EP3692770B1 - A nozzle for conveying a plasma stream for plasma abatment and related method - Google Patents
A nozzle for conveying a plasma stream for plasma abatment and related method Download PDFInfo
- Publication number
- EP3692770B1 EP3692770B1 EP18782177.2A EP18782177A EP3692770B1 EP 3692770 B1 EP3692770 B1 EP 3692770B1 EP 18782177 A EP18782177 A EP 18782177A EP 3692770 B1 EP3692770 B1 EP 3692770B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle
- plasma
- water
- stream
- apertures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 105
- 238000006243 chemical reaction Methods 0.000 claims description 46
- 238000002156 mixing Methods 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 2
- 210000002381 plasma Anatomy 0.000 description 99
- 239000007789 gas Substances 0.000 description 37
- 239000003153 chemical reaction reagent Substances 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 10
- 239000006227 byproduct Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000006378 damage Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000000443 aerosol Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 5
- LSJNBGSOIVSBBR-UHFFFAOYSA-N thionyl fluoride Chemical compound FS(F)=O LSJNBGSOIVSBBR-UHFFFAOYSA-N 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 101000856246 Arabidopsis thaliana Cleavage stimulation factor subunit 77 Proteins 0.000 description 1
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 229910003910 SiCl4 Inorganic materials 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical compound FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/10—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
- F23D11/18—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour the gaseous medium being water vapour generated at the nozzle
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D3/00—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
- A62D3/10—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
- A62D3/19—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to plasma
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/06—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3468—Vortex generators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2245/00—Applications of plasma devices
- H05H2245/10—Treatment of gases
- H05H2245/15—Ambient air; Ozonisers
Definitions
- the present invention relates to a nozzle for conveying a plasma stream and a method.
- Thermal plasma torches are known and are typically used for treating an effluent gas stream from a manufacturing process tool used in, for example, the semiconductor or flat panel display manufacturing industry. During such manufacturing, residual fluorinated or perfluorinated compounds (PFCs) and other compounds exist in the effluent gas stream pumped from the process tool. These compounds are difficult to remove from the effluent gas stream and their release into the environment is undesirable because they are known to have relatively high greenhouse activity.
- PFCs perfluorinated compounds
- Plasmas for abatement devices can be formed in a variety of ways. Microwave plasma abatement devices can be connected to the exhaust of several process chambers. Each device requires its own microwave generator, which can add considerable cost to a system. Plasma torch abatement devices are advantageous over microwave plasma abatement devices in terms of scalability and in dealing with powder (present in the effluent stream or generated by the abatement reactions). In fact, with regard to microwave plasmas, if powder is present it can modify the dielectric characteristic of the reaction tube and render ineffective the microwave injection that sustains the discharge. The plasma generated by the plasma abatement device is used to destroy or abate unwanted compounds within the effluent gas stream.
- JP2001009233 and JP2000334294 It is known from JP2001009233 and JP2000334294 to provide tangential liquid water or water vapour to a plasma torch.
- a nozzle according to Claim 1 According to a first aspect, there is provided a nozzle according to Claim 1.
- the first aspect recognises that the destruction rate efficiency when trying to remove compounds from an effluent gas stream may be sub-optimal.
- existing abatement apparatus employ a DC-arc plasma torch coupled with an inlet assembly, a restriction, a mixing (Venturi) cone and a reaction tube where the abatement reaction takes place.
- PFC abatement is mainly achieved by injecting compressed dried air (CDA) as a reagent before the Venturi cone.
- CDA compressed dried air
- the reagent mix with PFC gases and the N 2 plasma plume before entering the "hot" reaction area, which exists after the cone and is delimited by a reaction tube (which may be made by ceramic cement but can be of other materials such as metal).
- O 2 reacts with the PFC gases before the gas temperature is reduced with a N 2 flow in the DeNO x section and by water sprays in the quench.
- two chemical reactions that can take place in the case of CF 4 abatement are: 2CF 4 + O 2 -> 2COF 2 + 2F 2 (dominant reaction) and CF 4 + O 2 -> CO 2 + 2F 2 .
- SO 2 F 2 can be formed in larger amounts than more soluble by-products SO 2 , F 2 , HF.
- the first aspect also recognises that the presence of hydrogen concurrently with/instead of oxygen radicals can improve destruction rate efficiency of some compounds and greatly reduced the formation of noxious, hardly-soluble by-products.
- the introduction of such hydrogen radicals from a source gas like H 2 , CH 4 , C 3 H 8 etc. can be problematic, particularly when it is desired to minimise the presence of combustible compounds outside the abatement apparatus and the cost of operation of the equipment.
- a nozzle such as a plasma stream nozzle.
- the nozzle conveys or transport a plasma stream or jet between a plasma generator and a reaction chamber.
- the nozzle comprises a conduit.
- the conduit extends between and has an inlet and an outlet.
- the inlet receives the plasma stream.
- the outlet fluidly couples with the reaction chamber.
- the plasma stream is conveyed or transported by or through the conduit in an axial or elongate direction (or direction of flow).
- the nozzle is thermally-conductive and arranged to receive water which is heated by the nozzle to provide water vapour.
- the nozzle defines apertures, openings or nozzles. Those apertures deliver the water vapour in the axial direction which mixes with the plasma stream being conveyed.
- water is introduced into the plasma stream, which generates both hydrogen and oxygen radicals that help improve the destruction rate efficiency of the abatement apparatus.
- the nozzle itself helps pre-heat the water and vaporize it prior to delivery within the conduit in order to reduce the cooling effect on the plasma stream.
- Axial delivery is particularly useful when large flows of water reagent are required for the abatement and reduces quenching of the plasma stream. This provides for a particularly safe and convenient way to improve the destruction rate efficiency since no combustible materials are required to be supplied to the nozzle to generate those radicals.
- the conduit is defined by a wall defining the apertures therein and the apertures are arranged to deliver the water vapour into the conduit for mixing with the plasma stream when transiting therethrough.
- the conduit has a wall which may surround or circumscribe the plasma stream as it is conveyed or passes through the nozzle between the inlet and the outlet. The apertures deliver the water vapour into or proximate the conduit to be mixed with the plasma stream as it transits.
- the apertures are arranged to deliver the water vapour for mixing with the plasma stream when transiting into the reaction chamber. Accordingly, the apertures may deliver the water vapour to be mixed with the plasma stream as it passes into the reaction chamber.
- the apertures are oriented to deliver the water vapour axially into the conduit.
- Delivering the water vapour into the plasma stream in a direction having an axial component helps to maintain the stability of flow of the plasma stream through the conduit and/or the reaction chamber.
- This configuration is particularly useful when large flows of water reagent are required for the abatement. That is to say that the water vapour enters the conduit and/or the reaction chamber and/or the plasma stream in a direction with at least an axial component with respect to the conduit and/or the plasma stream.
- the nozzle comprises a plurality of the apertures. This helps to provide for a uniform distribution and/or an increased volume of water and subsequent radicals throughout the plasma stream.
- the plurality of the apertures are positioned circumferentially around at least one of the nozzle and the conduit.
- the plurality of the apertures are fluidly coupled with a gallery concentrically surrounding the conduit, the gallery being arranged to receive the water for delivery to the plurality of the apertures.
- the provision of a gallery is a convenient arrangement for delivery of water from a single source to multiple apertures.
- the gallery comprises an inlet for receiving the water.
- the nozzle is arranged to be heated by direct exposure to the plasma stream.
- the conduit comprises a restriction operable to generate turbulent flow to mix the water vapour with the plasma stream. Generating turbulent flow with a restriction or discontinuity in or on the wall of the conduit helps to mix the water vapour with the plasma stream.
- the water comprises at least one of water droplets and water vapour.
- the nozzle comprises an aerosol device operable to generate the water droplets.
- the nozzle comprises a control device operable to control delivery of water to the aerosol device.
- the inlet is arranged to receive the plasma stream together with an effluent stream.
- the nozzle comprises the plasma generator positioned upstream of the inlet.
- the plasma generator comprises a DC-arc, a microwave or an inductively-coupled discharge apparatus, which creates the plasma stream, plume or plasma jet.
- the nozzle comprises a process inlet arranged to deliver the effluent stream to the inlet.
- the nozzle comprises the reaction chamber positioned downstream of the outlet.
- the method comprises fluidly coupling the plurality of the apertures with a gallery concentrically surrounding the conduit and receiving the water using the gallery for delivery to the plurality of the apertures.
- the method comprises receiving the water at an inlet of the gallery.
- the method comprises heating the nozzle by direct exposure to the plasma stream.
- the method comprises generating turbulent flow to mix the water vapour with the plasma stream using a restriction within the conduit
- the method comprises receiving the plasma stream together with an effluent stream at the inlet.
- the method comprises positioning the plasma generator upstream of the inlet.
- the plasma generator comprises a DC-arc, a microwave or an inductively-coupled discharge apparatus, which creates the plasma stream, plume or plasma jet.
- the method comprises delivering the effluent stream a process inlet for delivery to the inlet.
- the method comprises positioning the reaction chamber downstream of the outlet.
- a nozzle for conveying a plasma stream from a plasma generator to a reaction chamber comprising: a conduit extending between an inlet arranged to receive the plasma stream and an outlet arranged to fluidly couple with the reaction chamber, the conduit being defined by a wall having at least one aperture therein, the aperture being arranged to deliver water vapour into the conduit for mixing with the plasma stream when transiting therethrough
- a method comprising: conveying a plasma stream from a plasma generator to a reaction chamber using a nozzle, the nozzle comprising a conduit extending between an inlet arranged to receive the plasma stream and an outlet arranged to fluidly couple with the reaction chamber, the conduit being defined by a wall having a plurality of apertures therein; and delivering water vapour through the plurality of apertures in a wall which defines the conduit for mixing with the plasma stream.
- the invention provides, according to claim 7, an abatement apparatus comprising the nozzle of the first aspect.
- Embodiments provide a technique for the safe generation of hydrogen and/or oxygen radicals to improve the destruction rate efficiency of a plasma abatement apparatus.
- liquid water is introduced into a nozzle which conveys the plasma stream to the reaction chamber in order to generate those radicals.
- the water may be injected or forced into the conduit or from a downstream face of the nozzle carrying the plasma stream and/or drawn in by a Venturi effect due to a pressure difference between the water and plasma stream flowing through the conduit into the reaction chamber.
- the nozzle itself typically pre-heats the water prior to being delivered to the nozzle conduit which both assists in nozzle cooling and in minimizing cooling of the plasma stream by the water.
- FIG. 1 illustrates a plasma abatement apparatus, generally 10, according to one embodiment.
- the plasma abatement apparatus has a plasma torch 20 comprising a cathode 30 and an anode 40.
- the anode 40 comprises an annular structure which defines a tubular void, with the cathode 30 being coaxially aligned with an elongate axis of that tubular void.
- a nozzle 50 is coaxially aligned with the plasma torch 20, located further along the elongate axis, away from the anode 40.
- the nozzle 50 also comprises an annular structure defining a tubular conduit extending along the elongate axis.
- the nozzle 50 comprises a water dispenser 55 arranged to convey water for delivery into the tubular conduit and/or from a downstream face 57 of the nozzle 50. In each of those delivery arrangements, the water may be conveyed into the conduit and/or reaction chamber 70 with axial, radial and/or tangential directional components of flow.
- the nozzle 50 is received within a concentrically-surrounding casing 60 which defines a reaction chamber 70.
- the casing 60 is cooled by a water jacket 80.
- a plasma-forming gas stream 80 is introduced between the cathode 30 and the anode 40 which are electrically charged and undergo a DC arc discharge to generate a plasma stream 90 which flows in a direction of flow A which is aligned with the elongate axis.
- the plasma stream 90 flows through the tubular conduit of the anode 40 and exits towards the nozzle 50.
- An effluent gas stream 100 typically together with a compressed dried air stream 110, enters the tubular conduit of the nozzle 50.
- water dispenser 55 As the combined plasma stream 90, effluent gas stream 100 and compressed dried air stream 110 travel through the nozzle 50 towards the reaction chamber 70, water is dispensed by the water dispenser 55.
- the water dispensed by the water dispenser 55 generates hydrogen and oxygen radicals which also enter the reaction chamber 70 where abatement of compounds within the effluent gas stream 100 occurs.
- Figure 2a illustrates a nozzle, 50A.
- An upstream inlet 51A has a bevelled edge which defines a conical structure into which the combined plasma stream 90, effluent gas stream 100 and compressed dried air stream 110 can be optionally received.
- the tubular inner wall 52A extends from the inlet 51A to an outlet 53A.
- Four apertures 54A are positioned circumferentially around the inner wall 52A at a position along the elongate axis.
- the apertures 54A in this example, are uniformly distributed around the inner wall 52A, spaced 90 degrees apart.
- the apertures 54A are orientated to deliver water radially into the tubular conduit for mixing with the combined plasma stream 90, effluent gas stream 100 and compressed dried air stream 110.
- apertures 54A are shown positioned along the elongate axis, it will be appreciated that they may also be positioned around the outlet 53A and orientated to deliver water radially into the downstream reaction chamber for mixing with the combined plasma stream 90, effluent gas stream 100 and compressed dried air stream 110. This embodiment with radial water delivery is not part of the invention.
- a gallery 55A is provided which communicates with each aperture 54A in order to convey water to each aperture 54A.
- the nozzle 50A is thermally conductive and so pre-heats the water prior to being dispensed through the apertures 54A.
- the combined plasma stream 90 and effluent gas stream 100 mix with the dispensed water and exit the outlet 53A and enter the reaction chamber 70.
- Compressed dried air 110 can be added upstream to this mix, depending on the species present in the effluent gas stream to abate.
- Figure 2b illustrates a nozzle 50B, according to one embodiment.
- the arrangement of this nozzle 50B is identical to the arrangement described above with the exception that the apertures 54B are instead orientated to deliver the water in the elongate axial direction.
- the water is dispensed downstream of a discontinuity 56B, which causes turbulence to promote mixing between the water and the combined plasma stream 90, effluent gas stream 100 and compressed dried air stream 110.
- apertures 54B are shown positioned along the elongate axis, it will be appreciated that they may also be positioned around the outlet 53B (for example, the discontinuity 56B may be omitted) and orientated to deliver water axially into the downstream reaction chamber 70 from the downstream face 57B of the nozzle 50B which couples with the reaction chamber 70 for mixing with the combined plasma stream 90, effluent gas stream 100 and compressed dried air stream 110.
- These embodiments are particularly suitable for treating effluent gas streams requiring high flows of water as a reagent. Delivering the heated water axially helps to form a layered concentric shroud of heated water which mixes with the effluent gas stream 100 and compressed dried air stream 110 and helps prevent quenching of the plasma stream 90.
- a gallery 55B is provided which communicates with each aperture 54B in order to convey water to each aperture 54B.
- Figure 2c illustrates a nozzle, generally 50C, according to one embodiment.
- the arrangement of this nozzle 50C is identical to the arrangement described above with the exception that the apertures 54C are instead orientated to deliver the water in a tangential axial direction.
- these apertures 54C are shown positioned along the elongate axis, it will be appreciated that they may also be positioned around the outlet 53C and orientated to deliver water radially into the downstream reaction chamber for mixing with the combined plasma stream 90, effluent gas stream 100 and compressed dried air stream 110.
- This embodiment is particularly suited to enhancing the mixing of the effluent gas stream with the water as a reagent.
- a gallery 55C is provided which communicates with each aperture 54C in order to convey water to each aperture 54C.
- apertures which introduce water into the tubular conduit and/or the reaction chamber with a radial and/or tangential and/or axial component.
- the water may be introduced at one or more different locations along the elongate axis of the tubular conduit, either with or without a discontinuity.
- the location and number of apertures may be adjusted to suit individual requirements.
- different apertures of the plurality of apertures may be orientated in different directions.
- Embodiments provide a technique to inject water as a reagent in a thermal plasma abatement system.
- the water is vaporized by the plasma hot temperature in the vicinity of the injection nozzles featured by the speciallydesigned mixing cone (Venturi).
- This technique aims at delivering the "right" amount of water and at the "most appropriate” point of the abatement reaction zone in order to minimize both NO x emissions and concurrently improve abatement efficiency.
- This method can tackle chemical by-products originating from PFC abatement as well as improving abatement performances of halogens such as F 2 and Cl 2 currently achieved by plasma abatement systems.
- the vaporization is achieved without employing an expensive evaporator or other complex, "gold plated” solutions.
- Embodiments utilise different nozzle positions and different devices to feed the liquid water to them.
- Embodiments aim to solve the by-products reductions and improve halogen DRE performances.
- Table 1 reports some experimental evidence for the case of SF 6 by-products.
- SOF 2 , SO 2 F 2 and SO 2 have a known toxicity and a tabulated concentration, considered to be of Immediate Danger to Life and Health (IDLH).
- the experimental data shows below-IDLH emissions of SF6 by-products (SO 2 F 2 , SOF 2 , SO 2 ) if H 2 O is used instead of CDA.
- Table 2 shows some experimental data in the case of Cl 2 abatement. If H 2 O is used instead of CDA, a lower plasma power can be used to treat Cl 2 below IDLH concentrations.
- the invention uses the hot temperature at which the nozzle 50 is running to convert liquid water into water vapour.
- the primary function of the nozzle 50 is to mix the effluent gas with the "hot" plasma stream, jet or plume 90.
- the nozzle 50 is made of corrosion resistant metal alloys (such as but not limited to stainless steel, hastelloy, monel etc.), it can be thermally-conductive. In this way, the nozzle 50 can be watercooled on its outer edge (hence preserving its gas and water seals), while it can still experience high temperatures on its inner ring, which is in contact with the "hot" plasma stream or plume 90.
- the steam generated around the annular chamber due to the plasma proximity is expelled by small nozzles and eventually converted into plasma radicals inside the reaction section in order to form compounds with the effluent gas which are easier to water-scrub.
- Figure 3 illustrates a summarized change of state of the water reagent.
- the liquid water can be fed in different ways.
- a needle valve can be used with a rotameter or ultrasonic flowmeter to measure the flow. Also envisaged is the use of a liquid mass flow controller (MFC) or a syringe pump.
- MFC liquid mass flow controller
- a bubbler coupled with a needle valve and a flow-measurement device is a further alternative.
- FIG 4 illustrates an aerosol device (which is similar to a bubbler) according to one embodiment which comprises an immersed semi-permeable membrane 120 in a shaft 130 where some water flows and generates water droplets for delivery to the nozzles.
- the purge gas can be nitrogen or CDA and allows the fine control of the amount of water fed to the annular chamber. This arrangement is particular useful when CDA has to be used concurrently with H 2 O to abate flammables such as chemical vapour deposition (CVD) precursors.
- the water exerts a pressure onto the membrane and creates some droplets in a small nitrogen flow stream; not shown the needle valve that allows to control water pressure and hence the amount of water passed into the aerosol.
- the annular chamber feeds the nozzles and which are positioned to provide the injection just after the plasma super-sonic expansion of the plasma stream, jet or plume 90.
- H 2 O can immediately convert F 2 /Cl 2 radicals originating from PFCs, BCl 3 , SiF 4 and/or SiCl 4 in the effluent stream to HF/HCl rather than leaving their treatment further downstream in the wet stages.
- Embodiments are particularly suited to semiconductor etch markets where PFC gases and halogens have to be abated.
- a small amount of reagent water is required and the nozzles can be directed in the radial direction, perpendicularly to the flare.
- the same concept can be utilized to abate effluent gases originating in clean steps typical of CVD process.
- large amounts of F 2 are generated by NF 3 used in remote plasma cleaning and have to be dealt with a plasma abatement apparatus.
- FPD etch processes employ larger amount of halogens/PFCs than semiconductor etch.
- REFERENCE SIGNS plasma abatement apparatus 10 plasma torch 20 cathode 30 anode 40 nozzle 50; 50A; 50B; 50C inlet 51A; inner wall 52A; outlet 53A; 53B; 53C aperture 54A; 54B; 54C water dispenser/gallery 55; 55A; 55B; 55C discontinuity 56B downstream face 57; 57B casing 60 reaction chamber 70 plasma forming gas stream 80 plasma stream/jet/plume 90 effluent gas stream 100 compressed dried air stream 110 membrane 120 shaft 130 direction of flow A
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Health & Medical Sciences (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Plasma Technology (AREA)
- Treating Waste Gases (AREA)
- Telephone Function (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1716185.2A GB2567168A (en) | 2017-10-04 | 2017-10-04 | Nozzle and method |
PCT/GB2018/052804 WO2019069066A1 (en) | 2017-10-04 | 2018-10-01 | NOZZLE FOR TRANSPORTING A PLASMA FLOW FOR PLASMA ABATEMENT AND METHOD THEREOF |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3692770A1 EP3692770A1 (en) | 2020-08-12 |
EP3692770B1 true EP3692770B1 (en) | 2023-03-22 |
Family
ID=60270267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18782177.2A Active EP3692770B1 (en) | 2017-10-04 | 2018-10-01 | A nozzle for conveying a plasma stream for plasma abatment and related method |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3692770B1 (zh) |
KR (1) | KR102676559B1 (zh) |
CN (1) | CN111149437B (zh) |
GB (1) | GB2567168A (zh) |
SG (1) | SG11202003132PA (zh) |
TW (1) | TWI796368B (zh) |
WO (1) | WO2019069066A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113908482A (zh) * | 2021-11-11 | 2022-01-11 | 应急管理部上海消防研究所 | 一种消防应急救援用免水洗消技术装备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6187226B1 (en) * | 1995-03-14 | 2001-02-13 | Bechtel Bwxt Idaho, Llc | Thermal device and method for production of carbon monoxide and hydrogen by thermal dissociation of hydrocarbon gases |
KR19990017420A (ko) * | 1997-08-23 | 1999-03-15 | 김징완 | 플라즈마를 이용한 난분해성 가스 처리방법 |
JP2000334294A (ja) * | 1999-05-31 | 2000-12-05 | Shinmeiwa Auto Engineering Ltd | 代替フロンのプラズマアーク分解方法及び装置 |
JP2001009233A (ja) * | 1999-06-30 | 2001-01-16 | Daihen Corp | フロン等のプラズマアーク分解無害化装置 |
GB0403797D0 (en) * | 2004-02-20 | 2004-03-24 | Boc Group Plc | Gas abatement |
KR100822048B1 (ko) * | 2006-06-07 | 2008-04-15 | 주식회사 글로벌스탠다드테크놀로지 | 플라즈마 토치를 이용한 폐가스 처리장치 |
US20100258510A1 (en) * | 2009-04-10 | 2010-10-14 | Applied Materials, Inc. | Methods and apparatus for treating effluent |
US20140262033A1 (en) * | 2013-03-13 | 2014-09-18 | Applied Materials, Inc. | Gas sleeve for foreline plasma abatement system |
CN103354695B (zh) * | 2013-07-25 | 2016-02-24 | 安徽省新能电气科技有限公司 | 一种电弧通道直径异形的电弧等离子体炬 |
CN104302086A (zh) * | 2014-10-31 | 2015-01-21 | 四川大学 | 具有气压缩效应的等离子发生器进气结构 |
GB2534890A (en) * | 2015-02-03 | 2016-08-10 | Edwards Ltd | Thermal plasma torch |
GB2540992A (en) * | 2015-08-04 | 2017-02-08 | Edwards Ltd | Control of gas flow and power supplied to a plasma torch in a multiple process chamber gas treatment system |
-
2017
- 2017-10-04 GB GB1716185.2A patent/GB2567168A/en not_active Withdrawn
-
2018
- 2018-10-01 CN CN201880064937.1A patent/CN111149437B/zh active Active
- 2018-10-01 KR KR1020207009676A patent/KR102676559B1/ko active IP Right Grant
- 2018-10-01 SG SG11202003132PA patent/SG11202003132PA/en unknown
- 2018-10-01 EP EP18782177.2A patent/EP3692770B1/en active Active
- 2018-10-01 WO PCT/GB2018/052804 patent/WO2019069066A1/en unknown
- 2018-10-04 TW TW107135061A patent/TWI796368B/zh active
Also Published As
Publication number | Publication date |
---|---|
KR102676559B1 (ko) | 2024-06-18 |
KR20200062218A (ko) | 2020-06-03 |
GB2567168A (en) | 2019-04-10 |
GB201716185D0 (en) | 2017-11-15 |
CN111149437A (zh) | 2020-05-12 |
CN111149437B (zh) | 2023-08-15 |
WO2019069066A1 (en) | 2019-04-11 |
TWI796368B (zh) | 2023-03-21 |
TW201922353A (zh) | 2019-06-16 |
EP3692770A1 (en) | 2020-08-12 |
SG11202003132PA (en) | 2020-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5347183B2 (ja) | ガス流からフッ素を除去するための方法及び装置 | |
KR101995211B1 (ko) | 배기 가스 처리 장치 | |
JP5020749B2 (ja) | ガス処理装置およびガス処理方法 | |
KR100945038B1 (ko) | 플라즈마 반응기와 이를 이용한 플라즈마 스크러버 | |
KR101949478B1 (ko) | 촉매 연소를 이용한 과불화 화합물 처리 장치 및 그 방법 | |
EP3692770B1 (en) | A nozzle for conveying a plasma stream for plasma abatment and related method | |
KR101490540B1 (ko) | 플라즈마 반응기 | |
US7220396B2 (en) | Processes for treating halogen-containing gases | |
KR102564755B1 (ko) | 입구 조립체 및 입구 조립체 작동 방법 | |
KR102264128B1 (ko) | 질소산화물 저감을 위한 반도체 공정용 스크러버 장치 및 스크러버 시스템 | |
TW202021657A (zh) | 有害氣體分解用反應器 | |
EP2744587B1 (en) | Apparatus for treating a gas stream | |
TW201938248A (zh) | 減排 | |
JP2004216231A (ja) | 高周波プラズマによる化合物分解方法および化合物分解装置 | |
KR102362761B1 (ko) | 가스 처리 장치 | |
KR20210022897A (ko) | 스크러버용 버너 | |
KR20090132145A (ko) | 폐가스 처리장치 | |
KR102284143B1 (ko) | 과불화합물과 질소산화물 제거 시스템 | |
US20240297022A1 (en) | Indpendent dilution inject for remote plasma oxidation | |
WO2024228006A1 (en) | Plasma foreline and related method | |
TWI337891B (en) | Oxygen feeding device and gas scrubber using the same | |
JP2024074691A (ja) | 燃焼ノズル及び燃焼式排ガス処理装置 | |
JP2024532466A (ja) | 半導体処理用インライン水スクラバーシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200423 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220228 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20221114 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KO, CHAN KYOO Inventor name: CHOI, YUN SOO Inventor name: MAGNI, SIMONE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018047509 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1556033 Country of ref document: AT Kind code of ref document: T Effective date: 20230415 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230505 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230622 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1556033 Country of ref document: AT Kind code of ref document: T Effective date: 20230322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230623 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230724 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230722 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231026 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018047509 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231027 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231023 Year of fee payment: 6 Ref country code: IE Payment date: 20231027 Year of fee payment: 6 Ref country code: FR Payment date: 20231025 Year of fee payment: 6 Ref country code: DE Payment date: 20231027 Year of fee payment: 6 |
|
26N | No opposition filed |
Effective date: 20240102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230322 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |