EP3682536A1 - Convertisseur de tension embarque sur un véhicule automobile et chargeur électrique associe - Google Patents

Convertisseur de tension embarque sur un véhicule automobile et chargeur électrique associe

Info

Publication number
EP3682536A1
EP3682536A1 EP18782780.3A EP18782780A EP3682536A1 EP 3682536 A1 EP3682536 A1 EP 3682536A1 EP 18782780 A EP18782780 A EP 18782780A EP 3682536 A1 EP3682536 A1 EP 3682536A1
Authority
EP
European Patent Office
Prior art keywords
voltage
converter
transistor
cells
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18782780.3A
Other languages
German (de)
English (en)
Inventor
Philippe Baudesson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes de Controle Moteur SAS
Original Assignee
Valeo Systemes de Controle Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes de Controle Moteur SAS filed Critical Valeo Systemes de Controle Moteur SAS
Publication of EP3682536A1 publication Critical patent/EP3682536A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Definitions

  • the present invention relates to the electrical charge of a battery of an equipment from an electric or hybrid motor vehicle.
  • the invention relates in particular to a voltage converter on board an electric or hybrid motor vehicle, configured to perform an additional function of electric charger.
  • motor vehicles are equipped with a DC / DC voltage converter configured to convert a first input voltage, for example 48 V, into a second output voltage, for example 12 V.
  • the motor vehicles can, also in known manner, be equipped with a battery charger for charging the battery of a device with a third output voltage different or not the second voltage, said third voltage can be by example of 48 V, 24 V or 12 V.
  • a voltage converter on board a motor vehicle for converting a first voltage into a second voltage different from the first, comprising:
  • control circuit being configured to selectively keep said at least one isolation transistor K3-R open to decouple a cell from the plurality of cells and use the arm of said cell to provide a third output voltage.
  • the isolation transistor makes it possible to protect itself in case of reverse polarity of the second voltage.
  • the isolation transistor K3-R is used as an electronic switch that can be open (switch off) or closed (switch on).
  • the first voltage is provided by an electrical network which can be for example a battery.
  • the opening of the isolation transistor K3-R makes it possible to decouple the arm of said cell from the other cells which make it possible to supply the second voltage.
  • said at least one isolation transistor belongs to one of said plurality of cells.
  • said at least one isolation transistor is connected via an inductor to the mid-point of the transistor arm of the cell comprising said at least one isolation transistor.
  • the cell comprising said at least one isolation transistor also comprises an inductor.
  • the converter cells are arranged in parallel. In other words, the converter cells are electrically connected in parallel.
  • cooling and the control circuit can be the same, which further contributes to reducing the size and the production costs.
  • the third output voltage may or may not be equal to the first voltage.
  • the third voltage may be used to charge a battery, for example a battery of equipment outside the motor vehicle such as a battery of an electric bicycle.
  • the third voltage is equal to the first voltage, being for example both 48 V.
  • the converter is then used as a charger.
  • the third voltage is different from the first voltage.
  • the converter is then a double output converter whose second output is used as a charger.
  • the first voltage can be 48 V.
  • the third voltage can be 12 V or 24 V.
  • the converter according to the invention is used to provide a second voltage and / or a third voltage from a voltage supplied by a battery of the vehicle.
  • the second voltage can be used to supply the motor vehicle's onboard network, for example to allow the use of a car radio or other equipment on board the vehicle.
  • the third voltage can be used to power a battery, for example an electric bicycle battery which one wishes to charge in the vehicle, for example during driving or at a standstill.
  • a battery for example an electric bicycle battery which one wishes to charge in the vehicle, for example during driving or at a standstill.
  • the third output voltage may be less than 60 V, more preferably less than or equal to 48 V. In one embodiment, the third output voltage is 48 V or 24 V or 12 V.
  • the third output voltage is a DC voltage, preferably less than 60V, better still less than or equal to 48 V. In a particular embodiment, the third DC output voltage is 48 V. In a particular embodiment, the third DC output voltage is 24V. In a particular embodiment, the third DC output voltage is 12V.
  • the second output voltage may be less than 60 V, better still less than or equal to 48 V. In one embodiment, the second output voltage is 12 V or 24 V.
  • the second output voltage is a DC voltage, preferably less than 60V, more preferably less than or equal to 48 V. In one embodiment, the second DC output voltage is 12V or 24V. .
  • the aforementioned isolation transistor is according to the invention open to decouple said cell and use the arm of said chopper controlled cell to provide a third output voltage; in this case the converter is configured to provide the second and third output voltages simultaneously or not. It is also open in case of failure, playing its role of isolation.
  • the corresponding cell When closed, the corresponding cell is used as the cell of a DC / DC voltage converter according to the prior art, all the cells of the converter for providing only the second voltage.
  • the converter cells are arranged in parallel.
  • the converter may comprise several cells, for example 2, 3, 4, 5 or 6.
  • the converter only needs one or more cells of the plurality of cells to provide the second voltage, the other cells of the plurality of cells being unused. It is then advantageous to use the arm of an unused cell to provide a third voltage, both when the vehicle is running and at a standstill.
  • each cell there are four cells arranged in parallel.
  • the isolation transistor of each cell can be connected via an inductor to the midpoint of the transistor arm of each cell.
  • the transistors of the cells are controlled in the same way as in a DC / DC voltage converter according to the prior art and controlled with the same operating cycle.
  • One of the transistors of one arm of a cell is open, while the other is passing, and vice versa.
  • the duty cycle within each of the cells is identical but the controls of the transistors are out of phase from T / x from one cell to another.
  • the phase shift may for example be T / 4 or T / 3, depending on the open or closed state of the isolation transistor K3-R.
  • the arm of the chopper-controlled cell is used to perform a charger function, in particular 48V, 24V or 12V, and the other cells of the plurality of cells to perform a converter function.
  • a charger function in particular 48V, 24V or 12V
  • the other cells of the plurality of cells to perform a converter function.
  • the converter may comprise a capacitor C1 connected to the output of the converter cells.
  • the capacitor C1 is connected to the output of the converter cells other than the cell whose arm is controlled chopper. In the case where this isolation transistor is closed, then said cell serves the converter to provide the second voltage, and the capacitor C1 is connected to the output of all the cells of the converter.
  • Said capacitor C1 connected to the output of the converter cells may be unpolarized. It may especially be a ceramic capacitor.
  • the value of the capacity must be increased. For example, for a two-cell converter, the capacity must be twice that required for a four-cell converter.
  • At least one isolation transistor TR in English "reverse transistor” is associated with one or more cells of the plurality of cells. These transistors make it possible to guard against a reverse polarity of the second voltage.
  • the converter may further comprise a safety transistor TS between said at least one isolation transistor TR and the output of the second voltage.
  • These safety transistors make it possible to guard against variation of voltage on the network supplying the first voltage.
  • the converter may comprise a safety transistor TS per cell of the converter.
  • the converter may comprise one or more isolation transistors, for example 1, 2, 3, 4, 5 or 6. A large number of isolation transistors may make it possible to improve the power of the assembly. In an exemplary embodiment, there are four isolation transistors arranged in parallel, each connected to the output of the cells.
  • the converter may further comprise an additional isolation transistor K4-R arranged directly upstream of the output of the third voltage.
  • the converter may further comprise a capacitor C3 connected by one of its terminals to the additional isolation transistor K4-R.
  • the capacitor C3 can be connected between the aforementioned safety transistor TS and the additional isolation transistor K4-R.
  • the converter may further comprise an additional safety transistor K1-S upstream of the additional isolation transistor K4-R.
  • the arm K5, K6 of said decouplable cell is controlled by a chopper to provide the third output voltage.
  • the converter may furthermore comprise a transistor K2 forming, with the additional safety transistor Kl-S, an arm of transistors Kl-S, K2 controlled by a chopper-lift, this transistor arm K1.
  • -S, K2 forming, with the arm K5, K6 of said decouplable cell, a step-up circuit (buck-boost).
  • said additional safety transistor Kl-S is disposed directly at the output of said cell whose arm is controlled by chopping.
  • the third voltage may be 12 V or 24 V. In the event of failure of an electronic component of the converter, there may be a disconnection of the load.
  • the converter may further comprise a precharge transistor K7, the control circuit being configured to allow, when the precharge transistor K7 is open, to provide the second voltage and / or the third voltage, and when the precharge transistor K7 is closed, using the arm of said chopper-controlled cell as a single current conductor to supply a precharge current to the capacity of a network supplying the first voltage, see at one or more capacitors of the converter ..
  • the isolation transistor K3-R and the additional isolation transistor K4-R are kept open while the precharge transistor K7 is kept closed.
  • the invention further relates, independently or in combination with the foregoing, to a motor vehicle equipped with a converter as described above.
  • the motor vehicle can be any electric or hybrid.
  • the subject of the invention is also a method of feeding a battery by means of a converter according to the invention, this
  • the converter comprises for this purpose, as described above, a control circuit (210) of the transistors.
  • the process may comprise all or some of the features of the invention set out above.
  • FIG. 1 illustrates a DC / DC converter electrical circuit
  • FIG. 1 illustrates a main voltage converter 100 DC / DC configured to convert a first input voltage, for example 48 V, into a second output voltage, for example 12 V.
  • the main voltage converter 100 comprises a bridge operating as a chopper, in a manner known per se. Such a converter is called "buck", and converts a DC voltage into another DC voltage of lower value. In an exemplary embodiment, it may be for example to convert a voltage of 48 V into a voltage of 12 V.
  • the DC / DC converter 100 comprises 4 cells C arranged in parallel.
  • the number of C cells could be different without departing from the scope of the present invention. It may for example be between 2 and 12, for example being 2, 3, 4, 5 or 6.
  • the output capacitor C2 is unpolarized.
  • Each cell C comprises a first transistor T1, a second transistor T2, and an inductor L1.
  • the transistors T1 and T2 are MOSFETs.
  • Such a converter 100 can be divided into two configurations depending on the state of the transistor T1.
  • the transistor T1 In the on state, the transistor T1 is closed, the current flowing through the inductance L1 increases. The voltage across the second transistor T2 being negative, no current flows through it.
  • transistor T1 In the off state, transistor T1 is open. The second transistor T2 becomes conducting in order to ensure the continuity of the current in the inductor L1. The current flowing through the inductor L1 decreases.
  • the converter 100 includes isolation switches TR (in English "reverse"), connected directly to the output of the cell or C cells, allowing when closed to deliver the output voltage, and when open to protect the or C cells.
  • isolation switches TR in English "reverse"
  • the converter 100 also includes safety switches TS (in English “safety”), which are each connected in series with a corresponding isolation switch TR. These safety switches TS allow when closed to deliver the output voltage, and when open to protect the C-cell (s).
  • safety switches TS in English "safety"
  • isolation and safety switches are activated (as an open switch) if undervoltage or overvoltage, that is disturbances, occur on one of the input or output networks, as well as in the case of a hardware malfunction of the DC / DC converter, for example the failure of a transistor.
  • Each pair of isolation and safety switches is connected in parallel with the others.
  • the converter has 4 pairs of isolation and safety switches, which makes it possible to improve the power of the assembly, but it is not beyond the scope of the present invention if their number is different. , being for example 1, 2, 3, 5 or 6.
  • the number of pairs of isolation and safety switches is equal to the number of cells of the converter.
  • the isolation and safety switches are transistors, for example MOSFET transistors.
  • All the transistors of the converter 100 are controlled by a controller 110 of the converter 100.
  • FIG. 2 illustrates a voltage converter 200 on board a vehicle, comprising a plurality of cells C, each comprising an arm of chopped transistors T3, T4 for generating the second voltage and a control circuit 210 for the transistors.
  • the converter comprises four cells C arranged in parallel and each of the cells C also comprises at least one isolation transistor TR (in English "reverse").
  • only one or more of the cells C also comprises at least one isolation transistor TR.
  • the isolation transistor TR of each cell can be connected via an inductor L2 to the midpoint of the transistor arm T3, T4 of each cell.
  • the transistors T3, T4 of the cells are controlled by a control circuit 210 in the same way as in a simple converter, out of phase and controlled with the same operating cycle (i.e. the duty cycle is the same).
  • One of the transistors of one arm of a cell is open, while the other is passing, and vice versa.
  • control circuit 210 is configured to keep open or close the isolation transistor K3-R of one of the cells of the plurality of cells.
  • the isolation transistor K3-R When the isolation transistor K3-R is closed, all the cells of the converter controlled by the control circuit 210 then make it possible to supply the second voltage. There is then a phase shift of T / 4 between the commands of the different cells.
  • the isolation transistor K3-R When the isolation transistor K3-R is open, there is a decoupling of said cell and the arm of said chopper controlled cell is used to provide a third output voltage which is in the example described in FIG. V.
  • the arm of the disconnected cell makes it possible to produce a voltage-reducing circuit.
  • the mid-point of the transistor arm T3, T4 of this cell is connected to an inductor L2, the voltage-reducing circuit is of a type called "Buck".
  • the control circuit 210 can deactivate (for example by opening them) the transistors T3 and T4 of the other cells of the plurality of cells, the second voltage is then no longer available.
  • control circuit 210 controls the other cells C of the plurality of cells in order to supply the second voltage which is in the example described of 12 V. In this example, there is then a phase shift of T / 3 between the three different cells providing the second voltage.
  • phase shift of T / x between the commands of the different cells, where x is the number of active cells to supply the second voltage.
  • the phase shift may for example be T / 4 or T / 3, depending on the open or closed state of the isolation transistor K3-R.
  • T is the period of the control cycle.
  • the converter 200 comprises a capacitor C1 connected to the output of the cells C of the converter.
  • the capacitor C1 is connected to the output of the other cells of the converter.
  • this isolation transistor K3-R is closed, then said cell serves the converter to provide the second voltage, and the capacitor C1 is connected to the output of all the cells of the converter.
  • the converter further comprises safety transistors TS between the isolation transistors TR and the output of the second voltage.
  • the converter comprises a safety transistor TS per cell of the converter. There are four safety transistors TS arranged in parallel, each connected to the output of the C-cells.
  • the converter further comprises an additional isolation transistor K4-R disposed directly upstream of the output of the third voltage.
  • the converter finally comprises an additional safety transistor Kl-S directly upstream of the additional isolation transistor K4-R and directly at the output of the decoupled cell.
  • the isolation transistors TR, the safety transistors TS, the additional isolation transistor K4-R and the additional safety transistor K1-S are used as an electronic switch that can be open (switch off) or closed (switch on).
  • Transistors K1-S and K4-R are connected in series. These safety transistors Kl-S and K4-R allow when closed to deliver the third output voltage, and when open to protect the decoupled cell.
  • the converter also comprises a capacitor C3 connected to the input of the additional isolation transistor K4-R.
  • the capacitor C3 is connected between the additional safety transistor K1-S mentioned above and the additional isolation transistor K4-R.
  • the converter also comprises an additional transistor arm, this arm being formed by the additional safety transistor Kl-S positioned upstream of the additional isolation transistor K4-R and by a transistor additional K2.
  • the midpoint of this additional transistor arm is also connected to the output of the cell that can be disconnected by means of the transistor K3-R.
  • the inductance L2 of the decoupled cell and the additional transistor arm make it possible to produce a so-called "boost" voltage booster circuit.
  • the third voltage is of a lower level (for example 12V or
  • the control circuit 210 controls the transistors K3 and K5 so that the disconnected cell performs a voltage-reducing circuit function. Simultaneously, the control circuit 210 opens the additional transistor K2 and closes the additional safety transistor K1-S.
  • control circuit 210 controls the switches K3, K5, K2 and K1-S so as to realize a buck-boost circuit providing the third voltage from the first voltage.
  • the additional isolation transistor K4-R is disposed between the output of said voltage booster circuit and the output of the third voltage. In case of failure of an electronic component of the converter, there may be a disconnection of the load.
  • the converter additionally provides a precharging function. This is carried out by means of an additional precharge transistor K7, which makes it possible to integrate both a precharging function and a charger function within the same DC / DC converter.
  • the control circuit 210 is configured to allow, when the isolation transistor K3-R and the additional isolation transistor K4-R are simultaneously open while the precharge transistor K7 is closed, to use the arm of the cell disconnected as a simple current conductor (ie transistor K5 is closed and transistor K6 is open) to supply a precharge current to one or more capacities of the network supplying the first voltage, or even to the capacitors of the converter, in particular capacitance C2.
  • control circuit 210 is configured to allow, when the isolation transistor K3-R and the precharge transistor K7 are simultaneously open while the additional isolation transistor K4-R is closed to use the arm of the disconnected cell as a voltage converter circuit for producing a load circuit delivering the third voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un convertisseur (200) de tension embarqué sur un véhicule automobile, pour convertir une première tension en une deuxième tension différente de la première, comportant : - une pluralité de cellules (C), comportant chacune un bras de transistors (T3, T4) commandé en hacheur pour générer la deuxième tension, - au moins un transistor d'isolement (K3-R), et - un circuit de contrôle (210) des transistors, le circuit de contrôle (210) étant configuré pour pouvoir sélectivement maintenir ouvert ledit au moins un transistor d'isolement (K3-R) afin de découpler une cellule de la pluralité de cellule et d'utiliser le bras (K5, K6) de ladite cellule pour fournir une troisième tension de sortie.

Description

Convertisseur de tension embarqué sur un véhicule automobile et chargeur électrique associé
La présente invention concerne la charge électrique d'une batterie d'un équipement à partir d'un véhicule automobile électrique ou hybride.
L'invention se rapporte en particulier à un convertisseur de tension embarqué sur un véhicule automobile électrique ou hybride, configuré pour réaliser une fonction supplémentaire de chargeur électrique.
De manière connue, les véhicules automobiles sont équipés d'un convertisseur de tension DC/DC configuré pour convertir une première tension d'entrée, par exemple de 48 V, en une deuxième tension de sortie, par exemple en 12 V.
Par ailleurs, les véhicules automobiles peuvent, également de manière connue, être équipés d'un chargeur de batterie permettant de charger la batterie d'un équipement en une troisième tension de sortie différente ou pas de la deuxième tension, ladite troisième tension pouvant être par exemple de 48 V, de 24 V ou encore de 12 V.
Dans les véhicules automobiles connus, les fonctions de convertisseur de tension DC/DC et de chargeur de batterie sont effectuées par deux modules électroniques distincts.
Il existe un besoin pour améliorer encore les véhicules automobiles hybrides ou électriques, minimiser le coût et l'encombrement des systèmes électroniques embarqués. L'invention vise à répondre à ce besoin, et a ainsi pour objet, selon l'un de ses aspects, un convertisseur de tension embarqué sur un véhicule automobile, pour convertir une première tension en une deuxième tension différente de la première, comportant :
une pluralité de cellules, comportant chacune un bras de transistors commandé en hacheur pour générer la deuxième tension,
- au moins un transistor d'isolement, et
un circuit de contrôle des transistors,
le circuit de contrôle étant configuré pour pouvoir sélectivement maintenir ouvert ledit au moins un transistor d'isolement K3-R afin de découpler une cellule de la pluralité de cellule et d'utiliser le bras de ladite cellule pour fournir une troisième tension de sortie.
Le transistor d'isolement permet de se prémunir en cas d'inversion de polarité de la seconde tension. En d'autres termes, le transistor d'isolement K3-R est utilisé comme interrupteur électronique pouvant être ouvert (interrupteur bloqué) ou fermé (interrupteur passant).
La première tension est fournie par un réseau électrique qui peut être par exemple une batterie.
L'ouverture du transistor d'isolement K3-R permet de découpler le bras de ladite cellule des autres cellules qui permettent de fournir la deuxième tension.
Dans un mode particulier de réalisation de l'invention, ledit au moins un transistor d'isolement appartient à une des cellules de ladite pluralité de cellules.
Dans un mode de réalisation particulier de l'invention, ledit au moins transistor d'isolement est relié par l'intermédiaire d'une inductance au point milieu du bras de transistors de la cellule comprenant ledit au moins un transistor d'isolement. Ainsi, la cellule comprenant ledit au moins transistor d'isolement comprend également une inductance.
Dans un mode de réalisation particulier de l'invention, les cellules du convertisseur sont disposées en parallèle. En d'autres termes, les cellules du convertisseur sont connectées électriquement en parallèle.
Grâce à l'invention, on combine des fonctions électroniques qui étaient de manière connue effectuées par des composants distincts, ce qui permet de réduire l'encombrement total ainsi que les coûts de production.
En outre, le refroidissement et le circuit de commande peuvent être les mêmes, ce qui contribue encore à réduire l'encombrement ainsi que les coûts de production.
La troisième tension de sortie peut être égale ou non à la première tension.
La troisième tension peut être utilisée afin de charger une batterie, par exemple une batterie d'un équipement extérieur au véhicule automobile comme une batterie d'un vélo électrique.
Dans un mode de réalisation, la troisième tension est égale à la première tension, étant par exemple toutes deux de 48 V. Le convertisseur est alors utilisé en chargeur.
Dans une variante de réalisation, la troisième tension est différente de la première tension. Le convertisseur est alors un convertisseur à double sortie dont la deuxième sortie est utilisée en chargeur. La première tension peut être de 48 V. La troisième tension peut être de 12 V ou encore de 24 V.
Dans un mode de réalisation, le convertisseur selon l'invention est utilisé pour fournir une deuxième tension et/ou une troisième tension à partir d'une tension fournie par une batterie du véhicule.
La deuxième tension peut permettre d'alimenter le réseau de bord du véhicule automobile, par exemple pour permettre l'utilisation d'un autoradio ou d'autres équipements à bord du véhicule.
La troisième tension peut permettre d'alimenter une batterie, par exemple une batterie de vélo électrique que l'on souhaite charger dans le véhicule, par exemple pendant le roulage ou à l'arrêt.
La troisième tension de sortie peut être inférieure à 60 V, mieux inférieure ou égale à 48 V. Dans un mode de réalisation, la troisième tension de sortie est de 48 V ou de 24 V ou encore de 12V.
Dans un mode particulier de réalisation, la troisième tension de sortie est une tension continue, de préférence inférieure à 60V, mieux inférieure ou égale à 48 V. Dans un mode particulier de réalisation, la troisième tension de sortie continue est de 48 V. Dans un mode particulier de réalisation, la troisième tension de sortie continue est de 24V. Dans un mode particulier de réalisation, la troisième tension de sortie continue est de 12V.
La deuxième tension de sortie peut être inférieure à 60 V, mieux inférieure ou égale à 48 V. Dans un mode de réalisation, la deuxième tension de sortie est de 12 V ou 24 V.
Dans un mode particulier de réalisation, la deuxième tension de sortie est une tension continue, de préférence inférieure à 60V, mieux inférieure ou égale à 48 V. Dans un mode de réalisation, la deuxième tension de sortie continue est de 12 V ou de 24V.
Le transistor d'isolement susmentionné est selon l'invention ouvert afin de découpler ladite cellule et d'utiliser le bras de ladite cellule commandé en hacheur pour fournir une troisième tension de sortie ; dans ce cas le convertisseur est configuré pour fournir les deuxième et troisième tensions de sortie simultanément ou pas. Il est également ouvert en cas de défaillance, jouant alors son rôle d'isolement. Lorsqu'il est fermé, la cellule correspondante est utilisée comme cellule d'un convertisseur de tension DC/DC selon l'art antérieur, toutes les cellules du convertisseur permettant de fournir seulement la deuxième tension.
Les cellules du convertisseur sont disposées en parallèle. Le convertisseur peut comporter plusieurs cellules, par exemple 2, 3, 4, 5 ou 6.
En fonction des utilisations, le convertisseur n'a besoin que d'une ou plusieurs cellules de la pluralité de cellule pour fournir la deuxième tension, les autres cellules de la pluralité de cellules étant inutilisées. Il est alors avantageux d'utiliser le bras d'une cellule inutilisée pour fournir une troisième tension, aussi bien lorsque le véhicule est en roulage qu'à l'arrêt.
Dans un exemple de réalisation, on a quatre cellules disposées en parallèle. Le transistor d'isolement de chaque cellule peut être relié par l'intermédiaire d'une inductance au point milieu du bras de transistors de chaque cellule.
Les transistors des cellules sont commandés de la même façon que dans un convertisseur de tension DC/DC selon l'art antérieur et contrôlés avec le même cycle de fonctionnement. L'un des transistors d'un bras d'une cellule est ouvert, pendant que l'autre est passant, puis inversement. On a un déphasage de T/x entre les commandes d'ouverture ou de fermeture des transistors des différentes cellules, où x est le nombre de cellules actives pour fournir la deuxième tension et T la période du cycle de fonctionnement. En d'autres termes, le rapport cyclique au sein de chacune des cellules est identique mais les commandes des transistors sont déphasées de T/x d'une cellule à l'autre. Le déphasage peut par exemple être de T/4 ou de T/3, en fonction de l'état ouvert ou fermé du transistor d'isolement K3-R.
Dans l'invention, on comprend qu'on utilise le bras de la cellule commandé en hacheur pour réaliser une fonction de chargeur, notamment 48V, 24 V ou 12V, et les autres cellules de la pluralité de cellules pour réaliser une fonction de convertisseur de tension DC/DC.
Dans un mode particulier de réalisation de l'invention, le convertisseur peut comporter une capacité Cl branchée à la sortie des cellules du convertisseur. Dans le cas où le transistor d'isolement de la cellule dont le bras peut être commandé en hacheur, la capacité Cl est branchée à la sortie des cellules du convertisseur autres que la cellule dont le bras est commandé en hacheur. Dans le cas où ce transistor d'isolement est fermé, alors ladite cellule sert au convertisseur pour fournir la deuxième tension, et la capacité Cl est branchée à la sortie de toutes les cellules du convertisseur.
Ladite capacité Cl branchée à la sortie des cellules du convertisseur peut être non polarisée. Il peut notamment s'agir d'un condensateur céramique.
Par ailleurs, si le convertisseur comporte un nombre de cellule plus faible, il faut augmenter la valeur de la capacité. Par exemple, pour un convertisseur à deux cellules, la capacité doit être double de celle nécessaire pour un convertisseur à quatre cellules.
Dans un mode particulier de réalisation de l'invention, au moins un transistor d'isolement TR (en anglais « Reverse transistor ») est associé à une ou des cellules de la pluralité de cellule. Ces transistors permettent de se prémunir d'une inversion de polarité de la seconde tension.
Dans un mode particulier de réalisation de l'invention, le convertisseur peut comporter en outre un transistor de sécurité TS entre ledit au moins un transistor d'isolement TR et la sortie de la deuxième tension. Ces transistors de sécurité permettent de se prémunir de variation de tension sur le réseau fournissant la première tension. Le convertisseur peut comporter un transistor de sécurité TS par cellule du convertisseur. Le convertisseur peut comporter un ou plusieurs transistors d'isolement, par exemple 1, 2, 3, 4, 5 ou 6. Un nombre élevé de transistors d'isolement peut permettre d'améliorer la puissance de l'ensemble. Dans un exemple de réalisation, on a quatre transistors d'isolement disposés en parallèle, chacun relié à la sortie des cellules.
Dans un mode particulier de réalisation de l'invention, le convertisseur peut comporter en outre un transistor d'isolement supplémentaire K4-R disposé directement en amont de la sortie de la troisième tension.
Dans un mode particulier de réalisation de l'invention, le convertisseur peut comporter en outre une capacité C3 reliée par une de ses bornes au transistor d'isolement supplémentaire K4-R. La capacité C3 peut être branchée entre le transistor de sécurité TS mentionné ci-dessus et le transistor d'isolement supplémentaire K4-R.
Dans un mode particulier de réalisation de l'invention, le convertisseur peut comporter en outre un transistor de sécurité supplémentaire Kl -S en amont du transistor d'isolement supplémentaire K4-R. Dans un mode particulier de réalisation de l'invention, le bras K5, K6 de ladite cellule pouvant être découplée est commandé en hacheur-abaisseur pour fournir la troisième tension de sortie.
Dans un mode particulier de réalisation de l'invention, le convertisseur peut comporter en outre un transistor K2 formant avec le transistor de sécurité supplémentaire Kl-S un bras de transistors Kl-S, K2 commandé en hacheur- élévateur, ce bras de transistors Kl-S, K2 formant avec le bras K5, K6 de ladite cellule pouvant être découplée un circuit abaisseur-élévateur de tension (en anglais « buck-boost »).
Dans un mode particulier de réalisation, ledit transistor de sécurité supplémentaire Kl-S est disposé directement à la sortie de ladite cellule dont le bras est commandé en hacheur. Dans ce cas, la troisième tension peut être de 12 V ou 24 V. En cas de défaillance d'un composant électronique du convertisseur, il peut y avoir une déconnexion de la charge.
Dans un mode particulier de réalisation, le convertisseur peut comporter en outre un transistor de précharge K7, le circuit de contrôle étant configuré pour permettre, lorsque le transistor de précharge K7 est ouvert, de fournir la deuxième tension et/ou la troisième tension, et lorsque le transistor de précharge K7 est fermé, d'utiliser le bras de ladite cellule commandé en hacheur comme simple conducteur de courant pour fournir un courant de précharge au capacité d'un réseau fournissant la première tension, voir à une ou plusieurs capacités du convertisseur..
Dans ce cas de précharge, le transistor d'isolement K3-R et le transistor d'isolement supplémentaire K4-R sont maintenu ouverts tandis que le transistor de précharge K7 est maintenu fermé.
En l'absence de précharge, le transistor de précharge K7 est maintenu ouvert. L'invention a encore pour objet, indépendamment ou en combinaison avec ce qui précède, un véhicule automobile équipé d'un convertisseur tel que décrit ci-dessus. Le véhicule automobile peut être tout électrique ou hybride.
L'invention a encore pour objet un procédé d'alimentation d'une batterie au moyen d'un convertisseur selon l'invention, ce
convertisseur permettant de convertir une première tension en une deuxième tension différente de la première, en commandant en hacheur une pluralité de cellules C, comportant chacune un bras de transistors T3, T4 pour générer la deuxième tension. Selon un tel procédé, on maintient sélectivement ouvert au moins un transistor d'isolement K3-R afin de découpler une cellule et d'utiliser le bras K5, K6 de ladite cellule commandé en hacheur pour fournir une troisième tension de sortie destinée à alimenter ladite batterie.
Le convertisseur comporte à cet effet, comme décrit ci-dessus, un circuit de contrôle (210) des transistors..
Le procédé peut comporter tout ou partie des caractéristiques de l'invention exposées ci-dessus.
Description détaillée
L'invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d'exemples de mise en œuvre non limitatifs de celle-ci, et à l'examen du dessin annexé, sur lequel :
- la figure 1 illustre un circuit électrique de convertisseur DC/DC, et
- les figures 2 à 4 illustrent des variantes de réalisation de circuits électriques de convertisseurs conformes à l'invention.
Convertisseur de tension principale DC/DC
On a illustré à la figure 1 un convertisseur de tension principale 100 DC/DC configuré pour convertir une première tension d'entrée, par exemple de 48 V, en une deuxième tension de sortie, par exemple en 12 V.
Le convertisseur de tension principal 100 comporte un pont fonctionnant en hacheur, de manière connue en soi. Un tel convertisseur est dit hacheur abaisseur (« buck » en anglais), et convertit une tension continue en une autre tension continue de plus faible valeur. Dans un exemple de réalisation, il peut s'agir par exemple de convertir une tension de 48 V en une tension de 12 V.
Dans l'exemple de réalisation de la figure 1, le convertisseur DC/DC 100 comporte 4 cellules C disposées en parallèle. Bien entendu, le nombre de cellules C pourrait être différent sans que l'on ne sorte du cadre de la présente invention. Il peut par exemple être compris entre 2 et 12, étant par exemple de 2, 3, 4, 5 ou 6.
L'utilisation de plusieurs cellules peut permettre de réduire les contraintes sur les semi-conducteurs. On parle alors de hacheurs entrelacés car les cellules du convertisseur conduisent toutes vers un même condensateur de sortie C2 avec un déphasage de T/4 entre les commandes des transistors de chaque cellule successive où T est la période du cycle de fonctionnement du convertisseur. En d'autres termes, le rapport cyclique au sein de chacune des cellules est identique mais les commandes des transistors sont déphasées de T/4 d'une cellule à l'autre.
Le condensateur de sortie C2 est non polarisé.
Chaque cellule C comporte un premier transistor Tl, un deuxième transistor T2, et une inductance Ll.
Dans l'exemple décrit ici, les transistors Tl et T2 sont des MOSFETs.
Le fonctionnement d'un tel convertisseur 100 peut être divisé en deux configurations suivant l'état du transistor Tl.
Dans l'état passant, le transistor Tl est fermé, le courant traversant l'inductance Ll augmente. La tension aux bornes du deuxième transistor T2 étant négative, aucun courant ne le traverse.
Dans l'état bloqué, le transistor Tl est ouvert. Le deuxième transistor T2 devient passant afin d'assurer la continuité du courant dans l'inductance Ll. Le courant traversant l'inductance Ll décroît.
Par ailleurs, le convertisseur 100 comporte des interrupteurs d'isolement TR (en anglais « reverse »), reliés directement à la sortie de la ou des cellules C, permettant lorsque fermé de délivrer la tension de sortie, et lorsqu' ouvert de protéger la ou les cellules C.
Le convertisseur 100 comporte également des interrupteurs de sécurité TS (en anglais « safety »), lesquels sont montés chacun en série avec un interrupteur d'isolement TR correspondant. Ces interrupteurs de sécurité TS permettent lorsque fermé de délivrer la tension de sortie, et lorsqu' ouvert de protéger la ou les cellules C.
Une telle configuration permet d'éviter le passage du courant dans les deux sens. Les interrupteurs d'isolement et de sécurité sont activés (comme interrupteur ouvert) si une sous-tension ou une surtension, c'est-à-dire des perturbations, apparaissent sur un des réseaux en entrée ou en sortie, ainsi que dans le cas d'un dysfonctionnement matériel du convertisseur DC/DC, par exemple la défaillance d'un transistor.
Chaque paire d'interrupteurs d'isolement et de sécurité est montée en parallèle avec les autres.
Dans l'exemple décrit, le convertisseur comporte 4 paires d'interrupteurs d'isolement et de sécurité, ce qui permet d'améliorer la puissance de l'ensemble, mais on ne sort pas du cadre de la présente invention si leur nombre est différent, étant par exemple de 1, 2, 3, 5 ou 6. En principe, le nombre de paires d'interrupteurs d'isolement et de sécurité est égal au nombre de cellule du convertisseur.
Dans l'exemple décrit, les interrupteurs d'isolement et de sécurité sont des transistors, par exemple des transistors de type MOSFET.
Tous les transistors du convertisseur 100 sont contrôlés par un contrôleur 110 du convertisseur 100.
Convertisseur à double sortie
On va maintenant décrire un convertisseur de tension embarqué sur un véhicule conforme à l'invention, pour convertir une première tension en une deuxième tension différente de la première.
On a illustré à la figure 2 un convertisseur 200 de tension embarqué sur un véhicule, comportant une pluralité de cellules C, comportant chacune un bras de transistors T3, T4 commandés en hacheur pour générer la deuxième tension et un circuit de contrôle 210 des transistors.
Dans l'exemple décrit, le convertisseur comporte quatre cellules C disposées en parallèle et chacune des cellules C comporte également au moins un transistor d'isolement TR (en anglais « reverse »).
En variante, seule une ou plusieurs des cellules C comporte également au moins un transistor d'isolement TR.
Le transistor d'isolement TR de chaque cellule peut être relié par l'intermédiaire d'une inductance L2 au point milieu du bras de transistors T3, T4 de chaque cellule.
Les transistors T3, T4 des cellules sont commandés par un circuit de contrôle 210 de la même façon que dans un convertisseur simple, déphasé et contrôlée avec le même cycle de fonctionnement (i.e. le rapport cyclique est le même). L'un des transistors d'un bras d'une cellule est ouvert, pendant que l'autre est passant, puis inversement.
Par ailleurs, le circuit de contrôle 210 est configuré pour maintenir ouvert ou fermé le transistor d'isolement K3-R d'une des cellules de la pluralité de cellules.
Lorsque le transistor d'isolement K3-R est fermé, toutes les cellules du convertisseur piloté par le circuit de contrôle 210 permettent alors de fournir la deuxième tension. On a un alors déphasage de T/4 entre les commandes des différentes cellules. Lorsque le transistor d'isolement K3-R est ouvert, on a un découplage de ladite cellule et on utilise le bras de ladite cellule commandée en hacheur pour fournir une troisième tension de sortie qui est dans l'exemple décrit à la figure 2 de 12 V. En d'autres termes, le bras de la cellule déconnectée permet de réaliser un circuit abaisseur de tension. En particulier lorsque le point milieu du bras de transistors T3, T4 de cette cellule est relié à une inductance L2, le circuit abaisseur de tension est d'un type appelé « Buck ».
Le circuit de contrôle 210 peut désactiver (par exemple en les ouvrant) les transistors T3 et T4 des autres cellules de la pluralité de cellules, la deuxième tension n'est alors plus disponible.
En variante, le circuit de contrôle 210 commande les autres cellules C de la pluralité de cellules afin de fournir la deuxième tension qui est dans l'exemple décrit de 12 V. Dans cet exemple, on a un alors un déphasage de T/3 entre les trois différentes cellules fournissant la deuxième tension.
Dans l'exemple décrit, on a donc un déphasage de T/x entre les commandes des différentes cellules, où x est le nombre de cellules actives pour fournir la deuxième tension. Le déphasage peut par exemple être de T/4 ou de T/3, en fonction de l'état ouvert ou fermé du transistor d'isolement K3-R. T correspond à la période du cycle de commande.
Le convertisseur 200 comporte une capacité Cl branchée à la sortie des cellules C du convertisseur. Dans le cas où le transistor d'isolement K3-R de la cellule dont le bras peut être commandé en hacheur est ouvert, la capacité Cl est branchée à la sortie des autres cellules du convertisseur. Dans le cas où ce transistor d'isolement K3-R est fermé, alors ladite cellule sert au convertisseur pour fournir la deuxième tension, et la capacité Cl est branchée à la sortie de toutes les cellules du convertisseur.
Le convertisseur comporte en outre des transistors de sécurité TS entre les transistors d'isolement TR et la sortie de la deuxième tension. Le convertisseur comporte un transistor de sécurité TS par cellule du convertisseur. On a quatre transistors de sécurité TS disposés en parallèle, chacun relié à la sortie des cellules C.
Le convertisseur comporte en outre un transistor d'isolement supplémentaire K4-R disposé directement en amont de la sortie de la troisième tension. Le convertisseur comporte enfin un transistor de sécurité supplémentaire Kl-S directement en amont du transistor d'isolement supplémentaire K4-R et directement à la sortie de la cellule découplée.
Les transistors d'isolement TR, les transistors de sécurité TS, le transistor d'isolement supplémentaire K4-R et le transistor de sécurité supplémentaire Kl-S sont utilisés comme interrupteur électronique pouvant être ouvert (interrupteur bloqué) ou fermé (interrupteur passant).
Les transistors Kl-S et K4-R sont montés en série. Ces transistors de sécurité Kl-S et K4-R permettent lorsque fermés de délivrer la troisième tension de sortie, et lorsqu' ouvert de protéger la cellule découplée.
Ainsi, en cas de défaillance d'un composant électronique du convertisseur, il peut y avoir une déconnection de la charge.
Le convertisseur comporte également une capacité C3 branchée à l'entrée du transistor d'isolement supplémentaire K4-R. La capacité C3 est branchée entre le transistor de sécurité supplémentaire Kl-S mentionné ci-dessus et le transistor d'isolement supplémentaire K4-R.
Dans une variante de réalisation illustrée à la figure 3, le convertisseur comporte également un bras de transistor additionnel, ce bras étant formé par le transistor de sécurité supplémentaire Kl-S positionné en amont du transistor d'isolement supplémentaire K4-R et par un transistor additionnel K2. Le point milieu de ce bras de transistor additionnel est par ailleurs relié à la sortie de la cellule pouvant être déconnectée au moyen du transistor K3-R.
En d'autres termes, l'inductance L2 de la cellule découplée et le bras de transistor additionnel permettent de réaliser un circuit élévateur de tension dit de type « boost ».
Ainsi, si la troisième tension est d'un niveau inférieur (par exemple 12V ou
24V) à la première tension, le circuit de contrôle 210 commande les transistors K3 et K5 de sorte que la cellule déconnecté réalise une fonction de circuit abaisseur de tension. Simultanément, le circuit de contrôle 210 ouvre le transistor additionnel K2 et ferme le transistor de sécurité supplémentaire Kl-S.
Si la troisième tension est de même niveau que la première tension, le circuit de contrôle 210 commande les interrupteurs K3, K5, K2 et Kl-S de façon à réaliser un circuit abaisseur-élévateur de tension (en anglais « buck-boost ») fournissant la troisième tension à partir de la première tension.
Dans un mode de réalisation, le transistor d'isolement supplémentaire K4-R est disposé entre la sortie dudit circuit élévateur de tension et la sortie de la troisième tension. En cas de défaillance d'un composant électronique du convertisseur, il peut y avoir une déconnection de la charge.
Dans une variante de réalisation illustrée à la figure 4, le convertisseur assure additionnellement une fonction de précharge. Celle-ci est réalisée au moyen d'un transistor de précharge additionnel K7, lequel permet d'intégrer à la fois une fonction de précharge et une fonction de chargeur au sein d'un même convertisseur DC/DC.
Le circuit de contrôle 210 est configuré pour permettre, lorsque le transistor d'isolement K3-R et le transistor d'isolement supplémentaire K4-R sont simultanément ouvert alors que le transistor de précharge K7 est fermé, d'utiliser le bras de la cellule déconnectée comme simple conducteur de courant (i.e le transistor K5 est fermé et le transistor K6 est ouvert) pour fournir un courant de précharge à une ou plusieurs capacités du réseau fournissant la première tension, voire également aux capacités du convertisseur, notamment la capacités C2.
De même, le circuit de contrôle 210 est configuré pour permettre, lorsque le transistor d'isolement K3-R et le transistor de précharge K7 sont simultanément ouvert alors que le transistor d'isolement supplémentaire K4-R est fermé d'utiliser le bras de la cellule déconnectée comme circuit convertisseur de tension pour réaliser un circuit de charge délivrant la troisième tension.
Bien entendu, l'invention n'est pas limitée aux exemples qui viennent d'être décrits. En particulier, le nombre de cellules peut être différent.

Claims

REVENDICATIONS
1. Convertisseur (200) de tension embarqué sur un véhicule automobile, pour convertir une première tension en une deuxième tension différente de la première, comportant :
- une pluralité de cellules (C), comportant chacune un bras de transistors
(T3, T4) commandé en hacheur pour générer la deuxième tension,
au moins un transistor d'isolement (K3-R), et
un circuit de contrôle (210) des transistors,
le circuit de contrôle (210) étant configuré pour pouvoir sélectivement maintenir ouvert ledit au moins un transistor d'isolement (K3-R) afin de découpler une cellule de la pluralité de cellule et d'utiliser le bras (K5, K6) de ladite cellule pour fournir une troisième tension de sortie.
2. Convertisseur selon la revendication précédente dans lequel ledit au moins un transistor d'isolement appartient à une des cellules de ladite pluralité de cellules.
3. Convertisseur selon l'une des revendications précédentes, comportant une capacité (Cl) branchée à la sortie des cellules du convertisseur.
4. Convertisseur selon la revendication précédente, ladite capacité (Cl) branchée à la sortie des cellules du convertisseur étant non polarisée.
5. Convertisseur selon l'une quelconque des revendications précédentes, comportant au moins un transistor d'isolement (TR) associé à une ou des cellules de la pluralité de cellule.
6. Convertisseur selon la revendication précédente, comportant en outre un transistor de sécurité (TS) entre ledit au moins un transistor d'isolement (TR) et la sortie de la deuxième tension.
7. Convertisseur selon l'une des revendications précédentes, comportant en outre un transistor d'isolement supplémentaire (K4-R) disposé directement en amont de la sortie de la troisième tension.
8. Convertisseur selon la revendication précédente, comportant en outre une capacité (C3) reliée par une de ses bornes au transistor d'isolement supplémentaire (K4-R).
9. Convertisseur selon l'une des deux revendications précédentes, comportant en outre un transistor de sécurité supplémentaire (Kl-S) en amont du transistor d'isolement supplémentaire (K4-R).
10. Convertisseur selon l'une quelconque des revendications précédentes, le bras (K5, K6) de ladite cellule pouvant être découplée étant commandé en hacheur- abaisseur pour fournir la troisième tension de sortie.
11. Convertisseur selon l'une des deux revendications précédentes, comportant un transistor (K2) formant avec le transistor de sécurité supplémentaire (Kl-S) un bras de transistors (Kl-S, K2) commandé en hacheur-élévateur, ledit bras de transistors (Kl-S, K2) formant avec le bras (K5, K6) de ladite cellule pouvant être découplée un circuit abaisseur-élévateur de tension (en anglais « buck-boost »).
12. Convertisseur selon l'une quelconque des revendications précédentes, comportant un transistor de précharge (K7), le circuit de contrôle (210) étant configuré pour permettre, lorsque le transistor de précharge (K7) est ouvert, de fournir la deuxième tension et/ou la troisième tension, et lorsque le transistor de précharge (K7) est fermé, d'utiliser le bras de ladite cellule commandé en hacheur comme simple conducteur de courant pour fournir un courant de précharge au capacité d'un réseau fournissant la première tension, voir à une ou plusieurs capacités du convertisseur.
13. Procédé d'alimentation d'une batterie au moyen d'un convertisseur selon l'une quelconque des revendications précédentes, ledit convertisseur permettant de convertir une première tension en une deuxième tension différente de la première, en commandant en hacheur une pluralité de cellules C, comportant chacune un bras de transistors T3, T4 pour générer la deuxième tension, ledit procédé d'alimentation comprenant une étape dans laquelle on maintient sélectivement ouvert au moins un transistor d'isolement (K3-R) afin de découpler ladite cellule et d'utiliser le bras (K5, K6) de ladite cellule commandé en hacheur pour fournir une troisième tension de sortie destinée à alimenter ladite batterie.
14. Véhicule automobile équipé d'un convertisseur (200) selon l'une quelconque des revendications 1 à 12.
EP18782780.3A 2017-09-11 2018-09-11 Convertisseur de tension embarque sur un véhicule automobile et chargeur électrique associe Pending EP3682536A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1758387A FR3071109A1 (fr) 2017-09-11 2017-09-11 Convertisseur de tension embarque sur un vehicule automobile et chargeur electrique associe
PCT/FR2018/052214 WO2019048806A1 (fr) 2017-09-11 2018-09-11 Convertisseur de tension embarque sur un véhicule automobile et chargeur électrique associe

Publications (1)

Publication Number Publication Date
EP3682536A1 true EP3682536A1 (fr) 2020-07-22

Family

ID=61027826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18782780.3A Pending EP3682536A1 (fr) 2017-09-11 2018-09-11 Convertisseur de tension embarque sur un véhicule automobile et chargeur électrique associe

Country Status (5)

Country Link
EP (1) EP3682536A1 (fr)
JP (2) JP2020533935A (fr)
CN (1) CN111316550A (fr)
FR (1) FR3071109A1 (fr)
WO (1) WO2019048806A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112165255A (zh) * 2020-09-27 2021-01-01 合肥巨一动力系统有限公司 一种适用于交错并联Boost电路的控制方法
FR3125183A1 (fr) * 2021-07-06 2023-01-13 Valeo Systemes De Controle Moteur Convertisseur de tension dc/dc permettant le prechauffage d’un pot catalytique et vehicule automobile comportant un tel convertisseur de tension dc/dc

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256516B2 (en) * 2000-06-14 2007-08-14 Aerovironment Inc. Battery charging system and method
US7405495B2 (en) * 2002-01-22 2008-07-29 Johnson Controls Automotive Electronics Multicellular DC/DC voltage converter with protection switches
CN101073195A (zh) * 2004-10-08 2007-11-14 皇家飞利浦电子股份有限公司 将电压转换成多个输出电压的电压转换器及操作该电压转换器的方法
FR2909495B1 (fr) * 2006-12-05 2009-01-16 Thales Sa Convertisseur dc dc elevateur de tension
DE102009052769B4 (de) * 2009-11-11 2022-12-15 Bayerische Motoren Werke Aktiengesellschaft Mehrspannungsbordnetz für ein Kraftfahrzeug
US9340114B2 (en) * 2012-01-23 2016-05-17 Ford Global Technologies, Llc Electric vehicle with transient current management for DC-DC converter
DE102012218914A1 (de) * 2012-10-17 2014-04-17 Robert Bosch Gmbh Schutzschaltungsanordnung für ein Mehrspannungsnetz
GB2508222A (en) * 2012-11-26 2014-05-28 Bombardier Transp Gmbh Inductive power receiver having drain and source elements
JP6044444B2 (ja) * 2013-04-30 2016-12-14 株式会社オートネットワーク技術研究所 変換装置
JP2015056934A (ja) * 2013-09-11 2015-03-23 株式会社デンソー 電力供給装置および電池ユニット
US9231493B1 (en) * 2014-08-11 2016-01-05 Infineon Technologies Austria Ag Rectifier with auxiliary voltage output
JP2016140118A (ja) * 2015-01-26 2016-08-04 株式会社村田製作所 電源装置
US9954353B2 (en) * 2015-11-05 2018-04-24 GM Global Technology Operations LLC Self turn-on and turn-off pre-charge circuit to limit bulk capacitor inrush current
US10076964B2 (en) * 2015-12-15 2018-09-18 Faraday & Future Inc. Pre-charge system and method
CN106452151A (zh) * 2016-12-02 2017-02-22 中车青岛四方车辆研究所有限公司 动车组用单相逆变器

Also Published As

Publication number Publication date
WO2019048806A1 (fr) 2019-03-14
JP2022110111A (ja) 2022-07-28
CN111316550A (zh) 2020-06-19
JP2020533935A (ja) 2020-11-19
FR3071109A1 (fr) 2019-03-15

Similar Documents

Publication Publication Date Title
EP2684274B1 (fr) Systeme d'equilibrage de charge pour batteries
EP2079148B1 (fr) Circuit electrique
EP3454463B1 (fr) Convertisseur de tension embarqué sur un véhicule automobile et dispositif de précharge associé
EP3682525B1 (fr) Chargeur de vehicule comprenant un convertisseur dc/dc
FR3003705A1 (fr) Reseau de bord de vehicule automobile et son procede de gestion ainsi que des moyens d'implementation du procede
EP2941811B1 (fr) Systeme comprenant une batterie formee de modules de batterie, et procede de connexion ou de deconnexion d'un module de batterie correspondant
FR2976737A1 (fr) Element de batterie securise
CN109075590A (zh) 车载电源用的开关装置及车载用电源系统
FR2982997A1 (fr) Source de tension continue incluant des cellules electrochimiques a niveau de tension adaptatif
EP3053236A1 (fr) Procédé de décharge d'au moins une unité de stockage d'énergie électrique, notamment un condensateur, d'un circuit électrique
EP2794356A2 (fr) Dispositif de maintien de tension au demarrage pour vehicule automobile
WO2019048806A1 (fr) Convertisseur de tension embarque sur un véhicule automobile et chargeur électrique associe
FR2899036A1 (fr) Dispositif de suralimentation temporaire en puissance d'organes electriques automobiles
WO2014118476A1 (fr) Dispositif d'alimentation electrique d'un reseau de bord de vehicule automobile hybride
EP3681756B1 (fr) Chargeur de vehicule comprenant un convertisseur dc/dc
EP2053720A1 (fr) Dispositif d'interface de compensation de tension à base de stockage de l'energie sous forme capacitive et réseau electrique comprenant ce dispositif
FR2994896A1 (fr) Dispositif de stockage d'electricite comportant une batterie a haute tension et une batterie a basse tension de type lithium-ion
FR3059167A1 (fr) Systeme d'equilibrage local analogique pour un ensemble de dispositifs de stockage d'energie electrique par effet capacitif, module de stockage rechargeable, vehicule de transport et installation electriques comprenant un tel systeme.
WO2022189467A1 (fr) Systeme d'alimentation en tension, procede d'alimentation d'une charge par un tel systeme d'alimentation en tension et vehicule comprenant un tel systeme d'alimentation en tension
FR2987945A1 (fr) Dispositif de controle du rechargement rapide de batteries d'un systeme par commutation d'un circuit d'alimentation
FR2973600A1 (fr) Dispositif de regulation en tension, reversible en courant et une architecture electrique destine a equiper un vehicule automobile comprenant un tel dispositif
FR2925783A1 (fr) Systeme de charge/decharge d'au moins une cellule de stockage
FR2937195A1 (fr) Dispositif d'alimentation regulee pour au moins un organe electrique connecte a un reseau d'alimentation.
WO2024115200A1 (fr) Systeme electrique d'alimentation pour vehicule
FR2921770A1 (fr) Dispositif de suralimentation en puissance, monte en serie sur un reseau de bord electrique, pour un organe de forte puissance d'un vehicule

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220204

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528