EP3696837A1 - Device for protecting against electric impact or protecting against overcurrent - Google Patents

Device for protecting against electric impact or protecting against overcurrent Download PDF

Info

Publication number
EP3696837A1
EP3696837A1 EP20151158.1A EP20151158A EP3696837A1 EP 3696837 A1 EP3696837 A1 EP 3696837A1 EP 20151158 A EP20151158 A EP 20151158A EP 3696837 A1 EP3696837 A1 EP 3696837A1
Authority
EP
European Patent Office
Prior art keywords
current
monitored
overcurrent
capacitance
power line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20151158.1A
Other languages
German (de)
French (fr)
Other versions
EP3696837B1 (en
Inventor
Günter Grünebast
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doepke Schaltgerate GmbH
Original Assignee
Doepke Schaltgerate GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doepke Schaltgerate GmbH filed Critical Doepke Schaltgerate GmbH
Publication of EP3696837A1 publication Critical patent/EP3696837A1/en
Application granted granted Critical
Publication of EP3696837B1 publication Critical patent/EP3696837B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/02Bases, casings, or covers
    • H01H9/0271Bases, casings, or covers structurally combining a switch and an electronic component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2231/00Applications
    • H01H2231/036Radio; TV

Definitions

  • the invention relates to a device for protection against electric shock or for protection against overcurrent for at least one power line to be monitored with at least one inductive component which is electrically arranged in series with the power line to be monitored and which acts directly or indirectly on a switch lock which is mechanically connected to at least one electrical is coupled to the power line to be monitored in series switching contact.
  • Devices for protection against electric shock and for protection against overcurrent are known from the prior art. The use of these devices is required by relevant international and national installation regulations. These devices can be, for example, residual current protective devices or overcurrent protective devices.
  • Residual current protective devices are primarily used to protect against electric shock and to protect against electrically ignited fires in electrical systems.
  • Residual current protective devices are primarily used to protect against electric shock and to protect against electrically ignited fires in electrical systems.
  • To record fault currents they have a summation current transformer through which the power lines to be monitored are routed.
  • the vectorial sum of the currents (load currents) in the power lines to be monitored is recorded by the summation current transformer and represents a measure of the fault current.
  • load currents currents flowing to and from the summation current transformer (load currents) are zero.
  • the return flow occurs depending on the fault resistance, but not completely through the summation current transformer.
  • the fault current is recorded as a residual current in the summation current transformer.
  • the summation current transformer is followed electrically by an evaluation circuit with an assigned trip relay, which, if a permissible residual current limit value is exceeded, causes the switching contacts in the power lines to be monitored to open, which in the event of a fault ensures reliable separation of a downstream electrical system from the supplying power grid.
  • the summation current transformer of a residual current protective device usually consists of a magnetic core, which is usually designed as a toroid and which has the same number of primary windings depending on the number of power lines to be monitored. In each case a primary winding is arranged electrically in series with a power line to be monitored, through which the load currents flow. In addition, the summation current transformer has at least one secondary winding. This secondary winding is electrically connected to the evaluation circuit.
  • the primary windings together with the magnetic core form an inductance.
  • the level of inductance is determined by the number of turns of each primary winding and the magnetic permeability of the magnetic core material.
  • the total current recorded by the summation current transformer is zero if there is no insulation fault in an electrical system and the current flowing to and fro (load current) are the same. Due to the opposite current direction of the current flowing there and back, the phase difference is 180 degrees and thus the sum of the current in the summation current transformer is zero.
  • the inductance of the summation current transformer is not effective in this case and does not represent a burden for the load current in the forward and return conductors.
  • the summation current transformer virtually detects a differential current due to the currents in the forward and return conductors that do not add up to zero. In this case, the inductance of the summation current transformer becomes effective and represents a negative burden for the higher-frequency load currents in the forward and return conductors.
  • Disconnection of a residual current protective device is usually optimized for residual currents of the rated frequency. The rated frequency is usually 50 Hz or 60 Hz. With the above-mentioned currents of higher frequency (> 1 MHz), there is no shutdown due to the principle.
  • overcurrent protective device designed as a line circuit breaker is disclosed.
  • Overcurrent protective devices offer protection against overcurrents and short circuits as well as protection against electric shock. This protects electrical circuits and connected equipment as well as people.
  • Miniature circuit breakers usually have two trigger functions.
  • a short-circuit current release switches off the line circuit breaker immediately after a defined current limit is exceeded.
  • a Overload release causes a delayed shutdown for currents in the overload range above a specified triggering current of 1.45 times the rated current. The time until shutdown depends on the level of the overload current. It is switched off by mechanically unlatching a key switch. Unlatching the switch lock leads to the opening of the switch contacts and thus to the interruption of the current flow in the power lines to be monitored. In this way, in the event of a short circuit or overload, a safe separation of a downstream electrical system from the supplying power grid is guaranteed.
  • the short-circuit current release is usually implemented by a fixed inductance designed as an air-core coil with several windings and a movable ferromagnetic component (armature).
  • the air coil is arranged in series with the power line to be monitored.
  • a large magnetic field is generated in the air-core coil. This magnetic field causes the movably arranged ferromagnetic component to move. This movement causes the key switch to be released immediately in order to quickly switch off the short-circuit current.
  • the inductance designed as an air-core coil with several windings, with its reactance permanently represents a burden for the electrical current flowing through it.
  • This air-core coil thus represents an undesirably high electrical burden, especially for higher-frequency currents.
  • the inductive components of residual current protective devices and overcurrent protective devices described above thus represent a negative electrical burden, especially for higher-frequency currents in the power lines to be monitored.
  • PowerLan which uses existing electrical power lines in the low-voltage network to set up a local network for data transmission.
  • Special PowerLan adapters are used to modulate the data signal in the high-frequency range, usually between 2 and 68 MHz, onto the electrical power lines. If the above-mentioned residual current protective devices or overcurrent protective devices are arranged for protection in the electrical power lines, this is disadvantageous because the inductive components of residual current protective devices or overcurrent protective devices represent a considerable electrical burden for the high-frequency data signals in a negative way. Because of this burden, data transmission, for example, between several low-voltage distributions which contain residual current protective devices or overcurrent protective devices for protection purposes, is not possible or is only possible to a very limited extent.
  • the invention is therefore based on the object of providing devices for protection against electric shock and for protection against overcurrent which have a low electrical burden, in particular for currents with high-frequency components flowing in power lines to be monitored.
  • this object is achieved in that at least one capacitance is connected electrically in parallel with the inductive component.
  • At least one capacitance designed as a capacitor is electrically connected in parallel to the inductive component of a device for protection against electric shock or for protection against overcurrent.
  • the capacitance electrically connected to the inductance thus represents a bypass for currents with a high frequency. This enables currents with a high frequency to flow without loss and unhindered.
  • the device according to the invention is a residual current protective device. At least one capacitance is electrically connected in parallel to at least one primary winding of the summation current transformer.
  • an inductance is additionally connected electrically in series to the secondary winding of the summation current transformer. This inductivity has the effect that high-frequency components in the current coupled into the secondary winding of the summation current transformer are not negatively influenced by the evaluation circuit.
  • the device according to the invention is an overcurrent protective device.
  • the inductance which is a component of the short-circuit current release and an air-core coil with several windings, is electrically connected in parallel to a capacitance.
  • the short-circuit current release is therefore an inductive component.
  • the capacitance which is electrically connected to the inductance, thus represents a bypass for currents with a high frequency. This ensures that components in the current with a high frequency can flow without loss and unhindered.
  • the overcurrent protective device can be a circuit breaker which preferably has at least one short-circuit current release designed with an inductance, a capacitance being connected electrically in parallel with the short-circuit current release.
  • a known device 1 designed from the prior art as a residual current protective device for protection against electric shock has a summation current transformer 2, which consists of at least two primary windings 3 and at least one secondary winding 4.
  • the primary windings 3 are electrically connected in series with the power lines 13 to be monitored.
  • the secondary winding 4 is connected to an evaluation circuit 6. If a certain residual current limit value is exceeded, a voltage signal is generated at the output of the evaluation circuit 6 and causes the trigger relay 7 electrically connected to the output of the evaluation circuit 6 to unlatch the switch lock 8 mechanically coupled to the trigger relay 7.
  • the unlatching of the switch lock 8 has the effect that the switch contacts 9, which are arranged electrically in series with the power lines 13 to be monitored, are opened, so that in the event of a fault, the current flow in the power lines 13 to be monitored is interrupted.
  • the device 1 has a test circuit 10 which consists of a series connection of a test resistor 11 and a test button 12.
  • FIG. 2 shows a first embodiment of the inventive device 1 designed as a residual current protective device for protection against electric shock.
  • Each primary winding 3 consists of at least one Turn, with all primary windings having the same number of turns.
  • each inductance consisting of at least one primary winding 3 of the summation current transformer 2 is electrically connected in parallel with a capacitance 14. This is advantageous because each capacitance 14 electrically connected to form a primary winding 3 represents a bypass for currents with a high frequency. This enables currents with a high frequency to flow through the power lines 13 to be monitored without loss and unhindered.
  • Figure 3 shows a further development of the inventive device.
  • An inductance 15 is electrically connected in series to the secondary winding 4 of the summation current transformer 2 and the evaluation circuit 6.
  • the inductance 15 advantageously has the effect that high-frequency components (> 1 MHz) in the current coupled into the secondary winding 4 of the summation current transformer from the primary windings 3 are not negatively influenced by the evaluation circuit 6.
  • the evaluation circuit 6 usually has components for voltage limiting on the input side. These components have negative parasitic capacitances that have a low-impedance burden for currents with a high frequency (> 1 MHz).
  • the inventive inductance 15, which is arranged electrically in series again advantageously represents a high-resistance impedance for currents with a high frequency (> 1 MHz).
  • High-frequency components (> 1 MHz) coupled into the current from the primary windings 3 to the secondary winding 4 of the summation current converter are now are advantageously not negatively influenced by the evaluation circuit 6.
  • FIG. 4 shows a device 1, known from the prior art, designed as a line circuit breaker for protection against overcurrent.
  • the device 1 has a short-circuit current release 3 and a thermal release 16, also referred to as an overload release, which are mechanically coupled to a switch lock 8.
  • the short-circuit current release 3 and the thermal release 16 are arranged in series with the power line 13 to be monitored and the switching contact 9, which is mechanically coupled to the switching mechanism 8.
  • the short-circuit current release 3 is usually implemented by a fixedly arranged inductance designed as an air-core coil with several windings and a movable ferromagnetic component (armature).
  • the short-circuit current release 3 is thus an inductive component.
  • the short-circuit current release 3 causes the switching contact 9 to open immediately due to its magnetic principle and its mechanical coupling to the switch lock 8.
  • Figure 5 shows a first embodiment of the inventive device 1 designed as an overcurrent protection device for protection against overcurrent.
  • the short-circuit current release 3 which has an inductance due to its air-core coil, has a capacitance 14 connected electrically in parallel. This is advantageous because the capacitance 14, electrically connected in parallel with the short-circuit current release 3, for currents with a high frequency represents a bypass. This enables currents with a high frequency to flow through the power line 13 to be monitored without loss and unhindered.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

Bei einer Vorrichtung zum Schutz gegen elektrischen Schlag oder zum Schutz bei Überstrom für zumindest eine zu überwachende Stromleitung mit wenigstens einem elektrisch zur zu überwachenden Stromleitung in Reihe angeordneten induktiven Bauteil, das mittelbar oder unmittelbar auf ein Schaltschloss wirkt, welches mechanisch mit wenigstens einem elektrisch zur zu überwachenden Stromleitung in Reihe angeordneten Schaltkontakt verkoppelt ist, ist vorgesehen, dass zu dem induktiven Bauteil (3) wenigstens eine Kapazität (14) elektrisch parallel verschaltet ist.Diese Vorrichtung zum Schutz gegen elektrischen Schlag oder zum Schutz bei Überstrom weist insbesondere für in zu überwachende Stromleitungen fließende Ströme mit hochfrequenten Anteilen eine geringe elektrische Bürde auf.In a device for protection against electric shock or for protection in the event of overcurrent for at least one power line to be monitored with at least one inductive component arranged electrically in series with the power line to be monitored, which acts indirectly or directly on a switch lock which is mechanically connected to at least one electrical connection Monitoring power line is coupled in series switching contact, it is provided that at least one capacitance (14) is electrically connected in parallel to the inductive component (3). This device for protection against electric shock or for protection against overcurrent is particularly suitable for power lines to be monitored flowing currents with high-frequency components have a low electrical burden.

Description

Die Erfindung betrifft eine Vorrichtung zum Schutz gegen elektrischen Schlag oder zum Schutz bei Überstrom für zumindest eine zu überwachende Stromleitung mit wenigstens einem elektrisch zur zu überwachenden Stromleitung in Reihe angeordneten induktiven Bauteil, das mittelbar oder unmittelbar auf ein Schaltschloss wirkt, welches mechanisch mit wenigstens einem elektrisch zur zu überwachenden Stromleitung in Reihe angeordneten Schaltkontakt verkoppelt ist.The invention relates to a device for protection against electric shock or for protection against overcurrent for at least one power line to be monitored with at least one inductive component which is electrically arranged in series with the power line to be monitored and which acts directly or indirectly on a switch lock which is mechanically connected to at least one electrical is coupled to the power line to be monitored in series switching contact.

Aus dem Stand der Technik sind Vorrichtungen zum Schutz gegen elektrischen Schlag sowie zum Schutz bei Überstrom bekannt. Die Verwendung dieser Vorrichtungen wird durch einschlägige internationale und nationale Errichtungsbestimmungen gefordert. Diese Vorrichtungen können beispielsweise Fehlerstrom-Schutzeinrichtungen oder Überstrom-Schutzeinrichtungen sein.Devices for protection against electric shock and for protection against overcurrent are known from the prior art. The use of these devices is required by relevant international and national installation regulations. These devices can be, for example, residual current protective devices or overcurrent protective devices.

In DE 10 2011 011 983 ist eine als Fehlerstromschutzschalter ausgeführte Fehlerstrom-Schutzeinrichtung offenbart. Fehlerstrom-Schutzeinrichtungen dienen vorzugsweise zum Schutz gegen elektrischen Schlag sowie zum Schutz gegen elektrisch gezündete Brände in elektrischen Anlagen. Sie weisen zur Erfassung von Fehlerströmen einen Summenstromwandler auf, durch den die zu überwachenden Stromleitungen geführt sind. Die vektorielle Summe der Ströme (Lastströme) in den zu überwachenden Stromleitungen wird vom Summenstromwandler erfasst und stellt ein Maß für den Fehlerstrom dar. Im fehlerfreien Zustand sind hin- und rückfließende Ströme (Lastströme) durch den Summenstromwandler gleich Null. Bei einem Isolationsfehler gegen Erde erfolgt der Rückfluss in Abhängigkeit vom Fehlerwiderstand jedoch nicht vollständig durch den Summenstromwandler. Ein Teil fließt als Fehlerstrom über den Fehlerwiderstand gegen Erde ab. In diesem Fall ist die sich im Summenstromwandler ergebende Stromsumme nicht Null. Der Fehlerstrom wird als Differenzstrom im Summenstromwandler erfasst. Dem Summenstromwandler ist elektrisch nachfolgend eine Auswerteschaltung mit zugeordnetem Auslöserelais angeordnet, welches bei Überschreiten eines zulässigen Fehlerstromgrenzwertes über eine Schaltmechanik ein Öffnen der in den zu überwachenden Stromleitungen angeordneten Schaltkontakte bewirkt, wodurch im Fehlerfall eine sichere Trennung einer nachfolgenden elektrischen Anlage vom versorgenden Stromnetz gewährleistet ist.In DE 10 2011 011 983 a residual current protective device designed as a residual current circuit breaker is disclosed. Residual current protective devices are primarily used to protect against electric shock and to protect against electrically ignited fires in electrical systems. To record fault currents, they have a summation current transformer through which the power lines to be monitored are routed. The vectorial sum of the currents (load currents) in the power lines to be monitored is recorded by the summation current transformer and represents a measure of the fault current. In the error-free state, currents flowing to and from the summation current transformer (load currents) are zero. In the event of an insulation fault against Earth, the return flow occurs depending on the fault resistance, but not completely through the summation current transformer. Part of it flows as a fault current through the fault resistance to earth. In this case the total current in the summation current transformer is not zero. The fault current is recorded as a residual current in the summation current transformer. The summation current transformer is followed electrically by an evaluation circuit with an assigned trip relay, which, if a permissible residual current limit value is exceeded, causes the switching contacts in the power lines to be monitored to open, which in the event of a fault ensures reliable separation of a downstream electrical system from the supplying power grid.

Der Summenstromwandler einer Fehlerstrom-Schutzeinrichtung besteht üblicherweise aus einem magnetischen Kern, der in der Regel als Toroid ausgeführt ist und welcher je nach Anzahl der zu überwachenden Stromleitungen eine gleiche Anzahl an Primärwicklungen aufweist. Jeweils eine Primärwicklung ist elektrisch in Reihe zu jeweils einer zu überwachenden Stromleitung angeordnet, durch die die Lastströme fließen. Zudem weist der Summenstromwandler zumindest eine Sekundärwicklung auf. Diese Sekundärwicklung ist mit der Auswerteschaltung elektrisch verbunden.The summation current transformer of a residual current protective device usually consists of a magnetic core, which is usually designed as a toroid and which has the same number of primary windings depending on the number of power lines to be monitored. In each case a primary winding is arranged electrically in series with a power line to be monitored, through which the load currents flow. In addition, the summation current transformer has at least one secondary winding. This secondary winding is electrically connected to the evaluation circuit.

Die Primärwicklungen bilden zusammen mit dem magnetischen Kern eine Induktivität. Die Höhe der Induktivität wird bestimmt durch die Anzahl der Windungen jeder Primärwicklung und der magnetischen Permeabilität des magnetischen Kernmaterials. Wie bereits weiter oben erwähnt, ist die vom Summenstromwandler erfasste Stromsumme Null, wenn kein Isolationsfehler in einer elektrischen Anlage vorliegt und der hin- und rückfließende Strom (Laststrom) gleich sind. Aufgrund der entgegengesetzten Stromrichtung von hin- und rückfließendem Strom beträgt die Differenz der Phase 180 Grad und somit ist die Stromsumme im Summenstromwandler gleich Null. Die Induktivität des Summenstromwandlers ist in diesem Fall nicht wirksam und stellt für den Laststrom im Hin- und Rückleiter keine Bürde dar.The primary windings together with the magnetic core form an inductance. The level of inductance is determined by the number of turns of each primary winding and the magnetic permeability of the magnetic core material. As already mentioned above, the total current recorded by the summation current transformer is zero if there is no insulation fault in an electrical system and the current flowing to and fro (load current) are the same. Due to the opposite current direction of the current flowing there and back, the phase difference is 180 degrees and thus the sum of the current in the summation current transformer is zero. The inductance of the summation current transformer is not effective in this case and does not represent a burden for the load current in the forward and return conductors.

Diese physikalische Gegebenheit gilt jedoch nur für Ströme mit Frequenzen bis zu einigen MHz. Bei Strömen höherer Frequenz (> 1 MHz) machen sich leitungsbedingte Laufzeitunterschiede bemerkbar, die für Ströme mit niedrigen Frequenzen kaum oder gar nicht relevant sind. Diese Laufzeitunterschiede sind physikalisch in bekannter Weise durch die Leitungsbeläge (Widerstandsbelag, Ableitungsbelag, Kapazitätsbelag, Induktivitätsbelag) einer elektrischen Leitung bedingt. Aufgrund dieser Laufzeitunterschiede ist es in Abhängigkeit von der Höhe der Frequenz des Stromes möglich, dass lokal im Summenstromwandler die Differenz der Phase des jeweiligen Stromes im Hin- und Rückleiter nicht 180 Grad ist. Obwohl kein Isolationsfehler vorliegt und somit kein Fehlerstrom fließt, wird vom Summenstromwandler aufgrund der sich nun nicht zu Null addierenden Ströme im Hin- und Rückleiter quasi ein Differenzstrom erfasst. In diesem Fall wird die Induktivität des Summenstromwandlers wirksam und stellt für die höherfrequenten Lastströme im Hin- und Rückleiter in negativer Weise eine Bürde dar. Eine Abschaltung einer Fehlerstrom-Schutzeinrichtung ist üblicherweise für Fehlerströme der Bemessungsfrequenz optimiert. Die Bemessungsfrequenz ist üblicherweise 50 Hz oder 60 Hz. Bei den oben genannten Strömen höherer Frequenz (> 1 MHz) erfolgt prinzipbedingt daher keine Abschaltung.However, this physical condition only applies to currents with frequencies up to a few MHz. With currents with a higher frequency (> 1 MHz), line-related delay differences become noticeable, which are hardly or not at all relevant for currents with low frequencies. These differences in transit time are physically caused in a known manner by the line coatings (resistance coating, conductor coating, capacitance coating, inductance coating) of an electrical line. Due to these transit time differences, depending on the level of the frequency of the current, it is possible that locally in the summation current transformer the difference in phase of the respective current in the forward and return conductors is not 180 degrees. Although there is no insulation fault and therefore no fault current flows, the summation current transformer virtually detects a differential current due to the currents in the forward and return conductors that do not add up to zero. In this case, the inductance of the summation current transformer becomes effective and represents a negative burden for the higher-frequency load currents in the forward and return conductors. Disconnection of a residual current protective device is usually optimized for residual currents of the rated frequency. The rated frequency is usually 50 Hz or 60 Hz. With the above-mentioned currents of higher frequency (> 1 MHz), there is no shutdown due to the principle.

In DE 199 51 249 ist eine als Leitungsschutzschalter ausgeführte Überstrom-Schutzeinrichtung offenbart. Überstrom-Schutzeinrichtungen bieten Schutz bei Überströmen, Kurzschlüssen sowie auch Schutz gegen elektrischen Schlag. Dadurch werden elektrische Stromkreise und angeschlossene Betriebsmittel sowie Personen geschützt.In DE 199 51 249 an overcurrent protective device designed as a line circuit breaker is disclosed. Overcurrent protective devices offer protection against overcurrents and short circuits as well as protection against electric shock. This protects electrical circuits and connected equipment as well as people.

Leitungsschutzschalter weisen üblicherweise zwei Auslösefunktionen auf.Miniature circuit breakers usually have two trigger functions.

Durch einen in der Regel als Magnetauslöser ausgeführten Kurzschlussstromauslöser erfolgt nach dem Überschreiten einer definierten Stromgrenze eine sofortige Abschaltung des Leitungsschutzschalters. Ein Überlastauslöser hingegen bewirkt bei Strömen im Überlastbereich oberhalb eines festgelegten Auslösestromes vom 1,45-fachen des Bemessungsstromes eine verzögerte Abschaltung. Die Zeit bis zur Abschaltung richtet sich nach der Höhe des Überlaststroms. Die Abschaltung erfolgt durch eine mechanische Entklinkung eines Schaltschlosses. Die Entklinkung des Schaltschlosses führt zum Öffnen der Schaltkontakte und damit zur Unterbrechung des Stromflusses in den zu überwachenden Stromleitungen. Dadurch wird im Kurzschlussbeziehungsweise Überlastfall eine sichere Trennung einer nachfolgenden elektrischen Anlage vom versorgenden Stromnetz gewährleistet.A short-circuit current release, usually designed as a magnetic release, switches off the line circuit breaker immediately after a defined current limit is exceeded. A Overload release, on the other hand, causes a delayed shutdown for currents in the overload range above a specified triggering current of 1.45 times the rated current. The time until shutdown depends on the level of the overload current. It is switched off by mechanically unlatching a key switch. Unlatching the switch lock leads to the opening of the switch contacts and thus to the interruption of the current flow in the power lines to be monitored. In this way, in the event of a short circuit or overload, a safe separation of a downstream electrical system from the supplying power grid is guaranteed.

Der Kurzschlussstromauslöser wird üblicherweise durch eine fest angeordnete als Luftspule mit mehreren Windungen ausgebildete Induktivität und einem beweglichen ferromagnetischem Bauteil (Anker) ausgeführt. Die Luftspule ist dabei in Reihe zu der zu überwachenden Stromleitung angeordnet. Bei einem Kurzschlussstrom in der zu überwachenden Stromleitung wird in der Luftspule ein großes Magnetfeld erzeugt. Dieses Magnetfeld bewirkt eine Bewegung des beweglich angeordneten ferromagnetischen Bauteils. Diese Bewegung bewirkt die sofortige Entklinkung des Schaltschlosses, um den Kurzschlussstrom schnell abzuschalten.The short-circuit current release is usually implemented by a fixed inductance designed as an air-core coil with several windings and a movable ferromagnetic component (armature). The air coil is arranged in series with the power line to be monitored. In the event of a short-circuit current in the power line to be monitored, a large magnetic field is generated in the air-core coil. This magnetic field causes the movably arranged ferromagnetic component to move. This movement causes the key switch to be released immediately in order to quickly switch off the short-circuit current.

Die als Luftspule mit mehreren Windungen ausgebildete Induktivität stellt dauerhaft mit ihrem Blindwiderstand eine Bürde für den sie durchfließenden elektrischen Strom dar. Mit zunehmender Frequenz f nimmt der Blindwiderstand XL der Induktivität L gemäß der bekannten Gleichung XL = 2 x Π x f x L zu. Damit stellt diese Luftspule in negativer Weise insbesondere für höherfrequente Ströme eine unerwünscht hohe elektrische Bürde dar.The inductance, designed as an air-core coil with several windings, with its reactance permanently represents a burden for the electrical current flowing through it. With increasing frequency f, reactance X L of inductance L increases according to the known equation X L = 2 x Π xfx L. This air-core coil thus represents an undesirably high electrical burden, especially for higher-frequency currents.

Die oben beschriebenen induktiven Komponenten von Fehlerstrom-Schutzeinrichtungen und Überstrom-Schutzeinrichtungen stellen somit insbesondere für höherfrequente Ströme in den zu überwachenden Stromleitungen in negativer Weise eine elektrische Bürde dar.The inductive components of residual current protective devices and overcurrent protective devices described above thus represent a negative electrical burden, especially for higher-frequency currents in the power lines to be monitored.

Im Stand der Technik bekannt und weit verbreitetet ist eine als PowerLan bezeichneten Technik, die vorhandene elektrische Stromleitungen im Niederspannungsnetz zum Aufbau eines lokalen Netzwerkes zur Datenübertragung verwendet. Dabei wird durch spezielle PowerLan-Adatper das Datensignal im Hochfrequenzbereich, üblicherweise zwischen 2 und 68 MHz auf die elektrischen Stromleitungen aufmoduliert. Sind nun die oben genannten Fehlerstrom-Schutzeinrichtungen oder Überstrom-Schutzeinrichtungen zum Schutz in den elektrischen Stromleitungen angeordnet, so ist dieses nachteilig, weil die induktiven Bauteile von Fehlerstrom-Schutzeinrichtungen oder Überstrom-Schutzeinrichtungen eine erhebliche elektrische Bürde für die hochfrequenten Datensignale in negativer Weise darstellen. Aufgrund dieser Bürde ist eine Datenübertragung zum Beispiel zwischen mehreren Niederspannungsverteilungen, welche Fehlerstrom-Schutzeinrichtungen oder Überstrom-Schutzeinrichtungen zu Schutzzwecken enthalten, nicht oder nur stark eingeschränkt möglich.Known and widespread in the prior art is a technique called PowerLan which uses existing electrical power lines in the low-voltage network to set up a local network for data transmission. Special PowerLan adapters are used to modulate the data signal in the high-frequency range, usually between 2 and 68 MHz, onto the electrical power lines. If the above-mentioned residual current protective devices or overcurrent protective devices are arranged for protection in the electrical power lines, this is disadvantageous because the inductive components of residual current protective devices or overcurrent protective devices represent a considerable electrical burden for the high-frequency data signals in a negative way. Because of this burden, data transmission, for example, between several low-voltage distributions which contain residual current protective devices or overcurrent protective devices for protection purposes, is not possible or is only possible to a very limited extent.

Für eine unbeeinflusste Wiedergabe und Aufnahme von Musik ist es erforderlich, dass elektrische Anlagen mit Stromkreisen zur Stromversorgung von Betriebsmitteln zur Wiedergabe und Aufnahme von Musik möglichst niederimpedant ausgeführt sind. Die weiter oben genannten induktiven Bauteile von Vorrichtungen zum Schutz gegen elektrischen Schlag und zum Schutz bei Überstrom stellen jedoch für Lastströme mit Anteilen höherer Frequenz von Betriebsmitteln zur Wiedergabe und Aufnahme von Musik in klanglich negativer Weise eine elektrische Bürde dar.For an uninfluenced reproduction and recording of music, it is necessary that electrical systems with circuits for supplying power to equipment for reproducing and recording music are designed with as low an impedance as possible. However, the inductive components of devices for protection against electric shock and for protection against overcurrent mentioned above represent an electrical burden for load currents with higher frequency components of equipment for playing and recording music in a sonically negative manner.

Der Erfindung liegt daher die Aufgabe zugrunde, Vorrichtungen zum Schutz gegen elektrischen Schlag und zum Schutz bei Überstrom aufzuzeigen, welche insbesondere für in zu überwachenden Stromleitungen fließende Ströme mit hochfrequenten Anteilen eine geringe elektrische Bürde aufweisen.The invention is therefore based on the object of providing devices for protection against electric shock and for protection against overcurrent which have a low electrical burden, in particular for currents with high-frequency components flowing in power lines to be monitored.

Diese Aufgabe ist erfindungsgemäß dadurch gelöst, dass zu dem induktiven Bauteil wenigstens eine Kapazität elektrisch parallel verschaltet ist.According to the invention, this object is achieved in that at least one capacitance is connected electrically in parallel with the inductive component.

Somit ist vorgesehen, dass dem induktiven Bauteil einer Vorrichtung zum Schutz gegen elektrischen Schlag oder zum Schutz bei Überstrom zumindest eine als Kondensator ausgeführte Kapazität elektrisch parallel verschaltet ist. Insbesondere weist eine Kapazität C für Ströme mit hoher Frequenz f einen geringen Blindwiderstand Xc gemäß der bekannten Gleichung XC = 1 / (2 x Π x f x C) auf. Je höher die Frequenz f ist, desto niedriger wird der Blindwiderstand XC und damit die Bürde. Die zur Induktivität elektrisch verschaltete Kapazität stellt für Ströme mit hoher Frequenz somit einen Bypass dar. Dadurch wird ermöglicht, dass Ströme mit hoher Frequenz verlustfrei und ungehindert fließen können.It is thus provided that at least one capacitance designed as a capacitor is electrically connected in parallel to the inductive component of a device for protection against electric shock or for protection against overcurrent. In particular, a capacitance C for currents with a high frequency f has a low reactance Xc according to the known equation X C = 1 / (2 x Π xfx C). The higher the frequency f, the lower the reactance X C and thus the burden. The capacitance electrically connected to the inductance thus represents a bypass for currents with a high frequency. This enables currents with a high frequency to flow without loss and unhindered.

Dieses ist insbesondere vorteilhaft bei Verwendung einer als PowerLan bezeichneten Technik, weil aufgrund der zur Induktivität elektrisch verschalteten Kapazität ein Bypass zur Induktivität für Ströme mit höherfrequenten Anteilen hergestellt wird. Dadurch können die hochfrequenten auf die elektrischen Stromleitungen aufmodulierten Datensignale auch über die Grenzen von mehreren Niederspannungsverteilungen hinaus übertragen werden.This is particularly advantageous when using a technique known as PowerLan, because the capacitance that is electrically connected to the inductance creates a bypass to the inductance for currents with higher-frequency components. As a result, the high-frequency data signals modulated onto the electrical power lines can also be transmitted beyond the limits of several low-voltage distributions.

Dieses ist zudem für eine unbeeinflusste Wiedergabe und Aufnahme von Musik vorteilhaft. Aufgrund der zur Induktivität elektrisch verschalteten Kapazität wird ein Bypass für Lastströme mit höherfrequenten Anteilen hergestellt. Dadurch können auch unter Berücksichtigung des Aspekts der elektromagnetischen Verträglichkeit die hochfrequenten Anteile im Laststrom ungehindert fließen und abgeleitet werden.This is also advantageous for unaffected playback and recording of music. Due to the capacitance that is electrically connected to the inductance, a bypass is created for load currents with higher frequency components. As a result, the high-frequency components in the load current can flow and be diverted unhindered, also taking into account the aspect of electromagnetic compatibility.

In einer ersten Ausgestaltung der Erfindung ist vorgesehen, dass die erfindungsgemäße Vorrichtung eine Fehlerstrom-Schutzeinrichtung ist. Dabei ist zumindest zu einer Primärwicklung des Summenstromwandlers zumindest eine Kapazität elektrisch parallel verschaltet.In a first embodiment of the invention it is provided that the device according to the invention is a residual current protective device. At least one capacitance is electrically connected in parallel to at least one primary winding of the summation current transformer.

In einer Weiterbildung der Erfindung ist vorgesehen, dass zur Sekundärwicklung des Summenstromwandlers zusätzlich eine Induktivität elektrisch in Reihe verschaltet ist. Diese Induktivität bewirkt, dass von den Primärwicklungen auf die Sekundärwicklung des Summenstromwandlers eingekoppelte hochfrequente Anteile im Strom nicht von der Auswerteschaltung negativ beeinflusst werden.In a further development of the invention it is provided that an inductance is additionally connected electrically in series to the secondary winding of the summation current transformer. This inductivity has the effect that high-frequency components in the current coupled into the secondary winding of the summation current transformer are not negatively influenced by the evaluation circuit.

In einer weiteren Ausgestaltung ist vorgesehen, dass die erfindungsgemäße Vorrichtung eine Überstrom-Schutzeinrichtung ist. Dabei ist der als Bestandteil des Kurzschlussstromauslösers und als Luftspule mit mehreren Windungen ausgebildeten Induktivität eine Kapazität elektrisch parallel verschaltet. Der Kurzschlussstromauslöser ist somit ein induktives Bauteil. Die zur Induktivität elektrisch verschaltete Kapazität stellt für Ströme mit hoher Frequenz somit einen Bypass dar. Dadurch wird erreicht, dass Anteile im Strom mit hoher Frequenz verlustfrei und ungehindert fließen können.In a further embodiment, it is provided that the device according to the invention is an overcurrent protective device. The inductance, which is a component of the short-circuit current release and an air-core coil with several windings, is electrically connected in parallel to a capacitance. The short-circuit current release is therefore an inductive component. The capacitance, which is electrically connected to the inductance, thus represents a bypass for currents with a high frequency. This ensures that components in the current with a high frequency can flow without loss and unhindered.

Die Überstrom-Schutzeinrichtung kann ein Leistungsschutzschalter sein, der vorzugsweise zumindest einen mit einer Induktivität ausgebildeten Kurzschlussstromauslöser hat, wobei elektrisch parallel zum Kurzschlussstromauslöser eine Kapazität verschaltet ist.The overcurrent protective device can be a circuit breaker which preferably has at least one short-circuit current release designed with an inductance, a capacitance being connected electrically in parallel with the short-circuit current release.

Eine erfindungsgemäße Vorrichtung ist in den Zeichnungen dargestellt. Es zeigen:

Figur 1:
ein Blockschaltbild einer Fehlerstrom-Schutzeinrichtung aus dem Stand der Technik;
Figur 2:
ein Blockschaltbild einer erfindungsgemäßen Fehlerstrom-Schutzeinrichtung;
Figur 3:
ein Blockschaltbild einer Weiterbildung der erfindungsgemäßen Fehlerstrom-Schutzeinrichtung;
Figur 4:
ein Blockschaltbild einer Überstrom-Schutzeinrichtung aus dem Stand der Technik; und
Figur 5:
ein Blockschaltbild einer erfindungsgemäßen Überstrom-Schutzeinrichtung.
A device according to the invention is shown in the drawings. Show it:
Figure 1:
a block diagram of a residual current protective device from the prior art;
Figure 2:
a block diagram of a residual current protective device according to the invention;
Figure 3:
a block diagram of a development of the residual current protective device according to the invention;
Figure 4:
a block diagram of an overcurrent protection device from the prior art; and
Figure 5:
a block diagram of an overcurrent protection device according to the invention.

Eine aus dem Stand der Technik als Fehlerstrom-Schutzeinrichtung ausgeführte bekannte Vorrichtung 1 zum Schutz gegen elektrischen Schlag weist einen Summenstromwandler 2 auf, welcher aus mindestens zwei Primärwicklungen 3 und mindestens einer Sekundärwicklung 4 besteht.A known device 1 designed from the prior art as a residual current protective device for protection against electric shock has a summation current transformer 2, which consists of at least two primary windings 3 and at least one secondary winding 4.

Die Primärwicklungen 3 sind elektrisch in Reihe zu den zu überwachenden Stromleitungen 13 verschaltet. Die Sekundärwicklung 4 ist mit einer Auswerteschaltung 6 verbunden. Wird ein bestimmter Fehlerstromgrenzwert überschritten, wird am Ausgang der Auswerteschaltung 6 ein Spannungssignal generiert und bewirkt, dass das elektrisch am Ausgang der Auswerteschaltung 6 angeschlossene Auslöserelais 7 eine Entklinkung des mit dem Auslöserelais 7 mechanisch gekoppelten Schaltschlosses 8 bewirkt. Die Entklinkung des Schaltschlosses 8 bewirkt, dass die elektrisch in Reihe zu den zu überwachenden Stromleitungen 13 angeordneten Schaltkontakte 9 geöffnet werden, so dass im Fehlerfall der Stromfluss in den zu überwachenden Stromleitungen 13 unterbrochen wird. Zur Funktionsprüfung weist die Vorrichtung 1 einen Prüfstromkreis 10 auf, welcher aus einer Reihenschaltung eines Prüfwiderstandes 11 und einer Prüftaste 12 besteht.The primary windings 3 are electrically connected in series with the power lines 13 to be monitored. The secondary winding 4 is connected to an evaluation circuit 6. If a certain residual current limit value is exceeded, a voltage signal is generated at the output of the evaluation circuit 6 and causes the trigger relay 7 electrically connected to the output of the evaluation circuit 6 to unlatch the switch lock 8 mechanically coupled to the trigger relay 7. The unlatching of the switch lock 8 has the effect that the switch contacts 9, which are arranged electrically in series with the power lines 13 to be monitored, are opened, so that in the event of a fault, the current flow in the power lines 13 to be monitored is interrupted. To test the function, the device 1 has a test circuit 10 which consists of a series connection of a test resistor 11 and a test button 12.

Das detaillierte Funktionsprinzip einer Fehlerstrom-Schutzeinrichtung ist im Stand der Technik bekannt und wird daher nicht weiter erläutert.The detailed functional principle of a residual current protective device is known in the prior art and is therefore not explained further.

Figur 2 zeigt eine erste als Fehlerstrom-Schutzeinrichtung ausgeführte Ausgestaltung der erfinderischen Vorrichtung 1 zum Schutz gegen elektrischen Schlag. Jede Primärwicklung 3 besteht aus mindestens einer Windung, wobei alle Primärwicklungen die gleiche Anzahl an Windungen aufweisen. Mit der magnetischen Permeabilität des magnetischen Kerns 5 des Summenstromwandlers 2 ergibt sich für jede Primärwicklung eine Induktivität. Erfinderisch ist jeder aus zumindest einer Primärwicklung 3 des Summenstromwandlers 2 bestehenden Induktivität jeweils eine Kapazität 14 elektrisch parallel geschaltet. Dieses ist vorteilhaft, weil jede zu einer Primärwicklung 3 elektrisch verschaltete Kapazität 14 für Ströme mit hoher Frequenz einen Bypass darstellt. Dadurch wird ermöglicht, dass Ströme mit hoher Frequenz verlustfrei und ungehindert durch die zu überwachenden Stromleitungen 13 fließen können. Figure 2 shows a first embodiment of the inventive device 1 designed as a residual current protective device for protection against electric shock. Each primary winding 3 consists of at least one Turn, with all primary windings having the same number of turns. With the magnetic permeability of the magnetic core 5 of the summation current transformer 2, there is an inductance for each primary winding. According to the invention, each inductance consisting of at least one primary winding 3 of the summation current transformer 2 is electrically connected in parallel with a capacitance 14. This is advantageous because each capacitance 14 electrically connected to form a primary winding 3 represents a bypass for currents with a high frequency. This enables currents with a high frequency to flow through the power lines 13 to be monitored without loss and unhindered.

Figur 3 zeigt eine Weiterbildung der erfinderischen Vorrichtung. Dabei ist zur Sekundärwicklung 4 des Summenstromwandlers 2 und der Auswerteschaltung 6 eine Induktivität 15 elektrisch in Reihe verschaltet. In vorteilhafter Weise bewirkt die Induktivität 15, dass von den Primärwicklungen 3 auf die Sekundärwicklung 4 des Summenstromwandlers eingekoppelte hochfrequente Anteile (> 1 MHz) im Strom nicht von der Auswerteschaltung 6 negativ beeinflusst werden. Die Auswerteschaltung 6 weist üblicherweise eingangsseitig Bauteile zur Spannungsbegrenzung auf. Diese Bauteile weisen in negativer Weise parasitäre Kapazitäten auf, die für Ströme mit hoher Frequenz (> 1 MHz) eine niederimpedante Bürde aufweisen. Die erfinderische elektrisch in Reihe angeordnete Induktivität 15 stellt für Ströme mit hoher Frequenz (> 1 MHz) wiederum in vorteilhafter Weise eine hochohmige Impedanz dar. Von den Primärwicklungen 3 auf die Sekundärwicklung 4 des Summenstromwandlers eingekoppelte hochfrequente Anteile (> 1 MHz) im Strom werden nun in vorteilhafter Weise nicht von der Auswerteschaltung 6 negativ beeinflusst werden. Figure 3 shows a further development of the inventive device. An inductance 15 is electrically connected in series to the secondary winding 4 of the summation current transformer 2 and the evaluation circuit 6. The inductance 15 advantageously has the effect that high-frequency components (> 1 MHz) in the current coupled into the secondary winding 4 of the summation current transformer from the primary windings 3 are not negatively influenced by the evaluation circuit 6. The evaluation circuit 6 usually has components for voltage limiting on the input side. These components have negative parasitic capacitances that have a low-impedance burden for currents with a high frequency (> 1 MHz). The inventive inductance 15, which is arranged electrically in series, again advantageously represents a high-resistance impedance for currents with a high frequency (> 1 MHz). High-frequency components (> 1 MHz) coupled into the current from the primary windings 3 to the secondary winding 4 of the summation current converter are now are advantageously not negatively influenced by the evaluation circuit 6.

Durch die erfinderische Ausgestaltung einer Fehlerstrom-Schutzeinrichtung ist es nun beispielsweise in vorteilhafter Weise möglich, dass die weiter oben genannten PowerLan-Adapter zwischen mehreren Niederspannungsverteilungen kommunizieren können.Due to the inventive design of a residual current protective device, it is now advantageously possible, for example, for the PowerLan adapters mentioned above to be able to communicate between several low-voltage distributions.

Figur 4 zeigt eine aus dem Stand der Technik bekannte als Leitungsschutzschalter ausgeführte Vorrichtung 1 zum Schutz bei Überstrom. Die Vorrichtung 1 weist einen Kurzschlussstromauslöser 3 und einen auch als Überlastauslöser bezeichneten thermischen Auslöser 16 auf, die mechanisch mit einem Schaltschloss 8 gekoppelt sind. Der Kurzschlussstromauslöser 3 und der thermische Auslöser 16 sind in Reihe zu der zu überwachenden Stromleitung 13 und dem Schaltkontakt 9, welcher mechanisch mit dem Schaltschloss 8 gekoppelt ist, angeordnet. Der Kurzschlussstromauslöser 3 wird üblicherweise durch eine fest angeordnete als Luftspule mit mehreren Windungen ausgebildete Induktivität und einem beweglichen ferromagnetischem Bauteil (Anker) ausgeführt. Der Kurzschlussstromauslöser 3 ist somit ein induktives Bauteil. Bei einem sehr hohen Strom, der wesentlich größer als der Bemessungsstrom des Leitungsschutzschalters ist, bewirkt der Kurzschlussstromauslöser 3 aufgrund seines magnetischen Prinzips und seiner mechanischen Verkopplung zum Schaltschloss 8 ein sofortiges Öffnen des Schaltkontaktes 9. Fließt in der zu überwachenden Stromleitung 13 ein Strom, der etwas größer ist, als der Bemessungsstrom des Leitungsschutzschalters, bewirkt der thermische Auslöser 16, dass eine Öffnung des Schaltkontaktes 9 innerhalb einer bestimmten Zeit erfolgt. In Abhängigkeit dieses Überstromes kann eine Öffnung des Schaltkontaktes 9 innerhalb weniger Sekunden oder auch erst nach mehreren Minuten erfolgen. Figure 4 shows a device 1, known from the prior art, designed as a line circuit breaker for protection against overcurrent. The device 1 has a short-circuit current release 3 and a thermal release 16, also referred to as an overload release, which are mechanically coupled to a switch lock 8. The short-circuit current release 3 and the thermal release 16 are arranged in series with the power line 13 to be monitored and the switching contact 9, which is mechanically coupled to the switching mechanism 8. The short-circuit current release 3 is usually implemented by a fixedly arranged inductance designed as an air-core coil with several windings and a movable ferromagnetic component (armature). The short-circuit current release 3 is thus an inductive component. In the event of a very high current, which is significantly greater than the rated current of the line circuit breaker, the short-circuit current release 3 causes the switching contact 9 to open immediately due to its magnetic principle and its mechanical coupling to the switch lock 8. A current flows in the power line 13 to be monitored that is somewhat is greater than the rated current of the circuit breaker, the thermal release 16 causes the switching contact 9 to open within a certain time. Depending on this overcurrent, the switching contact 9 can be opened within a few seconds or only after several minutes.

Das detaillierte Funktionsprinzip eines Leitungsschutzschalters ist im Stand der Technik bekannt und wird daher nicht weiter erläutert.The detailed functional principle of a line circuit breaker is known in the prior art and is therefore not explained further.

Figur 5 zeigt eine erste als Überstrom-Schutzeinrichtung ausgeführte Ausgestaltung der erfinderischen Vorrichtung 1 zum Schutz bei Überstrom. Erfinderisch ist dem Kurzschlussstromauslöser 3, welcher aufgrund seiner Luftspule eine Induktivität aufweist, eine Kapazität 14 elektrisch parallel geschaltet. Dieses ist vorteilhaft, weil die zum Kurzschlussstromauslöser 3 elektrisch parallel verschaltete Kapazität 14 für Ströme mit hoher Frequenz einen Bypass darstellt. Dadurch wird ermöglicht, dass Ströme mit hoher Frequenz verlustfrei und ungehindert durch die zu überwachende Stromleitung 13 fließen können. Figure 5 shows a first embodiment of the inventive device 1 designed as an overcurrent protection device for protection against overcurrent. According to the invention, the short-circuit current release 3, which has an inductance due to its air-core coil, has a capacitance 14 connected electrically in parallel. This is advantageous because the capacitance 14, electrically connected in parallel with the short-circuit current release 3, for currents with a high frequency represents a bypass. This enables currents with a high frequency to flow through the power line 13 to be monitored without loss and unhindered.

Claims (7)

Vorrichtung zum Schutz gegen elektrischen Schlag oder zum Schutz bei Überstrom für zumindest eine zu überwachende Stromleitung mit wenigstens einem elektrisch zur zu überwachenden Stromleitung in Reihe angeordneten induktiven Bauteil, das mittelbar oder unmittelbar auf ein Schaltschloss wirkt, welches mechanisch mit wenigstens einem elektrisch zur zu überwachenden Stromleitung in Reihe angeordneten Schaltkontakt verkoppelt ist,
dadurch gekennzeichnet,
dass zu dem induktiven Bauteil (3) wenigstens eine Kapazität (14) elektrisch parallel verschaltet ist.
Device for protection against electric shock or for protection in the event of overcurrent for at least one power line to be monitored with at least one inductive component arranged electrically in series with the power line to be monitored, which acts indirectly or directly on a switch mechanism which is mechanically connected to at least one electrical connection with the power line to be monitored switching contact arranged in series is coupled,
characterized,
that at least one capacitance (14) is electrically connected in parallel to the inductive component (3).
Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Vorrichtung (1) eine Fehlerstrom-Schutzeinrichtung ist.Device according to Claim 1, characterized in that the device (1) is a residual current protective device. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Fehlerstrom-Schutzeinrichtung zumindest einen Summenstromwandler (2) hat und dass elektrisch parallel wenigstens zu einer Primärwicklung (3) des Summenstromwandlers (2) eine Kapazität (14) verschaltet ist.Device according to Claim 2, characterized in that the residual current protective device has at least one summation current transformer (2) and that a capacitance (14) is connected electrically in parallel to at least one primary winding (3) of the summation current transformer (2). Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass zusätzlich zur Sekundärwicklung (4) des Summenstromwandlers (2) eine Induktivität (15) elektrisch in Serie verschaltet ist.Device according to Claim 3, characterized in that in addition to the secondary winding (4) of the summation current transformer (2), an inductance (15) is electrically connected in series. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Vorrichtung (1) eine Überstrom-Schutzeinrichtung ist.Device according to Claim 1, characterized in that the device (1) is an overcurrent protective device. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Überstrom-Schutzeinrichtung ein Leitungsschutzschalter ist.Device according to Claim 5, characterized in that the overcurrent protective device is a line circuit breaker. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Leitungsschutzschalter zumindest einen mit einer Induktivität ausgebildeten Kurzschlussstromauslöser (3) hat und dass elektrisch parallel zum Kurzschlussstromauslöser (3) eine Kapazität (14) verschaltet ist.Device according to Claim 6, characterized in that the line circuit breaker is at least one designed with an inductance Short-circuit current release (3) and that a capacitance (14) is connected electrically in parallel with the short-circuit current release (3).
EP20151158.1A 2020-01-10 Device for protecting against electric shock or protecting against overcurrent Active EP3696837B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019103621.6A DE102019103621A1 (en) 2019-02-14 2019-02-14 Device for protection against electric shock or for protection against overcurrent

Publications (2)

Publication Number Publication Date
EP3696837A1 true EP3696837A1 (en) 2020-08-19
EP3696837B1 EP3696837B1 (en) 2024-06-12

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2199168A (en) * 1938-03-24 1940-04-30 Gen Electric Protection of electric power systems
BE569291A (en) * 1957-07-09 1959-01-09
EP0570603A1 (en) * 1992-05-12 1993-11-24 Siemens Aktiengesellschaft Fail safe differential current circuit-breaker
DE19951249A1 (en) 1999-10-25 2001-06-13 Abl Sursum Bayerische Elektroz Circuit breaker with RESET position
DE102011011983A1 (en) 2011-02-22 2012-08-23 Doepke Schaltgeräte GmbH Fault current protective device for protecting electrical systems against e.g. ignited fires, has transformer for detecting low and high fault currents, and protective circuitry switched parallel to winding and acting as crowbar circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2199168A (en) * 1938-03-24 1940-04-30 Gen Electric Protection of electric power systems
BE569291A (en) * 1957-07-09 1959-01-09
EP0570603A1 (en) * 1992-05-12 1993-11-24 Siemens Aktiengesellschaft Fail safe differential current circuit-breaker
DE19951249A1 (en) 1999-10-25 2001-06-13 Abl Sursum Bayerische Elektroz Circuit breaker with RESET position
DE102011011983A1 (en) 2011-02-22 2012-08-23 Doepke Schaltgeräte GmbH Fault current protective device for protecting electrical systems against e.g. ignited fires, has transformer for detecting low and high fault currents, and protective circuitry switched parallel to winding and acting as crowbar circuit

Also Published As

Publication number Publication date
DE102019103621A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
AT506346B1 (en) FAULT CIRCUIT BREAKER
DE2546627A1 (en) OVERCURRENT LIMITING DEVICE FOR ELECTRIC HIGH-PERFORMANCE TRANSMISSION LINES
EP2291893B1 (en) Fault current circuit breaker
DE102008004869A1 (en) Arc Protection Module
DE3708005C2 (en)
EP3226013B1 (en) Differential current sensor
EP2548214B1 (en) Residual-current circuit breaker
EP2232661B1 (en) Module mechanically linkable to a circuit breaker
EP3696837B1 (en) Device for protecting against electric shock or protecting against overcurrent
EP3696837A1 (en) Device for protecting against electric impact or protecting against overcurrent
EP1478070B1 (en) All fault-current sensitive protection device
WO2009043075A2 (en) Ground fault circuit interrupter
EP0561149B1 (en) Arrangement for current supply of an electronic unit from a three phase network
EP1011183B1 (en) Earth leakage protective circuit arrangement
DE2845993A1 (en) FAULT CIRCUIT ARRANGEMENT
WO2017042063A1 (en) Arrangement for safely removing overvoltage protection devices from the mains, independently of switchgear or backup fuses, in the event of critical operating states
EP3537466A1 (en) Electromechanical protective switching device
DE19842059A1 (en) Fault current protection switch has fault current present signal derived from redundant and/or diversity unit that does not load transducer or that only loads it slightly
EP4213175B1 (en) Low voltage circuit breaker with voltage tap and pcb card and method of assembly
DE19944409A1 (en) Method and device for error-type-dependent sensitive triggering of residual current protection installs this device with a triggering differential current between a mains power supply and a consumer installation.
DE3402028A1 (en) Protection circuit for a safety apparatus in order to increase the protection level
DE2231432C2 (en) Ground fault interrupter apparatus - with means for detecting a grounded neutral condition
EP1060553B1 (en) Current-limiting arrangement with a superconductive transformer arrangement in an electric circuit
DE19944043A1 (en) Fault current protection device
DE19842469A1 (en) Safety cut-out device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201204

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220405

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20231219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20240202

GRAF Information related to payment of grant fee modified

Free format text: ORIGINAL CODE: EPIDOSCIGR3

GRAF Information related to payment of grant fee modified

Free format text: ORIGINAL CODE: EPIDOSCIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED