EP3696837B1 - Device for protecting against electric shock or protecting against overcurrent - Google Patents

Device for protecting against electric shock or protecting against overcurrent Download PDF

Info

Publication number
EP3696837B1
EP3696837B1 EP20151158.1A EP20151158A EP3696837B1 EP 3696837 B1 EP3696837 B1 EP 3696837B1 EP 20151158 A EP20151158 A EP 20151158A EP 3696837 B1 EP3696837 B1 EP 3696837B1
Authority
EP
European Patent Office
Prior art keywords
current
monitored
series
inductive component
currents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20151158.1A
Other languages
German (de)
French (fr)
Other versions
EP3696837A1 (en
Inventor
Günter Grünebast
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doepke Schaltgerate GmbH
Original Assignee
Doepke Schaltgerate GmbH
Filing date
Publication date
Priority claimed from DE102019103621.6A external-priority patent/DE102019103621A1/en
Application filed by Doepke Schaltgerate GmbH filed Critical Doepke Schaltgerate GmbH
Publication of EP3696837A1 publication Critical patent/EP3696837A1/en
Application granted granted Critical
Publication of EP3696837B1 publication Critical patent/EP3696837B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

Die Erfindung betrifft eine Vorrichtung zum Schutz gegen elektrischen Schlag oder zum Schutz bei Überstrom für zumindest eine zu überwachende Stromleitung mit wenigstens einem elektrisch zur zu überwachenden Stromleitung in Reihe angeordneten induktiven Bauteil, das mittelbar oder unmittelbar auf ein Schaltschloss wirkt, welches mechanisch mit wenigstens einem elektrisch zur zu überwachenden Stromleitung in Reihe angeordneten Schaltkontakt verkoppelt ist, wobei bei einer Vorrichtung zum Schutz gegen elektrischen Schlag das induktive Bauteil eine Primärwicklung eines Summenstromwandlers ist und wobei bei einer Vorrichtung zum Schutz bei Überstrom das induktive Bauteil eine Luftspule eines Kurzschlussstromauslösers ist.The invention relates to a device for protection against electric shock or for protection against overcurrent for at least one power line to be monitored, with at least one inductive component arranged electrically in series with the power line to be monitored, which acts directly or indirectly on a switch lock which is mechanically coupled to at least one switching contact arranged electrically in series with the power line to be monitored, wherein in a device for protection against electric shock the inductive component is a primary winding of a summation current transformer and wherein in a device for protection against overcurrent the inductive component is an air coil of a short-circuit current release.

Aus dem Stand der Technik sind Vorrichtungen zum Schutz gegen elektrischen Schlag sowie zum Schutz bei Überstrom bekannt. Die Verwendung dieser Vorrichtungen wird durch einschlägige internationale und nationale Errichtungsbestimmungen gefordert. Diese Vorrichtungen können beispielsweise Fehlerstrom-Schutzeinrichtungen oder Überstrom-Schutzeinrichtungen sein.Devices for protection against electric shock and overcurrent are known from the state of the art. The use of these devices is required by relevant international and national installation regulations. These devices can be, for example, residual current devices or overcurrent devices.

In DE 10 2011 011 983 ist eine als Fehlerstromschutzschalter ausgeführte Fehlerstrom-Schutzeinrichtung offenbart. Fehlerstrom-Schutzeinrichtungen dienen vorzugsweise zum Schutz gegen elektrischen Schlag sowie zum Schutz gegen elektrisch gezündete Brände in elektrischen Anlagen. Sie weisen zur Erfassung von Fehlerströmen einen Summenstromwandler auf, durch den die zu überwachenden Stromleitungen geführt sind. Die vektorielle Summe der Ströme (Lastströme) in den zu überwachenden Stromleitungen wird vom Summenstromwandler erfasst und stellt ein Maß für den Fehlerstrom dar. Im fehlerfreien Zustand sind hin- und rückfließende Ströme (Lastströme) durch den Summenstromwandler gleich Null. Bei einem Isolationsfehler gegen Erde erfolgt der Rückfluss in Abhängigkeit vom Fehlerwiderstand jedoch nicht vollständig durch den Summenstromwandler. Ein Teil fließt als Fehlerstrom über den Fehlerwiderstand gegen Erde ab. In diesem Fall ist die sich im Summenstromwandler ergebende Stromsumme nicht Null. Der Fehlerstrom wird als Differenzstrom im Summenstromwandler erfasst. Dem Summenstromwandler ist elektrisch nachfolgend eine Auswerteschaltung mit zugeordnetem Auslöserelais angeordnet, welches bei Überschreiten eines zulässigen Fehlerstromgrenzwertes über eine Schaltmechanik ein Öffnen der in den zu überwachenden Stromleitungen angeordneten Schaltkontakte bewirkt, wodurch im Fehlerfall eine sichere Trennung einer nachfolgenden elektrischen Anlage vom versorgenden Stromnetz gewährleistet ist.In EN 10 2011 011 983 discloses a residual current device designed as a residual current circuit breaker. Residual current devices are primarily used to protect against electric shock and against electrically ignited fires in electrical systems. To detect residual currents, they have a summation current transformer through which the power lines to be monitored are routed. The vectorial sum of the currents (load currents) in the power lines to be monitored is recorded by the summation current transformer and represents a measure of the fault current. In a fault-free state, the currents flowing forward and backward (load currents) through the summation current transformer are zero. In the event of an insulation fault to earth, the return flow does not occur completely through the summation current transformer, depending on the fault resistance. Part of it flows away as a fault current via the fault resistance to earth. In this case, the current sum resulting in the summation current transformer is not zero. The fault current is recorded as a differential current in the summation current transformer. An evaluation circuit with an associated tripping relay is arranged electrically downstream of the summation current transformer, which, if a permissible fault current limit is exceeded, causes the switching contacts arranged in the power lines to be monitored to open via a switching mechanism, which ensures that a downstream electrical system is safely disconnected from the supplying power network in the event of a fault.

Der Summenstromwandler einer Fehlerstrom-Schutzeinrichtung besteht üblicherweise aus einem magnetischen Kern, der in der Regel als Toroid ausgeführt ist und welcher je nach Anzahl der zu überwachenden Stromleitungen eine gleiche Anzahl an Primärwicklungen aufweist. Jeweils eine Primärwicklung ist elektrisch in Reihe zu jeweils einer zu überwachenden Stromleitung angeordnet, durch die die Lastströme fließen. Zudem weist der Summenstromwandler zumindest eine Sekundärwicklung auf. Diese Sekundärwicklung ist mit der Auswerteschaltung elektrisch verbunden.The summation current transformer of a residual current device usually consists of a magnetic core, which is usually designed as a toroid and which has an equal number of primary windings depending on the number of power lines to be monitored. One primary winding is arranged electrically in series with each power line to be monitored, through which the load currents flow. The summation current transformer also has at least one secondary winding. This secondary winding is electrically connected to the evaluation circuit.

Die Primärwicklungen bilden zusammen mit dem magnetischen Kern eine Induktivität. Die Höhe der Induktivität wird bestimmt durch die Anzahl der Windungen jeder Primärwicklung und der magnetischen Permeabilität des magnetischen Kernmaterials. Wie bereits weiter oben erwähnt, ist die vom Summenstromwandler erfasste Stromsumme Null, wenn kein Isolationsfehler in einer elektrischen Anlage vorliegt und der hin- und rückfließende Strom (Laststrom) gleich sind. Aufgrund der entgegengesetzten Stromrichtung von hin- und rückfließendem Strom beträgt die Differenz der Phase 180 Grad und somit ist die Stromsumme im Summenstromwandler gleich Null. Die Induktivität des Summenstromwandlers ist in diesem Fall nicht wirksam und stellt für den Laststrom im Hin- und Rückleiter keine Bürde dar.The primary windings together with the magnetic core form an inductance. The level of inductance is determined by the number of turns of each primary winding and the magnetic permeability of the magnetic core material. As already mentioned above, the current sum recorded by the summation current transformer is zero if there is no insulation fault in an electrical system and the forward and return current (load current) are equal. Due to the opposite current direction of the forward and return current, the difference in phase is 180 degrees and thus the current sum in the summation current transformer is zero. The inductance of the summation current transformer is not effective in this case and does not represent a burden for the load current in the forward and return conductors.

Diese physikalische Gegebenheit gilt jedoch nur für Ströme mit Frequenzen bis zu einigen MHz. Bei Strömen höherer Frequenz (> 1 MHz) machen sich leitungsbedingte Laufzeitunterschiede bemerkbar, die für Ströme mit niedrigen Frequenzen kaum oder gar nicht relevant sind. Diese Laufzeitunterschiede sind physikalisch in bekannter Weise durch die Leitungsbeläge (Widerstandsbelag, Ableitungsbelag, Kapazitätsbelag, Induktivitätsbelag) einer elektrischen Leitung bedingt. Aufgrund dieser Laufzeitunterschiede ist es in Abhängigkeit von der Höhe der Frequenz des Stromes möglich, dass lokal im Summenstromwandler die Differenz der Phase des jeweiligen Stromes im Hin- und Rückleiter nicht 180 Grad ist. Obwohl kein Isolationsfehler vorliegt und somit kein Fehlerstrom fließt, wird vom Summenstromwandler aufgrund der sich nun nicht zu Null addierenden Ströme im Hin- und Rückleiter quasi ein Differenzstrom erfasst. In diesem Fall wird die Induktivität des Summenstromwandlers wirksam und stellt für die höherfrequenten Lastströme im Hin- und Rückleiter in negativer Weise eine Bürde dar. Eine Abschaltung einer Fehlerstrom-Schutzeinrichtung ist üblicherweise für Fehlerströme der Bemessungsfrequenz optimiert. Die Bemessungsfrequenz ist üblicherweise 50 Hz oder 60 Hz. Bei den oben genannten Strömen höherer Frequenz (> 1 MHz) erfolgt prinzipbedingt daher keine Abschaltung.However, this physical fact only applies to currents with frequencies up to a few MHz. For currents with higher frequencies (> 1 MHz), line-related runtime differences become noticeable, which are hardly or not at all relevant for currents with low frequencies. These runtime differences are caused in a known physical way by the line perimeters (resistance perimeter, discharge perimeter, capacitance perimeter, inductance perimeter) of an electrical line. Due to these runtime differences, depending on the frequency of the current, it is possible that locally in the summation current transformer the difference in the phase of the respective current in the forward and return conductors is not 180 degrees. Although there is no insulation fault and therefore no fault current is flowing, the summation current transformer essentially records a differential current due to the currents in the forward and return conductors not adding up to zero. In this case, the inductance of the summation current transformer becomes effective and represents a negative burden for the higher frequency load currents in the forward and return conductors. A residual current device is usually optimised for residual currents of the rated frequency. The rated frequency is usually 50 Hz or 60 Hz. For the currents of higher frequencies mentioned above (> 1 MHz), there is therefore no shutdown in principle.

In DE 199 51 249 ist eine als Leitungsschutzschalter ausgeführte Überstrom-Schutzeinrichtung offenbart. Überstrom-Schutzeinrichtungen bieten Schutz bei Überströmen, Kurzschlüssen sowie auch Schutz gegen elektrischen Schlag. Dadurch werden elektrische Stromkreise und angeschlossene Betriebsmittel sowie Personen geschützt.In EN 199 51 249 An overcurrent protection device designed as a circuit breaker is disclosed. Overcurrent protection devices offer protection against overcurrents, short circuits and also protection against electric shock. This protects electrical circuits and connected equipment as well as people.

Leitungsschutzschalter weisen üblicherweise zwei Auslösefunktionen auf.Circuit breakers typically have two tripping functions.

Durch einen in der Regel als Magnetauslöser ausgeführten Kurzschlussstromauslöser erfolgt nach dem Überschreiten einer definierten Stromgrenze eine sofortige Abschaltung des Leitungsschutzschalters. Ein Überlastauslöser hingegen bewirkt bei Strömen im Überlastbereich oberhalb eines festgelegten Auslösestromes vom 1,45-fachen des Bemessungsstromes eine verzögerte Abschaltung. Die Zeit bis zur Abschaltung richtet sich nach der Höhe des Überlaststroms. Die Abschaltung erfolgt durch eine mechanische Entklinkung eines Schaltschlosses. Die Entklinkung des Schaltschlosses führt zum Öffnen der Schaltkontakte und damit zur Unterbrechung des Stromflusses in den zu überwachenden Stromleitungen. Dadurch wird im Kurzschlussbeziehungsweise Überlastfall eine sichere Trennung einer nachfolgenden elektrischen Anlage vom versorgenden Stromnetz gewährleistet.A short-circuit current release, usually designed as a magnetic release, switches off the circuit breaker immediately when a defined current limit is exceeded. An overload release, on the other hand, causes a delayed switch-off for currents in the overload range above a specified tripping current of 1.45 times the rated current. The time until switch-off depends on the level of the overload current. Switch-off is carried out by mechanically unlatching a switch lock. Unlatching the switch lock opens the switch contacts and thus interrupts the flow of current in the power lines to be monitored. This ensures that a downstream electrical system is safely disconnected from the supplying power network in the event of a short circuit or overload.

Der Kurzschlussstromauslöser wird üblicherweise durch eine fest angeordnete als Luftspule mit mehreren Windungen ausgebildete Induktivität und einem beweglichen ferromagnetischem Bauteil (Anker) ausgeführt. Die Luftspule ist dabei in Reihe zu der zu überwachenden Stromleitung angeordnet. Bei einem Kurzschlussstrom in der zu überwachenden Stromleitung wird in der Luftspule ein großes Magnetfeld erzeugt. Dieses Magnetfeld bewirkt eine Bewegung des beweglich angeordneten ferromagnetischen Bauteils. Diese Bewegung bewirkt die sofortige Entklinkung des Schaltschlosses, um den Kurzschlussstrom schnell abzuschalten.The short-circuit current release is usually implemented by a fixed inductance designed as an air coil with several turns and a movable ferromagnetic component (armature). The air coil is arranged in series with the power line to be monitored. If there is a short-circuit current in the power line to be monitored, a large magnetic field is generated in the air coil. This magnetic field causes the movable ferromagnetic component to move. This movement causes the switch lock to be unlatched immediately in order to quickly switch off the short-circuit current.

Die als Luftspule mit mehreren Windungen ausgebildete Induktivität stellt dauerhaft mit ihrem Blindwiderstand eine Bürde für den sie durchfließenden elektrischen Strom dar. Mit zunehmender Frequenz f nimmt der Blindwiderstand XL der Induktivität L gemäß der bekannten Gleichung XL = 2 x Π x f x L zu. Damit stellt diese Luftspule in negativer Weise insbesondere für höherfrequente Ströme eine unerwünscht hohe elektrische Bürde dar.The inductance, which is designed as an air coil with several turns, permanently represents a burden for the electrical current flowing through it with its reactance. With increasing frequency f, the reactance X L of the inductance L increases according to the well-known equation X L = 2 x Π xfx L. This air coil therefore represents an undesirably high electrical burden in a negative way, particularly for higher frequency currents.

Die oben beschriebenen induktiven Komponenten von Fehlerstrom-Schutzeinrichtungen und Überstrom-Schutzeinrichtungen stellen somit insbesondere für höherfrequente Ströme in den zu überwachenden Stromleitungen in negativer Weise eine elektrische Bürde dar.The inductive components of residual current devices and overcurrent protection devices described above therefore represent represents a negative electrical burden, particularly for higher frequency currents in the power lines to be monitored.

Im Stand der Technik bekannt und weit verbreitetet ist eine als PowerLan bezeichneten Technik, die vorhandene elektrische Stromleitungen im Niederspannungsnetz zum Aufbau eines lokalen Netzwerkes zur Datenübertragung verwendet. Dabei wird durch spezielle PowerLan-Adatper das Datensignal im Hochfrequenzbereich, üblicherweise zwischen 2 und 68 MHz auf die elektrischen Stromleitungen aufmoduliert. Sind nun die oben genannten Fehlerstrom-Schutzeinrichtungen oder Überstrom-Schutzeinrichtungen zum Schutz in den elektrischen Stromleitungen angeordnet, so ist dieses nachteilig, weil die induktiven Bauteile von Fehlerstrom-Schutzeinrichtungen oder Überstrom-Schutzeinrichtungen eine erhebliche elektrische Bürde für die hochfrequenten Datensignale in negativer Weise darstellen. Aufgrund dieser Bürde ist eine Datenübertragung zum Beispiel zwischen mehreren Niederspannungsverteilungen, welche Fehlerstrom-Schutzeinrichtungen oder Überstrom-Schutzeinrichtungen zu Schutzzwecken enthalten, nicht oder nur stark eingeschränkt möglich.A technology known in the state of the art and widely used is known as PowerLan, which uses existing electrical power lines in the low-voltage network to set up a local network for data transmission. The data signal is modulated onto the electrical power lines in the high frequency range, usually between 2 and 68 MHz, using special PowerLan adapters. If the above-mentioned residual current devices or overcurrent protection devices are arranged in the electrical power lines for protection, this is disadvantageous because the inductive components of residual current devices or overcurrent protection devices represent a significant electrical burden for the high frequency data signals in a negative way. Due to this burden, data transmission, for example between several low-voltage distributions that contain residual current devices or overcurrent protection devices for protection purposes, is not possible or only possible to a very limited extent.

Für eine unbeeinflusste Wiedergabe und Aufnahme von Musik ist es erforderlich, dass elektrische Anlagen mit Stromkreisen zur Stromversorgung von Betriebsmitteln zur Wiedergabe und Aufnahme von Musik möglichst niederimpedant ausgeführt sind. Die weiter oben genannten induktiven Bauteile von Vorrichtungen zum Schutz gegen elektrischen Schlag und zum Schutz bei Überstrom stellen jedoch für Lastströme mit Anteilen höherer Frequenz von Betriebsmitteln zur Wiedergabe und Aufnahme von Musik in klanglich negativer Weise eine elektrische Bürde dar.To ensure unaffected playback and recording of music, electrical systems with circuits for supplying power to equipment for playing and recording music must be designed with as low an impedance as possible. However, the inductive components of devices for protection against electric shock and overcurrent mentioned above represent an electrical burden for load currents with higher frequency components of equipment for playing and recording music, which has a negative effect on sound.

Weitere Vorrichtungen der eingangs genannten Gattung sind noch aus der DE 569291 A sowie aus der EP 0570603 A1 und der BE 569 291 A bekannt.Other devices of the type mentioned above are still known from the DE 569291 A as well as from the EP0570603A1 and the BE 569 291 A known.

Der Erfindung liegt daher die Aufgabe zugrunde, Vorrichtungen zum Schutz gegen elektrischen Schlag und zum Schutz bei Überstrom aufzuzeigen, welche insbesondere für in zu überwachenden Stromleitungen fließende Ströme mit hochfrequenten Anteilen eine geringe elektrische Bürde aufweisen.The invention is therefore based on the object of demonstrating devices for protection against electric shock and for protection against overcurrent, which have a low electrical burden, in particular for currents with high-frequency components flowing in power lines to be monitored.

Diese Aufgabe ist bei der Vorrichtung zum Schutzen gegen elektrischen Schlag erfindungsgemäß dadurch gelöst, dass zu dem induktiven Bauteil wenigstens eine Kapazität elektrisch parallel verschaltet ist.This object is achieved according to the invention in the device for protection against electric shock in that at least one capacitor is electrically connected in parallel to the inductive component.

Somit ist vorgesehen, dass dem induktiven Bauteil einer Vorrichtung zum Schutz gegen elektrischen Schlag oder zum Schutz bei Überstrom zumindest eine als Kondensator ausgeführte Kapazität elektrisch parallel verschaltet ist. Insbesondere weist eine Kapazität C für Ströme mit hoher Frequenz f einen geringen Blindwiderstand XC gemäß der bekannten Gleichung XC = 1 / (2 × Π × f × C) auf. Je höher die Frequenz f ist, desto niedriger wird der Blindwiderstand XC und damit die Bürde. Die zur Induktivität elektrisch verschaltete Kapazität stellt für Ströme mit hoher Frequenz somit einen Bypass dar. Dadurch wird ermöglicht, dass Ströme mit hoher Frequenz verlustfrei und ungehindert fließen können.It is therefore provided that at least one capacitance designed as a capacitor is electrically connected in parallel to the inductive component of a device for protection against electric shock or for protection against overcurrent. In particular, a capacitance C has a low reactance X C for currents with a high frequency f according to the known equation X C = 1 / (2 × Π × f × C). The higher the frequency f, the lower the reactance X C and thus the burden. The capacitance electrically connected to the inductance thus represents a bypass for currents with a high frequency. This enables currents with a high frequency to flow without loss and without hindrance.

Dieses ist insbesondere vorteilhaft bei Verwendung einer als PowerLan bezeichneten Technik, weil aufgrund der zur Induktivität elektrisch verschalteten Kapazität ein Bypass zur Induktivität für Ströme mit höherfrequenten Anteilen hergestellt wird. Dadurch können die hochfrequenten auf die elektrischen Stromleitungen aufmodulierten Datensignale auch über die Grenzen von mehreren Niederspannungsverteilungen hinaus übertragen werden.This is particularly advantageous when using a technology known as PowerLan, because the capacitance electrically connected to the inductance creates a bypass to the inductance for currents with higher frequency components. This means that the high frequency data signals modulated onto the electrical power lines can also be transmitted beyond the boundaries of several low voltage distributions.

Dieses ist zudem für eine unbeeinflusste Wiedergabe und Aufnahme von Musik vorteilhaft. Aufgrund der zur Induktivität elektrisch verschalteten Kapazität wird ein Bypass für Lastströme mit höherfrequenten Anteilen hergestellt. Dadurch können auch unter Berücksichtigung des Aspekts der elektromagnetischen Verträglichkeit die hochfrequenten Anteile im Laststrom ungehindert fließen und abgeleitet werden.This is also advantageous for unaffected playback and recording of music. Due to the capacitance electrically connected to the inductance, a bypass is created for load currents with higher frequency components. This also allows for the aspect of electromagnetic compatibility, the high-frequency components in the load current flow unhindered and are discharged.

In einer ersten Ausgestaltung der Erfindung ist vorgesehen, dass die erfindungsgemäße Vorrichtung eine Fehlerstrom-Schutzeinrichtung ist. Dabei ist zumindest zu einer Primärwicklung des Summenstromwandlers zumindest eine Kapazität elektrisch parallel verschaltet.In a first embodiment of the invention, it is provided that the device according to the invention is a residual current device. In this case, at least one capacitor is electrically connected in parallel to at least one primary winding of the summation current transformer.

In einer Weiterbildung der Erfindung ist vorgesehen, dass zur Sekundärwicklung des Summenstromwandlers zusätzlich eine Induktivität elektrisch in Reihe verschaltet ist. Diese Induktivität bewirkt, dass von den Primärwicklungen auf die Sekundärwicklung des Summenstromwandlers eingekoppelte hochfrequente Anteile im Strom nicht von der Auswerteschaltung negativ beeinflusst werden.In a further development of the invention, an inductance is additionally electrically connected in series with the secondary winding of the summation current transformer. This inductance ensures that high-frequency components in the current coupled from the primary windings to the secondary winding of the summation current transformer are not negatively influenced by the evaluation circuit.

Die vorgenannte Aufgabe ist für die Vorrichtung zum Schutz bei Überstrom dadurch erfindungsgemäß gelöst, dass wenigstens eine Kapazität elektrisch parallel zu dem induktiven Bauteil und in Reihe zur zu überwachenden Stromleitung verschaltet ist.The above-mentioned object is achieved according to the invention for the device for protection against overcurrent in that at least one capacitor is electrically connected in parallel to the inductive component and in series with the power line to be monitored.

Nach dieser weiteren Ausgestaltung ist vorgesehen, dass die erfindungsgemäße Vorrichtung eine Überstrom-Schutzeinrichtung ist. Dabei ist der als Bestandteil des Kurzschlussstromauslösers und als Luftspule mit mehreren Windungen ausgebildeten Induktivität eine Kapazität elektrisch parallel verschaltet. Der Kurzschlussstromauslöser ist somit ein induktives Bauteil. Die zur Induktivität elektrisch verschaltete Kapazität stellt für Ströme mit hoher Frequenz somit einen Bypass dar. Dadurch wird erreicht, dass Anteile im Strom mit hoher Frequenz verlustfrei und ungehindert fließen können.According to this further embodiment, the device according to the invention is an overcurrent protection device. A capacitor is electrically connected in parallel to the inductance, which is designed as a component of the short-circuit current release and as an air coil with several turns. The short-circuit current release is therefore an inductive component. The capacitor electrically connected to the inductance thus represents a bypass for currents with a high frequency. This ensures that components of the current with a high frequency can flow without loss and without hindrance.

Die Überstrom-Schutzeinrichtung kann ein Leistungsschutzschalter sein, der vorzugsweise zumindest einen mit einer Induktivität ausgebildeten Kurzschlussstromauslöser hat, wobei elektrisch parallel zum Kurzschlussstromauslöser eine Kapazität verschaltet ist.The overcurrent protection device can be a circuit breaker, which preferably has at least one inductor Short-circuit current release, whereby a capacitance is electrically connected in parallel to the short-circuit current release.

Eine erfindungsgemäße Vorrichtung ist in den Zeichnungen dargestellt. Es zeigen:

Figur 1:
ein Blockschaltbild einer Fehlerstrom-Schutzeinrichtung aus dem Stand der Technik;
Figur 2:
ein Blockschaltbild einer erfindungsgemäßen Fehlerstrom-Schutzeinrichtung;
Figur 3:
ein Blockschaltbild einer Weiterbildung der erfindungsgemäßen Fehlerstrom-Schutzeinrichtung,
Figur 4:
ein Blockschaltbild einer Überstrom-Schutzeinrichtung aus dem Stand der Technik; und
Figur 5:
ein Blockschaltbild einer erfindungsgemäßen Überstrom-Schutzeinrichtung.
A device according to the invention is shown in the drawings.
Figure 1:
a block diagram of a state-of-the-art residual current device;
Figure 2:
a block diagram of a residual current device according to the invention;
Figure 3:
a block diagram of a further development of the residual current device according to the invention,
Figure 4:
a block diagram of a state-of-the-art overcurrent protection device; and
Figure 5:
a block diagram of an overcurrent protection device according to the invention.

Eine aus dem Stand der Technik als Fehlerstrom-Schutzeinrichtung ausgeführte bekannte Vorrichtung 1 zum Schutz gegen elektrischen Schlag weist einen Summenstromwandler 2 auf, welcher aus mindestens zwei Primärwicklungen 3 und mindestens einer Sekundärwicklung 4 besteht.A known device 1 for protection against electric shock, designed as a residual current device, has a summation current transformer 2 which consists of at least two primary windings 3 and at least one secondary winding 4.

Die Primärwicklungen 3 sind elektrisch in Reihe zu den zu überwachenden Stromleitungen 13 verschaltet. Die Sekundärwicklung 4 ist mit einer Auswerteschaltung 6 verbunden. Wird ein bestimmter Fehlerstromgrenzwert überschritten, wird am Ausgang der Auswerteschaltung 6 ein Spannungssignal generiert und bewirkt, dass das elektrisch am Ausgang der Auswerteschaltung 6 angeschlossene Auslöserelais 7 eine Entklinkung des mit dem Auslöserelais 7 mechanisch gekoppelten Schaltschlosses 8 bewirkt. Die Entklinkung des Schaltschlosses 8 bewirkt, dass die elektrisch in Reihe zu den zu überwachenden Stromleitungen 13 angeordneten Schaltkontakte 9 geöffnet werden, so dass im Fehlerfall der Stromfluss in den zu überwachenden Stromleitungen 13 unterbrochen wird. Zur Funktionsprüfung weist die Vorrichtung 1 einen Prüfstromkreis 10 auf, welcher aus einer Reihenschaltung eines Prüfwiderstandes 11 und einer Prüftaste 12 besteht.The primary windings 3 are electrically connected in series with the power lines 13 to be monitored. The secondary winding 4 is connected to an evaluation circuit 6. If a certain residual current limit is exceeded, a voltage signal is generated at the output of the evaluation circuit 6 and causes the tripping relay 7, which is electrically connected to the output of the evaluation circuit 6, to unlatch the 7 mechanically coupled switch lock 8. The release of the switch lock 8 causes the switching contacts 9 arranged electrically in series with the power lines 13 to be monitored to be opened, so that in the event of a fault the current flow in the power lines 13 to be monitored is interrupted. For functional testing, the device 1 has a test circuit 10 which consists of a series connection of a test resistor 11 and a test button 12.

Das detaillierte Funktionsprinzip einer Fehlerstrom-Schutzeinrichtung ist im Stand der Technik bekannt und wird daher nicht weiter erläutert.The detailed operating principle of a residual current device is known in the state of the art and is therefore not explained further.

Figur 2 zeigt eine erste als Fehlerstrom-Schutzeinrichtung ausgeführte Ausgestaltung der erfinderischen Vorrichtung 1 zum Schutz gegen elektrischen Schlag. Jede Primärwicklung 3 besteht aus mindestens einer Windung, wobei alle Primärwicklungen die gleiche Anzahl an Windungen aufweisen. Mit der magnetischen Permeabilität des magnetischen Kerns 5 des Summenstromwandlers 2 ergibt sich für jede Primärwicklung eine Induktivität. Erfinderisch ist jeder aus zumindest einer Primärwicklung 3 des Summenstromwandlers 2 bestehenden Induktivität jeweils eine Kapazität 14 elektrisch parallel geschaltet. Dieses ist vorteilhaft, weil jede zu einer Primärwicklung 3 elektrisch verschaltete Kapazität 14 für Ströme mit hoher Frequenz einen Bypass darstellt. Dadurch wird ermöglicht, dass Ströme mit hoher Frequenz verlustfrei und ungehindert durch die zu überwachenden Stromleitungen 13 fließen können. Figure 2 shows a first embodiment of the inventive device 1 for protection against electric shock, designed as a residual current device. Each primary winding 3 consists of at least one turn, with all primary windings having the same number of turns. With the magnetic permeability of the magnetic core 5 of the summation current transformer 2, an inductance results for each primary winding. According to the invention, a capacitor 14 is electrically connected in parallel to each inductance consisting of at least one primary winding 3 of the summation current transformer 2. This is advantageous because each capacitor 14 electrically connected to a primary winding 3 represents a bypass for high-frequency currents. This enables high-frequency currents to flow loss-free and unhindered through the power lines 13 to be monitored.

Figur 3 zeigt eine Weiterbildung der erfinderischen Vorrichtung. Dabei ist zur Sekundärwicklung 4 des Summenstromwandlers 2 und der Auswerteschaltung 6 eine Induktivität 15 elektrisch in Reihe verschaltet. In vorteilhafter Weise bewirkt die Induktivität 15, dass von den Primärwicklungen 3 auf die Sekundärwicklung 4 des Summenstromwandlers eingekoppelte hochfrequente Anteile (> 1 MHz) im Strom nicht von der Auswerteschaltung 6 negativ beeinflusst werden. Die Auswerteschaltung 6 weist üblicherweise eingangsseitig Bauteile zur Spannungsbegrenzung auf. Diese Bauteile weisen in negativer Weise parasitäre Kapazitäten auf, die für Ströme mit hoher Frequenz (> 1 MHz) eine niederimpedante Bürde aufweisen. Die erfinderische elektrisch in Reihe angeordnete Induktivität 15 stellt für Ströme mit hoher Frequenz (> 1 MHz) wiederum in vorteilhafter Weise eine hochohmige Impedanz dar. Von den Primärwicklungen 3 auf die Sekundärwicklung 4 des Summenstromwandlers eingekoppelte hochfrequente Anteile (> 1 MHz) im Strom werden nun in vorteilhafter Weise nicht von der Auswerteschaltung 6 negativ beeinflusst werden. Figure 3 shows a further development of the inventive device. An inductance 15 is electrically connected in series with the secondary winding 4 of the summation current transformer 2 and the evaluation circuit 6. The inductance 15 advantageously ensures that high-frequency components (> 1 MHz) in the current coupled from the primary windings 3 to the secondary winding 4 of the summation current transformer are not negatively influenced by the evaluation circuit 6. The evaluation circuit 6 usually has on the input side, there are components for limiting the voltage. These components have negative parasitic capacitances which have a low-impedance burden for currents with a high frequency (> 1 MHz). The inventive inductance 15 arranged electrically in series advantageously represents a high-resistance impedance for currents with a high frequency (> 1 MHz). High-frequency components (> 1 MHz) in the current coupled from the primary windings 3 to the secondary winding 4 of the summation current transformer are now advantageously not negatively influenced by the evaluation circuit 6.

Durch die erfinderische Ausgestaltung einer Fehlerstrom-Schutzeinrichtung ist es nun beispielsweise in vorteilhafter Weise möglich, dass die weiter oben genannten PowerLan-Adapter zwischen mehreren Niederspannungsverteilungen kommunizieren können.Due to the inventive design of a residual current device, it is now advantageously possible, for example, for the PowerLan adapters mentioned above to communicate between several low-voltage distribution systems.

Figur 4 zeigt eine aus dem Stand der Technik bekannte als Leitungsschutzschalter ausgeführte Vorrichtung 1 zum Schutz bei Überstrom. Die Vorrichtung 1 weist einen Kurzschlussstromauslöser 3 und einen auch als Überlastauslöser bezeichneten thermischen Auslöser 16 auf, die mechanisch mit einem Schaltschloss 8 gekoppelt sind. Der Kurzschlussstromauslöser 3 und der thermische Auslöser 16 sind in Reihe zu der zu überwachenden Stromleitung 13 und dem Schaltkontakt 9, welcher mechanisch mit dem Schaltschloss 8 gekoppelt ist, angeordnet. Der Kurzschlussstromauslöser 3 wird üblicherweise durch eine fest angeordnete als Luftspule mit mehreren Windungen ausgebildete Induktivität und einem beweglichen ferromagnetischem Bauteil (Anker) ausgeführt. Der Kurzschlussstromauslöser 3 ist somit ein induktives Bauteil. Bei einem sehr hohen Strom, der wesentlich größer als der Bemessungsstrom des Leitungsschutzschalters ist, bewirkt der Kurzschlussstromauslöser 3 aufgrund seines magnetischen Prinzips und seiner mechanischen Verkopplung zum Schaltschloss 8 ein sofortiges Öffnen des Schaltkontaktes 9. Fließt in der zu überwachenden Stromleitung 13 ein Strom, der etwas größer ist, als der Bemessungsstrom des Leitungsschutzschalters, bewirkt der thermische Auslöser 16, dass eine Öffnung des Schaltkontaktes 9 innerhalb einer bestimmten Zeit erfolgt. In Abhängigkeit dieses Überstromes kann eine Öffnung des Schaltkontaktes 9 innerhalb weniger Sekunden oder auch erst nach mehreren Minuten erfolgen. Figure 4 shows a device 1 known from the prior art designed as a circuit breaker for protection against overcurrent. The device 1 has a short-circuit current release 3 and a thermal release 16, also referred to as an overload release, which are mechanically coupled to a switch lock 8. The short-circuit current release 3 and the thermal release 16 are arranged in series with the power line 13 to be monitored and the switching contact 9, which is mechanically coupled to the switch lock 8. The short-circuit current release 3 is usually designed by a fixed inductance designed as an air coil with several turns and a movable ferromagnetic component (armature). The short-circuit current release 3 is thus an inductive component. In the case of a very high current, which is significantly greater than the rated current of the circuit breaker, the short-circuit current release 3 causes the switching contact 9 to open immediately due to its magnetic principle and its mechanical coupling to the switch lock 8. If a current flows in the power line 13 to be monitored that is slightly greater than the rated current of the circuit breaker, the thermal release 16 causes the switching contact 9 to open within a certain time. Depending on this overcurrent, the switching contact 9 can open within a few seconds or only after several minutes.

Das detaillierte Funktionsprinzip eines Leitungsschutzschalters ist im Stand der Technik bekannt und wird daher nicht weiter erläutert.The detailed operating principle of a circuit breaker is known in the state of the art and is therefore not explained further.

Figur 5 zeigt eine erste als Überstrom-Schutzeinrichtung ausgeführte Ausgestaltung der erfinderischen Vorrichtung 1 zum Schutz bei Überstrom. Erfinderisch ist dem Kurzschlussstromauslöser 3, welcher aufgrund seiner Luftspule eine Induktivität aufweist, eine Kapazität 14 elektrisch parallel geschaltet. Dieses ist vorteilhaft, weil die zum Kurzschlussstromauslöser 3 elektrisch parallel verschaltete Kapazität 14 für Ströme mit hoher Frequenz einen Bypass darstellt. Dadurch wird ermöglicht, dass Ströme mit hoher Frequenz verlustfrei und ungehindert durch die zu überwachende Stromleitung 13 fließen können. Figure 5 shows a first embodiment of the inventive device 1 for protection against overcurrent, designed as an overcurrent protection device. Inventively, a capacitor 14 is electrically connected in parallel to the short-circuit current release 3, which has an inductance due to its air coil. This is advantageous because the capacitor 14 electrically connected in parallel to the short-circuit current release 3 represents a bypass for currents with a high frequency. This enables currents with a high frequency to flow through the power line 13 to be monitored without loss and unhindered.

Claims (6)

  1. Device (1) for protection against electric shock for at least one electric line (13) to be monitored, comprising at least one inductive component (3) which is arranged electrically in series with the electric line to be monitored and acts indirectly or directly on a switching lock (8) which is mechanically coupled to at least one switching contact (9) arranged electrically in series with the electric line (13) to be monitored, the inductive component being a primary winding (3) of a summation current transformer (2) characterised in that at least one capacitance (14) is electrically connected in parallel with the inductive component (3).
  2. Device according to claim 1, characterised in that the device (1) is a residual current protective device.
  3. Device according to claim 2, characterised in that the summation current transformer (2) additionally has at least one secondary winding (4) and an inductance (15) is electrically connected in series with the secondary winding (4) of the summation current transformer (2).
  4. Device (1) for overcurrent protection for at least one current line (13) to be monitored, having at least one inductive component (3) which is arranged electrically in series with the current line (13) to be monitored and acts indirectly or directly on a switching lock (8) which is mechanically coupled to at least one switching contact (9) arranged electrically in series with the current line (13) to be monitored, characterised in that the inductive component is an air coil (3) of a short-circuit current release (2) and in that at least one capacitor (14) is electrically connected in parallel with the inductive component (3) and in series with the current line (13) to be monitored.
  5. Device according to claim 4, characterised in that the device is a miniature circuit breaker.
  6. Device according to claim 5, characterised in that the miniature circuit breaker additionally comprises a thermal release (16) connected in series with the short-circuit current release.
EP20151158.1A 2020-01-10 Device for protecting against electric shock or protecting against overcurrent Active EP3696837B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019103621.6A DE102019103621A1 (en) 2019-02-14 2019-02-14 Device for protection against electric shock or for protection against overcurrent

Publications (2)

Publication Number Publication Date
EP3696837A1 EP3696837A1 (en) 2020-08-19
EP3696837B1 true EP3696837B1 (en) 2024-06-12

Family

ID=

Similar Documents

Publication Publication Date Title
DE60027354T2 (en) Active shutdown in case of ground fault
AT503541A1 (en) SWITCHING DEVICE
DE2546627A1 (en) OVERCURRENT LIMITING DEVICE FOR ELECTRIC HIGH-PERFORMANCE TRANSMISSION LINES
EP3639353B1 (en) Impedance for ac fault current handling for hvdc converter
EP2291893B1 (en) Fault current circuit breaker
AT405114B (en) ARROW DISCONNECTOR
DE102008004869A1 (en) Arc Protection Module
EP3226013B1 (en) Differential current sensor
EP3696837B1 (en) Device for protecting against electric shock or protecting against overcurrent
EP2548214B1 (en) Residual-current circuit breaker
DE2653453A1 (en) Faulty current circuit for protective circuit breaker - has rectifier bridge producing fault-indicating signal to release auxiliary voltage via rectifier
EP2232661B1 (en) Module mechanically linkable to a circuit breaker
DE4040359C2 (en) Short-circuit protection device
EP3696837A1 (en) Device for protecting against electric impact or protecting against overcurrent
EP0561149B1 (en) Arrangement for current supply of an electronic unit from a three phase network
EP1011183B1 (en) Earth leakage protective circuit arrangement
DE102016223022A1 (en) Inductive current limiter for DC applications
EP3347959A1 (en) Arrangement for safely removing overvoltage protection devices from the mains, independently of switchgear or backup fuses, in the event of critical operating states
DE19944409A1 (en) Method and device for error-type-dependent sensitive triggering of residual current protection installs this device with a triggering differential current between a mains power supply and a consumer installation.
EP0590435B1 (en) Fault current acquiring device, responding to any current, with alternating or pulsating fault current acquiring device, unaffected by DC fault currents
EP3739708B1 (en) Short-circuit current limiter
DE19842059A1 (en) Fault current protection switch has fault current present signal derived from redundant and/or diversity unit that does not load transducer or that only loads it slightly
EP1060553B1 (en) Current-limiting arrangement with a superconductive transformer arrangement in an electric circuit
DE60007557T2 (en) FAULT CIRCUIT BREAKER
DE2231432C2 (en) Ground fault interrupter apparatus - with means for detecting a grounded neutral condition