaporizes and forms a gaseous film called "heating film".
  • the substrate being heated above the decomposition temperature of the precursor, the vapors contained in the cofification film decompose and a deposit is formed by heterogeneous reactions between the surface of the substrate and the gas phase.
  • the pyrocarbon obtained by caulking in the prior art may have structural defects, such as cracks, which it would be desirable to reduce the degree of presence.
  • the invention aims to solve the aforementioned drawbacks and relates to a process for producing pyrocarbon, comprising a step of forming the pyrocarbon by a process of calefaction from at least one C 2 -C 6 alcohol or polyalcohol precursor.
  • alcohol is meant a compound having a single alcohol function.
  • polyalcohol is meant a compound having several alcohol functions.
  • an alcohol or polyalcohol precursor C2 -C 6 provides a pyrolytic carbon having a uniform and controlled microstructure and having an amount of structural defects reduced as compared to techniques of the prior art. More precisely, this precursor makes it possible selectively to obtain a pyrocarbon having a predetermined microstructure according to the temperature imposed during the caesfaction. The fact of using the precursor described above makes it possible to modulate the microstructure obtained for the pyrocarbon formed on the treated surface by varying the temperature at which this surface is heated during the calefaction.
  • the alcohol or polyalcohol considered here is a compound available in large quantities and can be obtained from renewable resources, thus conferring on the precursors described above an increased availability compared to known precursors.
  • the precursor is an aliphatic alcohol or polyalcohol.
  • the precursor is a C2 or C3 alcohol or polyhydric alcohol.
  • a precursor C2 or C3 is advantageous because it allows, by varying the temperature imposed during the caulking, to access all the existing microstructures for pyrocarbon, and therefore in particular to obtain in a controlled manner the rough laminar pyrocarbon type.
  • the precursor may be a C 2 alcohol or diol.
  • the precursor may be ethanol or propanol.
  • the pyrocarbon formed from the precursor described above can be intended for various applications.
  • the invention also provides a method of coating a substrate, comprising at least the following step:
  • the invention also provides a process for densifying a fibrous preform, comprising at least the following step:
  • FIGS. 1 and 2 are polarized light optical microscope observations of a plurality of pyrocarbon deposits obtained in FIG. the context of example processes according to the invention.
  • the pyrocarbon is formed by heating from a C 2 to Ce alcohol or poly alcohol precursor.
  • a pyrocarbon matrix can be formed in the porosity of a fibrous preform, or a pyrocarbon coating on the outer surface of a substrate.
  • the fiber preform to be densified or the substrate to be coated is immersed in a liquid bath comprising the alcohol precursor or polyalcohol. Heating of the preform or substrate is then performed, for example by induction. In contact with the preform or heated substrate, the precursor is vaporized to form a caulking film in which it will decompose to form a pyrocarbon deposit, forming the matrix or the coating.
  • the alcohol or the polyhydric alcohol may have a linear, branched or cyclic chain.
  • the precursor may be an alcohol or an aliphatic polyhydric alcohol.
  • the precursor is chosen from: ethanol, ethylene glycol, propanol, glycerol, butanol, pentanol, hexanol, cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol, a phenol or a mixture of these compounds.
  • the precursor may be methanol or an ether, such as ethoxyethane or methoxy propane.
  • the alcohol or the polyalcohol is C 2 to C 4 .
  • the alcohol or the polyhydric alcohol may be C2 or C3.
  • the precursor is ethanol or propanol.
  • a predetermined temperature is imposed on the preform or substrate to obtain the desired microstructure pyrocarbon.
  • imposing a first temperature makes it possible to selectively form a pyrocarbon having a first microstructure, and imposing a second temperature, different from the first one. , can selectively form a pyrocarbon having a second microstructure, different from the first.
  • amorphous pyrocarbon is obtained by imposing a temperature of between 1050 ° C. and 1150 ° C. during the calefaction,
  • dark laminar pyrocarbon is obtained by imposing a temperature of between 1175 ° C. and 1225 ° C. during the caesfaction,
  • amorphous pyrocarbon is obtained by imposing a temperature of between 1050 ° C. and 1150 ° C. during the calefaction,
  • dark laminar pyrocarbon is obtained by imposing a temperature of between 1175 ° C. and 1220 ° C. during the caesfaction, -
  • the rough laminar pyrocarbon is obtained by imposing a temperature of between 1220 ° C and 1250 ° C, for example between 1230 ° C and 1250 ° C, during the caulking, and
  • amorphous pyrocarbon is obtained by imposing a temperature of between 1050 ° C. and 1150 ° C. during the calefaction, and
  • dark laminar pyrocarbon is obtained by imposing a temperature of between 1050.degree. C. and 1225.degree. C. during the calefaction, and
  • dark laminar pyrocarbon is obtained by imposing a temperature of between 1050.degree. C. and 1225.degree. C. during the calefaction, and
  • FIG. 1 A polarized light optical microscope observation of a result of a test example according to the invention is provided in FIG.
  • the test corresponding to FIG. 1 consisted of successively depositing four layers C1, C2, C3 and C4 of pyrocarbon on the substrate S.
  • each of the C1-C4 layers ethanol was formed as a pyrocarbon precursor.
  • a different temperature was imposed during the calefaction during the formation of each of the C1-C4 layers.
  • the Cl layer was obtained by imposing a temperature during the heating of 1100 ° C for 49 minutes.
  • the Cl layer was an amorphous pyrocarbon layer and had a thickness of 7.32 ⁇ m and an extinction angle of 1.4 ° when observed under optical microscopy in polarized light.
  • the C2 layer was obtained by imposing a temperature during the caulking of 1200 ° C for 19 minutes.
  • the C2 layer was a dark laminar pyrocarbon layer and had a thickness of 8.21 ⁇ m and an extinction angle of 4.2 ° when observed under optical microscopy in polarized light.
  • the C3 layer was obtained by imposing a temperature during the caulking of 1300 ° C for 7 minutes.
  • the C3 layer was a rough laminar pyrocarbon layer and had a thickness of 7.36 ⁇ m and an extinction angle of 21.7 ° when observed under optical microscopy in polarized light.
  • the C4 layer was obtained by imposing a temperature during the caulking of 1400 ° C for 2 minutes and 12 seconds.
  • the C4 layer was a smooth laminar pyrocarbon layer and had a thickness of 9.02 ⁇ m and an extinction angle of 8.4 ° when observed under optical microscopy in polarized light.
  • test corresponding to FIG. 2 consisted in successively depositing five Cil, C21, C31, C41 and C51 layers of pyrocarbon on the substrate S.
  • the temperature imposed during the calefaction was modulated during the deposition of these five layers in order to vary the microstructure of the pyrocarbon obtained.
  • the layers C11 and C51 were obtained by imposing a temperature during the calefaction of 1200 ° C for 13 minutes and 39 seconds.
  • Layers C11 and C51 were dark laminar pyrocarbon layers and had a thickness of 5 ⁇ m.
  • the layers C21 and C41 were obtained by imposing a temperature during the caleing of 1300 ° C for 5 minutes and 39 seconds. Layers C21 and C41 were rough laminar pyrocarbon layers and had a thickness of 4.5 ⁇ m.
  • the C31 layer was obtained by imposing a temperature during the caulking of 1400 ° C for 1 minute and 34 seconds. The layer C31 was a smooth laminar pyrocarbon layer and had a thickness of 4 ⁇ .
  • the fiber preform may comprise refractory yarns, such as ceramic or carbon yarns, or a mixture of ceramic and carbon yarns.
  • the ceramic son may, for example, be selected from silicon carbide son or refractory oxide son, for example alumina.
  • the preform may for example be formed of silicon carbide son supplied by the Japanese company NGS under the reference "Nicalon", “Hi-Nicalon” or “Hi-Nicalon Type S”.
  • the preform may be formed of alumina son supplied by 3M under the reference Nextel.
  • the carbon threads that can be used to form this preform are, for example, supplied under the name Torayca T300 3K by the company
  • the fibrous preform is obtained from at least one textile operation.
  • the fibrous preform is intended to constitute the fibrous reinforcement of the part to be obtained.
  • the fibrous preform can, in particular, be obtained by multilayer or multidimensional weaving, for example three-dimensional, 3D orthogonal, 3D polar or 4D.
  • the fibrous preform may, for example, have a multi-satin weave, that is to say be a woven fabric obtained by three-dimensional weaving with several layers of weft threads whose basic weave of each layer is equivalent to an armor classic satin type but with some points of the armor that bind the layers of weft son together.
  • the fibrous preform may have interlock weave.
  • armor or interlock fabric is meant armor 3D weaving weave which each layer of warp threads binds several layers of weft yarns with all the yarns of the same warp column having the same movement in the plane of the weave.
  • Different multilayer weave modes that can be used to form the fiber preform are described in WO 2006/136755.
  • fibrous textures such as two-dimensional fabrics or unidirectional webs
  • fibrous preform by draping such fibrous textures onto a shape.
  • These textures may optionally be bonded together, for example by sewing or implantation of threads to form the fiber preform.
  • the fibers forming the fibrous preform may or may not be coated before formation of the pyrocarbon matrix.
  • the son can be coated with a monolayer or multilayer interphase.
  • This interphase may comprise at least one layer of pyrolytic carbon (PyC), boron nitride (BN), silicon doped boron nitride (BNSi), with silicon in a mass proportion of between 5% and 40%, the complement being boron nitride) or boron-doped carbon (BC, with 5% at 20% at B, the balance being C).
  • the interphase here has a function of defragilating the composite material which favors the deflection of possible cracks reaching the interphase after having propagated in the matrix, preventing or delaying the breaking of the wires by such cracks.
  • the thickness of the interphase can be between 10 nm and
  • the interphase can be formed, in known manner, by chemical vapor infiltration on the son of the already formed preform. Alternatively, the interphase could be formed by chemical vapor deposition on the wires prior to forming the preform and then forming the preform from the thus coated wires.
  • the fiber preform can be partially densified prior to formation of the pyrocarbon matrix from the precursor.
  • This pre-densification can be carried out in a manner known per se.
  • the fibrous preform can be pre- densified by a pre-densification phase made of carbon or ceramic material.
  • the residual porosity of the pre-densified preform is completely or partially filled by the pyrocarbon matrix formed from the precursor.
  • the matrix of the composite material part obtained is integrally formed by the pyrocarbon matrix obtained from the alcohol or polyalcohol precursor. In the latter case, the fiber preform has not been pre-densified.
  • the matrix formed by a process of calefaction from the alcohol precursor or C2-C6 polyalcohol can occupy at least 50%, or even at least 75%, of the initial porosity of the fibrous preform.
  • the initial porosity of the preform corresponds to the porosity presented by the preform before carrying out any densification step.
  • a coated part is thus obtained, comprising the substrate and the pyrocarbon coating formed on this substrate from the alcohol or polyalcohol precursor.
  • the coated substrate may be an already densified composite material part, such as a ceramic matrix composite material or a carbon matrix composite material.
  • the coated substrate is a block of monolithic refractory material, ceramic or carbon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The invention concerns a method for producing pyrolytic carbon, comprising a step of forming the pyrolytic carbon by a Leidenfrost effect from at least one C2 to C6 polyalcohol or alcohol precursor, the precursor being ethanol or a C3 polyalcohol or alcohol, and, when ethanol is used as precursor, the rough laminar pyrolytic carbon being obtained by imposing a temperature of between 1250°C and 1325°C during the Leidenfrost effect.

Description

Procédé de fabrication de pyrocarbone de microstructure  Process for producing pyrocarbon microstructure
prédéterminée  predetermined
Arrière-plan de l'invention Background of the invention
II est connu d'utiliser la technique de caléfaction pour former du pyrocarbone à partir d'un précurseur hydrocarbure comme le cyclohexane.  It is known to use the calefaction technique to form pyrocarbon from a hydrocarbon precursor such as cyclohexane.
On peut, en particulier, déposer un revêtement de pyrocarbone sur la surface externe d'un substrat par caléfaction en immergeant ledit substrat dans un bain de cyclohexane à l'état liquide, et en réalisant un chauffage de ce substrat à une température supérieure à la température de décomposition du précurseur.  In particular, it is possible to deposit a pyrocarbon coating on the external surface of a substrate by caulking by immersing said substrate in a bath of cyclohexane in the liquid state, and by heating said substrate to a temperature greater than decomposition temperature of the precursor.
Le liquide, au contact des surfaces chaudes, se vaporise et forme un film gazeux appelé « film de caléfaction ». Le substrat étant chauffé au-dessus de la température de décomposition du précurseur, les vapeurs contenues dans le film de caléfaction se décomposent et un dépôt se forme par réactions hétérogènes entre la surface du substrat et la phase gazeuse.  The liquid, in contact with hot surfaces, vaporizes and forms a gaseous film called "heating film". The substrate being heated above the decomposition temperature of the precursor, the vapors contained in the cofification film decompose and a deposit is formed by heterogeneous reactions between the surface of the substrate and the gas phase.
Toutefois, il est relativement difficile de contrôler la microstructure du pyrocarbone formé et d'obtenir une microstructure homogène lorsque les techniques de caléfaction connues sont utilisées. Plus particulièrement, l'obtention contrôlée de pyrocarbone de type laminaire rugueux peut s'avérer relativement difficile. En outre, le pyrocarbone obtenu par caléfaction dans l'art antérieur peut présenter des défauts structuraux, comme des fissures, dont il serait souhaitable de réduire le degré de présence. However, it is relatively difficult to control the microstructure of the pyrocarbon formed and to obtain a homogeneous microstructure when the known caulking techniques are used. More particularly, the controlled production of rough laminar pyrocarbon can be relatively difficult. In addition, the pyrocarbon obtained by caulking in the prior art may have structural defects, such as cracks, which it would be desirable to reduce the degree of presence.
Par ailleurs, un autre problème est que les précurseurs de caléfaction connus sont généralement issus de ressources non renouvelables (filière pétrolière par exemple). Cela peut conduire, à terme, à des problèmes de disponibilité de ces composés et à un impact négatif sur le plan environnemental.  Moreover, another problem is that the known precursors of calefaction are generally from non-renewable resources (oil industry for example). This can eventually lead to problems of availability of these compounds and to a negative environmental impact.
Objet et résumé de l'invention Object and summary of the invention
L'invention vise à résoudre les inconvénients précités et concerne un procédé de fabrication de pyrocarbone, comprenant une étape de formation du pyrocarbone par un procédé de caléfaction à partir d'au moins un précurseur alcool ou polyalcool en C2 à Ce. The invention aims to solve the aforementioned drawbacks and relates to a process for producing pyrocarbon, comprising a step of forming the pyrocarbon by a process of calefaction from at least one C 2 -C 6 alcohol or polyalcohol precursor.
Par « alcool », il faut comprendre un composé ayant une seule fonction alcool. Par « polyalcool », il faut comprendre un composé ayant plusieurs fonctions alcool.  By "alcohol" is meant a compound having a single alcohol function. By "polyalcohol" is meant a compound having several alcohol functions.
La mise en œuvre d'un précurseur alcool ou polyalcool en C2 à C6 permet d'obtenir un pyrocarbone ayant une microstructure homogène et contrôlée, et présentant une quantité de défauts structuraux réduite par rapport aux techniques de l'art antérieur. Plus précisément, ce précurseur permet d'obtenir sélectivement un pyrocarbone ayant une microstructure prédéterminée suivant la température imposée durant la caléfaction. Le fait d'utiliser le précurseur décrit plus haut permet de moduler la microstructure obtenue pour le pyrocarbone formé sur la surface traitée en faisant varier la température à laquelle cette surface est chauffée lors de la caléfaction. The implementation of an alcohol or polyalcohol precursor C2 -C 6 provides a pyrolytic carbon having a uniform and controlled microstructure and having an amount of structural defects reduced as compared to techniques of the prior art. More precisely, this precursor makes it possible selectively to obtain a pyrocarbon having a predetermined microstructure according to the temperature imposed during the caesfaction. The fact of using the precursor described above makes it possible to modulate the microstructure obtained for the pyrocarbon formed on the treated surface by varying the temperature at which this surface is heated during the calefaction.
En outre, l'alcool ou le polyalcool envisagé ici constitue un composé disponible en grande quantité et qui peut être obtenu à partir de ressources renouvelables, conférant ainsi aux précurseurs décrits plus haut une disponibilité accrue par rapport aux précurseurs connus.  In addition, the alcohol or polyalcohol considered here is a compound available in large quantities and can be obtained from renewable resources, thus conferring on the precursors described above an increased availability compared to known precursors.
Dans un exemple de réalisation, le précurseur est un alcool ou un polyalcool aliphatique.  In an exemplary embodiment, the precursor is an aliphatic alcohol or polyalcohol.
Dans un exemple de réalisation, le précurseur est un alcool ou un polyalcool en C2 ou en C3.  In an exemplary embodiment, the precursor is a C2 or C3 alcohol or polyhydric alcohol.
La mise en œuvre d'un précurseur en C2 ou en C3 est avantageuse car elle permet, en faisant varier la température imposée lors de la caléfaction, d'accéder à l'intégralité des microstructures existantes pour le pyrocarbone, et donc notamment d'obtenir de manière contrôlée du pyrocarbone de type laminaire rugueux. En particulier, le précurseur peut être un alcool ou un diol en C2. Le précurseur peut être l'éthanol ou le propanol. The implementation of a precursor C2 or C3 is advantageous because it allows, by varying the temperature imposed during the caulking, to access all the existing microstructures for pyrocarbon, and therefore in particular to obtain in a controlled manner the rough laminar pyrocarbon type. In particular, the precursor may be a C 2 alcohol or diol. The precursor may be ethanol or propanol.
Le pyrocarbone formé à partir du précurseur décrit plus haut peut être destiné à diverses applications.  The pyrocarbon formed from the precursor described above can be intended for various applications.
Ainsi, l'invention vise également un procédé de revêtement d'un substrat, comprenant au moins l'étape suivante :  Thus, the invention also provides a method of coating a substrate, comprising at least the following step:
- formation d'un revêtement de pyrocarbone sur une surface d'un substrat par mise en œuvre d'un procédé tel que décrit plus haut. En variante, l'invention vise encore un procédé de densification d'une préforme fibreuse, comprenant au moins l'étape suivante : - Formation of a pyrocarbon coating on a surface of a substrate by carrying out a method as described above. In a variant, the invention also provides a process for densifying a fibrous preform, comprising at least the following step:
- formation d'une matrice de pyrocarbone dans la porosité de la préforme fibreuse par mise en oeuvre d'un procédé tel que décrit plus haut.  - Formation of a pyrocarbon matrix in the porosity of the fiber preform by carrying out a method as described above.
Brève description des dessins Brief description of the drawings
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, donnée à titre non limitatif, en référence aux figures 1 et 2 annexées qui sont des observations au microscope optique à lumière polarisée d'une pluralité de dépôts de pyrocarbone obtenus dans le cadre d'exemples de procédé selon l'invention.  Other features and advantages of the invention will emerge from the following description, given in a non-limiting manner, with reference to the appended FIGS. 1 and 2 which are polarized light optical microscope observations of a plurality of pyrocarbon deposits obtained in FIG. the context of example processes according to the invention.
Description détaillée de modes de réalisation Detailed description of embodiments
Le pyrocarbone est formé par caléfaction à partir d'un précurseur alcool ou polyalcool en C2 à Ce. On peut, en particulier, former une matrice de pyrocarbone dans la porosité d'une préforme fibreuse, ou un revêtement de pyrocarbone sur la surface externe d'un substrat. The pyrocarbon is formed by heating from a C 2 to Ce alcohol or poly alcohol precursor. In particular, a pyrocarbon matrix can be formed in the porosity of a fibrous preform, or a pyrocarbon coating on the outer surface of a substrate.
Dans ce cas, la préforme fibreuse à densifier ou le substrat à revêtir est immergé dans un bain liquide comprenant le précurseur alcool ou polyalcool. Un chauffage de la préforme ou du substrat est ensuite réalisé, par exemple par induction. Au contact de la préforme ou du substrat chauffé, le précurseur est vaporisé pour former un film de caléfaction au sein duquel il va se décomposer pour former un dépôt de pyrocarbone, formant la matrice ou le revêtement.  In this case, the fiber preform to be densified or the substrate to be coated is immersed in a liquid bath comprising the alcohol precursor or polyalcohol. Heating of the preform or substrate is then performed, for example by induction. In contact with the preform or heated substrate, the precursor is vaporized to form a caulking film in which it will decompose to form a pyrocarbon deposit, forming the matrix or the coating.
L'alcool ou le polyalcool peut présenter une chaîne linéaire, ramifiée ou cyclique. Selon un exemple, le précurseur peut être un alcool ou un polyalcool aliphatique.  The alcohol or the polyhydric alcohol may have a linear, branched or cyclic chain. In one example, the precursor may be an alcohol or an aliphatic polyhydric alcohol.
Dans un exemple de réalisation, le précurseur est choisi parmi : l'éthanol, l'éthylène glycol, le propanol, le glycérol, le butanol, le pentanol, l'hexanol, le cyclopropanol, le cyclobutanol, le cyclopentanol, le cyclohexanol, un phénol ou un mélange de ces composés. Les inventeurs ont en outre constaté que d'autres molécules pouvaient être utilisées en tant que précurseur utile pour former du pyrocarbone par un procédé de caléfaction. A ce titre, le précurseur peut être le méthanol ou un étheroxyde, comme l'éthoxyéthane ou le méthoxy propane. Dans un exemple de réalisation, l'alcool ou le polyalcool est en C2 à C4. L'alcool ou le polyalcool peut être en C2 ou en C3. En particulier, le précurseur est l'éthanol ou le propanol. In an exemplary embodiment, the precursor is chosen from: ethanol, ethylene glycol, propanol, glycerol, butanol, pentanol, hexanol, cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol, a phenol or a mixture of these compounds. The inventors have further found that other molecules can be used as a precursor useful for forming pyrocarbon by a process of calefaction. As such, the precursor may be methanol or an ether, such as ethoxyethane or methoxy propane. In an exemplary embodiment, the alcohol or the polyalcohol is C 2 to C 4 . The alcohol or the polyhydric alcohol may be C2 or C3. In particular, the precursor is ethanol or propanol.
Durant le procédé de caléfaction, une température prédéterminée est imposée à la préforme ou au substrat afin d'obtenir le pyrocarbone de microstructure souhaitée.  During the calefaction process, a predetermined temperature is imposed on the preform or substrate to obtain the desired microstructure pyrocarbon.
Lorsqu'un précurseur alcool ou polyalcool en C2-C6 est utilisé durant la caléfaction, le fait d'imposer une première température permet de sélectivement former un pyrocarbone ayant une première microstructure, et le fait d'imposer une deuxième température, différente de la première, permet de sélectivement former un pyrocarbone ayant une deuxième microstructure, différente de la première. En fonction des applications recherchées pour le pyrocarbone formé, il peut être souhaitable de privilégier une microstructure de pyrocarbone, plutôt qu'une autre.  When a C2-C6 alcohol or polyalcohol precursor is used during the calefaction, imposing a first temperature makes it possible to selectively form a pyrocarbon having a first microstructure, and imposing a second temperature, different from the first one. , can selectively form a pyrocarbon having a second microstructure, different from the first. Depending on the desired applications for the pyrocarbon formed, it may be desirable to favor one pyrocarbon microstructure, rather than another.
A titre d'exemple, lorsque l'éthanol est utilisé en tant que précurseur :  For example, when ethanol is used as a precursor:
- du pyrocarbone amorphe est obtenu en imposant une température comprise entre 1050°C et 1150°C durant la caléfaction,  amorphous pyrocarbon is obtained by imposing a temperature of between 1050 ° C. and 1150 ° C. during the calefaction,
- du pyrocarbone laminaire sombre est obtenu en imposant une température comprise entre 1175°C et 1225°C durant la caléfaction,  dark laminar pyrocarbon is obtained by imposing a temperature of between 1175 ° C. and 1225 ° C. during the caesfaction,
- du pyrocarbone laminaire rugueux est obtenu en imposant une température comprise entre 1250°C et 1325°C durant la caléfaction, et  - Rough laminar pyrocarbon is obtained by imposing a temperature between 1250 ° C and 1325 ° C during the caulking, and
- du pyrocarbone laminaire lisse est obtenu en imposant une température comprise entre 1350°C et 1425°C durant la caléfaction.  - Smooth laminar pyrocarbon is obtained by imposing a temperature between 1350 ° C and 1425 ° C during the heating.
On notera que, dans le cas où un précurseur en C2 est utilisé, il est non seulement possible de moduler la microstructure du pyrocarbone selon la température imposée durant la caléfaction mais aussi d'obtenir, de manière contrôlée, du pyrocarbone laminaire rugueux.  It will be noted that, in the case where a precursor C2 is used, it is not only possible to modulate the microstructure of the pyrocarbon according to the temperature imposed during the calefaction but also to obtain, in a controlled manner, rough laminar pyrocarbon.
A titre d'exemple, lorsque le propanol est utilisé en tant que précurseur :  For example, when propanol is used as a precursor:
- du pyrocarbone amorphe est obtenu en imposant une température comprise entre 1050°C et 1150°C durant la caléfaction,  amorphous pyrocarbon is obtained by imposing a temperature of between 1050 ° C. and 1150 ° C. during the calefaction,
- du pyrocarbone laminaire sombre est obtenu en imposant une température comprise entre 1175°C et 1220°C durant la caléfaction, - du pyrocarbone laminaire rugueux est obtenu en imposant une température comprise entre 1220°C et 1250°C, par exemple entre 1230°C et 1250°C, durant la caléfaction, et dark laminar pyrocarbon is obtained by imposing a temperature of between 1175 ° C. and 1220 ° C. during the caesfaction, - The rough laminar pyrocarbon is obtained by imposing a temperature of between 1220 ° C and 1250 ° C, for example between 1230 ° C and 1250 ° C, during the caulking, and
- du pyrocarbone laminaire lisse est obtenu en imposant une température comprise entre 1275°C et 1425°C durant la caléfaction.  - Smooth laminar pyrocarbon is obtained by imposing a temperature between 1275 ° C and 1425 ° C during the caesfaction.
On notera que, dans le cas où un précurseur en C3 est utilisé, il est non seulement possible de moduler la microstructure du pyrocarbone selon la température imposée durant la caléfaction mais aussi d'obtenir, de manière contrôlée, du pyrocarbone laminaire rugueux. It will be noted that, in the case where a C 3 precursor is used, it is not only possible to modulate the pyrocarbon microstructure according to the temperature imposed during the calefaction but also to obtain, in a controlled manner, rough laminar pyrocarbon.
A titre d'exemple, lorsque le butanol est utilisé en tant que précurseur :  For example, when butanol is used as a precursor:
- du pyrocarbone amorphe est obtenu en imposant une température comprise entre 1050°C et 1150°C durant la caléfaction, et  amorphous pyrocarbon is obtained by imposing a temperature of between 1050 ° C. and 1150 ° C. during the calefaction, and
- du pyrocarbone laminaire lisse est obtenu en imposant une température comprise entre 1175°C et 1225°C durant la caléfaction.  - Smooth laminar pyrocarbon is obtained by imposing a temperature between 1175 ° C and 1225 ° C during the heating.
A titre d'exemple, lorsque le pentanol est utilisé en tant que précurseur :  By way of example, when pentanol is used as a precursor:
- du pyrocarbone laminaire sombre est obtenu en imposant une température comprise entre 1050°C et 1225°C durant la caléfaction, et  dark laminar pyrocarbon is obtained by imposing a temperature of between 1050.degree. C. and 1225.degree. C. during the calefaction, and
- du pyrocarbone laminaire lisse est obtenu en imposant une température comprise entre 1275°C et 1425°C durant la caléfaction.  - Smooth laminar pyrocarbon is obtained by imposing a temperature between 1275 ° C and 1425 ° C during the caesfaction.
A titre d'exemple, lorsque l'hexanol est utilisé en tant que précurseur :  By way of example, when hexanol is used as a precursor:
- du pyrocarbone laminaire sombre est obtenu en imposant une température comprise entre 1050°C et 1225°C durant la caléfaction, et  dark laminar pyrocarbon is obtained by imposing a temperature of between 1050.degree. C. and 1225.degree. C. during the calefaction, and
- du pyrocarbone laminaire lisse est obtenu en imposant une température comprise entre 1275°C et 1425°C durant la caléfaction.  - Smooth laminar pyrocarbon is obtained by imposing a temperature between 1275 ° C and 1425 ° C during the caesfaction.
Une observation au microscope optique à lumière polarisée d'un résultat d'un exemple d'essai selon l'invention est fournie à la figure 1.  A polarized light optical microscope observation of a result of a test example according to the invention is provided in FIG.
L'essai correspondant à la figure 1 a consisté à déposer successivement par caléfaction quatre couches Cl, C2, C3 et C4 de pyrocarbone sur le substrat S.  The test corresponding to FIG. 1 consisted of successively depositing four layers C1, C2, C3 and C4 of pyrocarbon on the substrate S.
Il a été utilisé pour former chacune des couches C1-C4 l'éthanol comme précurseur de pyrocarbone. Une température différente a été imposée durant la caléfaction lors de la formation de chacune des couches C1-C4. Ainsi, la couche Cl a été obtenue en imposant une température durant la caléfaction de 1100°C pendant 49 minutes. La couche Cl était une couche de pyrocarbone amorphe et présentait une épaisseur de 7,32 pm et un angle d'extinction de 1,4° lorsqu'observée en microscopie optique en lumière polarisée. It was used to form each of the C1-C4 layers ethanol as a pyrocarbon precursor. A different temperature was imposed during the calefaction during the formation of each of the C1-C4 layers. Thus, the Cl layer was obtained by imposing a temperature during the heating of 1100 ° C for 49 minutes. The Cl layer was an amorphous pyrocarbon layer and had a thickness of 7.32 μm and an extinction angle of 1.4 ° when observed under optical microscopy in polarized light.
La couche C2 a été obtenue en imposant une température durant la caléfaction de 1200°C pendant 19 minutes. La couche C2 était une couche de pyrocarbone laminaire sombre et présentait une épaisseur de 8,21 pm et un angle d'extinction de 4,2° lorsqu'observée en microscopie optique en lumière polarisée.  The C2 layer was obtained by imposing a temperature during the caulking of 1200 ° C for 19 minutes. The C2 layer was a dark laminar pyrocarbon layer and had a thickness of 8.21 μm and an extinction angle of 4.2 ° when observed under optical microscopy in polarized light.
La couche C3 a été obtenue en imposant une température durant la caléfaction de 1300°C pendant 7 minutes. La couche C3 était une couche de pyrocarbone laminaire rugueux et présentait une épaisseur de 7,36 pm et un angle d'extinction de 21,7° lorsqu'observée en microscopie optique en lumière polarisée.  The C3 layer was obtained by imposing a temperature during the caulking of 1300 ° C for 7 minutes. The C3 layer was a rough laminar pyrocarbon layer and had a thickness of 7.36 μm and an extinction angle of 21.7 ° when observed under optical microscopy in polarized light.
La couche C4 a été obtenue en imposant une température durant la caléfaction de 1400°C pendant 2 minutes et 12 secondes. La couche C4 était une couche de pyrocarbone laminaire lisse et présentait une épaisseur de 9,02 pm et un angle d'extinction de 8,4° lorsqu'observée en microscopie optique en lumière polarisée.  The C4 layer was obtained by imposing a temperature during the caulking of 1400 ° C for 2 minutes and 12 seconds. The C4 layer was a smooth laminar pyrocarbon layer and had a thickness of 9.02 μm and an extinction angle of 8.4 ° when observed under optical microscopy in polarized light.
D'autres essais ont été menés en utilisant l'éthanol comme précurseur. L'essai correspondant à la figure 2 a consisté à déposer successivement par caléfaction cinq couches Cil, C21, C31, C41 et C51 de pyrocarbone sur le substrat S.  Other tests were conducted using ethanol as a precursor. The test corresponding to FIG. 2 consisted in successively depositing five Cil, C21, C31, C41 and C51 layers of pyrocarbon on the substrate S.
La température imposée durant la caléfaction a été modulée durant le dépôt de ces cinq couches afin de faire varier la microstructure du pyrocarbone obtenu.  The temperature imposed during the calefaction was modulated during the deposition of these five layers in order to vary the microstructure of the pyrocarbon obtained.
Ainsi, les couches Cil et C51 ont été obtenues en imposant une température durant la caléfaction de 1200°C pendant 13 minutes et 39 secondes. Les couches Cil et C51 étaient des couches de pyrocarbone laminaire sombre et présentaient une épaisseur de 5 pm.  Thus, the layers C11 and C51 were obtained by imposing a temperature during the calefaction of 1200 ° C for 13 minutes and 39 seconds. Layers C11 and C51 were dark laminar pyrocarbon layers and had a thickness of 5 μm.
Les couches C21 et C41 ont été obtenues en imposant une température durant la caléfaction de 1300°C pendant 5 minutes et 39 secondes. Les couches C21 et C41 étaient des couches de pyrocarbone laminaire rugueux et présentaient une épaisseur de 4,5 pm. La couche C31 a été obtenue en imposant une température durant la caléfaction de 1400°C pendant 1 minute et 34 secondes. La couche C31 était une couche de pyrocarbone laminaire lisse et présentait une épaisseur de 4 μητι. The layers C21 and C41 were obtained by imposing a temperature during the caleing of 1300 ° C for 5 minutes and 39 seconds. Layers C21 and C41 were rough laminar pyrocarbon layers and had a thickness of 4.5 μm. The C31 layer was obtained by imposing a temperature during the caulking of 1400 ° C for 1 minute and 34 seconds. The layer C31 was a smooth laminar pyrocarbon layer and had a thickness of 4 μητι.
Des détails relatifs à la préforme fibreuse et au substrat qui peuvent être mis en œuvre vont, à présent, être décrits.  Details of the fiber preform and substrate that can be implemented will now be described.
La préforme fibreuse peut comporter des fils réfractaires, comme des fils céramiques ou carbone, ou un mélange de fils céramiques et de carbone. Les fils céramiques peuvent, par exemple, être choisis parmi les fils de carbure de silicium ou les fils en oxyde réfractaire, par exemple en alumine. The fiber preform may comprise refractory yarns, such as ceramic or carbon yarns, or a mixture of ceramic and carbon yarns. The ceramic son may, for example, be selected from silicon carbide son or refractory oxide son, for example alumina.
La préforme peut par exemple être formée de fils de carbure de silicium fournis par la société japonaise NGS sous la référence « Nicalon », « Hi-Nicalon » ou encore « Hi-Nicalon Type S ». La préforme peut être formée de fils d'alumine fournis par la société 3M sous la référence Nextel. The preform may for example be formed of silicon carbide son supplied by the Japanese company NGS under the reference "Nicalon", "Hi-Nicalon" or "Hi-Nicalon Type S". The preform may be formed of alumina son supplied by 3M under the reference Nextel.
Les fils de carbone utilisables pour former cette préforme sont, par exemple, fournis sous la dénomination Torayca T300 3K par la sociétéThe carbon threads that can be used to form this preform are, for example, supplied under the name Torayca T300 3K by the company
Toray. Toray.
La préforme fibreuse est obtenue à partir d'au moins une opération textile. La préforme fibreuse est destinée à constituer le renfort fibreux de la pièce à obtenir. La préforme fibreuse peut, en particulier, être obtenue par tissage multicouches ou multidimensionnel, par exemple tridimensionnel, 3D orthogonal, 3D polaire ou 4D.  The fibrous preform is obtained from at least one textile operation. The fibrous preform is intended to constitute the fibrous reinforcement of the part to be obtained. The fibrous preform can, in particular, be obtained by multilayer or multidimensional weaving, for example three-dimensional, 3D orthogonal, 3D polar or 4D.
Par « tissage tridimensionnel » ou « tissage 3D », il faut comprendre un mode de tissage par lequel certains au moins des fils de chaîne lient des fils de trame sur plusieurs couches de trame. Une inversion des rôles entre chaîne et trame est possible dans le présent texte et doit être considérée comme couverte aussi par les revendications.  By "three-dimensional weaving" or "3D weaving", it is necessary to understand a weaving mode whereby at least some of the warp threads bind weft threads on several weft layers. A reversal of roles between warp and weft is possible in the present text and should be considered as also covered by the claims.
La préforme fibreuse peut, par exemple, présenter une armure multi-satin, c'est-à-dire être un tissu obtenu par tissage tridimensionnel avec plusieurs couches de fils de trame dont l'armure de base de chaque couche est équivalente à une armure de type satin classique mais avec certains points de l'armure qui lient les couches de fils de trame entre elles. En variante, la préforme fibreuse peut présenter une armure interlock. Par « armure ou tissu interlock », il faut comprendre une armure de tissage 3D dont chaque couche de fils de chaîne lie plusieurs couches de fils de trame avec tous les fils de la même colonne de chaîne ayant le même mouvement dans le plan de l'armure. Différents modes de tissage multicouches utilisables pour former la préforme fibreuse sont décrits dans le document WO 2006/136755. The fibrous preform may, for example, have a multi-satin weave, that is to say be a woven fabric obtained by three-dimensional weaving with several layers of weft threads whose basic weave of each layer is equivalent to an armor classic satin type but with some points of the armor that bind the layers of weft son together. Alternatively, the fibrous preform may have interlock weave. By "armor or interlock fabric" is meant armor 3D weaving weave which each layer of warp threads binds several layers of weft yarns with all the yarns of the same warp column having the same movement in the plane of the weave. Different multilayer weave modes that can be used to form the fiber preform are described in WO 2006/136755.
Il est aussi possible de former d'abord des textures fibreuses telles que des tissus bidimensionnels ou des nappes unidirectionnelles, et d'obtenir la préforme fibreuse par drapage de telles textures fibreuses sur une forme. Ces textures peuvent éventuellement être liées entre elles par exemple par couture ou implantation de fils pour former la préforme fibreuse.  It is also possible to first form fibrous textures such as two-dimensional fabrics or unidirectional webs, and to obtain the fibrous preform by draping such fibrous textures onto a shape. These textures may optionally be bonded together, for example by sewing or implantation of threads to form the fiber preform.
Les fils formant la préforme fibreuse peuvent ou non être revêtus avant formation de la matrice de pyrocarbone.  The fibers forming the fibrous preform may or may not be coated before formation of the pyrocarbon matrix.
En particulier, les fils peuvent être revêtus par une interphase monocouche ou multicouches. Cette interphase peut comporter au moins une couche de carbone pyrolytique (PyC), de nitrure de bore (BN), de nitrure de bore dopé au silicium (BNSi), avec du silicium en une proportion massique comprise entre 5% et 40%, le complément étant du nitrure de bore) ou de carbone dopé au bore (BC, avec 5%at. à 20%at. de B, le complément étant C).  In particular, the son can be coated with a monolayer or multilayer interphase. This interphase may comprise at least one layer of pyrolytic carbon (PyC), boron nitride (BN), silicon doped boron nitride (BNSi), with silicon in a mass proportion of between 5% and 40%, the complement being boron nitride) or boron-doped carbon (BC, with 5% at 20% at B, the balance being C).
L'interphase a ici une fonction de défragilisation du matériau composite qui favorise la déviation de fissures éventuelles parvenant à l'interphase après s'être propagées dans la matrice, empêchant ou retardant la rupture des fils par de telles fissures.  The interphase here has a function of defragilating the composite material which favors the deflection of possible cracks reaching the interphase after having propagated in the matrix, preventing or delaying the breaking of the wires by such cracks.
L'épaisseur de l'interphase peut être comprise entre 10 nm et The thickness of the interphase can be between 10 nm and
1000 nm, et par exemple entre 10 nm et 100 nm. L'interphase peut être formée, de manière connue en soi, par infiltration chimique en phase vapeur sur les fils de la préforme déjà constituée. On pourrait, en variante, former l'interphase par dépôt chimique en phase vapeur sur les fils avant formation de la préforme, puis former cette préforme à partir des fils ainsi revêtus. 1000 nm, and for example between 10 nm and 100 nm. The interphase can be formed, in known manner, by chemical vapor infiltration on the son of the already formed preform. Alternatively, the interphase could be formed by chemical vapor deposition on the wires prior to forming the preform and then forming the preform from the thus coated wires.
On notera que, selon un exemple, la préforme fibreuse peut être partiellement densifiée avant la formation de la matrice de pyrocarbone à partir du précurseur. Cette pré-densification peut être réalisée de manière connue en soi. La préforme fibreuse peut être pré- densifiée par une phase de pré-densification en carbone ou en matériau céramique. Dans ce cas, la porosité résiduelle de la préforme pré-densifiée est, en tout ou partie, comblée par la matrice de pyrocarbone formée à partir du précurseur. En variante, la matrice de la pièce en matériau composite obtenue est intégralement formée par la matrice de pyrocarbone obtenue à partir du précurseur alcool ou polyalcool. Dans ce dernier cas, la préforme fibreuse n'a pas été pré-densifiée. It should be noted that, in one example, the fiber preform can be partially densified prior to formation of the pyrocarbon matrix from the precursor. This pre-densification can be carried out in a manner known per se. The fibrous preform can be pre- densified by a pre-densification phase made of carbon or ceramic material. In this case, the residual porosity of the pre-densified preform is completely or partially filled by the pyrocarbon matrix formed from the precursor. As a variant, the matrix of the composite material part obtained is integrally formed by the pyrocarbon matrix obtained from the alcohol or polyalcohol precursor. In the latter case, the fiber preform has not been pre-densified.
La matrice formée par un procédé de caléfaction à partir du précurseur alcool ou polyalcool en C2 à C6 peut occuper au moins 50%, voire au moins 75%, de la porosité initiale de la préforme fibreuse. La porosité initiale de la préforme correspond à la porosité présentée par la préforme avant la réalisation d'une quelconque étape de densification.  The matrix formed by a process of calefaction from the alcohol precursor or C2-C6 polyalcohol can occupy at least 50%, or even at least 75%, of the initial porosity of the fibrous preform. The initial porosity of the preform corresponds to the porosity presented by the preform before carrying out any densification step.
On ne sort pas du cadre de l'invention lorsqu'un revêtement de pyrocarbone est formé sur la surface externe du substrat. On obtient alors une pièce revêtue, comprenant le substrat et le revêtement de pyrocarbone formé sur ce substrat à partir du précurseur alcool ou polyalcool. It is not beyond the scope of the invention when a pyrolytic coating is formed on the outer surface of the substrate. A coated part is thus obtained, comprising the substrate and the pyrocarbon coating formed on this substrate from the alcohol or polyalcohol precursor.
Le substrat revêtu peut être une pièce en matériau composite déjà densifiée, comme un matériau composite à matrice céramique ou un matériau composite à matrice carbone. En variante, le substrat revêtu est un bloc en matériau réfractaire monolithique, céramique ou en carbone.  The coated substrate may be an already densified composite material part, such as a ceramic matrix composite material or a carbon matrix composite material. Alternatively, the coated substrate is a block of monolithic refractory material, ceramic or carbon.
L'expression « compris(e) entre ... et ... » doit se comprendre comme incluant les bornes. The expression "understood between ... and ..." must be understood as including boundaries.

Claims

REVENDICATIONS
1. Procédé de fabrication de pyrocarbone, comprenant une étape de formation du pyrocarbone par un procédé de caléfaction à partir d'au moins un précurseur alcool ou polyalcool en C2 à Ce, le précurseur étant l'éthanol ou un alcool ou polyalcool en C3, et, lorsque l'éthanol est utilisé en tant que précurseur, du pyrocarbone laminaire rugueux étant obtenu en imposant une température comprise entre 1250°C et 1325°C durant la caléfaction. A method for producing pyrocarbon, comprising a step of forming the pyrocarbon by a process of calefaction from at least one precursor alcohol or polyalcohol C 2 to C 6, the precursor being ethanol or a C 3 alcohol or polyalcohol, and, when the ethanol is used as a precursor, rough laminar pyrocarbon being obtained by imposing a temperature of between 1250 ° C and 1325 ° C during the calefaction.
2. Procédé selon la revendication 1, dans lequel le précurseur est un alcool ou un polyalcool aliphatique. The process of claim 1, wherein the precursor is an aliphatic alcohol or polyhydric alcohol.
3. Procédé selon la revendication 1 ou 2, dans lequel le précurseur est le propanol. 3. The process according to claim 1 or 2, wherein the precursor is propanol.
4. Procédé selon la revendication 3, dans lequel du pyrocarbone laminaire rugueux est obtenu en imposant une température comprise entre 1220°C et 1250°C durant la caléfaction. 4. The method of claim 3, wherein rough laminar pyrocarbon is obtained by imposing a temperature of between 1220 ° C and 1250 ° C during the caesfaction.
5. Procédé selon la revendication 1 ou 2, dans lequel le précurseur est l'éthanol. The process of claim 1 or 2, wherein the precursor is ethanol.
6. Procédé de revêtement d'un substrat, comprenant au moins l'étape suivante : A method of coating a substrate, comprising at least the following step:
- formation d'un revêtement de pyrocarbone sur une surface d'un substrat par mise en œuvre d'un procédé selon l'une quelconque des revendications 1 à 5.  forming a pyrocarbon coating on a surface of a substrate by carrying out a method according to any one of claims 1 to 5.
7. Procédé de densification d'une préforme fibreuse, comprenant au moins l'étape suivante : A method of densifying a fibrous preform, comprising at least the following step:
- formation d'une matrice de pyrocarbone dans la porosité de la préforme fibreuse par mise en œuvre d'un procédé selon l'une quelconque des revendications 1 à 5.  - Formation of a pyrocarbon matrix in the porosity of the fiber preform by carrying out a method according to any one of claims 1 to 5.
EP18800703.3A 2017-10-19 2018-10-18 Method for producing a pyrolytic carbon with predetermined microstructure Active EP3697744B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21183043.5A EP3907207B1 (en) 2017-10-19 2018-10-18 Method for manufacturing pyrocarbon with a predetermined microstructure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1759870A FR3072606B1 (en) 2017-10-19 2017-10-19 PROCESS FOR MANUFACTURING PYROCARBON OF PREDETERMINED MICROSTRUCTURE
PCT/FR2018/052606 WO2019077284A1 (en) 2017-10-19 2018-10-18 Method for producing a pyrolytic carbon with predetermined microstructure

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP21183043.5A Division EP3907207B1 (en) 2017-10-19 2018-10-18 Method for manufacturing pyrocarbon with a predetermined microstructure
EP21183043.5A Division-Into EP3907207B1 (en) 2017-10-19 2018-10-18 Method for manufacturing pyrocarbon with a predetermined microstructure

Publications (2)

Publication Number Publication Date
EP3697744A1 true EP3697744A1 (en) 2020-08-26
EP3697744B1 EP3697744B1 (en) 2021-08-11

Family

ID=61223996

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18800703.3A Active EP3697744B1 (en) 2017-10-19 2018-10-18 Method for producing a pyrolytic carbon with predetermined microstructure
EP21183043.5A Active EP3907207B1 (en) 2017-10-19 2018-10-18 Method for manufacturing pyrocarbon with a predetermined microstructure

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21183043.5A Active EP3907207B1 (en) 2017-10-19 2018-10-18 Method for manufacturing pyrocarbon with a predetermined microstructure

Country Status (5)

Country Link
US (1) US11530166B2 (en)
EP (2) EP3697744B1 (en)
JP (1) JP7271530B2 (en)
CN (1) CN111212821A (en)
WO (1) WO2019077284A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2521127B1 (en) 1982-02-09 1986-04-04 Europ Propulsion PROCESS AND DEVICE FOR THE PRODUCTION OF ELASTICALLY DEFORMABLE CARBON FIBER WALLS
FR2784695B1 (en) 1998-10-20 2001-11-02 Snecma DENSIFICATION OF POROUS STRUCTURES BY CHEMICAL STEAM INFILTRATION
FR2887601B1 (en) 2005-06-24 2007-10-05 Snecma Moteurs Sa MECHANICAL PIECE AND METHOD FOR MANUFACTURING SUCH A PART
CN101439981B (en) 2008-12-22 2011-08-17 西北工业大学 Method of preparing carbon/carbon composite material
FR2953826B1 (en) * 2009-12-16 2019-10-11 Safran Landing Systems PROCESS FOR MANUFACTURING A FRICTION PIECE BASED ON COMPOSITE C / C MATERIAL
DE102012005088B4 (en) 2012-03-12 2013-12-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Refractory material for high temperature applications, process for its preparation and its use

Also Published As

Publication number Publication date
US11530166B2 (en) 2022-12-20
JP7271530B2 (en) 2023-05-11
WO2019077284A1 (en) 2019-04-25
EP3907207A1 (en) 2021-11-10
JP2021500295A (en) 2021-01-07
US20210188641A1 (en) 2021-06-24
EP3697744B1 (en) 2021-08-11
EP3907207B1 (en) 2024-05-22
CN111212821A (en) 2020-05-29

Similar Documents

Publication Publication Date Title
EP1851180B1 (en) Composite material body with ceramic matrix
JP6170160B2 (en) CMC parts manufacturing method
EP3313651B1 (en) Silicon carbide fiber treatment method
FR2852003A1 (en) Production of a multi-perforated component in a composite material with a ceramic base involves the insertion and elimination of pins in a consolidated fibrous preformer, notably for the combustion chamber of a jet engine
EP3478645A1 (en) Process for manufacturing a ceramic matrix composite part
EP3478870B1 (en) Method for chemical vapour deposition or infiltration
EP3697744B1 (en) Method for producing a pyrolytic carbon with predetermined microstructure
FR3051187A1 (en) PIECE OF COMPOSITE MATERIAL
FR3055624A1 (en) FIBROUS PREFORM FOR MANUFACTURING A COMPOSITE MATERIAL PART AND ASSOCIATED METHOD
FR3072606A1 (en) PROCESS FOR PRODUCING PREDETERMINED MICROSTRUCTURE PYROCARBON
EP3544939B1 (en) Composite member comprising an interlayer comprising aluminum doped boron nitride
FR3072670B1 (en) PROCESS FOR MANUFACTURING A WORKPIECE FROM A MODIFIED ALCOHOL OR POLYALCOOL PRECURSOR
EP3894611A1 (en) Chemical vapour infiltration or deposition process
EP3781537A1 (en) Method for manufacturing a part made of a composite material
FR3074169A1 (en) PROCESS FOR TREATING SILICON CARBIDE FIBERS
FR3081475A1 (en) PROCESS FOR TREATING SILICON CARBIDE FIBERS BY CHEMICAL VAPOR DEPOSITION
EP4161885A1 (en) Method for manufacturing a part made of composite material using an adhesion promoter comprising a lewis acid or a complex
FR3055625A1 (en) FIBROUS PREFORM FOR MANUFACTURING A COMPOSITE MATERIAL PART AND ASSOCIATED METHOD
FR3081157A1 (en) PROCESS FOR MANUFACTURING A CMC PIECE

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018021799

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1419238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210811

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1419238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018021799

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

26N No opposition filed

Effective date: 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211018

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811