EP3686567A1 - Metallized dielectric waveguide - Google Patents

Metallized dielectric waveguide Download PDF

Info

Publication number
EP3686567A1
EP3686567A1 EP19153596.2A EP19153596A EP3686567A1 EP 3686567 A1 EP3686567 A1 EP 3686567A1 EP 19153596 A EP19153596 A EP 19153596A EP 3686567 A1 EP3686567 A1 EP 3686567A1
Authority
EP
European Patent Office
Prior art keywords
dielectric conductor
dielectric
conductor arrangement
conductor core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19153596.2A
Other languages
German (de)
French (fr)
Other versions
EP3686567B1 (en
Inventor
Klaus Kienzle
Steffen WÄLDE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Priority to EP19153596.2A priority Critical patent/EP3686567B1/en
Priority to US16/738,608 priority patent/US11557841B2/en
Priority to CN202010064040.8A priority patent/CN111478005A/en
Publication of EP3686567A1 publication Critical patent/EP3686567A1/en
Application granted granted Critical
Publication of EP3686567B1 publication Critical patent/EP3686567B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/28Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/006Manufacturing dielectric waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • H01P3/165Non-radiating dielectric waveguides

Definitions

  • the invention relates to a dielectric conductor arrangement, a method for producing a dielectric conductor arrangement, a fill level radar and a use.
  • a level radar For level measurement or for determining the level, for example in a container, a level radar is used, for example, to measure a certain level of a product, e.g. in the container.
  • radar waves are used, which are generated in a high-frequency unit and emitted by an antenna unit.
  • the radar waves and / or microwaves of higher frequencies are in many cases with the help of rigid metallic waveguides that are mixed with a gas - e.g. Air - filled, transferred.
  • the lack of mechanical flexibility of these waveguides can restrict the design and / or construction of level radars.
  • a first aspect of the invention relates to a dielectric conductor arrangement for the transmission of microwaves.
  • the dielectric conductor arrangement has a dielectric conductor core made of a solid. Furthermore, the dielectric conductor arrangement has a coating which, at least in sections, surrounds the entire circumference of the conductor core without a gap and which consists of a thin conductive layer.
  • the microwaves comprise at least one frequency range of the radar waves.
  • the microwaves cover a frequency range from 1 to 300 GHz, for example over 60 GHz, for example over 200 GHz.
  • a dielectric conductor core has a dielectric constant ⁇ r of greater than 1.5, in particular greater than 3.
  • the dielectric conductor core is a solid.
  • the solid is selected so that the microwaves are attenuated only slightly.
  • the solid can for example have a plastic, glass fiber or ceramic or consist of a plastic, glass fiber or ceramic.
  • the solid is flexible.
  • the solid can be designed to have a bending radius of more than 20 cm, in particular less than 4 cm.
  • the solid can be designed so that it is approved for a temperature range up to 250 ° C. Some solids, such as ceramic fiber, can be approved up to 450 ° C.
  • the coating of the dielectric conductor arrangement consists of a thin conductive layer. This layer surrounds the entire circumference of the conductor core without a gap, at least in sections.
  • the thin conductive layer further contributes to an improvement in wave propagation in the dielectric conductor arrangement.
  • the conductive layer improves the immunity to interference. On the one hand, this reduces the immissions of interference sources in the conductor core, and on the other hand, the radiation of the microwaves from the conductor core is significantly reduced.
  • connection points of the dielectric conductor arrangement may have no or no complete conductive layer.
  • the connection points can e.g. be arranged at a joint, in which two line sections are joined together.
  • Junction points can e.g. also be arranged at the beginning and / or at the end of the conductor arrangement, where the microwaves are coupled in and / or out, for example. Techniques which are known in the prior art can be used, for example, for the coupling in and / or out of the microwaves.
  • the combination of the features mentioned can considerably improve and / or simplify the transmission of microwaves and the handling of a conductor arrangement for the transmission of microwaves.
  • this can simplify the manufacture of measuring devices for level measurement or for determining the level, for example a level radar.
  • the flexibility of the conductor arrangement simplifies its handling. This can contribute to a reduction in the costs for the manufacture and / or maintenance of the conductor arrangement or of devices which comprise this conductor arrangement. Due to the flexibility, the conductor arrangement can also be designed to be bendable and, to a certain extent, even to be able to be wound up.
  • the conductor arrangement is set up to have a bending radius of less than 20 cm, in particular less than 4 cm. This further increases the flexibility of the conductor arrangement.
  • the dielectric conductor core is essentially cylindrical. This design can further contribute to low microwave attenuation.
  • the dielectric conductor core can be elliptical or rectangular.
  • the dielectric conductor core has polytetrafluoroethylene, PTFE, polyether ether ketone, PEEK, polypropylene, PP, polyethylene, PE, ceramic and / or a temperature-resistant glass fiber, or the conductor core consists of at least one of these materials.
  • these materials can advantageously combine good availability of the materials and good transmission properties. At least some of these materials can also be cheaper than, for example, rigid metallic waveguides.
  • the coating has a conductivity of greater than 30 ⁇ 10 6 S / m, for example greater than 50 ⁇ 10 6 S / m.
  • a conductivity of greater than 30 ⁇ 10 6 S / m can contribute to a further reduction in immissions from sources of interference in the conductor core. On the other hand, this can significantly reduce the radiation of the microwaves from the conductor core.
  • the coating has metal, in particular copper, silver, gold, palladium, alloys made from these metals, conductive materials, in particular metallized plastics, graphene, a ductile conductive material and / or a combination of the materials mentioned.
  • metal in particular copper, silver, gold, palladium, alloys made from these metals, conductive materials, in particular metallized plastics, graphene, a ductile conductive material and / or a combination of the materials mentioned.
  • conductive materials in particular metallized plastics, graphene, a ductile conductive material and / or a combination of the materials mentioned.
  • the choice of materials for the coating can be determined by material properties such as brittleness, applicability and / or costs.
  • the coating has a thickness between 20 ⁇ m and 200 ⁇ m, in particular between 50 ⁇ m and 100 ⁇ m. This has proven to be a good compromise between good shielding, simple handling and a good cost structure.
  • the coating has conductive lacquer, for example silver conductive lacquer.
  • the conductive lacquer is applied by brushing, spraying, dipping and / or other methods. In experiments, this has proven to be advantageous for the purposes mentioned above.
  • One advantage of this method is that the area between the waveguide and the metallization is always gap-free due to the manufacturing process; As a result, the microwaves are optimally guided in the waveguide.
  • the coating is applied to the dielectric conductor core using a thin-film technique.
  • the coating is applied to the dielectric conductor core by means of physical vapor deposition, in particular by means of sputter deposition or thermal evaporation, by means of chemical vapor deposition, in particular by means of plasma-assisted chemical vapor deposition, by means of thermal spraying, and / or by means of electroplating, in particular by means of plastic electroplating.
  • physical vapor deposition in particular by means of sputter deposition or thermal evaporation
  • chemical vapor deposition in particular by means of plasma-assisted chemical vapor deposition
  • thermal spraying / or by means of electroplating, in particular by means of plastic electroplating.
  • the dielectric waveguide can be shaped first and then coated and / or metallized. This can be advantageous, for example, if a waveguide is to be wound up relatively tightly, for example in a spiral.
  • the diameter of the dielectric conductor core is selected such that only the basic mode of the microwaves can be propagated in a predefined frequency range.
  • the predefined frequency range may depend on further specifications of the system in which the conductor arrangement is installed.
  • the basic mode of microwaves is also called TE 11 mode or H 11 mode in the round waveguide. In the rectangular waveguide, the basic mode is called TE 10 or H 10 .
  • This embodiment can result in lower signal falsifications, which are caused, for example, by (disruptive) dispersion of the signal. This embodiment can be used particularly advantageously for signal transmission over further distances.
  • the coating is also coated and / or coated with a material for shock absorption. This can be particularly advantageous if the conductor arrangement is used outside of a protective housing.
  • the level radar has a high-frequency unit that is set up to generate a microwave signal.
  • it has an antenna unit that is used to radiate the microwave signal is set up.
  • the fill level radar has a dielectric conductor arrangement as described above and / or below, which is set up to transmit the microwave signal generated by the high-frequency unit to the antenna unit.
  • the dielectric conductor arrangement can be used, for example, to bridge a distance between the high-frequency unit and the antenna unit. This can be advantageous, for example, in order to achieve a predefined runtime between the two units or, for example, to decouple the temperature of the two units.
  • the dielectric conductor arrangement is designed in several parts.
  • the connection of the sections of the dielectric conductor arrangement can e.g. be cut exactly flat or cut at exactly the same angle and surrounded by a metallic or metallized sleeve.
  • the inner diameter of the sleeve can be adapted exactly to the outer diameter of the metallized waveguide. This can result in a gap-free microwave connection, which holds itself due to the fit of the parts.
  • the connection can be designed to be detachable or non-detachable.
  • the dielectric conductor arrangement is arranged in a spiral, at least in sections. This is possible because of the flexibility of the conductor arrangement. This can contribute to a reduction in the costs for the manufacture and / or maintenance of the conductor arrangement or of devices which comprise this conductor arrangement.
  • the dielectric conductor core can be shaped before and / or after the coating has been applied.
  • the application before the application of the coating can be advantageous, for example, if the waveguide is to be wound relatively closely, for example in a spiral.
  • the predefined angle can be 90 ° or an acute angle, in particular an angle between 30 ° and 60 °, for example between 40 ° and 50 °.
  • the ends of the first and the second dielectric conductor core are cut exactly flat if possible. The ends are then joined together until contact or stop. This can be done before and / or after encasing the end areas by means of the metallic or metallized sleeve. In this way, an essentially gap-free microwave connection can be created, which holds itself due to the fit of the parts.
  • the connection can also be positively, non-positively and / or materially connected, e.g. glued or and / or fixed with a shrink tube or otherwise.
  • connection between the first dielectric conductor core and the second dielectric conductor core is designed to be detachable. This simplifies the reconfiguration of the conductor arrangement, for example during a repair and / or maintenance.
  • Another aspect of the invention relates to the use of a dielectric conductor arrangement as described above and / or below for the transmission of microwaves in a frequency range from approximately 80 GHz to approximately 300 GHz, in particular approximately 240 GHz
  • Fig. 1 shows a schematic sketch of a level measuring device or level radar 40 according to an embodiment.
  • the fill level radar 40 has a high-frequency unit 42 which is set up to generate a microwave signal.
  • it has an antenna unit 44 which is set up to emit the microwave signal.
  • the antenna unit 44 can be arranged, for example, by means of a flange on the container with the filling material to be measured.
  • the radio-frequency unit 42 and the antenna unit 44 are connected by means of a dielectric conductor arrangement 10, which is used to transmit the microwave signal generated by the radio-frequency unit 42 to the antenna unit 44 is set up.
  • the microwave signal is emitted, for example, by means of the antenna unit 44, to which an antenna horn 45 can be attached for better bundling.
  • High temperatures for example up to 250 ° C. or even up to 450 ° C., may be present in the area of the antenna unit 44. Therefore, the conductor arrangement 10 can contribute to the thermal decoupling of antenna unit 44 and high-frequency unit 42. Furthermore, the conductor arrangement 10 is designed to be temperature-resistant to these high temperatures.
  • Fig. 2 shows a schematic sketch of a level measuring device 40 according to a further embodiment.
  • the fill level radar 40 has a high-frequency unit 42 which is set up to generate a microwave signal.
  • it has an antenna unit 44 which is set up to emit the microwave signal.
  • the antenna unit 44 can have a screw-in thread 46.
  • the high-frequency unit 42 and the antenna unit 44 are connected by means of a dielectric conductor arrangement 10, which is set up to transmit the microwave signal generated by the high-frequency unit 42 to the antenna unit 44.
  • the conductor arrangement 10 is designed spirally, for example in order to achieve a predefined propagation time between the high-frequency unit 42 and the antenna unit 44 or, for example, for temperature decoupling. This configuration is possible in particular through the flexibility of the conductor arrangement 10.
  • Fig. 3a shows a schematic sketch of a connection of two conductor arrangements 10 according to an embodiment.
  • One end 21a of a first dielectric conductor core 20a and one end 21b of a second dielectric conductor core 20b are cut off at a predefined angle w.
  • the end 21a of the first dielectric conductor core 20a and the end 21b of the second dielectric conductor core 20b have the same angle w, in the exemplary embodiment shown 90 °.
  • End regions 22a and 22b of the conductor cores 20a and 20b are encased in a metallic or metallized sleeve 25.
  • the end regions 22a and 22b can, at least in sections, have a coating 30a and 30b.
  • the sleeve 25 can be connected to at least one of the conductor cores 20a and 20b or to the coating 30a and 30b in a form-fitting, force-fitting and / or material-locking manner, for example glued or and / or fixed with a shrink tube or otherwise.
  • the connection can be designed to be detachable or non-detachable.
  • Fig. 3b shows a schematic sketch of a connection of two conductor arrangements 10 according to a further embodiment.
  • the Fig. 3b differs from Fig. 3a by the angle w, which at Fig. 3b is an acute angle.
  • the conductor cores 20a and 20b have the same angle w.
  • Fig. 4 15 shows a flow diagram 50 of a method according to an embodiment.
  • a dielectric conductor core 20 (see figures above) is provided as specified in the above description.
  • a coating 30 is applied at least in sections.
  • the coating 30 surrounds the entire circumference of the conductor core 20 without a gap and consists of a thin conductive layer.
  • the dielectric conductor core can be brought into shape, for example in a spiral shape, before and / or after the application of the coating.

Abstract

Die Erfindung betrifft eine dielektrische Leiteranordnung, ein Verfahren zur Herstellung einer dielektrischen Leiteranordnung, ein Füllstandradar und eine Verwendung. Die dielektrische Leiteranordnung 10 weist einen dielektrischen Leiterkern 20 aus einem Feststoff auf. Weiterhin weist die dielektrische Leiteranordnung eine Beschichtung 30 auf, die zumindest abschnittsweise den gesamten Umfang des Leiterkerns spaltfrei 20 umgibt und die aus einer dünnen leitfähigen Schicht besteht.The invention relates to a dielectric conductor arrangement, a method for producing a dielectric conductor arrangement, a fill level radar and a use. The dielectric conductor arrangement 10 has a dielectric conductor core 20 made of a solid. Furthermore, the dielectric conductor arrangement has a coating 30 which, at least in sections, surrounds the entire circumference of the conductor core 20 without a gap and which consists of a thin conductive layer.

Description

Gebiet der ErfindungField of the Invention

Die Erfindung betrifft eine dielektrische Leiteranordnung, ein Verfahren zur Herstellung einer dielektrischen Leiteranordnung, ein Füllstandradar und eine Verwendung.The invention relates to a dielectric conductor arrangement, a method for producing a dielectric conductor arrangement, a fill level radar and a use.

Hintergrundbackground

Zur Füllstandmessung oder zur Grenzstandbestimmung, beispielsweise in einem Behälter, wird beispielsweise ein Füllstandradar eingesetzt, um einen bestimmten Pegel eines Füllguts, z.B. in dem Behälter, anzuzeigen. Dazu werden Radarwellen eingesetzt, die in einer Hochfrequenzeinheit erzeugt und von einer Antenneneinheit abgestrahlt werden. Mit zunehmender Frequenz wird es allerdings immer schwieriger, die Radarwellen mit Hilfe eines Koaxialkabels zu übertragen. Deshalb werden die Radarwellen und/oder Mikrowellen höherer Frequenzen in vielen Fällen mit Hilfe von starren metallischen Hohlleitern, die mit einem Gas - z.B. Luft - gefüllt sind, übertragen. Die mangelnde mechanische Flexibilität dieser Hohlleiter kann jedoch die Konstruktion und/oder den Aufbau von Füllstandradaren einschränken.For level measurement or for determining the level, for example in a container, a level radar is used, for example, to measure a certain level of a product, e.g. in the container. For this purpose, radar waves are used, which are generated in a high-frequency unit and emitted by an antenna unit. However, as the frequency increases, it becomes increasingly difficult to transmit the radar waves using a coaxial cable. Therefore, the radar waves and / or microwaves of higher frequencies are in many cases with the help of rigid metallic waveguides that are mixed with a gas - e.g. Air - filled, transferred. However, the lack of mechanical flexibility of these waveguides can restrict the design and / or construction of level radars.

Zusammenfassung der ErfindungSummary of the invention

Es ist eine Aufgabe der Erfindung, eine Leiteranordnung zur Übertragung von Radarwellen zur Verfügung zu stellen, die eine mechanische Flexibilität aufweist.It is an object of the invention to provide a conductor arrangement for transmitting radar waves which has mechanical flexibility.

Diese Aufgabe wird durch den Gegenstand der unabhängigen Patentansprüche gelöst. Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung.This object is achieved by the subject matter of the independent claims. Further developments of the invention result from the subclaims and the following description.

Ein erster Aspekt der Erfindung betrifft eine dielektrische Leiteranordnung zur Übertragung von Mikrowellen. Die dielektrische Leiteranordnung weist einen dielektrischen Leiterkern aus einem Feststoff auf. Weiterhin weist die dielektrische Leiteranordnung eine Beschichtung auf, die zumindest abschnittsweise den gesamten Umfang des Leiterkerns spaltfrei umgibt und die aus einer dünnen leitfähigen Schicht besteht.A first aspect of the invention relates to a dielectric conductor arrangement for the transmission of microwaves. The dielectric conductor arrangement has a dielectric conductor core made of a solid. Furthermore, the dielectric conductor arrangement has a coating which, at least in sections, surrounds the entire circumference of the conductor core without a gap and which consists of a thin conductive layer.

Die Mikrowellen umfassen mindestens einen Frequenzbereich der Radarwellen. Die Mikrowellen umfassen einen Frequenzbereich von 1 bis 300 GHz, beispielsweise von über 60 GHz, z.B. von über 200 GHz. Ein dielektrischer Leiterkern weist eine Dielektrizitätszahl εr von größer 1,5, insbesondere von größer 3, auf. Der dielektrische Leiterkern ist ein Feststoff. Der Feststoff ist so gewählt, dass dadurch eine nur geringe Dämpfung der Mikrowellen stattfindet. Der Feststoff kann beispielsweise einen Kunststoff, Glasfaser oder Keramik aufweisen oder aus einem Kunststoff, Glasfaser oder Keramik bestehen. Der Feststoff ist flexibel ausgeführt. Dabei kann der Feststoff dazu eingerichtet sein, einen Biegeradius von als 20 cm, insbesondere von weniger als 4 cm, aufzuweisen. Der Feststoff kann so ausgeführt sein, dass er für einen Temperaturbereich bis 250°C zugelassen ist. Manche Feststoffe, beispielsweise Keramikfaser, können bis 450°C zugelassen sein.The microwaves comprise at least one frequency range of the radar waves. The microwaves cover a frequency range from 1 to 300 GHz, for example over 60 GHz, for example over 200 GHz. A dielectric conductor core has a dielectric constant ε r of greater than 1.5, in particular greater than 3. The dielectric conductor core is a solid. The solid is selected so that the microwaves are attenuated only slightly. The solid can for example have a plastic, glass fiber or ceramic or consist of a plastic, glass fiber or ceramic. The solid is flexible. The solid can be designed to have a bending radius of more than 20 cm, in particular less than 4 cm. The solid can be designed so that it is approved for a temperature range up to 250 ° C. Some solids, such as ceramic fiber, can be approved up to 450 ° C.

Die Beschichtung der dielektrischen Leiteranordnung besteht aus einer dünnen leitfähigen Schicht. Diese Schicht umgibt den gesamten Umfang des Leiterkerns spaltfrei, und zwar zumindest abschnittsweise. Die dünne leitfähige Schicht trägt weiterhin zu einer Verbesserung der Wellenfortpflanzung in der dielektrischen Leiteranordnung bei. Darüber hinaus führt die leitfähige Schicht zu einer Verbesserung der Störfestigkeit. Dadurch werden einerseits die Immissionen von Störquellen in den Leiterkern reduziert, und andrerseits wird die Abstrahlung der Mikrowellen aus dem Leiterkern deutlich reduziert.The coating of the dielectric conductor arrangement consists of a thin conductive layer. This layer surrounds the entire circumference of the conductor core without a gap, at least in sections. The thin conductive layer further contributes to an improvement in wave propagation in the dielectric conductor arrangement. In addition, the conductive layer improves the immunity to interference. On the one hand, this reduces the immissions of interference sources in the conductor core, and on the other hand, the radiation of the microwaves from the conductor core is significantly reduced.

Dabei können beispielsweise Anschlussstellen der dielektrischen Leiteranordnung keine oder keine vollständige leitfähige Schicht aufweisen. Die Anschlussstellen können z.B. an einer Fügestelle angeordnet sein, bei der zwei Leitungsabschnitte zusammengefügt werden. Anschlussstellen können z.B. auch am Beginn und/oder am Ende der Leiteranordnung angeordnet sein, wo die Mikrowellen beispielsweise ein- und/oder ausgekoppelt werden. Für die Ein- und/oder Auskopplung der Mikrowellen können beispielsweise Techniken verwendet werden, die im Stand der Technik bekannt sind.For example, connection points of the dielectric conductor arrangement may have no or no complete conductive layer. The connection points can e.g. be arranged at a joint, in which two line sections are joined together. Junction points can e.g. also be arranged at the beginning and / or at the end of the conductor arrangement, where the microwaves are coupled in and / or out, for example. Techniques which are known in the prior art can be used, for example, for the coupling in and / or out of the microwaves.

Die Kombination der genannten Merkmale kann die Übertragung von Mikrowellen und die Handhabung einer Leiteranordnung zur Übertragung von Mikrowellen erheblich verbessern und/oder vereinfachen. Insbesondere kann dadurch die Herstellung von Messgeräten zur Füllstandmessung oder zur Grenzstandbestimmung, beispielsweise ein Füllstandradar, vereinfacht werden. Insbesondere durch die Flexibilität der Leiteranordnung kann deren Handhabung vereinfacht werden. Dies kann zu einer Reduzierung der Kosten für die Herstellung und/oder die Wartung der Leiteranordnung bzw. von Geräten, welche diese Leiteranordnung umfassen, beitragen. Durch die Flexibilität kann die Leiteranordnung auch biegbar und bis zu einem gewissen Maße sogar aufwickelbar gestaltet sein.The combination of the features mentioned can considerably improve and / or simplify the transmission of microwaves and the handling of a conductor arrangement for the transmission of microwaves. In particular, this can simplify the manufacture of measuring devices for level measurement or for determining the level, for example a level radar. The flexibility of the conductor arrangement, in particular, simplifies its handling. This can contribute to a reduction in the costs for the manufacture and / or maintenance of the conductor arrangement or of devices which comprise this conductor arrangement. Due to the flexibility, the conductor arrangement can also be designed to be bendable and, to a certain extent, even to be able to be wound up.

In einer Ausführungsform ist die Leiteranordnung dazu eingerichtet, einen Biegeradius von weniger als 20 cm, insbesondere von weniger als 4 cm, aufzuweisen. Dadurch wird die Flexibilität der Leiteranordnung weiter gesteigert.In one embodiment, the conductor arrangement is set up to have a bending radius of less than 20 cm, in particular less than 4 cm. This further increases the flexibility of the conductor arrangement.

In einer Ausführungsform ist der dielektrische Leiterkern im Wesentlichen zylindrisch. Diese Gestaltung kann weiterhin zu einer geringen Dämpfung der Mikrowellen beitragen.In one embodiment, the dielectric conductor core is essentially cylindrical. This design can further contribute to low microwave attenuation.

In einer weiteren Ausführungsform kann der dielektrische Leiterkern elliptisch oder rechteckig ausgeführt sein.In a further embodiment, the dielectric conductor core can be elliptical or rectangular.

In einer Ausführungsform weist der dielektrische Leiterkern Polytetrafluorethylen, PTFE, Polyetheretherketon, PEEK, Polypropylen, PP, Polyethylen, PE, Keramik und/oder eine temperaturbeständige Glasfaser auf, oder der Leiterkern besteht aus zumindest einem dieser Materialien. Diese Materialien können vorteilhafterweise eine gute Verfügbarkeit der Materialien und gute Übertragungseigenschaften verbinden. Zumindest einige dieser Materialien können darüber hinaus kostengünstiger sein als z.B. starre metallische Hohlleiter.In one embodiment, the dielectric conductor core has polytetrafluoroethylene, PTFE, polyether ether ketone, PEEK, polypropylene, PP, polyethylene, PE, ceramic and / or a temperature-resistant glass fiber, or the conductor core consists of at least one of these materials. These materials can advantageously combine good availability of the materials and good transmission properties. At least some of these materials can also be cheaper than, for example, rigid metallic waveguides.

In einer Ausführungsform weist die Beschichtung eine Leitfähigkeit von größer als 30 · 106 S/m, beispielsweise von größer als 50 · 106 S/m, auf. Eine derartige hohe Leitfähigkeit kann zu einer weiteren Reduzierung von Immissionen, die von Störquellen stammen, in den Leiterkern beitragen. Andrerseits kann dadurch die Abstrahlung der Mikrowellen aus dem Leiterkern deutlich reduziert werden.In one embodiment, the coating has a conductivity of greater than 30 · 10 6 S / m, for example greater than 50 · 10 6 S / m. Such a high conductivity can contribute to a further reduction in immissions from sources of interference in the conductor core. On the other hand, this can significantly reduce the radiation of the microwaves from the conductor core.

In einer Ausführungsform weist die Beschichtung Metall, insbesondere Kupfer, Silber, Gold, Palladium, Legierungen aus diesen Metallen, leitfähige Stoffe, insbesondere metallisierte Kunststoffe, Graphen, ein duktiles leitfähiges Material und/oder eine Kombination der genannten Materialien auf. Dabei kann die Auswahl der Materialien für die Beschichtung durch Materialeigenschaften wie Sprödigkeit, Auftragbarkeit und/oder Kosten bestimmt werden.In one embodiment, the coating has metal, in particular copper, silver, gold, palladium, alloys made from these metals, conductive materials, in particular metallized plastics, graphene, a ductile conductive material and / or a combination of the materials mentioned. The choice of materials for the coating can be determined by material properties such as brittleness, applicability and / or costs.

In einer Ausführungsform weist die Beschichtung eine Dicke zwischen 20 µm und 200 µm, insbesondere zwischen 50 µm und 100 µm, auf. Dies hat sich als guter Kompromiss zwischen guter Abschirmung, einfacher Handhabung und guter Kostenstruktur erwiesen.In one embodiment, the coating has a thickness between 20 μm and 200 μm, in particular between 50 μm and 100 μm. This has proven to be a good compromise between good shielding, simple handling and a good cost structure.

In einer Ausführungsform weist die Beschichtung leitfähigen Lack, beispielsweise Silberleitlack, auf. Dabei ist der leitfähige Lack mittels Streichens, Sprühens, Tauchens und/oder anderen Methoden aufgetragen. Dies hat sich in Experimenten als vorteilhaft für die oben genannten Zwecke erwiesen. Ein Vorteil dieser Methode ist, dass der Bereich zwischen Wellenleiter und Metallisierung herstellungsbedingt immer spaltfrei ist; dadurch werden die Mikrowellen im Hohlleiter optimal geführt.In one embodiment, the coating has conductive lacquer, for example silver conductive lacquer. The conductive lacquer is applied by brushing, spraying, dipping and / or other methods. In experiments, this has proven to be advantageous for the purposes mentioned above. One advantage of this method is that the area between the waveguide and the metallization is always gap-free due to the manufacturing process; As a result, the microwaves are optimally guided in the waveguide.

In einer Ausführungsform ist die Beschichtung mittels eines Verfahrens der Dünnschichttechnik auf den dielektrischen Leiterkern aufgetragen.In one embodiment, the coating is applied to the dielectric conductor core using a thin-film technique.

In einer Ausführungsform ist die Beschichtung mittels physikalischer Gasphasenabscheidung, insbesondere mittels Sputterdeposition oder thermischen Verdampfens, mittels chemischer Gasphasenabscheidung, insbesondere mittels plasmaunterstützter chemischer Gasphasenabscheidung, mittels thermischen Spritzens, und/oder mittels Galvanisieren, insbesondere mittels Kunststoffgalvanisieren, auf den dielektrischen Leiterkern aufgetragen. Die genannten Verfahren verbinden vorteilhafterweise eine präzise Beschichtung mit einer guten Handhabbarkeit. Ein Vorteil der genannten Methoden ist, dass der Bereich zwischen Wellenleiter und Metallisierung herstellungsbedingt immer spaltfrei ist; dadurch werden die Mikrowellen im Hohlleiter optimal geführt.In one embodiment, the coating is applied to the dielectric conductor core by means of physical vapor deposition, in particular by means of sputter deposition or thermal evaporation, by means of chemical vapor deposition, in particular by means of plasma-assisted chemical vapor deposition, by means of thermal spraying, and / or by means of electroplating, in particular by means of plastic electroplating. The methods mentioned advantageously combine a precise coating with good handling. An advantage of the methods mentioned is that the area between the waveguide and the metallization is always gap-free due to the manufacturing process; As a result, the microwaves are optimally guided in the waveguide.

In einer Ausführungsform kann der dielektrische Wellenleiter zuerst in Form gebracht werden und hinterher beschichtet und/oder metallisiert werden. Dies kann zum Beispiel vorteilhaft sein, wenn ein Hohlleiter relativ eng, zum Beispiel spiralförmig, aufgewickelt werden soll.In one embodiment, the dielectric waveguide can be shaped first and then coated and / or metallized. This can be advantageous, for example, if a waveguide is to be wound up relatively tightly, for example in a spiral.

In einer Ausführungsform ist der Durchmesser des dielektrischen Leiterkerns so gewählt, dass in einem vordefinierten Frequenzbereich nur der Grundmode der Mikrowellen ausbreitungsfähig ist. Dabei kann der vordefinierte Frequenzbereich von weiteren Spezifikationen des Systems, in das die Leiteranordnung eingebaut wird, abhängig sein. Der Grundmode der Mikrowellen wird im Rund-Hohlleiter auch TE11-Mode oder H11-Mode genannt. Im Rechteck-Hohlleiter hat der Grundmode die Bezeichnung TE10 bzw. H10. Durch diese Ausführungsform können sich geringere Signalverfälschungen ergeben, die z.B. durch (störende) Dispersion des Signals verursacht werden. Diese Ausführungsform kann insbesondere zur Signalübertragung über weitere Strecken vorteilhaft eingesetzt werden.In one embodiment, the diameter of the dielectric conductor core is selected such that only the basic mode of the microwaves can be propagated in a predefined frequency range. The predefined frequency range may depend on further specifications of the system in which the conductor arrangement is installed. The basic mode of microwaves is also called TE 11 mode or H 11 mode in the round waveguide. In the rectangular waveguide, the basic mode is called TE 10 or H 10 . This embodiment can result in lower signal falsifications, which are caused, for example, by (disruptive) dispersion of the signal. This embodiment can be used particularly advantageously for signal transmission over further distances.

In einer Ausführungsform ist die Beschichtung weiterhin mit einem Material zur Stoßabsorption beschichtet und/oder umhüllt. Dies kann insbesondere dann vorteilhaft sein, wenn die Leiteranordnung außerhalb eines schützenden Gehäuses verwendet wird.In one embodiment, the coating is also coated and / or coated with a material for shock absorption. This can be particularly advantageous if the conductor arrangement is used outside of a protective housing.

Ein weiterer Aspekt der Erfindung betrifft ein Füllstandradar. Das Füllstandradar weist eine Hochfrequenzeinheit auf, die zum Erzeugen eines Mikrowellensignals eingerichtet ist. Außerdem weist es eine Antenneneinheit auf, die zum Abstrahlen des Mikrowellensignals eingerichtet ist. Ferner weist das Füllstandradar eine dielektrische Leiteranordnung wie oben und/oder nachfolgend beschrieben auf, die zum Übertragen des von der Hochfrequenzeinheit erzeugten Mikrowellensignals an die Antenneneinheit eingerichtet ist.Another aspect of the invention relates to a level radar. The level radar has a high-frequency unit that is set up to generate a microwave signal. In addition, it has an antenna unit that is used to radiate the microwave signal is set up. Furthermore, the fill level radar has a dielectric conductor arrangement as described above and / or below, which is set up to transmit the microwave signal generated by the high-frequency unit to the antenna unit.

Dabei kann die dielektrische Leiteranordnung beispielsweise zum Überbrücken einer Distanz zwischen Hochfrequenzeinheit und Antenneneinheit eingesetzt werden. Dies kann beispielsweise vorteilhaft sein, um eine vordefinierte Laufzeit zwischen den beiden Einheiten zu erreichen oder beispielsweise zur Temperaturentkopplung der beiden Einheiten.The dielectric conductor arrangement can be used, for example, to bridge a distance between the high-frequency unit and the antenna unit. This can be advantageous, for example, in order to achieve a predefined runtime between the two units or, for example, to decouple the temperature of the two units.

In einer Ausführungsform ist die dielektrische Leiteranordnung mehrteilig ausgeführt. Dabei kann die Verbindung der Abschnitte der dielektrischen Leiteranordnung z.B. exakt plan geschnitten sein oder auch in einem exakt gleichen Winkel geschnitten werden und von einer metallischen oder metallisierten Hülse umgeben werden. Dabei kann der Innendurchmesser der Hülse exakt auf den Außendurchmesser des metallisierten Wellenleiter angepasst sein. Dadurch kann eine spaltfreie Mikrowellenverbindung entstanden sein, welche sich durch die Passung der Teile selbst hält. Die Verbindung kann lösbar oder unlösbar gestaltet sein.In one embodiment, the dielectric conductor arrangement is designed in several parts. The connection of the sections of the dielectric conductor arrangement can e.g. be cut exactly flat or cut at exactly the same angle and surrounded by a metallic or metallized sleeve. The inner diameter of the sleeve can be adapted exactly to the outer diameter of the metallized waveguide. This can result in a gap-free microwave connection, which holds itself due to the fit of the parts. The connection can be designed to be detachable or non-detachable.

In einer Ausführungsform ist die dielektrische Leiteranordnung zumindest abschnittsweise spiralförmig angeordnet. Dies ist möglich wegen der Flexibilität der Leiteranordnung. Dies kann zu einer Reduzierung der Kosten für die Herstellung und/oder die Wartung der Leiteranordnung bzw. von Geräten, welche diese Leiteranordnung umfassen, beitragen.In one embodiment, the dielectric conductor arrangement is arranged in a spiral, at least in sections. This is possible because of the flexibility of the conductor arrangement. This can contribute to a reduction in the costs for the manufacture and / or maintenance of the conductor arrangement or of devices which comprise this conductor arrangement.

Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Herstellung einer dielektrischen Leiteranordnung wie oben und/oder nachfolgend beschrieben. Das Verfahren weist folgende Schritte auf:

  • Bereitstellen eines dielektrischen Leiterkerns;
  • Aufbringen, zumindest abschnittsweise, einer Beschichtung, welche den gesamten Umfang des Leiterkerns spaltfrei umgibt und aus einer dünnen leitfähigen Schicht besteht.
Another aspect of the invention relates to a method for producing a dielectric conductor arrangement as described above and / or below. The process has the following steps:
  • Providing a dielectric conductor core;
  • Application, at least in sections, of a coating which surrounds the entire circumference of the conductor core without a gap and consists of a thin conductive layer.

Dabei kann der dielektrische Leiterkern vor und/oder nach dem Aufbringen der Beschichtung in Form gebracht werden. Das Aufbringen vor dem Aufbringen der Beschichtung kann zum Beispiel vorteilhaft sein, wenn in Hohlleiter relativ eng, zum Beispiel spiralförmig, aufgewickelt werden soll.The dielectric conductor core can be shaped before and / or after the coating has been applied. The application before the application of the coating can be advantageous, for example, if the waveguide is to be wound relatively closely, for example in a spiral.

In einer Ausführungsform ist die Leiteranordnung mehrteilig ausgestaltet. Dabei weist das Verfahren zur Herstellung einer mehrteiligen dielektrischen Leiteranordnung folgende weitere Schritte auf:

  • Schneiden eines Endes eines ersten dielektrischen Leiterkerns und eines Endes eines zweiten dielektrischen Leiterkerns in einem vordefinierten Winkel, wobei das Ende des ersten dielektrischen Leiterkerns und das Ende des zweiten dielektrischen Leiterkerns denselben Winkel aufweisen;
  • Aneinanderfügen des Endes des ersten dielektrischen Leiterkerns und des Endes des zweiten dielektrischen Leiterkerns in einem Z-Winkel;
  • Umhüllen des Endebereichs des ersten dielektrischen Leiterkerns und des Endebereichs des zweiten dielektrischen Leiterkerns mittels einer metallischen oder metallisierten Hülse.
In one embodiment, the conductor arrangement is designed in several parts. The method for producing a multi-part dielectric conductor arrangement has the following further steps:
  • Cutting an end of a first dielectric conductor core and an end of a second dielectric conductor core at a predefined angle, the end of the first dielectric conductor core and the end of the second dielectric conductor core having the same angle;
  • Joining the end of the first dielectric conductor core and the end of the second dielectric conductor core at a Z angle;
  • Enveloping the end region of the first dielectric conductor core and the end region of the second dielectric conductor core by means of a metallic or metallized sleeve.

Der vordefinierte Winkel kann 90° betragen oder ein spitzer Winkel sein, insbesondere ein Winkel zwischen 30° und 60°, beispielsweise zwischen 40° und 50°. Die Enden des ersten und des zweiten dielektrischen Leiterkerns sind dabei nach Möglichkeit exakt plan geschnitten. Die Enden werden dann bis auf Kontakt bzw. Anschlag aneinandergefügt. Das kann vor und/oder nach dem Umhüllen der Endebereiche mittels der metallischen oder metallisierten Hülse geschehen. Dadurch kann eine im Wesentlichen spaltfreie Mikrowellenverbindung geschaffen werden, welche sich durch die Passung der Teile selbst hält. Zusätzlich kann die Verbindung noch form-, kraft- und/oder stoffschlüssig verbunden sein, z.B. geklebt oder und/oder mit einem Schrumpfschlauch oder anderweitig fixiert sein.The predefined angle can be 90 ° or an acute angle, in particular an angle between 30 ° and 60 °, for example between 40 ° and 50 °. The ends of the first and the second dielectric conductor core are cut exactly flat if possible. The ends are then joined together until contact or stop. This can be done before and / or after encasing the end areas by means of the metallic or metallized sleeve. In this way, an essentially gap-free microwave connection can be created, which holds itself due to the fit of the parts. In addition, the connection can also be positively, non-positively and / or materially connected, e.g. glued or and / or fixed with a shrink tube or otherwise.

In einer Ausführungsform ist die Verbindung zwischen dem ersten dielektrischen Leiterkern und dem zweiten dielektrischen Leiterkern lösbar gestaltet. Dadurch wird die Umkonfiguration der Leiteranordnung vereinfacht, beispielsweise bei einer Reparatur und/oder Wartung. Ein weiterer Aspekt der Erfindung betrifft eine Verwendung einer dielektrischen Leiteranordnung wie oben und/oder nachfolgend beschrieben zur Übertragung von Mikrowellen in einem Frequenzbereich von etwa 80 GHz bis etwa 300 GHz, insbesondere von etwa 240 GHzIn one embodiment, the connection between the first dielectric conductor core and the second dielectric conductor core is designed to be detachable. This simplifies the reconfiguration of the conductor arrangement, for example during a repair and / or maintenance. Another aspect of the invention relates to the use of a dielectric conductor arrangement as described above and / or below for the transmission of microwaves in a frequency range from approximately 80 GHz to approximately 300 GHz, in particular approximately 240 GHz

Zur weiteren Verdeutlichung wird die Erfindung anhand von in den Figuren abgebildeten Ausführungsformen beschrieben. Diese Ausführungsformen sind nur als Beispiel, nicht aber als Einschränkung zu verstehen.For further clarification, the invention is described on the basis of the embodiments shown in the figures. These embodiments are only to be understood as an example, but not as a limitation.

Kurze Beschreibung der FigurenBrief description of the figures

Es zeigt:

Fig. 1
eine schematische Skizze eines Füllstandmessgeräts gemäß einer Ausführungsform;
Fig. 2
eine schematische Skizze eines Füllstandmessgeräts gemäß einer weiteren Ausführungsform;
Fig. 3a
eine schematische Skizze einer Verbindung zweier Leiteranordnungen gemäß einer Ausführungsform;
Fig. 3b
eine schematische Skizze einer Verbindung zweier Leiteranordnungen gemäß einer weiteren Ausführungsform;
Fig. 4
ein Verfahren gemäß einer Ausführungsform.
It shows:
Fig. 1
a schematic sketch of a level measuring device according to an embodiment;
Fig. 2
a schematic sketch of a level measuring device according to a further embodiment;
Fig. 3a
a schematic sketch of a connection of two conductor arrangements according to an embodiment;
Fig. 3b
a schematic sketch of a connection of two conductor arrangements according to a further embodiment;
Fig. 4
a method according to an embodiment.

Detaillierte Beschreibung von AusführungsformenDetailed description of embodiments

Fig. 1 zeigt eine schematische Skizze eines Füllstandmessgeräts oder Füllstandradars 40 gemäß einer Ausführungsform. Dabei weist das Füllstandradar 40 eine Hochfrequenzeinheit 42 auf, die zum Erzeugen eines Mikrowellensignals eingerichtet ist. Außerdem weist es eine Antenneneinheit 44 auf, die zum Abstrahlen des Mikrowellensignals eingerichtet ist. Die Antenneneinheit 44 kann beispielsweise mittels eines Flansches an den Behälter mit dem zu messenden Füllgut angeordnet sein. Die Hochfrequenzeinheit 42 und die Antenneneinheit 44 sind mittels einer dielektrischen Leiteranordnung 10 verbunden, welche zum Übertragen des von der Hochfrequenzeinheit 42 erzeugten Mikrowellensignals an die Antenneneinheit 44 eingerichtet ist. Das Abstrahlen des Mikrowellensignals erfolgt beispielsweise mittels der Antenneneinheit 44, an welche zur besseren Bündelung ein Antennenhorn 45 angebracht sein kann. Im Bereich der Antenneneinheit 44 können hohe Temperaturen, z.B. bis 250°C, oder sogar bis 450°C, anliegen. Daher kann die Leiteranordnung 10 zur thermischen Entkopplung von Antenneneinheit 44 und Hochfrequenzeinheit 42 beitragen. Weiterhin ist die Leiteranordnung 10 temperaturbeständig gegen diese hohen Temperaturen ausgeführt. Fig. 1 shows a schematic sketch of a level measuring device or level radar 40 according to an embodiment. The fill level radar 40 has a high-frequency unit 42 which is set up to generate a microwave signal. In addition, it has an antenna unit 44 which is set up to emit the microwave signal. The antenna unit 44 can be arranged, for example, by means of a flange on the container with the filling material to be measured. The radio-frequency unit 42 and the antenna unit 44 are connected by means of a dielectric conductor arrangement 10, which is used to transmit the microwave signal generated by the radio-frequency unit 42 to the antenna unit 44 is set up. The microwave signal is emitted, for example, by means of the antenna unit 44, to which an antenna horn 45 can be attached for better bundling. High temperatures, for example up to 250 ° C. or even up to 450 ° C., may be present in the area of the antenna unit 44. Therefore, the conductor arrangement 10 can contribute to the thermal decoupling of antenna unit 44 and high-frequency unit 42. Furthermore, the conductor arrangement 10 is designed to be temperature-resistant to these high temperatures.

Fig. 2 zeigt eine schematische Skizze eines Füllstandmessgeräts 40 gemäß einer weiteren Ausführungsform. Dabei weist das Füllstandradar 40 eine Hochfrequenzeinheit 42 auf, die zum Erzeugen eines Mikrowellensignals eingerichtet ist. Außerdem weist es eine Antenneneinheit 44 auf, die zum Abstrahlen des Mikrowellensignals eingerichtet ist. Die Antenneneinheit 44 kann in dieser Ausführungsform ein Einschraubgewinde 46 aufweisen. Die Hochfrequenzeinheit 42 und die Antenneneinheit 44 sind mittels einer dielektrischen Leiteranordnung 10 verbunden, welche zum Übertragen des von der Hochfrequenzeinheit 42 erzeugten Mikrowellensignals an die Antenneneinheit 44 eingerichtet ist. Die Leiteranordnung 10 ist - beispielsweise um eine vordefinierte Laufzeit zwischen der Hochfrequenzeinheit 42 und der Antenneneinheit 44 zu erreichen oder beispielsweise zur Temperaturentkopplung - spiralförmig ausgeführt. Diese Ausgestaltung ist insbesondere durch die Flexibilität der Leiteranordnung 10 möglich. Fig. 2 shows a schematic sketch of a level measuring device 40 according to a further embodiment. The fill level radar 40 has a high-frequency unit 42 which is set up to generate a microwave signal. In addition, it has an antenna unit 44 which is set up to emit the microwave signal. In this embodiment, the antenna unit 44 can have a screw-in thread 46. The high-frequency unit 42 and the antenna unit 44 are connected by means of a dielectric conductor arrangement 10, which is set up to transmit the microwave signal generated by the high-frequency unit 42 to the antenna unit 44. The conductor arrangement 10 is designed spirally, for example in order to achieve a predefined propagation time between the high-frequency unit 42 and the antenna unit 44 or, for example, for temperature decoupling. This configuration is possible in particular through the flexibility of the conductor arrangement 10.

Fig. 3a zeigt eine schematische Skizze einer Verbindung zweier Leiteranordnungen 10 gemäß einer Ausführungsform. Dabei wird ein Ende 21a eines ersten dielektrischen Leiterkerns 20a und ein Ende 21b eines zweiten dielektrischen Leiterkerns 20b in einem vordefinierten Winkel w abgeschnitten. Dabei weisen das Ende 21a des ersten dielektrischen Leiterkerns 20a und das Ende 21b des zweiten dielektrischen Leiterkerns 20b denselben Winkel w auf, in dem gezeigten Ausführungsbeispiel 90°. Endebereiche 22a und 22b der Leiterkerne 20a und 20b sind mit einer metallischen oder metallisierten Hülse 25 umhüllt. Die Endebereiche 22a und 22b können, zumindest abschnittsweise, eine Beschichtung 30a und 30b aufweisen. Die Hülse 25 kann mit zumindest einem der Leiterkerne 20a und 20b bzw. mit der Beschichtung 30a und 30b form-, kraft- und/oder stoffschlüssig verbunden, z.B.
geklebt oder und/oder mit einem Schrumpfschlauch oder anderweitig fixiert, sein. Die Verbindung kann lösbar oder unlösbar gestaltet sein.
Fig. 3a shows a schematic sketch of a connection of two conductor arrangements 10 according to an embodiment. One end 21a of a first dielectric conductor core 20a and one end 21b of a second dielectric conductor core 20b are cut off at a predefined angle w. The end 21a of the first dielectric conductor core 20a and the end 21b of the second dielectric conductor core 20b have the same angle w, in the exemplary embodiment shown 90 °. End regions 22a and 22b of the conductor cores 20a and 20b are encased in a metallic or metallized sleeve 25. The end regions 22a and 22b can, at least in sections, have a coating 30a and 30b. The sleeve 25 can be connected to at least one of the conductor cores 20a and 20b or to the coating 30a and 30b in a form-fitting, force-fitting and / or material-locking manner, for example
glued or and / or fixed with a shrink tube or otherwise. The connection can be designed to be detachable or non-detachable.

Fig. 3b zeigt eine schematische Skizze einer Verbindung zweier Leiteranordnungen 10 gemäß einer weiteren Ausführungsform. Die Fig. 3b unterscheidet sich von Fig. 3a durch den Winkel w, der bei Fig. 3b ein spitzer Winkel ist. Die Leiterkerne 20a und 20b weisen denselben Winkel w auf. Fig. 3b shows a schematic sketch of a connection of two conductor arrangements 10 according to a further embodiment. The Fig. 3b differs from Fig. 3a by the angle w, which at Fig. 3b is an acute angle. The conductor cores 20a and 20b have the same angle w.

Fig. 4 zeigt ein Flussdiagramm 50 Verfahren gemäß einer Ausführungsform. In einem Schritt 51 wird ein dielektrischer Leiterkern 20 (siehe obige Figuren) wie in der obigen Beschreibung spezifiziert bereitgestellt. In einem Schritt 52 wird zumindest abschnittsweise, eine Beschichtung 30 aufgebracht. Die Beschichtung 30 umgibt den gesamten Umfang des Leiterkerns 20 spaltfrei und besteht aus einer dünnen leitfähigen Schicht. Dabei kann der dielektrische Leiterkern vor und/oder nach dem Aufbringen der Beschichtung in Form, z.B. in eine spiralförmige Form, gebracht werden. Fig. 4 15 shows a flow diagram 50 of a method according to an embodiment. In step 51, a dielectric conductor core 20 (see figures above) is provided as specified in the above description. In a step 52, a coating 30 is applied at least in sections. The coating 30 surrounds the entire circumference of the conductor core 20 without a gap and consists of a thin conductive layer. The dielectric conductor core can be brought into shape, for example in a spiral shape, before and / or after the application of the coating.

Ergänzend sei darauf hingewiesen, dass "umfassend" und "aufweisend" keine anderen Elemente oder Schritte ausschließt und die unbestimmten Artikel "eine" oder "ein" keine Vielzahl ausschließen. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkungen anzusehen.In addition, it should be pointed out that "comprising" and "having" do not exclude other elements or steps, and the indefinite articles "a" or "an" do not exclude a large number. Furthermore, it should be pointed out that features or steps that have been described with reference to one of the above exemplary embodiments can also be used in combination with other features or steps of other exemplary embodiments described above. Reference signs in the claims are not to be regarded as restrictions.

Liste der BezugszeichenList of reference numbers

1010th
dielektrische Leiteranordnungdielectric conductor arrangement
20, 20a, 20b20, 20a, 20b
dielektrischer Leiterkerndielectric conductor core
21a, 21b21a, 21b
EndeThe End
22a, 22b22a, 22b
EndebereichEnd range
2525th
HülseSleeve
30, 30a, 30b30, 30a, 30b
BeschichtungCoating
4040
Füllstandmessgeräts, FüllstandradarLevel measuring device, level radar
4242
HochfrequenzeinheitRadio frequency unit
4444
AntennensystemAntenna system
4545
AntennenhornAntenna horn
4646
EinschraubgewindeScrew-in thread
4747
kegelförmiger Bereichconical area
5050
Flussdiagrammflow chart
51, 5251, 52
Schrittesteps

Claims (15)

Dielektrische Leiteranordnung (10) zur Übertragung von Mikrowellen, aufweisend: - einen dielektrischen, Leiterkern (20) aus einem Feststoff; und - eine Beschichtung (30), die zumindest abschnittsweise den gesamten Umfang des Leiterkerns (20) spaltfrei umgibt und die aus einer dünnen leitfähigen Schicht besteht. Dielectric conductor arrangement (10) for the transmission of microwaves, comprising: - A dielectric, conductor core (20) made of a solid; and - A coating (30) which at least in sections surrounds the entire circumference of the conductor core (20) without a gap and which consists of a thin conductive layer. Dielektrische Leiteranordnung (10) nach Anspruch 1,
wobei die Leiteranordnung (10) dazu eingerichtet ist, einen Biegeradius von weniger als 20 cm, insbesondere von weniger als 4 cm, aufzuweisen.
Dielectric conductor arrangement (10) according to Claim 1,
wherein the conductor arrangement (10) is set up to have a bending radius of less than 20 cm, in particular less than 4 cm.
Dielektrische Leiteranordnung (10) nach Anspruch 1 oder 2,
wobei der dielektrische Leiterkern (20) Polytetrafluorethylen, PTFE, Polyetheretherketon, PEEK, Polypropylen, PP, Polyethylen, PE, Keramik und/oder eine temperaturbeständige Glasfaser aufweist oder aus zumindest einem dieser Materialien besteht.
Dielectric conductor arrangement (10) according to Claim 1 or 2,
wherein the dielectric conductor core (20) has polytetrafluoroethylene, PTFE, polyether ether ketone, PEEK, polypropylene, PP, polyethylene, PE, ceramic and / or a temperature-resistant glass fiber or consists of at least one of these materials.
Dielektrische Leiteranordnung (10) nach einem der vorhergehenden Ansprüche,
wobei die Beschichtung (30) eine Leitfähigkeit von größer als 30 · 106 S/m, beispielsweise von größer als 50 · 106 S/m, aufweist.
Dielectric conductor arrangement (10) according to one of the preceding claims,
wherein the coating (30) has a conductivity of greater than 30 · 10 6 S / m, for example greater than 50 · 10 6 S / m.
Dielektrische Leiteranordnung (10) nach Anspruch 4,
wobei die Beschichtung (30) Metall, insbesondere Kupfer, Silber, Gold, Palladium, Legierungen aus diesen Metallen, leitfähige Stoffe, insbesondere metallisierte Kunststoffe, Graphen, ein duktiles leitfähiges Material und/oder eine Kombination der genannten Materialien aufweist.
Dielectric conductor arrangement (10) according to Claim 4,
wherein the coating (30) has metal, in particular copper, silver, gold, palladium, alloys of these metals, conductive materials, in particular metallized plastics, graphene, a ductile conductive material and / or a combination of the materials mentioned.
Dielektrische Leiteranordnung (10) nach Anspruch 4,
wobei die Beschichtung (30) eine Dicke zwischen 20 µm und 200 µm, insbesondere zwischen 50 µm und 100 µm, aufweist.
Dielectric conductor arrangement (10) according to Claim 4,
wherein the coating (30) has a thickness between 20 microns and 200 microns, in particular between 50 microns and 100 microns.
Dielektrische Leiteranordnung (10) nach einem der vorhergehenden Ansprüche,
wobei der Durchmesser des dielektrischen Leiterkerns (20) so gewählt ist, dass in einem vordefinierten Frequenzbereich nur der Grundmode der Mikrowellen ausbreitungsfähig ist.
Dielectric conductor arrangement (10) according to one of the preceding claims,
wherein the diameter of the dielectric conductor core (20) is selected such that only the basic mode of the microwaves can be propagated in a predefined frequency range.
Dielektrische Leiteranordnung (10) nach einem der vorhergehenden Ansprüche, wobei die Beschichtung (30) weiterhin mit einem Material zur Stoßabsorption beschichtet und/oder umhüllt ist.Dielectric conductor arrangement (10) according to one of the preceding claims, wherein the coating (30) is further coated and / or coated with a material for shock absorption. Füllstandradar (40), aufweisend: eine Hochfrequenzeinheit (42), eingerichtet zum Erzeugen eines Mikrowellensignals, eine Antenneneinheit (44), eingerichtet zum Abstrahlen des Mikrowellensignals, und eine dielektrische Leiteranordnung (10) nach einem der vorhergehenden Ansprüche, eingerichtet zum Übertragen des von der Hochfrequenzeinheit (42) erzeugten Mikrowellensignals an die Antenneneinheit (44). Level radar (40), comprising: a high-frequency unit (42) set up to generate a microwave signal, an antenna unit (44) set up to emit the microwave signal, and a dielectric conductor arrangement (10) according to one of the preceding claims, set up to transmit the microwave signal generated by the high-frequency unit (42) the antenna unit (44). Füllstandradar (40) nach Anspruch 9,
wobei die dielektrische Leiteranordnung (10) mehrteilig ausgeführt ist.
Level radar (40) according to claim 9,
wherein the dielectric conductor arrangement (10) is made in several parts.
Füllstandradar (40) nach Anspruch 9 oder 10,
wobei die dielektrische Leiteranordnung (10) zumindest abschnittsweise spiralförmig angeordnet ist.
Level radar (40) according to claim 9 or 10,
wherein the dielectric conductor arrangement (10) is arranged at least in sections in a spiral.
Verfahren zur Herstellung einer dielektrischen Leiteranordnung (10) nach einem der Ansprüche 1 bis 8, mit den Schritten: - Bereitstellen eines dielektrischen Leiterkerns (20); - Aufbringen, zumindest abschnittsweise, einer Beschichtung (30), welche den gesamten Umfang des Leiterkerns (20) spaltfrei umgibt und aus einer dünnen leitfähigen Schicht besteht. Method for producing a dielectric conductor arrangement (10) according to one of Claims 1 to 8, comprising the steps: - Providing a dielectric conductor core (20); - Applying, at least in sections, a coating (30) which surrounds the entire circumference of the conductor core (20) without a gap and consists of a thin conductive layer. Verfahren zur Herstellung einer mehrteiligen dielektrischen Leiteranordnung (10) nach Anspruch 12, mit den weiteren Schritten: - Schneiden eines Endes (21a) eines ersten dielektrischen Leiterkerns (20a) und eines Endes (21b) eines zweiten dielektrischen Leiterkerns (20b) in einem vordefinierten Winkel (w), wobei das Ende (21a) des ersten dielektrischen Leiterkerns (20a) und das Ende (21b) des zweiten dielektrischen Leiterkerns (20b) denselben Winkel (w) aufweisen; - Aneinanderfügen des Endes (21a) des ersten dielektrischen Leiterkerns (20a) und des Endes (21b) des zweiten dielektrischen Leiterkerns (20b) in einem Z-Winkel (w); - Umhüllen des Endebereichs (22a) des ersten dielektrischen Leiterkerns (20a) und des Endebereichs (22b) des zweiten dielektrischen Leiterkerns (20b) mittels einer metallischen oder metallisierten Hülse (25). Method for producing a multi-part dielectric conductor arrangement (10) according to Claim 12, with the further steps: - Cutting an end (21a) of a first dielectric conductor core (20a) and an end (21b) of a second dielectric conductor core (20b) at a predefined angle (w), the end (21a) of the first dielectric conductor core (20a) and that End (21b) of the second dielectric conductor core (20b) have the same angle (w); - joining the end (21a) of the first dielectric conductor core (20a) and the end (21b) of the second dielectric conductor core (20b) at a Z angle (w); - Enveloping the end region (22a) of the first dielectric conductor core (20a) and the end region (22b) of the second dielectric conductor core (20b) by means of a metallic or metallized sleeve (25). Verfahren nach Anspruch 12 oder 13,
wobei die Verbindung zwischen dem ersten dielektrischen Leiterkern (20a) und dem zweiten dielektrischen Leiterkern (20b) lösbar gestaltet ist.
The method of claim 12 or 13,
wherein the connection between the first dielectric conductor core (20a) and the second dielectric conductor core (20b) is designed to be detachable.
Verwendung einer dielektrischen Leiteranordnung (10) nach einem der Ansprüche 1 bis 8 zur Übertragung von Mikrowellen in einem Frequenzbereich von etwa 80 GHz bis etwa 300 GHz, insbesondere von etwa 240 GHz.Use of a dielectric conductor arrangement (10) according to one of Claims 1 to 8 for the transmission of microwaves in a frequency range from approximately 80 GHz to approximately 300 GHz, in particular approximately 240 GHz.
EP19153596.2A 2019-01-24 2019-01-24 Metallized dielectric waveguide Active EP3686567B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19153596.2A EP3686567B1 (en) 2019-01-24 2019-01-24 Metallized dielectric waveguide
US16/738,608 US11557841B2 (en) 2019-01-24 2020-01-09 Metallized dielectric waveguide
CN202010064040.8A CN111478005A (en) 2019-01-24 2020-01-20 Metallized dielectric waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19153596.2A EP3686567B1 (en) 2019-01-24 2019-01-24 Metallized dielectric waveguide

Publications (2)

Publication Number Publication Date
EP3686567A1 true EP3686567A1 (en) 2020-07-29
EP3686567B1 EP3686567B1 (en) 2023-09-06

Family

ID=65236865

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19153596.2A Active EP3686567B1 (en) 2019-01-24 2019-01-24 Metallized dielectric waveguide

Country Status (3)

Country Link
US (1) US11557841B2 (en)
EP (1) EP3686567B1 (en)
CN (1) CN111478005A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589937B1 (en) * 2021-04-01 2023-10-17 현대모비스 주식회사 Wave guide for radar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2449596A1 (en) * 2003-12-05 2005-06-05 Stanislaw Bleszynski Dielectric cable system for millimeter microwave
EP1863122A1 (en) * 2006-05-31 2007-12-05 Siemens Milltronics Process Instruments Inc. Horn antenna for a radar device
US8390402B2 (en) * 2010-03-03 2013-03-05 Astrium Limited Waveguide comprised of various flexible inner dielectric regions
US20140285277A1 (en) * 2013-03-19 2014-09-25 Texas Instruments Incorporated Dielectric Waveguide Manufactured Using Printed Circuit Board Technology
US20180097268A1 (en) * 2016-09-30 2018-04-05 Sasha Oster Fabrication process for ribbon bundled millimeter-waveguide

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135193B2 (en) 1994-10-05 2001-02-13 日本電信電話株式会社 Ultrasonic waveguide for ultrasonic liquid level gauge
US6661389B2 (en) * 2000-11-20 2003-12-09 Vega Grieshaber Kg Horn antenna for a radar device
DE102004003010A1 (en) 2004-01-20 2005-08-04 Endress + Hauser Gmbh + Co. Kg Microwave conducting arrangement
DE102010063167B4 (en) 2010-12-15 2022-02-24 Endress+Hauser SE+Co. KG Level meter working with high-frequency microwaves
EP2631611A1 (en) * 2012-02-24 2013-08-28 Siemens Aktiengesellschaft Arrangement for measuring a level of a surface of a filling product
US9472840B2 (en) * 2013-06-12 2016-10-18 Texas Instruments Incorporated Dielectric waveguide comprised of a core, a cladding surrounding the core and cylindrical shape conductive rings surrounding the cladding
US9273989B2 (en) * 2014-03-28 2016-03-01 Honeywell International Inc. Foam filled dielectric rod antenna
US9601820B2 (en) * 2014-04-09 2017-03-21 Texas Instruments Incorporated Dielectric waveguide comprised of a core surrounded by a cladding and forming integrated periodical structures
US9705174B2 (en) * 2014-04-09 2017-07-11 Texas Instruments Incorporated Dielectric waveguide having a core and cladding formed in a flexible multi-layer substrate
DE102014118867B4 (en) 2014-10-06 2023-12-28 Krohne Messtechnik Gmbh Level measuring device operating on the radar principle and transmission path for a level measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2449596A1 (en) * 2003-12-05 2005-06-05 Stanislaw Bleszynski Dielectric cable system for millimeter microwave
EP1863122A1 (en) * 2006-05-31 2007-12-05 Siemens Milltronics Process Instruments Inc. Horn antenna for a radar device
US8390402B2 (en) * 2010-03-03 2013-03-05 Astrium Limited Waveguide comprised of various flexible inner dielectric regions
US20140285277A1 (en) * 2013-03-19 2014-09-25 Texas Instruments Incorporated Dielectric Waveguide Manufactured Using Printed Circuit Board Technology
US20180097268A1 (en) * 2016-09-30 2018-04-05 Sasha Oster Fabrication process for ribbon bundled millimeter-waveguide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. BAER ET AL: "Dielectric waveguides for industrial radar applications", INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, vol. 7, no. 3-4, 24 February 2015 (2015-02-24), Cambridge, pages 399 - 406, XP055602548, ISSN: 1759-0787, DOI: 10.1017/S1759078715000136 *
DMITRY S FILONOV ET AL: "Metalized polymer tubes for high-frequency electromagnetic waveguiding All-dielectric metasurfaces View project Optical Forces in Photonics and Plasmonics View project", 9 November 2018 (2018-11-09), pages 1 - 4, XP055602537, Retrieved from the Internet <URL:https://www.researchgate.net/publication/328900116> [retrieved on 20190704] *

Also Published As

Publication number Publication date
CN111478005A (en) 2020-07-31
US20200243980A1 (en) 2020-07-30
US11557841B2 (en) 2023-01-17
EP3686567B1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
DE102010063167B4 (en) Level meter working with high-frequency microwaves
EP1774616B1 (en) Device for transmitting broadband high-frequency signals
DE3129425C2 (en)
EP3492881B1 (en) Printed circuit board for use in a radar fill level measuring device with hollow wire coupling
CH659349A5 (en) COAXIAL ASSEMBLY FOR CONNECTING A COAXIAL CABLE TO A DEVICE, AND A CONNECTING DEVICE FOR THE SAME AND A METHOD FOR THE PRODUCTION THEREOF.
WO2016091481A1 (en) Device for transferring signals from a metal housing
EP3563121B1 (en) Measuring arrangement for analyzing properties of a flowing medium by microwaves
EP0635850A1 (en) High frequency broadband electrical coaxial cable
DE112017002142T5 (en) MILLIMETER WAVE BAND COMMUNICATION DEVICE
EP3686566B1 (en) Waveguide with high conductivity for high temperatures and high frequencies for fill level meters
EP3686567B1 (en) Metallized dielectric waveguide
EP1336119A1 (en) System for testing an electric high frequency signal and level measuring device provided with said system
WO2014090565A1 (en) Fill state measuring device
EP2489095B1 (en) Antenna coupler
EP2904549B1 (en) Device for signal transmission from a metal container
WO2014173951A1 (en) Mode converter for fill level radar
DE102014117315A1 (en) Device for transmitting signals from a housing opening of a metallic housing
DE102014111644A1 (en) Device for determining the filling level of a medium
DE102018130260A1 (en) Measuring device
US9252468B1 (en) Microwave signal connector
DE102018117166A1 (en) Radio-frequency module
EP4181313B1 (en) High frequency adapter for connecting a radio frequency antenna to an antenna connector
WO2009146903A1 (en) Angled junction between a microstrip line and a rectangular waveguide
DE102013222963A1 (en) Millimeter wave radar antenna used for in-band radar applications, has wave guide element that is constructed and arranged to cooperate with edge-antenna, so that element is overlapped on upper side and opposite underside of antenna
DE102016210152A1 (en) Radio frequency line and use of such

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220407

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230224

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VEGA GRIESHABER KG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009205

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240106