EP3676544B1 - Wärmepumpe mit einer kühlvorrichtung zum kühlen eines leitraums und eines saugmunds - Google Patents
Wärmepumpe mit einer kühlvorrichtung zum kühlen eines leitraums und eines saugmunds Download PDFInfo
- Publication number
- EP3676544B1 EP3676544B1 EP18759919.6A EP18759919A EP3676544B1 EP 3676544 B1 EP3676544 B1 EP 3676544B1 EP 18759919 A EP18759919 A EP 18759919A EP 3676544 B1 EP3676544 B1 EP 3676544B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- guide space
- condenser
- suction mouth
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 167
- 239000007788 liquid Substances 0.000 claims description 180
- 238000001704 evaporation Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 52
- 238000009833 condensation Methods 0.000 description 43
- 230000005494 condensation Effects 0.000 description 43
- 239000012530 fluid Substances 0.000 description 30
- 238000009835 boiling Methods 0.000 description 22
- 239000000110 cooling liquid Substances 0.000 description 18
- 230000008020 evaporation Effects 0.000 description 15
- 229920006395 saturated elastomer Polymers 0.000 description 12
- 238000013461 design Methods 0.000 description 11
- 238000007906 compression Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000013021 overheating Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000006835 compression Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000498 cooling water Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000012856 packing Methods 0.000 description 5
- 239000003507 refrigerant Substances 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008236 heating water Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 210000002105 tongue Anatomy 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/006—Cooling of compressor or motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/006—Cooling of compressor or motor
- F25B31/008—Cooling of compressor or motor by injecting a liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/02—Compressor arrangements of motor-compressor units
- F25B31/026—Compressor arrangements of motor-compressor units with compressor of rotary type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/071—Compressor mounted in a housing in which a condenser is integrated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/09—Improving heat transfers
Definitions
- FIGs 8A and 8B represent a heat pump as described in the European patent EP 2016349 B1 is described.
- the heat pump initially includes an evaporator 10 for evaporating water as the working fluid in order to generate steam in a working-steam line 12 on the output side.
- the evaporator includes an evaporating space (in Figure 8A not shown) and is designed to generate an evaporation pressure of less than 20 hPa in the evaporation space, so that the water evaporates at temperatures below 15 °C in the evaporation space.
- the water is, for example, groundwater, brine circulating freely in the ground or in collector pipes, i.e. water with a certain salt content, river water, lake water or sea water.
- All types of water can be used, i.e. calcareous water, calcareous water, salty water or salt-free water. This is because all types of water, i.e. all these "hydrogens", have the favorable water property, namely that water, which is also known as "R 718", has an enthalpy difference ratio that can be used for the heat pump process of 6, which corresponds to more than 2 times the typical usable enthalpy difference ratio of eg R134a.
- the water vapor is fed through the suction line 12 to a compressor/condenser system 14 which has a turbomachine such as a centrifugal compressor, for example in the form of a turbo compressor, which in Figure 8A is denoted by 16.
- the turbomachine is designed to compress the working steam to a steam pressure of at least greater than 25 hPa.
- 25 hPa corresponds to a condensation temperature of around 22 °C, which can already be a sufficient heating flow temperature for underfloor heating, at least on relatively warm days.
- pressures greater than 30 hPa can be generated with the turbomachine 16, with a pressure of 30 hPa having a condensation temperature of 24 °C, a pressure of 60 hPa having a condensation temperature of 36 °C, and a pressure of 100 hPa corresponds to a condensation temperature of 45 °C.
- Underfloor heating is designed to be able to heat sufficiently with a flow temperature of 45 °C even on very cold days.
- the turbomachine is coupled to a condenser 18 which is designed to liquefy the compressed working vapor.
- a condenser 18 which is designed to liquefy the compressed working vapor.
- the energy contained in the working vapor is supplied to the liquefier 18 in order to then be supplied to a heating system via the flow 20a.
- the working fluid flows back into the condenser via the return line 20b.
- Figure 8B shows a table to illustrate different pressures and the evaporation temperatures assigned to these pressures, from which it follows that very low pressures in the evaporator are to be selected, particularly for water as the working medium.
- the DE 4431887 A1 discloses a heat pump system with a lightweight, large volume, high efficiency centrifugal compressor. Vapor exiting a second stage compressor has a saturation temperature that exceeds ambient temperature or that of any available cooling water, thereby allowing heat removal.
- the compressed vapor is transferred from the second-stage compressor into the condenser unit, which consists of a packed bed provided within a cooling water sprayer at a top supplied by a water circulating pump.
- the compressed water vapor rises in the condenser through the packed bed, where it comes into direct countercurrent contact with the cooling water flowing downwards.
- the steam condenses and the latent heat of condensation absorbed by the cooling water is expelled to atmosphere via the condensate and cooling water, which are removed from the system together.
- the condenser is continuously flushed with non-condensable gases via a pipeline using a vacuum pump.
- the WO 2014072239 A1 discloses a condenser having a condensing zone for condensing vapor to be condensed in a working liquid.
- the condensation zone is designed as a volume zone and has a lateral boundary between the upper end of the condensation zone and the lower end.
- the Condenser a steam introduction zone, which extends along the lateral end of the condensation zone and is designed to introduce steam to be condensed laterally over the lateral boundary into the condensation zone.
- the actual condensation is made into a volume condensation, because the vapor to be liquefied is introduced not only frontally from one side into a condensation volume or into the condensation zone, but laterally and preferably from all sides.
- a general problem with heat pumps is the fact that moving parts, and particularly fast-moving parts, have to be cooled.
- the compressor motor in particular and the motor shaft in particular are problematic here.
- shaft temperatures can reach values that are problematic because they lead to the destruction of the components can.
- superheated working medium vapor must first reduce its overheating in order to then be able to condense particularly well and efficiently.
- efficient condensation is particularly important in order to achieve a heat pump that, on the one hand, creates high performance values for heating or cooling, depending on the use of the heat pump.
- a heat pump should occupy as small a space as possible, which entails limitations for the dimensioning of the condenser. The smaller the condenser is dimensioned, the smaller the "footprint" or overall volume or space that the heat pump occupies. Therefore it is of great importance to achieve highly efficient condensing in the condenser of a heat pump. Only then can a heat pump with good efficiency on the one hand and not too large a volume or footprint on the other hand be created.
- the U.S. 2002/106278 A1 discloses a turbo compressor. It comprises a housing provided with an inlet port and an outlet port; a rotary shaft operated by a drive mechanism; an impeller provided integrally with the rotary shaft; and a diffuser portion composed of a pair of a first wall portion and a second wall portion disposed on the outer peripheral side of the impeller to serve as a fluid passage for a refrigerant to be blown.
- the refrigerant is sucked through the inlet port by the action of the impeller, which is rotated together with the rotary shaft and driven by a motor to be compressed and discharged through the outlet port.
- the diffuser portion (46) is constructed so that the width dimension in the axial direction of the discharge port is made larger than the width dimension of the intake port.
- the U.S. 2002/106278 A1 also discloses a cooling device for cooling an outside of the guide space, which is arranged in order to guide the refrigerant conveyed by the impeller to a condenser in its interior.
- the U.S. 2011/107787 A1 discloses a heat pump having an evaporator and a condenser and a gas section extending between the evaporator and the condenser.
- the condenser (500) is arranged above the evaporator (200) in one operating mode.
- the U.S. 2011/107787 A1 discloses a heat pump having an evaporator and a condenser and a gas section extending between the evaporator and the condenser.
- the condenser (500) is arranged above the evaporator (200) in one operating mode.
- 2011/107787 A1 also discloses a cooling device for cooling an outside of the guide space, which is arranged to conduct the refrigerant conveyed by the radial impeller to the condenser inside, and for cooling an outside of the suction mouth which is arranged to convey the refrigerant evaporated by the evaporator to the inside To conduct radial impeller, and thus discloses a heat pump according to the preamble of independent claim 1.
- the object of the present invention is to create a more efficient heat pump.
- the present invention is based on the knowledge that, in order to avoid a reduced condenser efficiency due to overheated working medium vapor, the guide space and the suction mouth are cooled with a liquid. In this way, the temperature of the guide space and the suction mouth is brought and maintained as close as possible to the saturated steam temperature of the pressure prevailing in the condenser. This becomes energy/heat coupled from the steam flow via the material or the wall of the suction port and the guide space. The one that is brought up to the suction mouth and the control room Water, if water is used as the working liquid, which is the case in preferred embodiments, then begins to boil and thus releases the energy again.
- control space and the suction port are thus kept very close to the saturated steam temperature of the steam pressure, which is first sucked in by the radial impeller via the suction port and from there is fed into the control space.
- the working vapor is then compressed to its intended liquefier or condenser pressure.
- the cooling of the control space and the suction mouth prevents the working medium vapor from being overheated too much. This means that when the working medium vapor enters the condenser, it no longer has to reduce the overheating in order to be able to condense easily. Instead, the working medium vapor can condense directly in the condenser without any further loss of time, volume or travel distance.
- an efficient condenser can be achieved even if the condenser volume is made smaller, compared to an embodiment in which adequate plenum and suction mouth cooling would not have been employed.
- the conducting space is formed from a material with good thermal conductivity.
- the guide space thus extracts energy from the steam flowing past it and transfers it directly to the cooling water which flows around the guide space and the suction mouth. In this way, the guide space is kept even better at the saturated steam temperature of the steam pressure.
- liquefaction in the guide space is avoided due to the remaining thermal resistance of the material of the guide space, since the overheating is not reduced completely, but only to a large extent. However, this residual overheating ensures that condensation does not already take place in the control room, but only then in the condenser, where it then takes place particularly efficiently.
- the cooling liquid for the control chamber is conducted beforehand through an engine ball bearing and/or through an open engine cooling system that is also preferably used. Due to the open engine cooling, the coolant cools down again to saturated steam temperature through partial evaporation. In the cascade of ball bearing cooling and motor cooling, the cooling liquid in the motor cooling already releases the energy absorbed by the ball bearing cooling. This means that an optimally tempered liquid medium is available for open duct cooling.
- the upper part of the outside of the duct is first filled with liquid.
- the working liquid will then simply overflow, which is unproblematic and even desirable, because the working liquid then simply runs into the condenser, into which working liquid is introduced anyway in preferred embodiments of the present invention in the form of a "shower".
- the cooling liquid is also conducted from the upper guide space cooling system, ie from the cooling of the upper side of the guide space, into an additional lower guide space and suction mouth cooling system. At the end of the control room there is an open area with an overflow. The working fluid constantly cools itself down to the saturation temperature by evaporation.
- the working liquid also overflows and flows easily into the condenser volume, in order to be further processed there.
- the working liquid can also be a working liquid that is not the working liquid of the heat pump, especially since the working liquid does not necessarily have to come into contact with the compressed working vapor, depending on the implementation.
- the present invention is also advantageous in that the guide chamber cooling and the suction mouth cooling, which typically occupy relatively large surfaces in a heat pump, which are arranged close to the compressor, thermal component loads are further reduced. Due to the liquid cooling used, which preferably takes place at the pressure level prevailing in the condenser, highly efficient evaporative cooling is achieved. This evaporative cooling allows the entire compressor to be kept close to the saturated steam temperature. In preferred exemplary embodiments, engine losses, bearing losses and overheating during compression are essentially reduced via the evaporation in order to achieve not only a highly efficient heat pump, but also a heat pump that is safe and stable in operation.
- the heat pump includes special convective wave cooling.
- This heat pump has a condenser with a condenser housing, a compressor motor attached to the condenser housing and having a rotor and a stator, the rotor having a motor shaft on which is attached a radial impeller extending into an evaporator zone, and a plenum , which is designed to receive compressed steam by the radial impeller and to guide it into the condenser.
- this heat pump has a motor housing which encloses the compressor motor and is preferably designed to hold a pressure at least equal to the pressure in the condenser. However, a pressure that is greater than the pressure behind the radial impeller is also sufficient.
- this pressure adjusts itself to a pressure which is midway between the condenser pressure and the evaporator pressure.
- a steam supply is provided in the motor housing for supplying steam in the motor housing to a motor gap between the stator and the motor shaft.
- the motor is designed such that a further gap extends from the motor gap between the stator and the motor shaft along the radial wheel to the guide space.
- This pressure which is equal to the mean pressure from the condenser and the evaporator, exists due to the fact that the impeller, when compressing the vapor from the evaporator, has a high pressure area in front of the impeller and a low pressure or negative pressure area behind it radial wheel generated.
- the area with high pressure in front of the radial impeller is still smaller than the high pressure in the condenser and the low pressure "behind" the radial impeller is still smaller than the high pressure at the outlet of the radial impeller.
- the high condenser pressure only exists at the outlet of the guide chamber.
- This pressure gradient which is "coupled” to the engine gap, ensures that working steam is drawn from the engine housing via the steam supply along the engine gap and the further gap into the condenser.
- This vapor is at or above the temperature level of the condenser working fluid.
- this is precisely an advantage because it avoids all condensation problems inside the motor and in particular inside the motor shaft, which would promote corrosion etc.
- Adequate convective wave cooling is thus achieved. This prevents excessive temperatures in the motor shaft and the associated signs of wear. In addition, this effectively prevents condensation from occurring in the motor, for example when the heat pump is at a standstill. This also effectively eliminates any operational safety problems and corrosion problems that would be associated with such condensation. According to the aspect of convective wave cooling, the example leads to a significantly more reliable heat pump.
- the heat pump in another aspect relating to a motor-cooled heat pump, includes a condenser having a condenser housing, a compressor motor attached to the condenser housing and having a rotor and a stator.
- the rotor includes a motor shaft to which a compressor wheel is attached for compressing working fluid vapor.
- the compressor motor has a motor wall.
- the heat pump includes a motor housing that surrounds the compressor motor and is preferably configured to maintain a pressure at least equal to the pressure in the condenser and that has a working fluid inlet to direct liquid working fluid from the condenser to the motor wall for cooling the motor .
- the pressure in the motor housing can also be lower here, since heat is dissipated from the motor housing by boiling or evaporation.
- the heat energy at the engine wall is carried away from the engine wall primarily by the steam, which heated steam is then discharged, such as into the condenser.
- the steam from the engine cooling can also be brought into the evaporator or to the outside.
- water cooling in which an engine is cooled by water flowing past, the cooling in this aspect of the invention takes place by evaporation, so that the heat energy to be transported away is removed by the vapor removal provided.
- An advantage is that less liquid is needed for cooling and the vapor can simply be channeled away, e.g. B. automatically into the condenser, in which the vapor then condenses again and the heat output of the engine is thus released to the condenser liquid.
- the motor housing is therefore designed to form a vapor space when the heat pump is in operation, in which space the working medium located due to nucleate boiling or evaporation is located.
- the motor housing is also designed to discharge the vapor from the vapor space in the motor housing through a vapor vent. This discharge preferably takes place into the condenser, so that the vapor discharge is achieved through a gas-permeable connection between the condenser and the motor housing.
- the motor housing is preferably also designed to keep a maximum level of liquid working medium in the motor housing when the heat pump is in operation, and also to form a vapor space above the maximum level.
- the motor housing is also configured to direct working fluid into the condenser above the maximum level. This design allows cooling by steam generation very robust to keep as the level of working liquid always ensures there is enough working liquid at the motor wall for nucleate boiling.
- working liquid can also be sprayed onto the engine wall. The sprayed liquid is then dosed in such a way that it vaporizes on contact with the engine wall and thus achieves the cooling capacity for the engine.
- the engine is thus effectively cooled on its engine wall with liquid working medium.
- this liquid working medium is not the cold working medium from the evaporator, but the warm working medium from the condenser.
- Using the warm working fluid from the condenser still provides adequate engine cooling.
- the motor is not cooled too much and in particular is not cooled down to the point that it is the coldest part in the condenser or on the condenser housing. This would lead to the working medium vapor condensing on the outside of the motor housing when the motor is at a standstill, for example, but also during operation, which would lead to corrosion and other problems.
- it is ensured that the motor is well cooled, but at the same time is always the warmest part of the heat pump, to the extent that condensation, which always takes place at the coldest "end", does not take place precisely on the compressor motor.
- the liquid working medium in the motor housing is kept at almost the same pressure as the condenser. This results in the working fluid that cools the engine being close to its boiling point since this working fluid is condenser working fluid and is at a similar temperature to that in the condenser. If the engine wall is now heated due to friction due to engine operation, the thermal energy is transferred to the liquid working medium. Due to the fact that the liquid working medium is close to the boiling point, nucleate boiling now starts in the motor casing in the liquid working medium filling the motor casing to the maximum level.
- This nucleate boiling enables extremely efficient cooling due to the very strong mixing of the volume of liquid working medium in the motor housing.
- This boiling-assisted cooling can also be significantly assisted by a preferably provided convection element, so that in the end a very efficient engine cooling with a relatively small volume or no stagnant at all Volume of liquid working medium, which also does not have to be further controlled because it is self-controlling, is reached. Efficient motor cooling is thus achieved with little technical effort, which in turn makes a significant contribution to the operational reliability of the heat pump.
- the heat pump also includes a condenser for condensing evaporated working fluid in a condenser chamber 104, which is delimited by a condenser base 106.
- a condenser for condensing evaporated working fluid in a condenser chamber 104, which is delimited by a condenser base 106.
- the evaporator space 102 is at least partially surrounded by the condenser space 104 .
- the evaporator chamber 102 is separated from the condenser chamber 104 by the condenser base 106 .
- the condenser base is connected to an evaporator base 108 to define the evaporator space 102 .
- a compressor 110 is provided above the evaporator space 102 or elsewhere, which is in 1 is not explained in more detail, but which is designed in principle to compress evaporated working liquid and to conduct it as compressed vapor 112 into the condenser space 104 .
- the condenser space is also delimited towards the outside by a condenser wall 114 .
- the condenser wall 114 is fastened to the evaporator base 108 .
- the dimensioning of the condenser base 106 in the area that forms the interface to the evaporator base 108 is such that the condenser base in 1 shown embodiment is completely surrounded by the condenser chamber wall 114. This means that the condenser room, as shown in 1 as shown, extends to the bottom of the evaporator, and at the same time the evaporator space extends very far upwards, typically almost through almost the entire condenser space 104 .
- This "interlocked" or interlocking arrangement of condenser and evaporator which is characterized by the fact that the condenser base is connected to the evaporator base, provides a particularly high heat pump efficiency and therefore allows a particularly compact heat pump design.
- the dimensioning of the heat pump for example in a cylindrical shape, is such that the condenser wall 114 represents a cylinder with a diameter between 30 and 90 cm and a height between 40 and 100 cm.
- the dimensioning can be selected depending on the required performance class of the heat pump, but preferably takes place in the dimensions mentioned.
- the operating direction of the heat pump is as shown in 1 is shown.
- the evaporator bottom defines the lower section of the heat pump, but apart from connection lines to other heat pumps or to corresponding pump units.
- the vapor generated in the evaporator space rises and is deflected by the motor and fed into the condenser space from the top down, and the condenser liquid is passed up from the bottom and then fed into the condenser space from the top and then flows from top to bottom in the condenser space, such as through individual droplets or through small streams of liquid, to react with the preferably cross-fed compressed vapor for purposes of condensation.
- This "interleaved" arrangement to the effect that the evaporator is arranged almost completely or even completely inside the condenser, enables a very efficient design of the heat pump with optimum space utilization. Since the condenser space extends to the bottom of the evaporator, the condenser space is formed within the entire "height" of the heat pump, or at least within a substantial portion of the heat pump. At the same time, however, the evaporator space is as large as possible, because it also extends almost over the entire Height of the heat pump extends.
- the interlocking arrangement in contrast to an arrangement in which the evaporator is arranged below the condenser, means that the space is used optimally.
- each functional space is given the large volume where this functional space also requires the large volume.
- the evaporator room has the large volume at the bottom while the condenser room has the large volume at the top. Nevertheless, the corresponding small volume that remains for the respective functional space where the other functional space has the large volume contributes to an increase in efficiency compared to a heat pump in which the two functional elements are arranged one above the other, as is the case, for example, in WO 2014072239 A1 the case is.
- the compressor is arranged on the upper side of the condenser space in such a way that the compressed vapor is deflected by the compressor on the one hand and at the same time fed into an edge gap of the condenser space. Condensation with a particularly high efficiency is thus achieved because a cross-flow direction of the vapor to a condensation liquid flowing down is achieved. This cross-flow condensation is particularly effective in the upper area, where the evaporator space is large, and does not require a particularly large area in the lower area, where the condenser space is small in favor of the evaporator space, in order to still allow condensation of vapor particles that have penetrated to this area allow.
- An evaporator base which is connected to the condenser base, is preferably designed in such a way that it has the condenser inlet and outlet and the evaporator inlet and outlet absorbs itself, with certain bushings for sensors in the evaporator or in the condenser also being able to be present. This means that there is no need to feed through lines for the condenser inlet and outlet through the evaporator, which is almost under vacuum. This makes the entire heat pump less prone to failure as any passage through the evaporator would present an opportunity for a leak.
- the condenser base is provided with a respective recess at the points where the condenser inlets and outlets are, to the effect that no condenser inlets and outlets run in the evaporator space defined by the condenser base.
- the condenser space is delimited by a condenser wall, which can also be attached to the evaporator bottom.
- the evaporator base thus has an interface for both the condenser wall and the condenser base and also has all the liquid feeds for both the evaporator and the condenser.
- the evaporator bottom is designed to have fittings for the individual feeds that have a cross section that differs from a cross section of the opening on the other side of the evaporator bottom.
- the shape of the individual connection pieces is then designed in such a way that the shape or cross-sectional shape changes over the length of the connection piece, but the pipe diameter, which plays a role in the flow rate, is almost the same with a tolerance of ⁇ 10%. This prevents the water flowing through the connection piece from starting to cavitate. Due to the good flow conditions obtained through the shaping of the connecting piece, it is thus ensured that the corresponding pipes/lines can be made as short as possible, which in turn contributes to a compact design of the entire heat pump.
- the condenser feed is divided into a two- or multi-part stream almost in the form of "glasses". With this, it is possible to feed the condenser liquid in the condenser at its upper portion at two or more points at the same time. This achieves a strong and at the same time particularly uniform condenser flow from top to bottom, which enables highly efficient condensation of the vapor that is also introduced into the condenser from above to be achieved.
- a further, smaller-sized supply line in the evaporator bottom for condenser water can also be provided in order to connect a hose to it, which supplies cooling liquid to the compressor motor of the heat pump, with the cold liquid fed to the evaporator not being used for cooling, but the warmer liquid fed to the condenser Liquid that is still cool enough, however, in typical operating situations to cool the heat pump motor.
- the evaporator bottom is characterized by having a combination functionality. On the one hand, it ensures that no condenser feed lines have to be routed through the evaporator, which is under very low pressure. On the other hand, it represents an interface to the outside, which preferably has a circular shape, since as much evaporator surface area as possible remains with a circular shape. All incoming and outgoing lines lead through one evaporator floor and run from there into either the evaporator room or the condenser room. In particular, manufacturing the evaporator base from plastic injection molding is particularly advantageous because the advantageous, relatively complicated shapes of the inlet/outlet connections can be easily and inexpensively implemented in plastic injection molding. On the other hand, due to the design of the evaporator bottom as an easily accessible workpiece, it is easily possible to produce the evaporator bottom with sufficient structural stability so that it can easily withstand the low evaporator pressure in particular.
- FIG. 2 shows a heat pump according to the present invention, either, which is preferred, in conjunction with the respect of 1 described interlaced arrangement is implemented, which, however, can alternatively be implemented in a different than the interlaced arrangement as shown schematically in 2 is shown.
- the heat pump includes an evaporator 90 for evaporating working fluid.
- the heat pump includes a condenser or condenser 114 for condensing vaporized and compressed working fluid.
- the heat pump further includes a centrifugal impeller compressor motor 110, 304 coupled to a suction port 92 to convey a working vapor vaporized in the evaporator 90 through the suction port.
- the heat pump includes a Guide chamber 302, which is arranged in order to guide a working steam conveyed by the radial impeller into the condenser 114.
- the working steam evaporated in the evaporator 90 is indicated schematically at 314
- the working steam 112 conveyed into the guide space, which arrives compressed in the condenser 114 is shown schematically at 112 .
- the heat pump includes a cooling device 420 which is designed to cool the guide space 302 and the suction mouth 92 with a liquid.
- the cooling device 420 comprises, not according to the invention, a liquid line 421 to the suction mouth 92 and a liquid line 422 to the guide space 302.
- a single liquid line is present to sequentially fill the guide space and the suction mouth with cooling liquid take care of.
- the cooling device is also designed to direct the liquid via lines 421, 422 or, according to the invention, sequentially via a line to an outside of the guide space 302 or the suction mouth 92, the outside not being in contact with the working vapor 314, 112 , while the inside of the guide space 302 or the suction mouth 92 is in contact with this working vapor 314 or 112, respectively.
- Water is preferably used as the working liquid, and in particular condenser water, ie working liquid which is the same as the working liquid of the heat pump.
- the liquid vapor is thus the same vapor as the working medium vapor 314, 112, so that an open concept is obtained.
- a closed concept with cooling liquid can also be used, to the effect that the cooling liquid is treated separately from the working liquid.
- the cooling device 420 would then be designed to also have a return flow of the cooling liquid, with the return heated cooling liquid also having to be cooled separately in order to then supply a cooled cooling liquid again to the guide space or the suction mouth.
- open plenum/suction port cooling is preferred.
- FIG. 1 shows a heat pump with a condenser with a condenser housing 114 comprising a condenser space 104.
- FIG. Also attached is the compressor motor, which is represented schematically by the stator 308 in 4 is shown.
- This compressor motor is on in 3 attached to the condenser housing 114 in a manner not shown and includes the stator and a rotor 306, the rotor 306 being a motor shaft on which is mounted a radial impeller 304 extending into an evaporator zone.
- the heat pump includes a guide chamber 302 which is designed to receive the steam compressed by the radial impeller and to guide it into the condenser, as is shown schematically at 112 .
- the motor further includes a motor housing 300 which encloses the compressor motor and is preferably adapted to hold a pressure at least equal to the pressure in the condenser.
- the motor housing is designed to hold a pressure that is higher than an average pressure from the evaporator and the condenser, or higher than the pressure in the further gap 313 between the radial wheel and the guide space 302, or greater or is equal to the pressure in the condenser.
- the motor housing is designed in such a way that there is a pressure drop from the motor housing along the motor shaft in the direction of the guide chamber, through which the working steam is drawn past the motor shaft through the motor gap and the further gap in order to cool the shaft.
- a vapor supply 310 is formed to supply vapor in the motor housing 300 to a motor gap 311 existing between the stator 308 and the shaft 306 .
- the motor also includes a further gap 313 which extends from the motor gap 311 along the radial wheel to the guide space 302 .
- This vapor flow takes working vapor from the motor housing past the motor shaft into the condenser.
- This steam flow provides for the convective wave cooling of the motor shaft through the motor gap 311 and the further gap 313, which adjoins the motor gap 311.
- the radial impeller thus sucks steam out downwards, past the motor shaft.
- This steam is via the steam supply, typically are implemented as specially designed bores drawn into the motor gap.
- convective shaft cooling on the one hand and motor cooling on the other hand are also used separately from one another.
- Motor cooling without special, separate convective shaft cooling already leads to significantly increased operational reliability.
- convective motor shaft cooling without the additional motor cooling leads to increased operational reliability of the heat pump.
- the two aspects can, however, as explained below in 3 is shown, can be connected to one another in a particularly favorable manner in order to implement both the convective shaft cooling and the motor cooling with a particularly advantageous construction of the motor housing and the compressor motor, which can additionally be supplemented in a further preferred exemplary embodiment either individually or jointly by a special ball bearing cooling system.
- FIG. 3 shows an embodiment with combined use of convective shaft cooling and engine cooling, wherein in the in 3 shown embodiment, the evaporator zone is shown at 102 .
- the evaporator zone is separated from the condenser zone, ie from the condenser area 104 , by the condenser base 106 .
- Working vapor shown schematically at 314, is drawn in by the rotating radial impeller 304, shown schematically and in section, and "forced" into conduit 302.
- the route 302 is at the in 3
- the embodiment shown is designed in such a way that its cross-section increases slightly towards the outside, so that the kinetic energy still present in the working steam can be converted into pressure without the flow detaching from the wall and losses occurring as a result of turbulence.
- FIG. 3 also shows the vapor supply openings 320, which are located in a schematically illustrated engine wall 309 in 3 are executed.
- This motor wall 309 has at the in 3
- the exemplary embodiment shown has holes for the steam supply openings 320 in the upper area, although these holes can be made at any desired location at which steam can penetrate into the motor gap 311 and thus also into the further motor gap 313.
- the resulting steam flow 310 leads to the desired effect of convective wave cooling.
- the exemplary embodiment shown also includes a working fluid inlet 330 for implementing the engine cooling, which is designed to carry liquid working fluid from the condenser to the engine wall for engine cooling.
- the motor housing is designed to maintain a maximum liquid level 322 of liquid working medium when the heat pump is in operation.
- the motor housing 300 is also designed to form a vapor space 323 above the maximum level.
- the motor housing has provision for directing liquid working medium into the condenser 104 above the maximum level. This version is used in the in 3 shown embodiment by a z. B. shallow channel-shaped weir 324 forming the vapor discharge and is located somewhere in the upper condenser wall and has a length that defines the maximum level 322.
- the overflow also occurs with the in 3 shown passive arrangement, which can alternatively be a tube with a corresponding length, for example, a pressure equalization between the motor housing and in particular the vapor space 323 of the motor housing and the condenser interior 104 ago.
- the pressure in the vapor space 323 of the motor housing is therefore always almost the same or at most slightly higher than the pressure in the condenser due to a pressure loss along the overflow.
- the boiling point of the liquid 328 in the motor housing will be similar to the boiling point in the condenser housing.
- heating of the motor wall 309 due to power loss generated in the motor leads to nucleate boiling taking place in the liquid volume 328, which will be explained later.
- FIG. 3 also shows various seals in schematic form at reference number 326 and at similar locations between the motor housing and the condenser housing on the one hand or else between the motor wall 309 and the condenser housing 114 on the other hand. These seals are intended to symbolize that there should be a liquid and pressure-tight connection here.
- a separate space is defined by the motor housing, but it represents nearly the same pressure area as the capacitor. Due to the heating of the motor and the energy released as a result at the motor wall 309, this supports nucleate boiling in the liquid volume 328, which in turn results in a particularly efficient distribution of the working medium in the volume 328 and thus particularly good cooling with a small volume of cooling liquid. Furthermore, it is ensured that cooling is carried out with the working medium that is at the most favorable temperature, namely the warmest temperature in the heat pump. This ensures that all condensation problems, which always occur on cold surfaces, are ruled out both for the motor wall and for the motor shaft and the areas in the motor gap 311 and the further gap 313.
- the working medium vapor 310 used for the convective shaft cooling is vapor that is otherwise in the vapor space 323 of the motor housing. Like the liquid 328, this vapor also has the optimal (warm) temperature. Furthermore, the overflow 324 ensures that the pressure in the area 323 cannot rise above the condenser pressure due to the nucleate boiling caused by the motor cooling or the motor wall 309 . Furthermore, the heat energy due to the engine cooling is removed by the vapor discharge. This means that convective wave cooling will always work in the same way. If the pressure were to increase too much, too much working medium vapor could be pressed through the motor gap 311 and the further gap 313 .
- the steam delivery bores 320 will typically be formed in an array, which may be regular or irregular.
- the individual bores are no larger than 5 mm in diameter and can be as small as 1 mm.
- FIG. 3 also shows the liquid lines 421 and 422 to the guide chamber 302 and to the suction mouth 92, via which the radial impeller 304 draws in vapor from the evaporator 102 and discharges it into the guide chamber 302.
- the schematic ducts 421, 422 are designed to lead the liquid directly onto the surface of the respective elements. Like it still referring to 10 or. 11 shown, these lines can also be implemented in a single line, such that a sequential liquid supply the top of the plenum 302 (in 10 , not according to the invention), the suction mouth and the underside of the duct 302 (in Fig.11 , according to the invention) takes place.
- conduits 422 may be implemented as channels that are rigid or as flexible conduits such as tubing members.
- Figure 4a 12 shows a plan view of the duct 302 of FIG 3 or to the control room 302 of 10 or from 11 .
- the guide chamber 302 includes an opening 374 for receiving the motor axle in a plan view from above, the axle extending from the motor into the guide chamber through this opening 374 in order to carry the radial wheel 304 there, which is also rotated by rotation of the motor axle is transferred.
- the guide space includes a recessed area 372, which is designed for liquid accumulation and in 11 is shown in cross section.
- the upper end of the guide space 302, as is shown, for example, in 3 is shown, provided with an upstanding edge, so that in the recessed area that extends over the entire guide space, liquid can accumulate and thus to a certain extent liquid "stands", the z. B. has been supplied via a liquid supply line 422, which is in 11 for example, as the through hole 372 from the engine compartment, and which is then continued via a flow area 376 over which the liquid then flows into the recessed area 372 .
- the recessed area has a discharge line 373 or a connection area 373, to which a hose-like discharge line 378 is then connected, which is also in 11 is shown.
- FIG. 14 shows a bottom view of the suction mouth 92 and duct 302 combination element.
- the suction mouth opening is in the middle of FIG Figure 4b shown.
- Adjacent to the suction mouth opening is the bottom 380 of a cooling channel 379 (in 11 shown), into the cooling liquid via the discharge line 378, which is in 11 is shown is fed. Due to the height difference of the reservoir in the depressed area 372, the cooling liquid in the cooling channel flows past the outside of the suction mouth 92 and also the lower outside of the guide space 302.
- the end of the lower guide space 381 is dotted in Figure 4b shown. This is to clarify that this line is not visible in the bottom view because it is obscured by the lower end 382 of the cooling duct.
- line 381 and line 382 in Figure 4b formed the spill-board route which has an open area of liquid that protrudes directly into the vapor channel and that is covered at the top by the upper outside of the duct 302.
- the ledge 382 protrudes enough to form a certain level. Excess working liquid then simply runs down this board into the condenser or into the condenser volume.
- Figures 4a and 4b are not drawn to scale, but merely show a schematic of a preferred embodiment of the guide chamber 302, whereby in this application, depending on the explanation, the guide chamber means the guide chamber in the guide chamber housing or the housing of the guide chamber itself, i.e. the housing surrounding the steam duct, as in Figure 4a as upper control room housing and in Figure 4b is shown as the lower control chamber housing.
- FIG. 6 shows a condenser from the prior art, the condenser in 6 a vapor introduction zone 102 extending completely around the condensation zone 100.
- a part of a condenser is shown, which has a condenser bottom 200 .
- a condenser housing section 202 is arranged on the condenser floor, which due to the illustration in 6 is drawn transparent, which does not necessarily have to be transparent in nature, but can be made of plastic, die-cast aluminum or something similar, for example.
- the lateral housing part 202 rests on a sealing rubber 201 in order to achieve a good seal with the floor 200.
- the condenser comprises a liquid outlet 203 and a liquid inlet 204 as well as a vapor feed 205 which is arranged centrally in the condenser and extends from bottom to top in 6 tapered.
- 6 represents the actually desired installation direction of a heat pump and a condenser of this heat pump, with this installation direction in 6 the evaporator of a heat pump is located below the condenser.
- the condensation zone 100 is bounded on the outside by a basket-like boundary object 207 which, like the outer housing part 202, is shown as transparent and is normally constructed like a basket.
- a lattice 209 is arranged, which is formed around fillers, which in 6 are not shown to wear. like it out 6
- the basket 207 only extends downwards to a certain point.
- the basket 207 is vapor-permeable, to hold packing, such as so-called pall rings.
- These packings are introduced into the condensation zone, only inside the basket 207, but not in the steam introduction zone 102. However, the packings are also filled in so high outside of the basket 207 that the height of the packings either reaches the lower limit of the basket 207 or slightly above.
- the liquefier of 6 includes a working liquid feeder, which is in particular through the working liquid feed 204, which, as in 6 is shown wound around the steam supply in the form of an ascending coil, is formed by a liquid transport area 210 and by a liquid distributor element 212, which is preferably designed as a perforated plate.
- the working liquid feeder is thus designed to feed the working liquid into the condensation zone.
- a steam feeder is also provided, which, as shown in 6 is shown, preferably composed of the funnel-shaped tapering feed area 205 and the upper vapor guide area 213.
- An impeller of a radial compressor is preferably used in the steam line area 213 and the radial compression means that steam is sucked in from the bottom upwards through the inlet 205 and is then already deflected to a certain extent 90 degrees outwards due to the radial compression by the radial impeller, i.e. from a bottom-up flow to a center-out flow in 6 regarding element 213.
- a further deflector which deflects the steam, which has already been deflected outwards, again by 90 degrees in order to then direct it from above into the gap 215, which to a certain extent represents the beginning of the steam introduction zone, which extends laterally around the condensation zone.
- the vapor feeder is therefore preferably ring-shaped and provided with an annular gap for feeding in the vapor to be condensed, the working liquid feed being formed within the annular gap.
- Fig. 12 shows a view of the "top area" of the condenser of Fig 6 from underneath.
- the perforated plate 212 which acts as a liquid distribution element, is shown schematically from below.
- the steam inlet gap 215 is drawn schematically and it appears from FIG 7 that the steam inlet gap is only ring-shaped, such that in the condensation zone no steam to be condensed is fed in directly from above or directly from below, but only from the side.
- only liquid flows through the holes in the distributor plate 212, but no steam.
- the vapor is first "sucked in” laterally into the condensation zone, specifically because of the liquid that has passed through the perforated plate 212 .
- the liquid distribution plate can be made of metal, plastic or a similar material and can be designed with different hole patterns. Further, it will, as in 6 as shown, it is preferable to provide a lateral restriction for liquid flowing out of the element 210, this lateral restriction being denoted by 217. This ensures that liquid, which exits element 210 with a twist due to the curved feed 204 and is distributed from the inside outwards on the liquid distributor, does not splash over the edge into the vapor introduction zone, unless the liquid has already passed through the Holes of the liquid distribution plate has dripped and condensed with steam.
- figure 5 shows a complete heat pump in a sectional view, which includes both the evaporator base 108 and the condenser base 106 .
- the condenser bottom 106 has a tapering cross section from an inlet for the working liquid to be evaporated to a suction opening 115, which is coupled to the compressor or motor 110, where the preferably used radial impeller of the motor sucks off the vapor generated in the evaporator chamber 102 .
- figure 5 shows a cross section through the entire heat pump.
- a droplet separator 404 is arranged inside the condenser base.
- This eliminator comprises individual vanes 405. In order to keep the eliminator in place, these vanes are inserted in corresponding grooves 406, which are figure 5 are shown. These grooves are arranged in the condenser bottom in an area directed towards the evaporator bottom, in the inside of the evaporator bottom.
- the condenser base also has various guide features that can be designed as rods or tongues to hold hoses that are provided for condenser water guidance, for example, which are therefore attached to corresponding sections and couple the feed points of the condenser water supply.
- this condenser water supply 402 can be designed as shown in FIGS 6 and 7 as shown at reference numerals 102, 207-250.
- the condenser preferably has a condenser liquid distribution arrangement which has two or more feed points. A first entry point is therefore connected to a first section of a condenser inlet. A second feed point is connected to a second section of the condenser inlet. If there are more feed points for the condenser liquid distribution system, the condenser feed will be divided into further sections.
- the upper area of the heat pump from figure 5 can therefore be used in the same way as the upper area in 6 be designed to the effect that the condenser water supply through the perforated plate of 6 and 7 takes place, so that condenser water 408 trickling downwards is obtained, into which the working vapor 112 is preferably introduced laterally, so that the cross-flow condensation, which allows a particularly high efficiency, can be obtained.
- the condensation zone can be provided with an only optional filling, in which the edge 207, which is also denoted by 409, remains free of packing or similar things, to the effect that the working vapor 112 not only above but also below can penetrate laterally into the condensation zone.
- the imaginary boundary line 410 should figure 5 illustrate.
- the entire area of the condenser is designed with its own condenser base 200, which is arranged above an evaporator base.
- Figure 1 shows a preferred embodiment of a heat pump not in accordance with the invention, and in particular a heat pump section comprising the "top" portion of the heat pump such as that shown in figure 5 shown shows.
- the engine corresponds to M 110 of figure 5
- the area surrounded by a motor wall 309 shown in the cross-sectional view in 10 is preferably formed with cooling ribs on the outside in the liquid area 328 in order to enlarge the surface of the motor wall 309 .
- the area of the motor housing corresponds to 300 in 4 the corresponding area 300 in figure 5 .
- the radial wheel 304 is also shown in a more detailed cross section.
- the radial wheel 304 is attached to the motor shaft 306 in a fastening area which is forked in cross-section.
- the motor shaft 306 has a rotor 307 opposed to the stator 308 .
- the rotor 307 comprises schematically in 10 shown permanent magnets.
- the motor gap 311 extends between the rotor and the stator and opens into the further gap 313, which runs along the fastening area of the shaft 306, which is fork-shaped in cross section, to the guide chamber 302, as is also shown at 346.
- an emergency bearing 344 which does not support the shaft during normal operation. Instead, the shaft is supported by the bearing portion shown at 343.
- the emergency bearing 344 is only present to store the shaft and thus the radial wheel in the event of damage, so that the rapidly rotating radial wheel cannot cause any major damage in the heat pump in the event of damage.
- 10 also shows various fastening elements such as screws, nuts, etc. and various seals in the form of various O-rings.
- an additional convection element 342 to which reference will be made later 10 is received.
- FIG. 12 also shows a splash guard 360 in the vapor space above the maximum volume in the motor housing that is normally filled with liquid working fluid.
- This splash guard is designed to intercept drops of liquid thrown into the vapor space during nucleate boiling.
- the vapor path 310 is preferably designed in such a way that it benefits from the splash guard 360, ie due to the flow into the motor gap and the further gap only working medium vapor but not liquid droplets due to the boiling in the motor housing are sucked in.
- the convective shaft cooling type heat pump preferably has a steam inlet formed so that steam flow through the motor gap and the other gap does not pass through a bearing portion formed to support the motor shaft with respect to the stator.
- the bearing section 343, which in the present case comprises two ball bearings, is sealed off from the motor gap, e.g. B. through O-rings 351.
- the working steam can only, as shown by the path 310, enter through the steam supply into an area within the motor wall 309, run from there in a free space down and on the rotor 307 along pass through the motor gap 311 into the further gap 313.
- the advantage of this is that steam does not flow around the ball bearings, so that bearing lubrication remains in the sealed ball bearings and is not drawn through the motor gap. Furthermore, it is also ensured that the ball bearing is not moistened, but always remains in the defined condition during installation.
- the motor housing in the operating position of the heat pump, is mounted on top of the condenser housing 114 so that the stator is above the impeller and the vapor flow 310 is top to bottom through the motor gap and the further gap.
- the heat pump includes the bearing portion 343, which is designed to support the motor shaft with respect to the stator.
- the bearing section is arranged in such a way that the rotor 307 and the stator 308 are arranged between the bearing section and the radial wheel 304 .
- This has the advantage that the bearing section 343 can be arranged in the steam area inside the motor housing and the rotor/stator, where the greatest power loss occurs, below the maximum liquid level 322 ( 3 ) can be arranged.
- the motor housing also includes the working medium inlet 330 to lead liquid working medium from the condenser to a wall of the compressor motor for motor cooling.
- This working medium inlet 362 runs into a closed volume 364, which represents a ball bearing cooling system.
- a duct emerges from the ball bearing cooling system and comprises a tube 366 which does not contain the working medium on top of the working medium volume 328, as in FIG 3 shown, leads, but that leads the working medium down to the wall of the engine, ie the element 309.
- the tube 366 is designed to be arranged inside the convection element 342, which is arranged around the motor wall 309, at a certain distance so that inside the convection element 342 and outside the convection element 342 within the motor housing 300 a volume liquid working fluid exists.
- a convection zone 367 is created within the volume of working liquid 328 due to nucleate boiling due to the working medium that is in contact with the motor wall 309, particularly in the lower area where the fresh working medium inlet 366 ends.
- the nucleate boiling pulls the boiling bubbles from bottom to top . This results in an ongoing "agitation” in that hot working fluid is brought up from below.
- the energy from nucleate boiling then goes into the vapor bubble, which then ends up in vapor volume 323 above liquid volume 328 .
- the resulting pressure is brought directly through the overflow 324, the overflow extension 340 and the outlet 342 in the condenser. With it There is a constant heat transfer from the engine to the condenser, which is primarily due to the removal of vapor and not the removal of heated liquid.
- the heat which is actually the engine's waste heat, gets through the steam removal to where it is supposed to go, namely in the condenser water that is to be heated.
- the heat dissipation from the engine to the condenser is also favorable for cooling applications of the heat pump, because the condenser is typically coupled with an efficient heat dissipation, e.g. in the form of a heat exchanger or a direct heat dissipation in the area to be heated. It is therefore not necessary to create a separate engine waste heat device, but the heat dissipation from the condenser to the outside that already exists from the heat pump is to a certain extent “also used” by the engine cooling.
- the motor housing is also designed to maintain the maximum level of liquid working medium when the heat pump is in operation and to create the vapor space 323 above the level of liquid working medium.
- the steam supply is also designed in such a way that it communicates with the steam space, so that the steam in the steam space for convective wave cooling through the engine gap and the other gap in 4 is conducted.
- the outflow is arranged as an overflow in the motor housing in order to conduct liquid working fluid above the level into the condenser and also to create a vapor path between the vapor space and the condenser.
- drain 324 is both an overflow and a vapor path.
- these functionalities can also be implemented using different elements by means of an alternative design of the overflow on the one hand and a vapor space on the other hand.
- the heat pump includes in the in 10 shown embodiment, a special ball bearing cooling, which is formed in particular in that the sealed volume 364 is formed with liquid working medium around the bearing section 343.
- the inlet 362 enters this volume and the volume has an outlet 366 from the ball bearing cooling into the working medium volume for motor cooling.
- This will create a separate Ball bearing cooling created, which, however, runs around the outside of the ball bearing and not inside the bearing, so that although this ball bearing cooling is efficiently cooled, the lubricating filling of the bearing is not impaired.
- the working medium inlet 362 includes in particular the line section 366, which extends almost to the bottom of the motor housing 300 or to the bottom of the liquid working medium 328 in the motor housing or at least to an area below the maximum level, in particular to liquid working medium out of the ball bearing cooling system and supply the liquid working medium to the engine wall.
- the convection element which is arranged in the liquid working medium at a distance from the wall of the compressor motor 309, and which is more permeable to the liquid working medium in a lower region than in an upper region.
- the convection element is designed in the embodiment in the form of a "crown" which is placed upside down in the volume of liquid. This allows the convection zone 367 to be formed, as shown in 10 is shown.
- alternative convection elements 342 that are in some way less permeable at the top than at the bottom may be used.
- a convection element could be taken that has holes at the bottom that have a larger passage cross section in terms of shape or number than holes in the upper area.
- Alternative elements for generating the convection current 367 as shown in 10 shown are also usable.
- the emergency bearing 344 which is designed to secure the motor shaft 306 between the rotor 370 and the radial wheel 304 , is provided to secure the motor in the event of a bearing problem.
- the further gap 313 extends through a bearing gap of the emergency bearing or preferably through holes intentionally made in the emergency bearing.
- the emergency bearing is provided with a large number of bores, so that the emergency bearing itself represents the lowest possible flow resistance for the steam flow 10 for the purposes of convective wave cooling.
- Motor shaft 306 includes a shaded core as shown in FIG 12 is shown in its upper portion, which is the storage portion 343 is supported by preferably two ball bearings 398 and 399.
- the rotor with permanent magnets 307 is formed further down on the shaft 306 .
- These permanent magnets are placed on the motor shaft 306 and are held in place at the top and bottom by stabilizing bandages 397, which are preferably made of carbon.
- the permanent magnets are held by a stabilizing sleeve 396, which is also preferably designed as a carbon sleeve. This securing or stabilizing sleeve ensures that the permanent magnets remain securely on the shaft 306 and cannot become detached from the shaft due to the very strong centrifugal forces due to the high speed of the shaft.
- the shaft is formed of aluminum and has a forked cross-sectional mounting portion 395 which provides support for the radial wheel 304 when the radial wheel 304 and the motor shaft are not formed as a single piece, but rather as two elements. If the radial wheel 304 is designed in one piece with the motor shaft 306, the wheel mounting section 395 is not present, but instead the radial wheel 304 then connects directly to the motor shaft. In the area of the wheel mount 395 is also located how it looks 10 can be seen, the emergency bearing 344, which is preferably also made of metal and in particular aluminum.
- the motor housing 300 is off 10 , that also in 3 is designed to obtain a pressure which is at most 20% greater than the pressure in the condenser housing in operation of the heat pump. Furthermore, the motor housing 300 can be designed to obtain a pressure that is so low that when the motor wall 309 heats up as a result of the operation of the motor, nucleate boiling takes place in the liquid working medium 328 and in the motor housing 300 .
- the bearing section 343 is preferably arranged above the maximum liquid level, so that even if there is a leak in the motor wall 309, no liquid working medium can get into the bearing section.
- the area of the motor which at least partially includes the rotor and the stator, is below the maximum level, since the greatest power loss typically occurs in the bearing area on the one hand, but also between the rotor and stator on the other hand, and can be optimally transported away by the convective nucleate boiling .
- the passage 377 is provided, which is formed in the top plate of the condenser volume and which, depending on the implementation, may comprise a single channel on one side or two channels on both sides or even sector-shaped channels in order to allow as much overflow as possible of the working liquid flowing over the inlet 362 is fed to the ball bearing cooling system and is fed from the ball bearing cooling system 366 to the motor wall, as shown by the arrows 367.
- the liquid medium then runs out into the area of the engine cooling and then, when a certain level is reached, out via the inlet 324 .
- the outflow 324 can also be contained in the volume of the engine cooling system, ie in the area in which the convection element 342 is also arranged.
- Figure 12 illustrates an implementation where, not in accordance with the invention, only the top of the plenum is cooled, in which case the special shaping of the outer portion of the plenum to create the recessed portion 362 is not required.
- the resource flow 324 is alternative to 4 or 10 educated.
- the drain does not necessarily have to be a passive drain, but can also be an active drain, controlled by a pump or other element, for example, and depending on a level detection of the level 322 draws some working fluid from the motor housing 300 .
- tubular drain 324 there could be a resealable opening at the bottom of motor housing 300 to allow a controlled amount of working fluid to drain from the motor housing into the condenser by momentarily opening the resealable opening.
- FIG. 9 also shows the area to be heated or a heat exchanger 391, from which a condenser inlet 204 runs into the condenser and from which a condenser outlet 203 exits.
- a pump 392 is also provided in order to drive the circulation of condenser inlet 204 and condenser outlet 203 .
- This pump 392 preferably has a branch to the inlet 362 as shown schematically. This means that no separate pump is required, but the pump for the condenser discharge, which is present anyway, also drives a small part of the condenser discharge into the inlet line 362 and thus into the liquid volume 328.
- FIG. 9 further shows the overflow 324 as an alternative implementation in which liquid e.g. B. can be actively sucked off and fed directly to the guide chamber 302 or the suction mouth 92, again via lines 421, 422.
- liquid e.g. B. can be actively sucked off and fed directly to the guide chamber 302 or the suction mouth 92, again via lines 421, 422.
- preferably heated liquid from the condenser outflow 203 is used as cooling liquid.
- FIG 12 shows a preferred embodiment according to the invention, which combines the functionalities of various other illustrated embodiments.
- Working liquid or cooling liquid which is preferably water
- is fed via the inlet 330 or 362, as shown in 9 is shown, first supplied to the ball bearing cooling, which is shown as a closed volume 364.
- Cooling liquid that has entered the closed volume 364 flows past the ball bearing surrounded by the closed volume and exits the ball bearing.
- the cooling liquid flows via the connecting line or tube 366 into the engine cooling space, which is maintained at a level 322 of working liquid.
- the level 322 is held by a wall 321 here.
- the working liquid is preferably fed via line 366 down into the area within wall 321, as also shown in FIG 10 is shown.
- a good convection zone is thus obtained, with nucleate boiling taking place in particular on the heated engine wall.
- the working fluid also overflows the wall as shown at 324 .
- 324 may represent a channel overflow, but may also be a free overflow.
- the liquid then runs down the outside of the wall 321 and then via the lead-through area or opening 377 onto the flow area 376. It then flows down from this flow area 376 to finally land on top of the duct in the recessed area.
- 11 thus shows an embodiment in which, with the same liquid flow, ball bearing cooling, motor cooling, cooling of the upper side of the duct, cooling of the suction mouth and cooling of the lower side of the duct, as well as open cooling of the vapor flow through the overflow-board section between the end of element 381 and element 382, this open area preferably extending circularly.
- the course of the cooling liquid is thus via the feed line 422, 324, 377, 376 to the upper outer side 372 of the guide space 302. From there the liquid runs via the discharge line 378 from the outside of the guide space 302 to the outside of the suction mouth 92. It runs from there the liquid via the cooling channel 379 along the outside of the suction mouth to the lower outside of the plenum and along the lower outside of the plenum to the overflow 382 and from there down into the condenser.
- the result is that, after compression, the severe overheating of the water vapor that would otherwise occur in the uncooled guide space is avoided. Part of the pressure build-up takes place in the guide chamber, in which overheating is also reduced by cooling, which increases the efficiency and quality of the compression process.
- Superheated steam has a higher viscosity and therefore greater flow resistance than saturated steam. Superheated water vapor must therefore first reduce overheating in order to be able to condense easily.
- the guide space 302 and also the suction mouth 92 are preferably made of a material with good thermal conductivity, such as metal. The heat from the steam flow can then be dissipated particularly well, although good results can also be achieved with poorly heat-conducting materials. By removing the superheat from the steam flow, the flow resistance decreases and the condensing ability of the compressed steam improves.
- the control space In order to keep the temperature of the control space as close as possible to the saturated steam temperature of the pressure prevailing in the condenser, the control space is made of metal and surrounded by liquid, such as water, which equalizes the pressure with the condenser. If energy/heat from the steam flow is coupled in, the surrounding water starts to boil and releases the energy again. As a result, the guide space is kept very close to the saturated steam temperature of the steam pressure. Liquefaction in the duct is prevented by the remaining thermal resistance of the materials and the resulting slight overheating.
- the cooling water for the control room is first routed through the bearings and also open engine cooling. Due to the open engine cooling, the water cools down again to the saturated steam temperature through partial evaporation and is available for the open guide space cooling. First, the upper control room part is filled with water. With a one-sided guide space cooling the water would just overflow like it did with the in 10 shown
- Embodiment is the case, which therefore does not correspond to the invention.
- the water from the upper guide space cooling is, however, in an embodiment that in 11 is shown, directed into the lower guide space and suction mouth cooling.
- At the end of the control room there is an open area with an overflow. Through evaporation, the water constantly cools itself to saturated steam temperature. The remaining water overflows and flows into a catch basin.
- a balance between the condenser 114 and the evaporator 90 can be used as shown in 2 is shown, take place via a throttle 91. With an open system, however, a choke is not necessary either.
- the reduced thermal load on the components is another advantage. Due to the evaporative cooling, the entire compressor can be kept close to the saturated steam temperature despite losses. Motor losses and bearing losses during compression are reduced via evaporation.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Motor Or Generator Cooling System (AREA)
Description
-
Fig. 8A und Fig. 8B stellen eine Wärmepumpe dar, wie sie in dem europäischen PatentEP 2016349 B1 beschrieben ist. Die Wärmepumpe umfasst zunächst einen Verdampfer 10 zum Verdampfen von Wasser als Arbeitsflüssigkeit, um ausgangsseitig einen Dampf in einer Arbeitsdampfleitung 12 zu erzeugen. Der Verdampfer umfasst einen Verdampfungsraum (inFig. 8A nicht gezeigt) und ist ausgebildet, um in dem Verdampfungsraum einen Verdampfungsdruck kleiner als 20 hPa zu erzeugen, so dass das Wasser bei Temperaturen unter 15 °C im Verdampfungsraum verdampft. Das Wasser ist z.B. Grundwasser, im Erdreich frei oder in Kollektorrohren zirkulierende Sole, also Wasser mit einem bestimmten Salzgehalt, Flusswasser, Seewasser oder Meerwasser. Es können alle Arten von Wasser, also kalkhaltiges Wasser, kalkfreies Wasser, salzhaltiges Wasser oder salzfreies Wasser verwendet werden. Dies liegt daran, dass alle Arten von Wasser, also alle diese "Wasserstoffe", die günstige Wasser-Eigenschaft haben, nämlich dass Wasser, das auch als "R 718" bekannt ist, ein für den Wärmepumpen-Prozess nutzbares Enthalpie-Differenz-Verhältnis von 6 hat, was dem mehr als 2-fachen des typischen nutzbaren Enthalpie-Differenz-Verhältnisses von z.B. R134a entspricht. - Der Wasserdampf wird durch die Saugleitung 12 einem Verdichter/Verflüssiger-System 14 zugeführt, das eine Strömungsmaschine wie z.B. einen Radialverdichter, beispielsweise in Form eines Turboverdichters aufweist, der in
Fig. 8A mit 16 bezeichnet ist. Die Strömungsmaschine ist ausgebildet, um den Arbeitsdampf auf einen Dampfdruck zumindest größer als 25 hPa zu verdichten. 25 hPa korrespondiert mit einer Verflüssigungstemperatur von etwa 22 °C, was zumindest an relativ warmen Tagen bereits eine ausreichende Heizungs-Vorlauftemperatur einer Fußbodenheizung sein kann. Um höhere Vorlauftemperaturen zu generieren, können Drücke größer als 30 hPa mit der Strömungsmaschine 16 erzeugt werden, wobei ein Druck von 30 hPa eine Verflüssigungstemperatur von 24 °C hat, ein Druck von 60 hPa eine Verflüssigungstemperatur von 36 °C hat, und ein Druck von 100 hPa einer Verflüssigungstemperatur von 45 °C entspricht. Fußbodenheizungen sind ausgelegt, um mit einer Vorlauftemperatur von 45 °C auch an sehr kalten Tagen ausreichend heizen zu können. - Die Strömungsmaschine ist mit einem Verflüssiger 18 gekoppelt, der ausgebildet ist, um den verdichteten Arbeitsdampf zu verflüssigen. Durch das Verflüssigen wird die in dem Arbeitsdampf enthaltene Energie dem Verflüssiger 18 zugeführt, um dann über den Vorlauf 20a einem Heizsystem zugeführt zu werden. Über den Rücklauf 20b fließt das Arbeitsfluid wieder in den Verflüssiger zurück.
- Gemäß dem o.g. Beispiel wird es bevorzugt, dem energiereichen Wasserdampf direkt durch das kältere Heizungswasser die Wärme (-energie) zu entziehen, welche vom Heizungswasser aufgenommen wird, so dass dieses sich erwärmt. Dem Dampf wird hierbei so viel Energie entzogen, dass dieser verflüssigt wird und ebenfalls am Heizungskreislauf teilnimmt.
-
Fig. 8B zeigt eine Tabelle zur Illustration verschiedener Drücke und den diesen Drücken zugeordneten Verdampfungstemperaturen, woraus sich ergibt, dass insbesondere für Wasser als Arbeitsmedium recht niedrige Drücke im Verdampfer zu wählen sind. - Die
DE 4431887 A1 offenbart eine Wärmepumpenanlage mit einem leichtgewichtigen, großvolumigen Hochleistungs-Zentrifugalkompressor. Ein Dampf, der einen Kompressor einer zweiten Stufe verlässt, besitzt eine Sättigungstemperatur, die die Umgebungstemperatur oder diejenige eines verfügbaren Kühlwassers übersteigt, wodurch eine Wärmeabfuhr ermöglicht wird. Der komprimierte Dampf wird von dem Kompressor der zweiten Stufe in die Kondensatoreinheit überführt, die aus einer Schüttschicht besteht, die innerhalb einer Kühlwassersprüheinrichtung an einer Oberseite, die durch eine Wasserzirkulationspumpe versorgt wird, vorgesehen ist. Der komprimierte Wasserdampf steigt in dem Kondensor durch die Schüttschicht an, wo sie in direktem Gegenstromkontakt mit dem nach unten strömenden Kühlwasser gelangt. Der Dampf kondensiert und die latente Wärme der Kondensation, die durch das Kühlwasser absorbiert wird, wird an die Atmosphäre über das Kondensat und das Kühlwasser ausgestoßen, die zusammen aus dem System entfernt werden. Der Kondensor wird kontinuierlich mit nicht kondensierbaren Gasen mittels einer Vakuumpumpe über eine Rohrleitung gespült. - Die
WO 2014072239 A1 offenbart einen Verflüssiger mit einer Kondensationszone zum Kondensieren von zu kondensierendem Dampf in einer Arbeitsflüssigkeit. Die Kondensationszone ist als Volumenzone ausgebildet und hat eine seitliche Begrenzung zwischen dem oberen Ende der Kondensationszone und dem unteren Ende. Ferner umfasst der Verflüssiger eine Dampfeinleitungszone, die sich entlang des seitlichen Endes der Kondensationszone erstreckt und ausgebildet ist, um zu kondensierenden Dampf seitlich über die seitliche Begrenzung in die Kondensationszone zuzuführen. Damit wird, ohne das Volumen des Verflüssigers zu vergrößern, die tatsächliche Kondensation zu einer Volumenkondensation gemacht, weil der zu verflüssigende Dampf nicht nur frontal von einer Seite in ein Kondensationsvolumen bzw. in die Kondensationszone eingeleitet wird, sondern seitlich und vorzugsweise von allen Seiten. Damit wird nicht nur sichergestellt, dass das zur Verfügung gestellte Kondensationsvolumen bei gleichen äußeren Abmessungen im Vergleich zu einer direkten Gegenstromkondensation vergrößert wird, sondern dass gleichzeitig auch die Effizienz des Kondensators verbessert wird, weil der zu verflüssigende Dampf in der Kondensationszone eine Stromrichtung quer zu der Strömungsrichtung der Kondensationsflüssigkeit aufweist. - Generell problematisch bei Wärmepumpen ist die Tatsache, dass bewegliche Teile und insbesondere schnell bewegliche Teile zu kühlen sind. Hier sind insbesondere der Verdichtermotor und speziell die Motorwelle problematisch. Speziell für Wärmepumpen, bei denen als Verdichter Radialräder verwendet werden, die zum Erreichen einer kleinen Bauform sehr schnell betrieben werden, beispielsweise in Regionen größer als 50.000 Umdrehungen pro Minute, können Wellentemperaturen Werte erreichen, die problematisch sind, da sie zu einer Zerstörung der Bauteile führen können.
- Ein weiterer generell problematischer Nachteil bei Wärmepumpen, die einen Verdichtermotor mit einem Radialrad verwenden, besteht darin, dass durch die Aktivität des Radialrads und des nachgeordneten Leitraums eine starke Überhitzung des Arbeitsmitteldampfes stattfindet. Überhitzter Arbeitsmitteldampf und insbesondere überhitzter Wasserdampf, wenn Wasser als Arbeitsmittel eingesetzt wird, hat eine höhere Viskosität und damit einen größeren Strömungswiderstand als Sattdampf.
- Überhitzter Arbeitsmitteldampf muss prinzipiell seine Überhitzung erst abbauen, um dann besonders gut und effizient kondensieren zu können. Eine effiziente Kondensierung ist jedoch besonders wichtig, um eine Wärmepumpe zu erreichen, die zum einen hohe Leistungswerte zum Heizen oder Kühlen, je nach Einsatz der Wärmepumpe schafft. Darüber hinaus soll eine Wärmepumpe eine möglichst kleinen Raum einnehmen, was Begrenzungen für die Dimensionierung des Kondensierers mit sich bringt. Je kleiner der Kondensierer dimensioniert wird, umso kleiner wird auch der "Fußabdruck" bzw. insgesamt das Volumen bzw. der Raum sein, den die Wärmepumpe einnimmt. Daher ist es von großer Bedeutung eine hocheffiziente Kondensierung im Kondensierer einer Wärmepumpe zu erreichen. Erst dann kann eine Wärmepumpe mit gutem Wirkungsgrad einerseits und mit nicht zu großem Volumen bzw. Fußabdruck andererseits geschaffen werden.
- Die
US 2002/106278 A1 offenbart einen Turbokompressor. Er umfasst ein Gehäuse, das mit einer Einlassöffnung und einer Auslassöffnung versehen ist; eine Rotationswelle, die von einem Antriebsmechanismus betätigt wird; ein Laufrad, das einstückig mit der Drehwelle versehen ist; und einen Diffusorabschnitt, der aus einem Paar eines ersten Wandabschnitts und eines zweiten Wandabschnitts besteht, die an der Außenumfangseite des Laufrads angeordnet sind, um als Fluiddurchgang für ein zugetriebenes Kältemittel zu dienen. Das Kältemittel wird durch die Einlassöffnung durch die Wirkung des Laufrads angesaugt, das zusammen mit der Drehwelle gedreht und von einem Motor angetrieben wird, um komprimiert und durch die Auslassöffnung abgegeben zu werden. Bei diesem Kompressor ist der Diffusorabschnitt (46) so aufgebaut, dass das Breitenmaß in axialer Richtung der Auslassöffnung größer als das Breitenmaß der Einlassöffnung gemacht wird. DieUS 2002/106278 A1 offenbart außerdem eine Kühlvorrichtung zum Kühlen einer Außenseite des Leitraums, welcher angeordnet ist um in seinem Inneren das vom Laufrad geförderte Kältemittel zu einem Kondensierer zu leiten. - Die
US 2011/107787 A1 offenbart eine Wärmepumpe mit einem Verdampfer und einem Verflüssiger sowie einem Gasbereich, der sich zwischen dem Verdampfer und dem Verflüssiger erstreckt. Bei der Wärmepumpe ist in einer Betriebsart der Verflüssiger (500) oberhalb des Verdampfers (200) angeordnet. DieUS 2011/107787 A1 offenbart außerdem eine Kühlvorrichtung zum Kühlen einer Außenseite des Leitraums, welcher angeordnet ist um in seinem Inneren das vom Radialrad geförderte Kältemittel zu dem Verflüssiger zu leiten, und zum Kühlen einer Außenseite des Saugmunds welcher angeordnet ist um in seinem Inneren das vom Verdampfer verdampfte Kältemittel zu dem Radialrad zu leiten, und offenbart somit eine Wärmepumpe entsprechend dem Oberbegriff des unabhängigen Anspruchs 1. - Die Aufgabe der vorliegenden Erfindung besteht darin, eine effizientere Wärmepumpe zu schaffen.
- Diese Aufgabe wird durch eine Wärmepumpe nach Patentanspruch 1 oder ein Verfahren zum Pumpen von Wärme nach Patentanspruch 14 oder ein Verfahren zum Herstellen einer Wärmepumpe nach Patentanspruch 15 gelöst.
- Die vorliegende Erfindung basiert auf der Erkenntnis, dass zur Vermeidung einer reduzierten Kondensierereffizienz aufgrund von überhitztem Arbeitsmitteldampf eine Kühlung des Leitraums und des Saugmunds mit einer Flüssigkeit eingesetzt wird. Damit wird die Temperatur des Leitraums und des Saugmunds möglichst nahe an die Sattdampftemperatur des im Verflüssiger herrschenden Drucks gebracht und gehalten. Damit wird Energie/Wärme aus der Dampfströmung über das Material bzw. die Wand des Saugmunds und des Leitraums eingekoppelt. Das an den Saugmund und den Leitraum herangeführte Wasser, wenn Wasser als Arbeitsflüssigkeit verwendet wird, was bei bevorzugten Ausführungsbeispielen der Fall ist, fängt dann zu sieden an und gibt damit die Energie wieder ab. Der Leitraum und der Saugmund werden dadurch sehr nahe an der Sattdampftemperatur des Dampfdrucks gehalten, der durch das Radialrad zunächst über den Saugmund angesaugt wird, und von dort in den Leitraum eingespeist wird. Im Leitraum wird der Arbeitsdampf dann auf seinen beabsichtigten Verflüssiger- bzw. Kondensiererdruck verdichtet. Durch die Kühlung des Leitraums und des Saugmunds wird also vermieden, dass der Arbeitsmitteldampf zu stark überhitzt ist. Damit muss der Arbeitsmitteldampf, wenn er in den Verflüssiger eintritt, die Überhitzung nicht mehr abbauen, um leicht kondensieren zu können. Stattdessen kann der Arbeitsmitteldampf unmittelbar ohne weitere Verluste an Zeit- bzw. Volumen oder Laufstrecke im Kondensierer kondensieren. Damit kann ein effizienter Kondensierer erreicht werden, selbst wenn das Kondensierervolumen kleiner gemacht wird, und zwar im Vergleich zu einer Ausführungsform, bei der keine entsprechende Leitraum- und Saugmundkühlung eingesetzt worden wäre.
- Bei bevorzugten Ausführungsbeispielen ist der Leitraum aus einem thermisch gut leitenden Material ausgebildet. Damit entzieht der Leitraum aus dem an ihm vorbeiströmenden Dampf Energie und gibt diese unmittelbar an das Kühlungswasser ab, das den Leitraum und den Saugmund umströmt. Damit wird der Leitraum noch besser an der Sattdampftemperatur des Dampfdrucks gehalten. Dagegen wird eine Verflüssigung im Leitraum aufgrund des verbleibenden Wärmewiderstands des Materials des Leitraums vermieden, da die Überhitzung nicht vollständig reduziert wird, sondern nur zum großen Teil. Diese restliche Überhitzung stellt jedoch sicher, dass nicht bereits eine Kondensierung im Leitraum stattfindet, sondern erst dann im Verflüssiger, wo sie dann jedoch besonders effizient stattfindet.
- Bei bevorzugten Ausführungsbeispielen der vorliegenden Erfindung wird die Kühlflüssigkeit für den Leitraum zuvor durch ein Motorkugellager und/oder durch eine ferner vorzugsweise verwendete offene Motorkühlung geleitet. Durch die offene Motorkühlung kühlt die Kühlflüssigkeit durch Teilverdunstung wieder auf Sattdampftemperatur ab. Bei der Kaskade aus Kugellagerkühlung und Motorkühlung gibt die Kühlflüssigkeit in der Motorkühlung bereits die durch die Kugellagerkühlung aufgenommene Energie ab. Damit steht ein optimal temperiertes flüssiges Mittel für die offene Leitraumkühlung zur Verfügung.
- Bei bevorzugten Implementierungen, nicht der Erfindung entsprechend, wird zunächst der obere Teil der Außenseite des Leitraums mit Flüssigkeit gefüllt. Bei einer solchen einseitigen Leitraumkühlung wird die Arbeitsflüssigkeit dann einfach überlaufen, was unproblematisch und sogar gewünscht ist, weil die Arbeitsflüssigkeit dann einfach in den Kondensierer läuft, in den ohnehin bei bevorzugten Ausführungsbeispielen der vorliegenden Erfindung in Machart einer "Dusche" Arbeitsflüssigkeit eingeführt wird. Bei bevorzugten weiteren Ausführungsbeispielen, entsprechend der Erfindung, wird die Kühlflüssigkeit ferner aus der oberen Leitraumkühlung, also aus der Kühlung der Oberseite des Leitraums, in eine zusätzlich untere Leitraum- und Saugmundkühlung geleitet. Am Ende des Leitraums existiert dann ein offener Bereich mit Überlauf. Durch Verdampfung kühlt sich die Arbeitsflüssigkeit ständig selbst auf die Sattdampftemperatur ab. Auch übrige Arbeitsflüssigkeit läuft über und fließt ohne weiteres in das Kondensierervolumen, um dort entsprechend weiterverarbeitet zu werden. Alternativ kann jedoch die Arbeitsflüssigkeit auch eine Arbeitsflüssigkeit sein, die nicht die Arbeitsflüssigkeit der Wärmepumpe ist, zumal die Arbeitsflüssigkeit je nach Implementierung nicht unbedingt in Kontakt mit dem verdichteten Arbeitsdampf kommen muss.
- Die vorliegende Erfindung ist ferner dahin gehend vorteilhaft, dass durch die Leitraumkühung und die Saugmundkühlung, welche typischerweise relativ große Oberflächen in einer Wärmepumpe einnehmen, die nahe am Verdichter angeordnet sind, thermische Bauteilbelastungen weiter reduziert werden. Durch die eingesetzte Flüssigkeitskühlung, die vorzugsweise auf dem Druckniveau stattfindet, das im Kondensierer herrscht, wird eine hocheffiziente Verdampfungskühlung erreicht. Durch diese Verdampfungskühlung kann der gesamte Verdichter nahe der Sattdampftemperatur gehalten werden. Über die Verdampfung werden Motorverluste, Lagerverluste und die Überhitzung bei der Verdichtung bei bevorzugten Ausführungsbeispielen im Wesentlichen abgebaut, um dadurch nicht nur eine hocheffiziente Wärmepumpe, sondern auch eine im Betrieb sichere und stabile Wärmepumpe zu erreichen.
- Weitere Aspekte und Vorteile von Beispielen werden nachfolgend dargestellt.
- Die Wärmepumpe gemäß einem weiteren Aspekt umfasst eine spezielle konvektive Wellenkühlung. Diese Wärmepumpe hat einen Kondensierer mit einem Kondensierergehäuse, einen Verdichtermotor, der an dem Kondensierergehäuse angebracht ist und einen Rotor und einen Stator aufweist, wobei der Rotor eine Motorwelle aufweist, an der ein Radialrad angebracht ist, das sich in eine Verdampferzone erstreckt, und einen Leitraum, der ausgebildet ist, um durch das Radialrad verdichteten Dampf aufzunehmen und in den Kondensierer zu leiten. Darüber hinaus hat diese Wärmepumpe ein Motorgehäuse, das den Verdichtermotor umgibt und vorzugsweise ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Kondensierer ist. Es reicht aber auch bereits ein Druck aus, der größer als der Druck hinter dem Radialrad ist. Dieser Druck stellt sich bei bestimmten Ausführungen auf einen Druck ein, der in der Mitte zwischen dem Kondensiererdruck und dem Verdampferdruck liegt. Darüber hinaus ist eine Dampfzuführung in dem Motorgehäuse vorgesehen, um Dampf in dem Motorgehäuse zu einem Motorspalt zwischen dem Stator und der Motorwelle zuzuführen. Ferner ist der Motor dahin gehend ausgebildet, dass sich ein weiterer Spalt von dem Motorspalt zwischen dem Stator und der Motorwelle entlang des Radialrads bis hin zu dem Leitraum erstreckt.
- Dadurch wird erreicht, dass in dem Motorgehäuse ein relativ hoher Druck, der höher als der mittlere Druck aus dem Kondensierer und dem Verdampfer und vorzugsweise gleich oder höher als der Kondensiererdruck ist, herrscht, während in dem weiteren Spalt, der sich entlang des Radialrads zu dem Leitraum erstreckt, ein geringerer Druck befindet. Dieser Druck, der gleich dem mittleren Druck aus dem Kondensierer und dem Verdampfer ist, existiert aufgrund der Tatsache, dass das Radialrad bei der Kompression des Dampfes aus dem Verdampfer einen Bereich mit hohem Druck vor dem Radialrad und einen Bereich mit kleinem Druck oder Unterdruck hinter dem Radialrad erzeugt. Insbesondere ist der Bereich mit hohem Druck vor dem Radialrad immer noch kleiner als der hohe Druck in dem Kondensator und der kleine Druck gewissermaßen "hinter" dem Radialrad ist noch kleiner als der hohe Druck am Ausgang des Radialrads Erst am Ausgang des Leitraums existiert dann der hohe Kondensatordruck.
- Dieses Druckgefälle, das an den Motorspalt "angekoppelt" ist, sorgt dafür, dass von dem Motorgehäuse über die Dampfzuführung Arbeitsdampf entlang des Motorspalts und des weiteren Spalts in den Kondensierer gezogen wird. Dieser Dampf ist zwar auf dem Temperaturniveau des Kondensierer-Arbeitsmittels oder darüber. Dies ist allerdings gerade von Vorteil, weil damit sämtliche Kondensationsprobleme innerhalb des Motors und insbesondere innerhalb der Motorwelle, die Korrosionen etc. unterstützen würden, vermieden werden.
- So wird bei diesem Aspekt gerade nicht die kälteste Arbeitsflüssigkeit, die nämlich im Verdampfer vorhanden ist, zur konvektiven Wellenkühlung genutzt. Es wird auch nicht der kalte Dampf im Verdampfer eingesetzt. Stattdessen wird zur konvektiven Wellenkühlung der Dampf auf Kondensierer oder Kondensatortemperatur, den es in der Wärmepumpe gibt, eingesetzt. Damit wird nach wie vor eine ausreichende Wellenkühlung erreicht, und zwar aufgrund der konvektiven Natur, d.h. dass die Motorwelle aufgrund der Dampfzuführung, des Motorspalts und des weiteren Spalts von einer signifikanten und insbesondere einstellbaren Menge an Dampf umspült wird. Gleichzeitig wird aufgrund der Tatsache, dass dieser Dampf im Vergleich zu dem Dampf im Verdampfer relativ warm ist, sichergestellt, dass keine Kondensation entlang der Motorwelle in dem Motorspalt bzw. dem weiteren Spalt stattfindet. Stattdessen wird hier immer eine Temperierung geschaffen, die höher ist als die kälteste Temperatur. Kondensation entsteht immer an der kältesten Temperatur in einem Volumen und damit nicht innerhalb des Motorspalts und des weiteren Spalts, da diese ja von dem warmen Dampf umspült werden.
- Damit wird eine ausreichende konvektive Wellenkühlung erreicht. Dies verhindert zu hohe Temperaturen in der Motorwelle und damit einhergehende Verschleißerscheinungen. Darüber hinaus wird effektiv vermieden, dass eine Kondensation in dem Motor, z.B. bei Stillstand der Wärmepumpe, auftritt. Damit werden auch sämtliche Betriebssicherheitsprobleme und Korrosionsprobleme, die mit einer solchen Kondensation einhergehen würden, ebenfalls wirksam eliminiert. Das Beispiel führt gemäß dem Aspekt der konvektiven Wellenkühlung zu einer signifikant betriebssicheren Wärmepumpe.
- Bei einem weiteren Aspekt, der sich auf eine Wärmepumpe mit Motorkühlung bezieht, umfasst die Wärmepumpe einen Kondensierer mit einem Kondensierergehäuse, einen Verdichtermotor, der an dem Kondensierergehäuse angebracht ist und einen Rotor und einen Stator aufweist. Der Rotor umfasst eine Motorwelle, an der ein Verdichterrad zum Verdichten von Arbeitsmitteldampf angebracht ist. Ferner hat der Verdichtermotor eine Motorwand. Die Wärmepumpe umfasst ein Motorgehäuse, das den Verdichtermotor umgibt und vorzugsweise ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Kondensator ist, und der einen Arbeitsmittelzulauf hat, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an die Motorwand zu führen. Der Druck im Motorgehäuse kann hier jedoch ebenfalls niedriger sein, da die Wärmeabfuhr von dem Motorgehäuse durch Sieden bzw. Verdunsten stattfindet. Die Wärmeenergie an der Motorwand wird also hauptsächlich durch den Dampf von der Motorwand weggebracht, wobei dieser erwärmte Dampf dann abgeführt wird, wie beispielsweise in den Kondensierer. Alternativ kann der Dampf von der Motorkühlung aber auch in den Verdampfer oder nach außen gebracht werden. Bevorzugt wird aber die Leitung des erwärmten Dampfes in den Kondensierer. Im Gegensatz zu einer Wasserkühlung, bei der ein Motor durch vorbeiströmendes Wasser gekühlt wird, findet die Kühlung bei diesem Aspekt der Erfindung durch Verdampfen statt, so dass durch die bereitgestellte Dampfabfuhr die abzutransportierende Wärmeenergie weggebracht wird. Ein Vorteil ist, dass zur Kühlung weniger Flüssigkeit gebraucht wird und der Dampf einfach weggeleitet werden kann, z. B. automatisch in den Kondensierer, in dem der Dampf dann wieder kondensiert und die Wärmeleistung des Motor damit an die Kondensiererflüssigkeit abgibt.
- Das Motorgehäuse ist daher ausgebildet, um in dem Betrieb der Wärmepumpe einen Dampfraum zu bilden, in dem sich das aufgrund der Blasensiedung oder Verdunstung befindliche Arbeitsmedium befindet. Das Motorgehäuse ist ferner ausgebildet ist, um den Dampf aus dem Dampfraum in dem Motorgehäuse durch eine Dampfabführung abzuleiten. Diese Ableitung findet vorzugsweise in den Kondensierer statt, so dass die Dampfabführung durch ein gasdurchlässige Verbindung zwischen dem Kondensierer und dem Motorgehäuse erreicht wird.
- Das Motorgehäuse ist vorzugsweise ferner ausgebildet, um in einem Betrieb der Wärmepumpe einen maximalen Pegel an flüssigem Arbeitsmittel in dem Motorgehäuse zu halten, und um ferner oberhalb des maximalen des Pegels einen Dampfraum zu bilden. Das Motorgehäuse ist ferner ausgebildet, um Arbeitsmittel oberhalb des maximalen Pegels in den Kondensierer zu leiten. Diese Ausführung erlaubt es, die Kühlung durch Dampferzeugung sehr robust zu halten, da der Pegel an Arbeitsflüssigkeit immer sicherstellt, dass an der Motorwand genug Arbeitsflüssigkeit zur Blasensiedung vorhanden ist. Alternativ kann statt des Pegels an Arbeitsflüssigkeit, der immer gehalten wird, auch Arbeitsflüssigkeit auf die Motorwand gesprüht werden. Die gesprühte Flüssigkeit ist dann so dosiert, dass sie beim Kontakt mit der Motorwand verdampft und dadurch die Kühlleistung für den Motor erreicht.
- Der Motor wird somit an seiner Motorwand mit flüssigem Arbeitsmittel effektiv gekühlt. Dieses flüssige Arbeitsmittel ist jedoch nicht das kalte Arbeitsmittel aus dem Verdampfer, sondern das warme Arbeitsmittel aus dem Kondensierer. Die Verwendung des warmen Arbeitsmittels aus dem Kondensierer schafft dennoch eine ausreichende Motorkühlung. Gleichzeitig wird jedoch sichergestellt, dass der Motor nicht zu stark gekühlt wird und insbesondere nicht dahin gehend abgekühlt wird, dass er der kälteste Teil im Kondensierer bzw. auf dem Kondensierergehäuse ist. Dies würde nämlich dazu führen, dass z.B. bei Stillstand des Motors aber auch im Betrieb eine Kondensation von Arbeitsmitteldampf außen am Motorgehäuse stattfinden würde, die zu Korrosions- und weiteren Problemen führen würde. Stattdessen wird sichergestellt, dass der Motor zwar gut gekühlt ist, jedoch gleichzeitig immer das wärmste Teil der Wärmepumpe ist, dahin gehend, dass eine Kondensation, die ja immer am kältesten "Ende" stattfindet, gerade an dem Verdichtermotor nicht stattfindet.
- Vorzugsweise wird das flüssige Arbeitsmittel im Motorgehäuse auf nahezu demselben Druck gehalten, auf dem der Kondensierer ist. Dies führt dazu, dass das Arbeitsmittel, das den Motor kühlt, nahe an seiner Siedegrenze ist, da dieses Arbeitsmittel Kondensiererarbeitsmittel ist und auf ähnlicher Temperatur wie im Kondensierer ist. Wird nun die Motorwand aufgrund einer Reibung wegen des Motorbetriebs erwärmt, so geht die thermische Energie in das flüssige Arbeitsmittel über. Aufgrund der Tatsache, dass das flüssige Arbeitsmittel nahe am Siedepunkt ist, startet nun in dem Motorgehäuse in dem flüssigen Arbeitsmittel, das das Motorgehäuse bis zu dem maximalen Pegel auffüllt, eine Blasensiedung.
- Diese Blasensiedung ermöglicht eine außerordentlich effiziente Kühlung aufgrund der sehr starken Durchmischung des Volumens an flüssigem Arbeitsmittel in dem Motorgehäuse. Diese durch Siedung unterstützte Kühlung kann ferner durch ein vorzugsweise vorgesehenes Konvektionselement signifikant unterstützt werden, so dass am Ende eine sehr effiziente Motorkühlung mit einem relativen kleinen Volumen oder gar keinem stehenden Volumen an flüssigem Arbeitsmittel, die zudem nicht weiter gesteuert werden muss, weil sie selbststeuernd ist, erreicht wird. Damit wird mit einem geringen technischen Aufwand eine effiziente Motorkühlung erreicht, die wiederum zu einer Betriebssicherheit der Wärmepumpe signifikant beiträgt.
- Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:
- Fig. 1
- zeigt eine Wärmepumpe mit verschränkter Anordnung;
- Fig. 2
- zeigt eine bevorzugte Ausführungsform der Wärmepumpe mit einer Kühlvorrichtung zum Kühlen des Leitraums und des Saugmunds;
- Fig. 3
- eine schematische Darstellung einer Wärmepumpe mit konvektiver Wellenkühung einerseits und Motorkühlung andererseits;
- Fig.4a
- eine Draufsicht auf einen Leitraum mit vertieftem Bereich;
- Fig. 4b
- eine Ansicht von unten des Saugmunds und des Leitraums mit dem Kühlungskanal und dem Kühlflüssigkeitsüberlauf;
- Fig. 5
- eine Schnittdarstellung einer Wärmepumpe mit einem Verdampferboden und einem Kondensatorboden gemäß dem Ausführungsbeispiel von
Fig. 1 ; - Fig. 6
- eine perspektivische Darstellung eines Verflüssigers, wie er in der
WO 2014072239 A1 gezeigt ist; - Fig. 7
- eine Darstellung der Flüssigkeitsverteilerplatte einerseits und der Dampfeinlasszone mit Dampfeinlassspalt andererseits aus der
WO 2014072239 A1 ; - Fig. 8a
- eine schematische Darstellung einer bekannten Wärmepumpe zum Verdampfen von Wasser;
- Fig. 8b
- eine Tabelle zur Veranschaulichung von Drücken und Verdampfungstemperaturen von Wasser als Arbeitsflüssigkeit;
- Fig. 9
- eine schematische Darstellung einer Wärmepumpe mit Motorkühlung gemäß dem zweiten Aspekt;
- Fig. 10
- eine Wärmepumpe gemäß einem Ausführungsbeispiel nicht der Erfindung entsprechend, mit einer konvektiven Wellenkühlung gemäß dem ersten Aspekt und einer Motorkühlung gemäß dem zweiten Aspekt, wobei besonderer Wert auf die Motorkühlung gelegt ist;
- Fig. 11
- eine bevorzugte Ausführungsform der vorliegenden Erfindung mit kombinierter Kugellagerkühlung, Motorkühlung, Leitraumkühlung und Saugmundkühlung; und
- Fig. 12
- einen Querschnitt durch eine Motorwelle mit einem Lagerabschnitt.
-
Fig. 1 zeigt eine Wärmepumpe 100 mit einem Verdampfer zum Verdampfen von Arbeitsflüssigkeit in einem Verdampferraum 102. Die Wärmepumpe umfasst ferner einen Kondensator zum Verflüssigen von verdampfter Arbeitsflüssigkeit in einem Kondensatorraum 104, der von einem Kondensatorboden 106 begrenzt ist. Wie es inFig. 1 gezeigt ist, die als Schnittdarstellung oder als Seitenansicht angesehen werden kann, ist der Verdampferraum 102 zumindest teilweise von dem Kondensatorraum 104 umgeben. Ferner ist der Verdampferraum 102 durch den Kondensatorboden 106 von dem Kondensatorraum 104 getrennt. Darüber hinaus ist der Kondensatorboden mit einem Verdampferboden 108 verbunden, um den Verdampferraum 102 zu definieren. In einer Implementierung ist oberhalb am Verdampferraum 102 oder an anderer Stelle ein Kompressor 110 vorgesehen, der inFig. 1 nicht näher ausgeführt ist, der jedoch prinzipiell ausgebildet ist, um verdampfte Arbeitsflüssigkeit zu komprimieren und als komprimierten Dampf 112 in den Kondensatorraum 104 zu leiten. Der Kondensatorraum ist ferner nach außen hin durch eine Kondensatorwand 114 begrenzt. Die Kondensatorwand 114 ist ebenfalls wie der Kondensatorboden 106 an dem Verdampferboden 108 befestigt. Insbesondere ist die Dimensionierung des Kondensatorbodens 106 in dem Bereich, der die Schnittstelle zum Verdampferboden 108 bildet, so, dass der Kondensatorboden bei dem inFig. 1 gezeigten Ausführungsbeispiel vollständig von der Kondensatorraumwand 114 umgeben ist. Dies bedeutet, dass sich der Kondensatorraum, wie es inFig. 1 gezeigt ist, bis zum Verdampferboden erstreckt, und dass sich der Verdampferraum gleichzeitig sehr weit nach oben, typischerweise nahezu durch fast den gesamten Kondensatorraum 104 erstreckt. - Diese "verschränkte" oder ineinandergreifende Anordnung von Kondensator und Verdampfer, die sich dadurch auszeichnet, dass der Kondensatorboden mit dem Verdampferboden verbunden ist, liefert eine besonders hohe Wärmepumpeneffizienz und erlaubt daher eine besonders kompakte Bauform einer Wärmepumpe. Größenordnungsmäßig ist die Dimensionierung der Wärmepumpe z.B. in einer zylindrischen Form so, dass die Kondensatorwand 114 einen Zylinder mit einem Durchmesser zwischen 30 und 90 cm und einer Höhe zwischen 40 und 100 cm darstellt. Die Dimensionierung kann jedoch je nach erforderliche Leistungsklasse der Wärmepumpe gewählt werden, findet jedoch vorzugsweise in den genannten Dimensionen statt. Damit wird eine sehr kompakte Bauform erreicht, die zudem einfach und günstig herstellbar ist, weil die Anzahl der Schnittstellen, insbesondere für den fast unter Vakuum stehenden Verdampferraum ohne weiteres reduziert werden kann, wenn der Verdampferboden gemäß bevorzugten Ausführungsbeispielen der vorliegenden Erfindung dahin gehend ausgeführt wird, dass er sämtliche Flüssigkeits-Zu- und Ableitungen umfasst und damit keine Flüssigkeits-Zu- und Ableitungen von der Seite oder von oben nötig sind.
- Ferner sei darauf hingewiesen, dass die Betriebsrichtung der Wärmepumpe so ist, wie sie in
Fig. 1 gezeigt ist. Dies bedeutet, dass der Verdampferboden im Betrieb den unteren Abschnitt der Wärmepumpe definiert, jedoch abgesehen von Verbindungsleitungen mit anderen Wärmepumpen oder zu entsprechenden Pumpeneinheiten. Dies bedeutet, dass im Betrieb der im Verdampferraum erzeugte Dampf nach oben steigt und durch den Motor umgelenkt wird und von oben nach unten in den Kondensatorraum eingespeist wird, und dass die Kondensatorflüssigkeit von unten nach oben geführt wird, und dann von oben in den Kondensatorraum zugeführt wird und dann im Kondensatorraum von oben nach unten fließt, wie beispielsweise durch einzelne Tröpfchen oder durch kleine Flüssigkeitsströme, um mit dem vorzugsweise quer zugeführten komprimierten Dampf zu Zwecken einer Kondensation zu reagieren. - Diese ineinander "verschränkte" Anordnung, dahin gehend, dass der Verdampfer fast vollständig oder sogar vollständig innerhalb des Kondensators angeordnet ist, ermöglicht eine sehr effiziente Ausführung der Wärmepumpe mit optimaler Platzausnutzung. Nachdem der Kondensatorraum sich bis zum Verdampferboden hin erstreckt, ist der Kondensatorraum innerhalb der gesamten "Höhe" der Wärmepumpe oder zumindest innerhalb eines wesentlichen Abschnitts der Wärmepumpe ausgebildet. Gleichzeitig ist jedoch auch der Verdampferraum so groß als möglich, weil er sich ebenfalls nahezu fast über die gesamte Höhe der Wärmepumpe erstreckt. Durch die ineinander verschränkte Anordnung im Gegensatz zu einer Anordnung, bei der der Verdampfer unterhalb des Kondensators angeordnet ist, wird der Raum optimal genutzt. Dies ermöglicht zum einen einen besonders effizienten Betrieb der Wärmepumpe und zum anderen einen besonders platzsparenden und kompakten Aufbau, weil sowohl der Verdampfer als auch der Verflüssiger sich über die gesamte Höhe erstrecken. Damit geht zwar die "Dicke" des Verdampferraums und auch des Verflüssigerraums zurück. Es wurde jedoch herausgefunden, dass die Reduktion der "Dicke" des Verdampferraums, der sich innerhalb des Kondensators verjüngt, unproblematisch ist, weil die Hauptverdampfung im unteren Bereich stattfindet, wo der Verdampferraum nahezu das gesamte Volumen, das zur Verfügung steht, ausfüllt. Andererseits ist die Reduktion der Dicke des Kondensatorraums besonders im unteren Bereich, also dort wo der Verdampferraum nahezu den gesamten zur Verfügung stehenden Bereich ausfüllt, unkritisch, weil die Hauptkondensation oben stattfindet, also dort, wo der Verdampferraum bereits relativ dünn ist und damit ausreichend Platz für den Kondensatorraum zurücklässt. Die ineinander verschränkte Anordnung ist somit optimal dahin gehend, dass jedem Funktionsraum dort das große Volumen gegeben wird, wo dieser Funktionsraum das große Volumen auch benötigt. Der Verdampferraum hat unten das große Volumen, während der Kondensatorraum oben das große Volumen hat. Dennoch trägt auch das entsprechende kleine Volumen, das für den jeweiligen Funktionsraum dort verbleibt, wo der andere Funktionsraum das große Volumen hat, zu einer Effizienzsteigerung bei im Vergleich zu einer Wärmepumpe, bei der die beiden Funktionselemente übereinander angeordnet sind, wie es z.B. in der
WO 2014072239 A1 der Fall ist. - Bei bevorzugten Ausführungsbeispielen ist der Kompressor derart an der Oberseite des Kondensatorraums angeordnet, dass der komprimierte Dampf durch den Kompressor einerseits umgelenkt und gleichzeitig in einen Randspalt des Kondensatorraums eingespeist wird. Damit wird eine Kondensation mit besonders hoher Effizienz erreicht, weil eine Querstromrichtung des Dampfes zu einer herabfließenden Kondensationsflüssigkeit erreicht wird. Diese Kondensation mit Querströmung ist besonders im oberen Bereich, wo der Verdampferraum groß ist, wirksam und benötigt im unteren Bereich, wo der Kondensatorraum zugunsten des Verdampferraums klein ist, keinen besonders großen Bereich mehr, um dennoch eine Kondensation von bis zu diesem Bereich vorgedrungenen Dampfpartikeln zu erlauben.
- Ein Verdampferboden, der mit dem Kondensatorboden verbunden ist, ist vorzugsweise so ausgebildet, dass er den Kondensator-Zu- und Ablauf und den Verdampfer-Zu- und Ablauf in sich aufnimmt, wobei zusätzlich noch bestimmte Durchführungen für Sensoren in den Verdampfer bzw. in den Kondensator vorhanden sein können. Damit wird erreicht, dass keine Durchführungen von Leitungen für den Kondensator-Zu- und Ablauf durch den nahezu unter Vakuum stehenden Verdampfer nötig sind. Dadurch wird die die gesamte Wärmepumpe weniger fehleranfällig, weil jede Durchführung durch den Verdampfer eine Möglichkeit für ein Leck darstellen würde. Dazu ist der Kondensatorboden an den Stellen, an denen die Kondensator-Zu- und Abläufe sind, mit einer jeweiligen Aussparung versehen, dahin gehend, dass in dem Verdampferraum, der durch den Kondensatorboden definiert wird, keine Kondensator-Zu/Abführungen verlaufen.
- Der Kondensatorraum wird durch eine Kondensatorwand begrenzt, die ebenfalls an dem Verdampferboden anbringbar ist. Der Verdampferboden hat somit eine Schnittstelle sowohl für die Kondensatorwand als auch den Kondensatorboden und hat zusätzlich sämtliche Flüssigkeits-Zuführungen sowohl für den Verdampfer als auch den Verflüssiger.
- Bei bestimmten Ausführungen ist der Verdampferboden ausgebildet, um Anschlussstutzen für die einzelnen Zuführungen zu haben, die einen Querschnitt haben, der sich von einem Querschnitt der Öffnung auf der anderen Seite des Verdampferbodens unterscheidet. Die Form der einzelnen Anschlussstutzen ist dann so ausgebildet, dass sich die Form bzw. Querschnittsform über der Länge des Anschlussstutzens verändert, jedoch der Rohrdurchmesser, der für die Strömungsgeschwindigkeit eine Rolle spielt, in einer Toleranz von ± 10 % nahezu gleich ist. Damit wird verhindert, dass durch den Anschlussstutzen fließendes Wasser zu kavitieren beginnt. Damit wird aufgrund der guten durch die Formung der Anschlussstutzen erhaltenen Strömungsverhältnisse sichergestellt, dass die entsprechenden Rohre/Leitungen so kurz wie möglich gemacht werden können, was wiederum zu einer kompakten Bauform der gesamten Wärmepumpe beiträgt.
- Bei einer speziellen Implementierung des Verdampferbodens wird der Kondensatorzulauf nahezu in Form einer "Brille" in einen zwei- oder mehrteiligen Strom aufgeteilt. Damit ist es möglich, die Kondensatorflüssigkeit im Kondensator an seinem oberen Abschnitt an zwei oder mehreren Punkten gleichzeitig einzuspeisen. Damit wird eine starke und gleichzeitig besonders gleichmäßige Kondensatorströmung von oben nach unten erreicht, die es ermöglicht, dass eine hocheffiziente Kondensation des ebenfalls von oben in den Kondensator eingeführten Dampfes erreicht wird.
- Eine weitere kleiner dimensionierte Zuführung im Verdampferboden für Kondensatorwasser kann ebenfalls vorgesehen sein, um damit einen Schlauch zu verbinden, der dem Kompressormotor der Wärmepumpe Kühlflüssigkeit zuführt, wobei zur Kühlung nicht die kalte, dem Verdampfer zugeführte Flüssigkeit verwendet wird, sondern die wärmere, dem Kondensator zugeführte Flüssigkeit, die jedoch immer noch bei typischen Betriebssituationen kühl genug ist, um den Motor der Wärmepumpe zu kühlen.
- Der Verdampferboden zeichnet sich dadurch aus, dass er eine Kombinationsfunktionalität hat. Zum einen stellt er sicher, dass keine Kondensatorzuleitungen durch den unter sehr geringem Druck stehenden Verdampfer hindurchgeführt werden müssen. Andererseits stellt er eine Schnittstelle nach außen dar, die vorzugsweise eine kreisrunde Form hat, da bei einer kreisrunden Form möglichst viel Verdampferfläche verbleibt. Alle Zu- und Ableitungen führen durch den einen Verdampferboden und laufen von dort in entweder den Verdampferraum oder den Kondensatorraum. Insbesondere eine Herstellung des Verdampferbodens aus Kunststoffspritzguss ist besonders vorteilhaft, weil die vorteilhaften relativ komplizierten Formgebungen der Zu/Ablaufstutzen in Kunststoffspritzguss ohne weiteres und preisgünstig ausgeführt werden können. Andererseits ist es aufgrund der Ausführung des Verdampferbodens als gut zugängliches Werkstück ohne weiteres möglich, den Verdampferboden mit ausreichender struktureller Stabilität herzustellen, damit er insbesondere dem niedrigen Verdampferdruck ohne weiteres standhalten kann.
- In der vorliegenden Anmeldung betreffen gleiche Bezugszeichen gleiche oder gleichwirkende Elemente, wobei nicht alle Bezugszeichen in allen Zeichnungen, sofern sie sich wiederholen, erneut dargelegt werden.
-
Fig. 2 zeigt eine Wärmepumpe gemäß der vorliegenden Erfindung, die entweder, was bevorzugt wird, in Verbindung mit der bezüglich derFig. 1 beschriebenen verschränkten Anordnung implementiert wird, die jedoch alternativ in einer anderen als der verschränkten Anordnung implementiert werden kann, wie sie schematisch inFig. 2 dargestellt ist. - Die Wärmepumpe umfasst einen Verdampfer 90 zum Verdampfen von Arbeitsflüssigkeit. Darüber hinaus umfasst die Wärmepumpe einen Kondensierer bzw. Verflüssiger 114 zum Kondensieren von verdampfter und komprimierter Arbeitsflüssigkeit.
- Die Wärmepumpe umfasst ferner einen Verdichtermotor mit Radialrad 110, 304, der mit einem Saugmund 92 gekoppelt ist, um einen in dem Verdampfer 90 verdampften Arbeitsdampf durch den Saugmund zu fördern. Darüber hinaus umfasst die Wärmepumpe einen Leitraum 302, der angeordnet ist, um einen von dem Radialrad geförderten Arbeitsdampf in den Kondensierer 114 zu leiten. Der im Verdampfer 90 verdampfte Arbeitsdampf ist bei 314 schematisch angedeutet, und der in den Leitraum geförderte Arbeitsdampf 112, der im Kondensierer 114 verdichtet ankommt, ist schematisch bei 112 dargestellt.
- Erfindungsgemäß umfasst die Wärmepumpe eine Kühlungsvorrichtung 420, die ausgebildet ist, um den Leitraum 302 und den Saugmund 92 mit einer Flüssigkeit zu kühlen. Zu diesem Zweck umfasst die Kühlungsvorrichtung 420, nicht der Erfindung entsprechend, eine Flüssigkeitsleitung 421 zum Saugmund 92 und eine Flüssigkeitsleitung 422 zum Leitraum 302. Alternativ, der Erfindung entsprechend, ist eine einzige Flüssigkeitsleitung vorhanden, um den Leitraum und den Saugmund sequenziell nacheinander mit Kühlflüssigkeit zu versorgen. Die Kühlungsvorrichtung ist ferner ausgebildet, um auf eine Außenseite des Leitraums 302 oder des Saugmunds 92 die Flüssigkeit über Leitungen 421, 422 oder, entsprechend der Erfindung, sequenziell über eine Leitung zu leiten, wobei die Außenseite nicht mit dem Arbeitsdampf 314, 112 in Berührung ist, während die Innenseite des Leitraums 302 oder des Saugmunds 92 in Berührung mit diesem Arbeitsdampf 314 bzw. 112 ist.
- Vorzugsweise wird als Arbeitsflüssigkeit Wasser eingesetzt, und insbesondere Kondensiererwasser, also Arbeitsflüssigkeit, die gleich der Arbeitsflüssigkeit der Wärmepumpe ist. Der Dampf der Flüssigkeit ist also derselbe Dampf wie der Arbeitsmitteldampf 314, 112, so dass ein offenes Konzept erhalten wird. Alternativ kann jedoch auch ein geschlossenes Konzept mit Kühlflüssigkeit eingesetzt werden, dahin gehend, dass die Kühlflüssigkeit von der Arbeitsflüssigkeit getrennt behandelt wird. Dann würde die Kühlungsvorrichtung 420 ausgebildet sein, um ebenfalls einen Rücklauf der Kühlflüssigkeit zu haben, wobei ferner die zurückgelaufene erwärmte Kühlflüssigkeit separat zu kühlen ist, um dann eine gekühlte Kühlflüssigkeit wieder dem Leitraum bzw. dem Saugmund zuzuführen. Es wird allerdings aufgrund der Einfachheit der Konstruktion eine offene Leitraum/Saugmund-Kühlung bevorzugt.
-
Fig. 3 zeigt eine Wärmepumpe mit einem Kondensierer mit einem Kondensierergehäuse 114, der einen Kondensiererraum 104 umfasst. Ferner ist der Verdichtermotor angebracht, welcher durch den Stator 308 schematisch inFig. 4 dargestellt ist. Dieser Verdichtermotor ist auf inFig. 3 nicht gezeigte Art und Weise an dem Kondensierergehäuse 114 angebracht und umfasst den Stator und einen Rotor 306, wobei der Rotor 306 eine Motorwelle aufweist, an der ein Radialrad 304 angebracht, das sich in eine Verdampferzone hinein erstreckt. Ferner umfasst die Wärmepumpe einen Leitraum 302, der ausgebildet ist, um durch das Radialrad verdichteten Dampf aufzunehmen und in den Kondensierer zu leiten, wie es bei 112 schematisch dargestellt ist. - Ferner umfasst der Motor ein Motorgehäuse 300, das den Verdichtermotor umgibt und vorzugsweise ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Kondensierer ist. Alternativ ist das Motorgehäuse ausgebildet, um einen Druck zu halten, der höher als ein mittlerer Druck aus dem Verdampfer und dem Kondensierer ist, oder der höher als der Druck in dem weiteren Spalt 313 zwischen dem Radialrad und dem Leitraum 302 ist, oder der größer oder gleich dem Druck in dem Kondensierer ist. Das Motorgehäuse ist also derart ausgebildet, damit ein Druckabfall vom Motorgehäuse entlang der Motorwelle in Richtung des Leitraums stattfindet, durch den Arbeitsdampf durch den Motorspalt und den weiteren Spalt an der Motorwelle vorbeigezogen wird, um die Welle zu kühlen.
- Dieses Gebiet in dem Motorgehäuse mit dem nötigen Druck ist in
Fig. 3 bei 312 dargestellt. Außerdem ist eine Dampfzuführung 310 ausgebildet, um Dampf in dem Motorgehäuse 300 zu einem Motorspalt 311 zuzuführen, der zwischen dem Stator 308 und der Welle 306 vorhanden ist. Ferner umfasst der Motor einen weiteren Spalt 313, der sich von dem Motorspalt 311 entlang des Radialrads zu dem Leitraum 302 erstreckt. - Bei der erfindungsgemäßen Anordnung herrscht im Kondensierer ein relativ großer Druck p3. Dagegen herrscht im Leitweg oder Leitraum 302 ein mittlerer Druck p2. Der kleinste Druck herrscht, abgesehen vom Verdampfer, hinter dem Radialrad, und zwar dort, wo das Radialrad an der Motorwelle befestigt ist, also in dem weiteren Spalt 313. In dem Motorgehäuse 300 existiert ein Druck p4, der entweder gleich dem Druck p3 oder größer als der Druck p3 ist. Dadurch existiert ein Druckgefälle vom Motorgehäuse zu dem Ende des weiteren Spalts. Dieses Druckgefälle führt dazu, dass eine Dampfströmung durch die Dampfzuführung hindurch in den Motorspalt und den weiteren Spalt bis in den Leitweg 302 stattfindet. Diese Dampfströmung nimmt Arbeitsdampf aus dem Motorgehäuse an der Motorwelle vorbei in den Kondensierer. Diese Dampfströmung sorgt für die konvektive Wellenkühlung der Motorwelle durch den Motorspalt 311 und den weiteren Spalt 313, der sich an den Motorspalt 311 anschließt. Das Radialrad saugt also Dampf nach unten heraus, an der Welle des Motors vorbei. Dieser Dampf wird über die Dampfzuführung, die typischerweise als spezielle ausgeführte Bohrungen implementiert sind, in den Motorspalt hinein gezogen.
- Es sei an dieser Stelle generell darauf hingewiesen, dass die beiden Aspekte konvektive Wellenkühlung einerseits und Motorkühlung andererseits auch separat voneinander eingesetzt werden. So führt eine Motorkühlung ohne eine spezielle separate konvektive Wellenkühlung bereits zu einer erheblich erhöhten Betriebssicherheit. Darüber hinaus führt auch eine konvektive Motorwellenkühlung ohne die zusätzliche Motorkühlung zu einer erhöhten Betriebssicherheit der Wärmepumpe. Die beiden Aspekte können jedoch, wie es nachfolgend in
Fig. 3 dargestellt ist, besonders günstig miteinander verbunden werden, um mit einer besonders vorteilhaften Konstruktion des Motorgehäuses und des Verdichtermotors sowohl die konvektive Wellenkühlung als auch die Motorkühlung zu implementieren, welche zusätzlich noch bei einem weiteren bevorzugten Ausführungsbeispiel jeweils oder gemeinsam durch eine spezielle Kugellagerkühlung ergänzt werden können. -
Fig. 3 zeigt ein Ausführungsbeispiel mit kombinierter Verwendung von konvektiver Wellenkühlung und Motorkühlung, wobei bei dem inFig. 3 gezeigten Ausführungsbeispiel die Verdampferzone bei 102 gezeigt ist. Die Verdampferzone wird von der Kondensiererzone, also von dem Kondensiererbereich 104 durch den Kondensiererboden 106 getrennt. Arbeitsdampf, der schematisch bei 314 dargestellt ist, wird durch das sich drehende schematisch und im Schnitt dargestellte Radialrad 304 angesaugt und in den Leitweg 302 hinein "gepresst". Der Leitweg 302 ist bei dem inFig. 3 gezeigten Ausführungsbeispiel so ausgebildet, dass sich sein Querschnitt nach außen hin leicht vergrößert, so dass die im Arbeitsdampf noch befindliche kinetische Energie in Druck umgewandelt werden kann, ohne dass sich die Strömung von der Wandung ablöst und durch Verwirbelungen Verluste entstehen. Durch das radiale Strömen nach außen vergrößert sich der Strömungsquerschnitt ständig solange der Radius schneller wächst als das Ober- und Unterteil vom Leitraum aufeinander zukommen. Damit findet eine weitere Dampfkompression statt. Die erste "Stufe" der Dampfkompression findet bereits durch die Drehung des Radialrads und das "Ansaugen" des Dampfs durch das Radialrad statt. Dann jedoch, wenn das Radialrad den Dampf in den Eingang des Leitwegs einspeist, also dort, wo das Radialrad betrachtet nach oben "aufhört", stößt der bereits vorkomprimierte Dampf gewissermaßen auf einen Dampfstau. Dies führt zu einer weiteren Dampfkompression, so dass schließlich der komprimierte und damit erwärmte Dampf 112 in den Kondensierer strömt. -
Fig. 3 zeigt ferner die Dampfzuführungsöffnungen 320, die in einer schematisch dargestellten Motorwand 309 inFig. 3 ausgeführt sind. Diese Motorwand 309 hat bei dem inFig. 3 gezeigten Ausführungsbeispiel Bohrungen für die Dampfzuführungsöffnungen 320 im oberen Bereich, wobei diese Bohrungen jedoch an beliebigen Stellen ausgeführt sein können, an denen Dampf in den Motorspalt 311 und damit auch in den weiteren Motorspalt 313 eindringen kann. Die dadurch verursachte Dampfströmung 310 führt zu dem gewünschten Effekt der konvektiven Wellenkühlung. - Das in
Fig. 3 gezeigte Ausführungsbeispiel umfasst ferner zur Implementierung der Motorkühlung einen Arbeitsmittelzulauf 330, der ausgebildet ist, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an die Motorwand zu führen. Ferner ist das Motorgehäuse ausgebildet, um in dem Betrieb der Wärmepumpe einen maximalen Flüssigkeitspegel 322 an flüssigem Arbeitsmittel zu halten. Darüber hinaus ist das Motorgehäuse 300 ebenfalls ausgebildet, um oberhalb des maximalen Pegels einen Dampfraum 323 zu bilden. Ferner hat das Motorgehäuse Vorkehrungen, um flüssiges Arbeitsmittel oberhalb des maximalen Pegels in den Kondensierer 104 zu leiten. Diese Ausführung wird bei dem inFig. 3 gezeigten Ausführungsbeispiel durch einen z. B. flach ausgeführten kanalförmigen Überlauf 324 ausgebildet, der die Dampfabführung bildet und irgendwo in der oberen Kondensiererwand angeordnet ist und eine Länge hat, die den maximalen Pegel 322 definiert. Wird durch die Kondensiererflüssigkeitszuführung 330 zu viel Arbeitsflüssigkeit in das Motorgehäuse, also den Flüssigkeitsbereich 328 eingeführt, so läuft das flüssige Arbeitsmittel durch den Überlauf 324 hindurch in das Kondensierervolumen. Darüber hinaus stellt der Überlauf auch bei der inFig. 3 gezeigten passiven Anordnung, die z.B. auch alternativ ein Röhrchen mit einer entsprechenden Länge sein kann, einen Druckausgleich zwischen dem Motorgehäuse und insbesondere dem Dampfraum 323 des Motorgehäuses und dem Kondensierer-Innenraum 104 her. Damit ist der Druck im Dampfraum 323 des Motorgehäuses immer nahezu gleich oder höchstens aufgrund eines Druckverlusts entlang des Überlaufs etwas höher als der Druck im Kondensierer. Damit wird der Siedepunkt der Flüssigkeit 328 im Motorgehäuse ähnlich dem Siedepunkt im Kondensierergehäuse sein. Dadurch führt eine Erwärmung der Motorwand 309 aufgrund einer im Motor erzeugten Verlustleistung dazu, dass eine Blasensiedung in dem Flüssigkeitsvolumen 328 stattfindet, die später noch erläutert wird. -
Fig. 3 zeigt ferner diverse Abdichtungen in schematischer Form beim Bezugszeichen 326 und an ähnlichen Stellen zwischen dem Motorgehäuse und dem Kondensierergehäuse einerseits oder aber auch zwischen der Motorwand 309 und dem Kondensierergehäuse 114 andererseits. Diese Abdichtungen sollen symbolisieren, dass hier eine flüssigkeitsund druckdichte Verbindung sein soll. - Durch das Motorgehäuse wird ein separater Raum definiert, der jedoch ein nahezu gleiches Druckgebiet wie der Kondensator darstellt. Dies unterstützt aufgrund einer Erwärmung des Motors und der damit abgegebenen Energie an der Motorwand 309 eine Blasensiedung im Flüssigkeitsvolumen 328, die wiederum eine besonders effiziente Verteilung des Arbeitsmittels im Volumen 328 und damit eine besonders gute Kühlung mit einem kleinen Volumen an Kühlflüssigkeit zur Folge hat. Ferner wird sichergestellt, dass mit dem Arbeitsmittel gekühlt wird, das auf der günstigsten Temperatur, nämlich der wärmsten Temperatur in der Wärmepumpe ist. Dadurch wird sichergestellt, dass sämtliche Kondensationsprobleme, die immer an kalten Oberflächen auftreten, sowohl für die Motorwand als auch für die Motorwelle und die Bereiche im Motorspalt 311 und dem weiteren Spalt 313 ausgeschlossen sind. Ferner ist bei dem in
Fig. 3 gezeigten Ausführungsbeispiel der für die konvektive Wellenkühlung verwendete Arbeitsmitteldampf 310 Dampf, der sonst im Dampfraum 323 des Motorgehäuses ist. Dieser Dampf hat ebenfalls wie die Flüssigkeit 328 die optimale (warme) Temperatur. Ferner wird durch den Überlauf 324 sichergestellt, dass der Druck im Bereich 323 aufgrund der Blasensiedung, die durch die Motorkühlung bzw. die Motorwand 309 bewirkt wird, nicht über den Kondensiererdruck steigen kann. Ferner wird durch die Dampfabführung die Wärmeenergie aufgrund der Motorkühlung abgeführt. Damit wird die konvektive Wellenkühlung immer gleich arbeiten. Würde nämlich der Druck zu stark ansteigen, so könnte zu viel Arbeitsmitteldampf durch den Motorspalt 311 und den weiteren Spalt 313 gepresst werden. - Die Bohrungen 320 für die Dampfzuführung werden typischerweise in einem Array ausgebildet sein, das regelmäßig oder unregelmäßig angeordnet sein kann. Die einzelnen Bohrungen sind vom Durchmesser her nicht größer als 5 mm und können bei etwa einer minimalen Größe von 1 mm liegen.
-
Fig. 3 zeigt ferner die Flüssigkeitsleitungen 421 bzw. 422 zum Leitraum 302 bzw. zum Saugmund 92, über den das Radialrad 304 Dampf vom Verdampfer 102 ansaugt und in den Leitraum 302 abgibt. Die schematischen Leitungen 421, 422 sind ausgebildet, um die Flüssigkeit direkt auf die Oberfläche der entsprechenden Elemente zu führen. Wie es noch Bezug nehmend aufFig. 10 bzw.Fig. 11 dargestellt wird, können diese Leitungen auch in einer einzigen Leitung implementiert sein, derart, dass eine sequenzielle Flüssigkeitsversorgung der Oberseite des Leitraums 302 (inFig. 10 , nicht der Erfindung entsprechend), des Saugmunds und der Unterseite des Leitraums 302 (inFig.11 , der Erfindung entsprechend) stattfindet. - Insbesondere können die Leitungen 422 als Kanäle, die fest ausgebildet sind oder als flexible Leitungen, wie beispielsweise Schlauchelemente implementiert sein.
-
Fig. 4a zeigt eine Draufsicht auf den Leitraum 302 vonFig. 3 oder auf den Leitraum 302 vonFig. 10 oder vonFig. 11 . Insbesondere umfasst der Leitraum 302 in der Draufsicht von oben eine Öffnung 374 zur Aufnahme der Motorachse, wobei sich durch diese Öffnung 374 die Achse vom Motor in den Leitraum hinein erstreckt, um dort das Radialrad 304 zu tragen, das durch Drehung der Motorachse ebenfalls in Drehung versetzt wird. - Darüber hinaus umfasst der Leitraum einen vertieften Bereich 372, der für eine Flüssigkeitsansammlung ausgebildet ist und in
Fig. 11 im Querschnitt dargestellt ist. Dabei ist insbesondere, zur Herstellung des vertieften Bereichs das obere Ende des Leitraums 302, wie er beispielsweise inFig. 3 gezeigt ist, mit einem nach oben stehenden Rand versehenen, so dass sich in dem vertieften Bereich, der sich über den gesamten Leitraum erstreckt, Flüssigkeit ansammeln kann und damit gewissermaßen Flüssigkeit "steht", die z. B. über eine Flüssigkeitszuleitung 422 zugeführt worden ist, die inFig. 11 beispielsweise als die Durchgangsöffnung 372 vom Motorraum ausgebildet ist, und die dann über einen Fließbereich 376 fortgesetzt wird, über den dann die Flüssigkeit in den vertieften Bereich 372 läuft. Der vertiefte Bereich hat eine Ableitungsleitung 373 bzw. einen Anschlussbereich 373, an dem dann eine schlauchartige Ableitungsleitung 378 angeschlossen ist, die ebenfalls inFig. 11 gezeigt ist. -
Fig. 4b zeigt eine Ansicht von unten des Kombinationselements aus Saugmund 92 und Leitraum 302. Insbesondere ist die Saugmundöffnung in der Mitte vonFig. 4b gezeigt. Neben der Saugmundöffnung befindet sich der Boden 380 eines Kühlungskanals 379 (inFig. 11 gezeigt), in den Kühlflüssigkeit über die Ableitungsleitung 378, die inFig. 11 gezeigt ist, eingespeist wird. Aufgrund des Höhenunterschieds des Reservoirs im vertieften Bereich 372 fließt die Kühlflüssigkeit in dem Kühlungskanal an der Außenseite des Saugmunds 92 vorbei und ebenfalls an der unteren Außenseite des Leitraums 302. Das Ende des unteren Leitraums 381 ist gepunktet inFig. 4b gezeigt. Dies soll verdeutlichen, dass diese Linie in der Ansicht von unten nicht zu sehen ist, weil sie durch das untere Ende 382 des Kühlungskanals verdeckt wird. Insbesondere wird zwischen der Linie 381 und der Linie 382 inFig. 4b die Überlauf-Vorstandstrecke gebildet, die einen offenen Bereich an Flüssigkeit darstellt, der direkt in den Dampfkanal hineinragt, und der oben von der oberen Außenseite des Leitraums 302 überdeckt wird. - Am Ende des Kühlungskanals befindet sich der Vorstand 382, der so weit vorsteht, dass sich ein gewisses Niveau bildet. Über diesen Vorstand läuft dann überschüssige Arbeitsflüssigkeit einfach nach unten in den Kondensierer bzw. in das Kondensierervolumen hinein.
- Es sei darauf hingewiesen, dass
Fig. 4a und Fig. 4b nicht maßstäblich gezeichnet sind, sondern lediglich schematisches eine bevorzugte Ausführungsform des Leitraums 302 zeigen, wobei in dieser Anmeldung mit Leitraum je nach Erklärung der Leitraum in dem Leitraumgehäuse oder aber das Gehäuse des Leitraums selbst, also das den Dampfkanal umgebende Gehäuse gemeint ist, wie es inFig. 4a als oberes Leitraumgehäuse und inFig. 4b als unteres Leitraumgehäuse dargestellt ist. -
Fig. 6 zeigt einen Verflüssiger aus dem Stand der Technik, wobei der Verflüssiger inFig. 6 eine Dampfeinleitungszone 102 aufweist, die sich vollständig um die Kondensationszone 100 herum erstreckt. Insbesondere ist inFig. 6 ein Teil eines Verflüssigers dargestellt, der einen Verflüssigerboden 200 aufweist. Auf dem Verflüssigerboden ist ein Verflüssigergehäuseabschnitt 202 angeordnet, der aufgrund der Darstellung inFig. 6 durchsichtig gezeichnet ist, der jedoch in Natur nicht unbedingt durchsichtig sein muss, sondern z.B. aus Kunststoff, Aluminiumdruckguss oder etwas Ähnlichem gebildet sein kann. Das seitliche Gehäuseteil 202 liegt auf einem Dichtungsgummi 201 auf, um eine gute Abdichtung mit dem Boden 200 zu erreichen. Ferner umfasst der Verflüssiger einen Flüssigkeitsablauf 203 sowie einen Flüssigkeitszulauf 204 sowie eine in dem Verflüssiger zentral angeordnete Dampfzuführung 205, die sich von unten nach oben inFig. 6 verjüngt. Es sei darauf hingewiesen, dassFig. 6 die eigentlich gewünschte Aufstellrichtung einer Wärmepumpe und eines Verflüssigers dieser Wärmepumpe darstellt, wobei in dieser Aufstellrichtung inFig. 6 der Verdampfer einer Wärmepumpe unterhalb des Verflüssigers angeordnet ist. Die Kondensationszone 100 wird nach außen durch einen korbartigen Begrenzungsgegenstand 207 begrenzt, der ebenso wie das äußere Gehäuseteil 202 durchsichtig gezeichnet ist und normalerweise korbartig ausgebildet ist. - Ferner ist ein Gitter 209 angeordnet, das ausgebildet ist um Füllkörper, die in
Fig. 6 nicht gezeigt sind, zu tragen. Wie es ausFig. 6 ersichtlich aus, erstreckt sich der Korb 207 lediglich bis zu einem gewissen Punkt nach unten. Der Korb 207 ist dampfdurchlässig vorgesehen, um Füllkörper zu halten, wie beispielsweise sogenannte Pallringe. Diese Füllkörper werden in die Kondensationszone eingebracht, und zwar lediglich innerhalb des Korbs 207, jedoch nicht in der Dampfeinleitungszone 102. Die Füllkörper werden jedoch so hoch auch außerhalb des Korbs 207 eingefüllt, dass sich die Höhe der Füllkörper entweder bis zu der unteren Begrenzung des Korbs 207 oder etwas darüber erstreckt. - Der Verflüssiger von
Fig. 6 umfasst einen Arbeitsflüssigkeitszuführer, der insbesondere durch die Arbeitsflüssigkeitszuführung 204, die, wie es inFig. 6 gezeigt ist, gewunden um die Dampfzuführung in Form einer aufsteigenden Windung angeordnet ist, durch einen Flüssigkeitstransportbereich 210 und durch ein Flüssigkeitsverteilerelement 212 gebildet wird, das vorzugsweise als Lochblech ausgebildet ist. Insbesondere ist der Arbeitsflüssigkeitszuführer also ausgebildet, um die Arbeitsflüssigkeit in die Kondensationszone zuzuführen. - Darüber hinaus ist auch ein Dampfzuführer vorgesehen, der sich, wie es in
Fig. 6 gezeigt ist, vorzugsweise aus dem trichterförmig sich verjüngenden Zuführungsbereich 205 und dem oberen Dampfführungsbereich 213 zusammensetzt. In dem Dampfleitungsbereich 213 wird vorzugsweise ein Rad eines Radialkompressors eingesetzt und die Radialkompression führt dazu, dass durch die Zuführung 205 Dampf von unten nach oben gesaugt wird und dann aufgrund der Radialkompression durch das Radialrad bereits gewisserma-ßen 90 Grad nach außen umgelenkt wird, also von einer Strömung von unten nach oben zu einer Strömung von der Mitte nach außen inFig. 6 bezüglich des Elements 213. - In
Fig. 6 nicht gezeigt ist ein weiterer Umlenker, der den bereits nach außen umgelenkten Dampf noch einmal um 90 Grad umlenkt, um ihn dann von oben in den Spalt 215 zu leiten, der gewissermaßen den Beginn der Dampfeinleitungszone darstellt, die sich seitlich um die Kondensationszone herum erstreckt. Der Dampfzuführer ist daher vorzugsweise ringförmig ausgebildet und mit einem ringförmigen Spalt zum Zuführen des zu kondensierenden Dampfes versehen, wobei die Arbeitsflüssigkeitszuführung innerhalb des ringförmigen Spalts ausgebildet ist. - Zur Veranschaulichung wird auf
Fig. 7 verwiesen.Fig. 7 zeigt eine Ansicht des "Deckelbereichs" des Verflüssigers vonFig. 6 von unten. Insbesondere ist das Lochblech 212 von unten schematisch dargestellt, das als Flüssigkeitsverteilerelement wirkt. Der Dampfeinlassspalt 215 ist schematisch gezeichnet, und es ergibt sich ausFig. 7 , dass der Dampfeinlassspalt lediglich ringförmig ausgebildet ist, derart, dass in die Kondensationszone direkt von oben bzw. direkt von unten kein zu kondensierender Dampf eingespeist wird, sondern nur seitlich herum. Durch die Löcher des Verteilerblechs 212 fließt somit lediglich Flüssigkeit, jedoch kein Dampf. Der Dampf wird erst seitlich in die Kondensationszone "eingesaugt", und zwar aufgrund der Flüssigkeit, die durch das Lochblech 212 hindurchgetreten ist. Die Flüssigkeitsverteilerplatte kann aus Metall, Kunststoff oder einem ähnlichen Material ausgebildet sein und ist mit unterschiedlichen Lochmustern ausführbar. Ferner wird es, wie es inFig. 6 gezeigt ist, bevorzugt eine seitliche Begrenzung für aus dem Element 210 fließende Flüssigkeit vorzusehen, wobei diese seitliche Begrenzung mit 217 bezeichnet ist. Damit wird sichergestellt, dass Flüssigkeit, die aus dem Element 210 aufgrund der geschwungenen Zuführung 204 bereits mit einem Drall austritt und sich von innen nach außen auf dem Flüssigkeitsverteiler verteilt, nicht über den Rand in die Dampfeinleitungszone spritzt, sofern die Flüssigkeit nicht bereits vorher durch die Löcher der Flüssigkeitsverteilerplatte getropft und mit Dampf kondensiert ist. -
Fig. 5 zeigt eine komplette Wärmepumpe in Schnittdarstellung, die sowohl den Verdampferboden 108 als auch den Kondensatorboden 106 umfasst. Wie es inFig. 5 oder auch inFig. 1 gezeigt ist, hat der Kondensatorboden 106 einen sich verjüngenden Querschnitt von einem Zulauf für die zu verdampfende Arbeitsflüssigkeit zu einer Absaugöffnung 115, die mit dem Kompressor bzw. Motor 110 gekoppelt ist, wo also das vorzugsweise verwendete Radialrad des Motors den im Verdampferraum 102 erzeugten Dampf absaugt. -
Fig. 5 zeigt einen Querschnitt durch die gesamte Wärmepumpe. Insbesondere ist innerhalb des Kondensatorbodens ein Tropfenabscheider 404 angeordnet. Dieser Tropfenabscheider umfasst einzelne Schaufeln 405. Diese Schaufeln sind, damit der Tropfenabscheider an Ort und Stelle bleibt, in entsprechenden Nuten 406 eingebracht, die inFig. 5 gezeigt sind. Diese Nuten sind in dem Kondensatorboden in einem Bereich, der zu dem Verdampferboden hin gerichtet ist, in der Innenseite des Verdampferbodens angeordnet. Darüber hinaus hat der Kondensatorboden ferner diverse Führungsmerkmale, die als Stäbchen oder Zungen ausgebildet sein können, um Schläuche zu halten, die für eine Kondensatorwasserführung beispielsweise vorgesehen sind, die also auf entsprechende Abschnitte aufgesteckt werden und die Einspeisepunkte der Kondensatorwasserzuführung ankoppeln. Diese Kondensatorwasserzuführung 402 kann je nach Implementierung so ausgebildet sein, wie es in denFig. 6 und7 bei den Bezugszeichen 102, 207 bis 250 gezeigt ist. Ferner hat der Kondensator vorzugsweise eine Kondensatorflüssigkeitsverteilungsanordnung, die zwei oder auch mehr Einspeisepunkte aufweist. Ein erster Einspeisepunkt ist daher mit einem ersten Abschnitt eines Kondensatorzulaufs verbunden. Ein zweiter Einspeisepunkt ist mit einem zweiten Abschnitt des Kondensatorzulaufs verbunden. Sollten mehr Einspeisepunkte für die Kondensatorflüssigkeitsverteilungseinrichtung vorhanden sein, so wird der Kondensatorzulauf in weitere Abschnitte aufgeteilt sein. - Der obere Bereich der Wärmepumpe von
Fig. 5 kann somit genauso wie der obere Bereich inFig. 6 ausgebildet sein, dahin gehend, dass die Kondensatorwasserzuführung über das Lochblech vonFig. 6 undFig. 7 stattfindet, so dass abwärts rieselndes Kondensatorwasser 408 erhalten wird, in das der Arbeitsdampf 112 vorzugsweise seitlich eingeführt wird, so dass die Querstrom-Kondensation, die eine besonders hohe Effizienz erlaubt, erhalten werden kann. Wie es auch inFig. 6 dargestellt ist, kann die Kondensationszone mit einer lediglich optionalen Füllung versehen sein, bei der der Rand 207, der auch mit 409 bezeichnet ist, frei bleibt von Füllkörpern oder ähnlichen Dingen, dahin gehend, dass der Arbeitsdampf 112 nicht nur oben, sondern auch unten noch seitlich in die Kondensationszone eindringen kann. Die gedachte Begrenzungslinie 410 soll das inFig. 5 veranschaulichen. Bei dem inFig. 5 gezeigten Ausführungsbeispiel ist jedoch der gesamte Bereich des Kondensators mit einem eigenen Kondensatorboden 200 ausgebildet, der oberhalb eines Verdampferbodens angeordnet ist. -
Fig. 10 zeigt ein bevorzugtes Ausführungsbeispiel einer Wärmepumpe nicht der Erfindung entsprechend, und insbesondere eines Wärmepumpenabschnitts, der den "oberen" Bereich der Wärmepumpe, wie sie beispielsweise inFig. 5 dargestellt ist, zeigt. Insbesondere entspricht der Motor M 110 vonFig. 5 dem Bereich, der von einer Motorwand 309 umgeben ist, die bei der Querschnittsdarstellung inFig. 10 in dem Flüssigkeitsbereich 328 außen vorzugsweise mit Kühlrippen ausgebildet ist, um die Oberfläche der Motorwand 309 zu vergrößern. Ferner entspricht der Bereich des Motorgehäuses 300 inFig. 4 dem entsprechenden Bereich 300 inFig. 5 . InFig. 10 ist ferner das Radialrad 304 in einem detaillierteren Querschnitt dargestellt. Das Radialrad 304 ist an der Motorwelle 306 in einem im Querschnitt gabelförmigen Befestigungsbereich angebracht. Die Motorwelle 306 hat einen Rotor 307, der dem Stator 308 gegenüberliegt. Der Rotor 307 umfasst schematisch inFig. 10 dargestellte Permanentmagnete. Der Motorspalt 311 erstreckt sich zwischen dem Rotor und dem Stator und mündet in dem weiteren Spalt 313, der entlang des im Querschnitt gabelförmigen Befestigungsbereichs der Welle 306 bis zum Leitraum 302 verläuft, wie es bei 346 ebenfalls dargestellt ist. - Darüber hinaus ist in
Fig. 10 ein Notlager 344 dargestellt, das im Normalbetrieb die Welle nicht lagert. Stattdessen wird die Welle durch den Lagerabschnitt, der bei 343 gezeigt ist, gelagert. Das Notlager 344 ist lediglich vorhanden, um im Falle eines Schadens die Welle und damit das Radialrad zu lagern, damit das sich schnell drehende Radialrad im Falle eines Schadens keinen größeren Schaden in der Wärmepumpe anrichten kann.Fig. 10 zeigt ferner verschiedene Befestigungselemente, wie Schrauben, Muttern, etc. und verschiedene Abdichtungen in Form von diversen O-Ringen. Darüber hinaus zeigtFig. 10 ein zusätzliches Konvektionselement 342, auf das später noch Bezug nehmend aufFig. 10 eingegangen wird. -
Fig. 10 zeigt ferner einen Spritzschutz 360 im Dampfraum oberhalb des maximalen Volumens im Motorgehäuse, das normal mit flüssigem Arbeitsmittel gefüllt ist. Dieser Spritzschutz ist ausgebildet, um bei der Blasensiedung in den Dampfraum geschleuderte Flüssigkeitstropfen abzufangen. Vorzugsweise ist der Dampfweg 310 so ausgebildet, dass er von dem Spritzschutz 360 profitiert, d.h. dass aufgrund der Strömung in den Motorspalt und den weiteren Spalt lediglich Arbeitsmitteldampf, nicht aber Flüssigkeitstropfen aufgrund der Siedung im Motorgehäuse angesaugt werden. - Die Wärmepumpe mit konvektiver Wellenkühlung hat vorzugsweise eine Dampfzuführung, die so ausgebildet ist, dass eine Dampfströmung durch den Motorspalt und den weiteren Spalt einen Lagerabschnitt, der ausgebildet ist, um die Motorwelle bezüglich des Stators zu lagern, nicht durchtritt. Der Lagerabschnitt 343, der im vorliegenden Fall zwei Kugellager umfasst, ist von dem Motorspalt abgedichtet, und zwar z. B. durch O-Ringe 351. Damit kann der Arbeitsdampf lediglich, wie es durch den Weg 310 dargestellt ist, durch die Dampfzuführung in einen Bereich innerhalb der Motorwand 309 eintreten, von dort in einem freien Raum nach unten laufen und an dem Rotor 307 entlang durch den Motorspalt 311 in den weiteren Spalt 313 gelangen. Vorteilhaft daran ist, dass die Kugellager nicht von Dampf umströmt werden, dass also eine Lagerschmierung in den abgeschlossenen Kugellagern verbleibt und nicht durch den Motorspalt hindurchgezogen wird. Ferner wird auch sichergestellt, dass das Kugellager nicht befeuchtet wird, sondern immer in dem definierten Zustand beim Einbau verbleibt.
- Bei einem weiteren Ausführungsbeispiel ist das Motorgehäuse in der Betriebsposition der Wärmepumpe oben auf dem Kondensierergehäuse 114 angebracht, so dass sich der Stator oberhalb des Radialrads befindet und die Dampfströmung 310 durch den Motorspalt und den weiteren Spalt von oben nach unten verläuft.
- Ferner umfasst die Wärmepumpe den Lagerabschnitt 343, der ausgebildet ist, um die Motorwelle bezüglich des Stators zu lagern. Ferner ist der Lagerabschnitt so angeordnet, dass zwischen dem Lagerabschnitt und dem Radialrad 304 der Rotor 307 und der Stator 308 angeordnet sind. Dies hat den Vorteil, dass der Lagerabschnitt 343 im Dampfbereich innerhalb des Motorgehäuses angeordnet werden kann und der Rotor/Stator, dort wo die größte Verlustleistung entsteht, unterhalb des maximalen Flüssigkeitspegels 322 (
Fig. 3 ) angeordnet werden kann. Damit ist eine optimale Anordnung geschaffen, durch die jeder Bereich in dem Medium ist, das für den Bereich am besten ist, um die Zwecke zu erreichen, nämlich die Motorkühlung einerseits und die konvektive Wellenkühlung andererseits und gegebenenfalls eine Kugellagerkühlung, auf die noch Bezug nehmend aufFig. 10 eingegangen wird. - Das Motorgehäuse umfasst ferner den Arbeitsmittelzulauf 330, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an eine Wand des Verdichtermotors zu führen.
-
Fig. 10 zeigt eine spezielle Implementierung dieses Arbeitsmittelzulaufs 362, der dem Zulauf 330 vonFig. 3 entspricht. Dieser Arbeitsmittelzulauf 362 verläuft in ein geschlossenes Volumen 364, das eine Kugellagerkühlung darstellt. Aus der Kugellagerkühlung tritt eine Ableitung heraus, die ein Röhrchen 366 umfasst, das das Arbeitsmittel nicht oben auf das Volumen des Arbeitsmittels 328, wie inFig. 3 gezeigt, führt, sondern das das Arbeitsmittel unten an die Wand des Motors, also das Element 309, führt. Insbesondere ist das Röhrchen 366 ausgebildet, um innerhalb des Konvektionselements 342 angeordnet zu sein, das um die Motorwand 309 herum angeordnet ist, und zwar in einem gewissen Abstand, so dass innerhalb des Konvektionselements 342 und außerhalb des Konvektionselements 342 innerhalb des Motorgehäuses 300 ein Volumen an flüssigem Arbeitsfluid existiert. - Durch eine Blasensiedung aufgrund des Arbeitsmittels, das in Kontakt mit der Motorwand 309 insbesondere im unteren Bereich ist, wo der frische Arbeitsmittelzulauf 366 endet, entsteht eine Konvektionszone 367 innerhalb des Volumens an Arbeitsflüssigkeit 328. Insbesondere werden die Siedeblasen durch das Blasensieden von unten nach oben gerissen. Dies führt zu einem laufenden "Umrühren", dahin gehend, dass heiße Arbeitsflüssigkeit von unten nach oben gebracht wird. Die Energie aufgrund des Blasensiedens geht dann in die Dampfblase über, die dann im Dampfvolumen 323 oberhalb des Flüssigkeitsvolumens 328 landet. Der dort entstehende Druck wird unmittelbar durch den Überlauf 324, die Überlauffortsetzung 340 und den Ablauf 342 in den Kondensierer gebracht. Damit findet ein dauernder Wärmeabtrag vom Motor in den Kondensierer statt, der hauptsächlich aufgrund der Ableitung von Dampf und nicht aufgrund der Ableitung von erwärmter Flüssigkeit stattfindet.
- Dies bedeutet, dass die Wärme, die ja eigentlich die Abwärme des Motors ist, durch die Dampfabführung vorzugsweise genau dort hingelangt, wo sie hin soll, nämlich in das zu wärmende Kondensiererwasser. Damit wird die komplette Motorwärme im System gehalten, was insbesondere für Heizanwendungen der Wärmepumpe besonders günstig ist. Aber auch für Kühlungsanwendungen der Wärmepumpe ist die Wärmeabführung vom Motor in den Kondensierer günstig, weil der Kondensierer typischerweise mit einer effizienten Wärmeabführung, z.B. in Form eines Wärmetauschers oder einer direkten Wärmeabführung im zu wärmenden Gebiet gekoppelt ist. Es muss also keine eigene Motorabwärmevorrichtung geschaffen werden, sondern die von der Wärmepumpe ohnehin existierende Wärmeableitung vom Kondensierer nach außen wird durch die Motorkühlung gewissermaßen "mit benutzt".
- Das Motorgehäuse ist ferner ausgebildet, um in einem Betrieb der Wärmepumpe den Maximalpegel an flüssigem Arbeitsmittel zu halten und um oberhalb des Pegels an flüssigem Arbeitsmittel den Dampfraum 323 zu schaffen. Die Dampfzuführung ist ferner derart ausgebildet, dass sie mit dem Dampfraum kommuniziert, so dass der Dampf im Dampfraum zur konvektiven Wellenkühlung durch den Motorspalt und den weiteren Spalt in
Fig. 4 geleitet wird. - Bei der in
Fig. 10 gezeigten Wärmepumpe ist der Ablauf als Überlauf im Motorgehäuse angeordnet, um flüssiges Arbeitsmittel oberhalb des Pegels in den Kondensierer zu leiten und um ferner einen Dampfweg zwischen dem Dampfraum und dem Kondensierer zu schaffen. Vorzugsweise ist der Ablauf 324 beides, nämlich sowohl Überlauf als auch Dampfweg. Diese Funktionalitäten können jedoch durch eine alternative Ausführung des Überlaufs einerseits und eines Dampfraums andererseits auch unter Verwendung verschiedener Elemente implementiert werden. - Die Wärmepumpe umfasst bei dem in
Fig. 10 gezeigten Ausführungsbeispiel eine besondere Kugellagerkühlung, die insbesondere dadurch ausgebildet ist, dass um den Lagerabschnitt 343 das abgedichtete Volumen 364 mit flüssigem Arbeitsmittel ausgebildet ist. Der Zulauf 362 tritt in dieses Volumen ein und das Volumen hat einen Ablauf 366 von der Kugellagerkühlung in das Arbeitsmittelvolumen zur Motorkühlung. Damit wird eine separate Kugellagerkühlung geschaffen, die jedoch außen um das Kugellager herum verläuft und nicht innerhalb des Lagers, so dass durch diese Kugellagerkühlung zwar effizient gekühlt wird, jedoch nicht die Schmierfüllung des Lagers beeinträchtigt wird. - Wie es ferner in
Fig. 10 gezeigt ist, umfasst der Arbeitsmittelzulauf 362 insbesondere den Leitungsabschnitt 366, der sich nahezu bis zum Boden des Motorgehäuses 300 bzw. bis zum Grund des flüssigen Arbeitsmittels 328 im Motorgehäuse erstreckt oder aber wenigstens bis zu einem Bereich unterhalb des maximalen Pegels erstreckt, um insbesondere flüssiges Arbeitsmittel aus der Kugellagerkühlung heraus zu führen und das flüssige Arbeitsmittel der Motorwand zuzuführen. -
Fig. 10 zeigen ferner das Konvektionselement, das von der Wand des Verdichtermotors 309 beabstandet in dem flüssigen Arbeitsmittel angeordnet ist, und das in einem unteren Bereich durchlässiger für das flüssige Arbeitsmittel als in einem oberen Bereich ist. Insbesondere ist bei dem inFig. 10 gezeigten Ausführungsbeispiel der obere Bereich nicht durchlässig und der untere Bereich relativ stark durchlässig, und das Konvektionselement ist bei der Ausführung in Form einer "Krone" ausgebildet, die umgekehrt in das Flüssigkeitsvolumen gesetzt ist. Damit kann die Konvektionszone 367 ausgebildet werden, wie sie inFig. 10 dargestellt ist. Es können jedoch alternative Konvektionselemente 342 verwendet werden, die in irgendeiner Weise oben weniger durchlässig als unten sind. So könnte beispielsweise ein Konvektionselement genommen werden, das unten Löcher hat, die in Form oder Anzahl einen größeren Durchlassquerschnitt aufweisen als Löcher im oberen Bereich. Alternative Elemente zur Erzeugung der Konvektionsströmung 367, wie sie inFig. 10 dargestellt ist, sind ebenfalls verwendbar. - Zur Motorsicherung im Falle eines Lagerproblems ist das Notlager 344 vorgesehen, das ausgebildet ist, um die Motorwelle 306 zwischen dem Rotor 370 und dem Radialrad 304 abzusichern. Insbesondere erstreckt sich der weitere Spalt 313 durch einen Lagerspalt des Notlagers oder vorzugsweise durch absichtlich in dem Notlager eingebrachte Bohrungen. Bei einer Implementierung ist das Notlager mit einer Vielzahl von Bohrungen versehen, so dass das Notlager selbst einen möglichst geringen Strömungswiderstand für die Dampfströmung 10 zu Zwecken der konvektiven Wellenkühlung darstellt,
-
Fig. 12 zeigt einen schematischen Querschnitt durch eine Motorwelle 306, wie sie für bevorzugte Ausführungsformen einsetzbar ist. Die Motorwelle 306 umfasst einen schraffierten Kern, wie er inFig. 12 dargestellt ist, der in seinem oberen Abschnitt, der den Lagerabschnitt 343 darstellt, von vorzugsweise zwei Kugellagern 398 und 399 gelagert ist. Weiter unten an der Welle 306 ist der Rotor mit Permanentmagneten 307 ausgebildet. Diese Permanentmagnete sind auf der Motorwelle 306 aufgesetzt und werden oben und unten durch Stabilisierungsbandagen 397 gehalten, die vorzugsweise aus Karbon sind. Ferner werden die Permanentmagnete durch eine Stabilisierungshülse 396 gehalten, die ebenfalls als Karbonhülse vorzugsweise ausgebildet ist. Diese Sicherungs- oder Stabilisierungshülse führt dazu, dass die Permanentmagnete sicher auf der Welle 306 bleiben und sich nicht aufgrund der sehr starken Fliehkräfte aufgrund der hohen Drehzahl der Welle von der Welle lösen können. - Vorzugsweise ist die Welle aus Aluminium ausgebildet und hat einen im Querschnitt gabelförmigen Befestigungsabschnitt 395, der eine Halterung für das Radialrad 304 darstellt, wenn das Radialrad 304 und die Motorwelle nicht einstückig, sondern mit zwei Elementen ausgebildet sind. Ist das Radialrad 304 mit der Motorwelle 306 einstückig ausgebildet, so ist der Radhalterungsabschnitt 395 nicht vorhanden, sondern dann schließt das Radialrad 304 unmittelbar an die Motorwelle an. In dem Bereich der Radhalterung 395 befindet sich auch, wie es aus
Fig. 10 ersichtlich ist, das Notlager 344, das vorzugsweise ebenfalls aus Metall und insbesondere Aluminium ausgebildet ist. - Ferner ist das Motorgehäuse 300 aus
Fig. 10 , das auch inFig. 3 dargestellt ist, ausgebildet, um einen Druck zu erhalten, der höchstens um 20 % größer als der Druck im Kondensierergehäuse in einem Betrieb der Wärmepumpe ist. Ferner kann das Motorgehäuse 300 ausgebildet sein, um einen Druck zu erhalten, der so niedrig ist, dass bei einer Erwärmung der Motorwand 309 durch den Betrieb des Motors eine Blasensiedung in dem flüssigen Arbeitsmittel 328 und in dem Motorgehäuse 300 stattfindet. - Vorzugsweise ist ferner der Lagerabschnitt 343 oberhalb des maximalen Flüssigkeitspegels angeordnet, so dass selbst bei einer Undichtigkeit der Motorwand 309 kein flüssiges Arbeitsmittel in den Lagerabschnitt kommen kann. Dagegen ist der Bereich des Motors, der zumindest teilweise den Rotor und den Stator umfasst, unterhalb des maximalen Pegels, da typischerweise im Lagerbereich einerseits, aber auch zwischen Rotor und Stator andererseits die größte Verlustleistung anfällt, die durch die konvektive Blasensiedung optimal weg transportiert werden kann.
- In
Fig. 10 ist ferner dargestellt, wie eine Zuführung von bei der Motorkühlung verwendete Arbeitsflüssigkeit über den Zulauf 324 oben auf den Leitraum 302 stattfinden kann. Hierzu ist der Durchgang 377 vorgesehen, der in der oberen Platte des Kondensierervolumens ausgebildet ist, und der je nach Implementierung einen einzigen Kanal auf einer Seite oder zwei Kanäle auf beiden Seiten oder sogar sektorförmige Kanäle umfassen kann, um möglichst viel überlaufende Arbeitsflüssigkeit, die über den Zulauf 362 der Kugellagerkühlung zugeführt wird und von der Kugellagerkühlung 366 an die Motorwand hinzugeführt wird, überlaufen zu lassen, wie es durch die Pfeile 367 dargestellt ist. Das flüssige Medium läuft dann in den Bereich aus der Motorkühlung heraus und dann, wenn ein bestimmtes Level erreicht ist, über den Zulauf 324 ab. Alternativ kann der Ablauf 324 jedoch auch im Volumen der Motorkühlung enthalten sein, also in dem Bereich, in dem auch das Konvektionselement 342 angeordnet ist. Es wird jedoch bevorzugt, den gesamten Bereich innerhalb und außerhalb des Konvektionselements mit Flüssigkeit zu füllen, um dann über den Überlauf 324 die überlaufende Flüssigkeit abzuführen, durch die Durchführung 377 hindurchzuführen und von dort auf den Leitraum bzw. die Oberseite des Leitraums zu führen, wonach dann die Flüssigkeit herabläuft. Damit stelltFig. 10 eine Implementierung dar, bei der, nicht der Erfindung entsprechend, lediglich die Oberseite des Leitraums gekühlt wird, wobei dann die spezielle Formung des äußeren Bereichs des Leitraums, um den vertieften Bereich 362 zu schaffen, nicht erforderlich ist. -
Fig. 9 zeigt ferner eine schematische Darstellung der Wärmepumpe zur Motorkühlung. - Insbesondere ist der Arbeitsmittelablauf 324 alternativ zu
Fig. 4 oderFig. 10 ausgebildet. - Der Ablauf muss nicht unbedingt ein passiver Ablauf sein, sondern kann auch ein aktiver Ablauf sein, der z.B. durch eine Pumpe oder ein anderes Element gesteuert wird und abhängig von einer Pegelerfassung des Pegels 322 etwas Arbeitsmittel aus dem Motorgehäuse 300 absaugt. Alternativ könnte auch statt des röhrenförmigen Ablaufs 324 eine wiederverschließbare Öffnung am Boden des Motorgehäuses 300 sein, um durch kurzes Öffnen der wiederverschließbaren Öffnung eine gesteuerte Menge an Arbeitsmittel von dem Motorgehäuse in den Kondensierer ablaufen zu lassen.
-
Fig. 9 zeigt ferner das zu erwärmende Gebiet bzw. einen Wärmetauscher 391, von dem ein Kondensiererzulauf 204 in den Kondensierer verläuft, und aus dem ein Kondensiererablauf 203 austritt. Ferner ist eine Pumpe 392 vorgesehen, um den Kreislauf aus Kondensierer-Zulauf 204 und Kondensierer-Ablauf 203 zu treiben. Diese Pumpe 392 hat vorzugsweise eine Abzweigung zu dem Zulauf 362, wie es schematisch dargestellt ist. Damit wird keine eigene Pumpe benötigt, sondern die ohnehin vorhandene Pumpe für den Kondensiererablauf treibt auch einen kleinen Teil des Kondensiererablaufs in die Zulaufleitung 362 und damit in das Flüssigkeitsvolumen 328. - Darüber hinaus zeigt
Fig. 9 eine allgemeine Darstellung des Kondensierers 114, des Verdichtermotors mit Motorwand 309 und des Motorgehäuses 300, wie sie auch anhand vonFig. 3 beschrieben worden ist. -
Fig. 9 zeigt ferner den Überlauf 324 als alternative Implementierung, bei dem Flüssigkeit z. B. aktiv abgesaugt werden kann und direkt dem Leitraum 302 bzw. dem Saugmund 92 zugeführt werden kann und zwar wieder über Leitungen 421, 422. Darüber hinaus ist, wie bereits dargestellt inFig. 9 gezeigt, dass als Kühlflüssigkeit bevorzugt erwärmte Flüssigkeit aus dem Kondensiererablauf 203 eingesetzt wird. -
Fig. 11 zeigt eine bevorzugte Ausführungsform, der Erfindung entsprechend, die die Funktionalitäten verschiedener anderer dargestellter Ausführungsbeispiele vereint. Arbeitsflüssigkeit bzw. Kühlflüssigkeit, die vorzugsweise Wasser ist, wird über den Zulauf 330 bzw. 362, wie er inFig. 9 dargestellt ist, zunächst der Kugellagerkühlung, die als geschlossenes Volumen 364 gezeigt ist, zugeführt. In das geschlossene Volumen 364 eingetretene Kühlflüssigkeit fließt an dem Kugellager, das durch das geschlossene Volumen umgeben wird, vorbei und tritt aus dem Kugellager aus. Die Kühlflüssigkeit fließt über die Verbindungsleitung bzw. das Röhrchen 366 in den Motorkühlungsraum, der auf einem Pegel 322 an Arbeitsflüssigkeit gehalten wird. Der Pegel 322 wird hier durch eine Wand 321 gehalten. Insbesondere wird die Arbeitsflüssigkeit über die Leitung 366 vorzugsweise unten in den Bereich innerhalb der Wand 321 zugeführt, wie es auch inFig. 10 dargestellt ist. Damit wird eine gute Konvektionszone erhalten, wobei insbesondere an der erwärmten Motorwand eine Blasensiedung stattfindet. Die Arbeitsflüssigkeit läuft ferner an der Wand über, wie es bei 324 gezeigt ist. 324 kann einen kanalförmigen Überlauf darstellen, kann jedoch auch ein freier Überlauf sein. Dann läuft die Flüssigkeit außen an der Wand 321 herunter und dann über den Durchführungsbereich bzw. die Durchführungsöffnung 377 auf den Flussbereich 376. Dann fließt sie von diesem Flussbereich 376 herunter, um schließlich auf der Oberseite des Leitraums im vertieften Bereich zu landen. -
Fig. 11 zeigt somit eine Ausführungsform, bei der mit derselben Flüssigkeitsströmung eine Kugellagerkühlung, eine Motorkühlung, eine Kühlung der Oberseite des Leitraums, eine Kühlung des Saugmunds und eine Kühlung der Unterseite des Leitraums sowie zusätzlich noch eine offene Kühlung des Dampfstroms durch die Überlauf-Vorstand-Strecke zwischen dem Ende des Elements 381 und dem Element 382 erhalten wird, wobei sich dieser offene Bereich vorzugsweise kreisförmig erstreckt. - Der Verlauf der Kühlflüssigkeit geht also über die Einspeiseleitung 422, 324, 377, 376 auf die obere Außenseite 372 des Leitraums 302. Von dort läuft die Flüssigkeit über die Ableitungsleitung 378 von der Außenseite des Leitraums 302 an die Außenseite des Saugmunds 92. Von dort läuft die Flüssigkeit über den Kühlungskanal 379 entlang der Außenseite des Saugmunds zu der unteren Außenseite des Leitraums und entlang der unteren Außenseite des Leitraums zum Überlauf 382 und von dort nach unten in den Kondensiere.
- Erfindungsgemäß wird dadurch erreicht, dass nach dem Verdichten die sonst im ungekühlten Leitraum entstehende starke Überhitzung des Wasserdampfs vermieden wird. Ein Teil des Druckaufbaues findet im Leitraum statt, in dem ebenfalls durch die Kühlung Überhitzung abgebaut wird, was den Wirkungsgrad und die Prozessgüte des Verdichtungsprozesses steigert. Überhitzter Wasserdampf hat eine höhere Viskosität und damit einen größeren Strömungswiderstand als Sattdampf. Überhitzter Wasserdampf muss daher erst Überhitzung abbauen, um leicht kondensieren zu können. Vorzugsweise ist der Leitraum 302 und ist auch der Saugmund 92 aus einem gut wärmeleitenden Material, wie beispielsweise Metall gebildet. Dann kann die Wärme aus der Dampfströmung besonders gut abgebaut werden, obgleich jedoch auch mit schlechter wärmeleitenden Materialien gute Erfolge erzielt werden. Durch Abbau der Überhitzungswärme aus dem Dampfstrom sinkt der Strömungswiderstand und die Kondensierungsfähigkeit des komprimierten Dampfes verbessert sich.
- Um die Temperatur des Leitraums möglichst nahe an der Sattdampftemperatur des im Verflüssiger herrschenden Drucks zu halten, ist der Leitraum aus einem Metall ausgebildet und umgeben von Flüssigkeit, wie beispielsweise Wasser, das mit dem Verflüssiger einen Druckausgleich vollzieht. Wird Energie/Wärme aus der Dampfströmung eingekoppelt, fängt das umgebende Wasser an zu kochen und gibt die Energie wieder ab. Der Leitraum wird dadurch sehr nahe an der Sattdampftemperatur des Dampfdrucks gehalten. Eine Verflüssigung im Leitraum wird durch den verbleibenden Wärmewiderstand der Materialien und die darauf resultierende geringe Überhitzung verhindert.
- Das Kühlwasser für den Leitraum wird zuvor durch die Lager und ebenfalls offene Motorkühlung geleitet. Durch die offene Motorkühlung kühlt das Wasser durch Teilverdunstung wieder auf Sattdampftemperatur ab und steht für die offene Leitraumkühlung zur Verfügung. Zunächst wird der obere Leitraumteil mit Wasser gefüllt. Bei einer einseitigen Leitraumkühlung würde das Wasser einfach überlaufen, wie es bei dem in
Fig. 10 gezeigten - Ausführungsbeispiel der Fall ist, welches daher nicht der Erfindung entspricht. Das Wasser aus der oberen Leitraumkühlung wird jedoch bei einem Ausführungsbeispiel, das in
Fig. 11 gezeigt ist, in die untere Leitraum- und Saugmundkühlung geleitet. Am Ende des Leitraums kommt noch ein offener Bereich mit Überlauf. Durch Verdampfung kühlt sich das Wasser ständig selbst auf Sattdampftemperatur. Das übrige Wasser läuft über und fließt in ein Auffangbecken. Ein Ausgleich zwischen dem Kondensierer 114 und dem Verdampfer 90 kann, wie es inFig. 2 dargestellt ist, über eine Drossel 91 erfolgen. Bei einem offenen System ist jedoch auch eine Drossel nicht nötig. - Neben den genannten Vorteilen ist auch die reduzierte thermische Bauteilbelastung ein weiterer Vorteil. Durch die Verdampfungskühlung kann der gesamte Verdichter trotz Verlusten nahe der Sattdampftemperatur gehalten werden. Über die Verdampfung werden Motorverluste, Lagerverluste bei der Verdichtung abgebaut.
-
- 10
- Verdampfer
- 12
- Saugrohr
- 14
- Verdichter/Verflüssiger-System
- 16
- Strömungsmaschine
- 18
- Verflüssiger
- 20a
- Vorlauf
- 20b
- Rücklauf
- 22
- Ablauf
- 90
- Verdampfer
- 91
- Drossel
- 92
- Saugmund
- 100
- Wärmepumpe
- 102
- Verdampferraum
- 106
- Kondensatorboden
- 108
- Verdampferboden
- 110
- Motor
- 112
- komprimierter Arbeitsdampf
- 114
- Kondensierergehäuse
- 115
- Absaugöffnung bzw. Ansaugmund
- 200
- Verflüssigerboden
- 201
- Dichtungsgummi
- 202
- Verflüssigergehäuseabschnitt
- 203
- Flüssigkeitsablauf
- 204
- Flüssigkeitszulauf
- 205
- Dampfzuführung
- 207
- schematische Begrenzung
- 210
- Flüssigkeitstransportbereich
- 212
- Flüssigkeitsverteilerelement
- 213
- Dampfführungsbereich
- 215
- Dampfeinlassspalt
- 217
- seitliche Begrenzung
- 220
- Dampfflussrichtungen
- 300
- Motorgehäuse
- 302
- Leitraum
- 304
- Radialrad
- 306, 307
- Rotor
- 308
- Stator
- 309
- Motorwand
- 310
- Dampfzuführung
- 311
- Motorspalt
- 312
- Druckgebiet
- 313
- weiterer Spalt
- 314
- Arbeitsdampf
- 315
- Kühlrippen
- 317, 320
- Dampfzuführung
- 322
- Pegel
- 323
- Dampfraum
- 324
- Arbeitsmittelablaufdichtung
- 328
- Flüssigkeitsvolumen
- 330
- Arbeitsmittelzulauf
- 342
- Ablauf
- 343
- Lagerabschnitt
- 344
- Notlager
- 346
- Verlauf des weiteren Spalts
- 351
- O-Ringe
- 360
- Spritzschutz
- 362
- Zulauf
- 364
- Abgedichtetes Volumen
- 366
- Leitungsabschnitt
- 367
- Konvektionszone
- 370
- Rotor
- 391
- Wärmetauscher
- 372
- vertiefter Bereich
- 373
- Bereich für die Ableitungsleitung
- 374
- Ableitungsleitung
- 376
- Fließbereich
- 377
- Motorgehäusedurchtritt
- 379
- Kühlungskanal
- 380
- Boden des Kühlungskanals
- 381
- Unteres Leitraumende
- 382
- Vorstand
- 392
- Pumpe
- 395
- Befestigungsabschnitt
- 396
- Sicherungshülse
- 397
- Stabilisierungsbandagen
- 398
- Kugellager
- 399
- Kugellager
- 402
- Kondensatorwasserzuführung
- 404
- Tropfenabscheider
- 405
- Schaufeln
- 406
- Nuten
- 408
- Kondensatorwasser
- 409
- Rand
- 410
- schematische Begrenzung
- 420
- Kühlungsvorrichtung
- 421
- Saugmund-Flüssigkeitsleitung
- 422
- Leitraum-Flüssigkeitsleitung
Claims (15)
- Wärmepumpe mit folgenden Merkmalen:einem Verdampfer (90) zum Verdampfen von Arbeitsflüssigkeit;einem Kondensierer (114) zum Kondensieren von komprimiertem Arbeitsdampf;einem Verdichtermotor (110) mit einem Saugmund (92), an dem ein Radialrad (304) angebracht ist, um einen in dem Verdampfer (90) verdampften Arbeitsdampf (314) durch den Saugmund (92) zu fördern;einem Leitraum (302), der angeordnet ist, um einen von dem Radialrad (304) geförderten Arbeitsdampf (112) in den Kondensierer (114) zu leiten, wobei der Leitraum (302) eine untere Außenseite und eine obere Außenseite aufweist; undeiner Kühlungsvorrichtung (420) zum Kühlen des Leitraums (302) und des Saugmunds (92) mit einer Flüssigkeit, wobei die Kühlungsvorrichtung (420) ausgebildet ist, um die Flüssigkeit auf die untere Außenseite des Leitraums (302) und auf eine Außenseite des Saugmunds (92) zu leiten (421, 422), wobei die untere und die obere Außenseite des Leitraums (302) nicht mit dem in dem Verdampfer (90) verdampften Arbeitsdampf (314) in Berührung ist, und wobei eine Innenseite des Leitraums (302) in Berührung mit dem von dem Radialrad (304) geförderten Arbeitsdampf (112) ist und eine Innenseite des Saugmunds (92) in Berührung mit dem in dem Verdampfer (90) verdampften Arbeitsdampf (314) ist,gekennzeichnet dadurch, dassdie Außenseite des Saugmunds (92) und die untere Außenseite des Leitraums (302) dampfdicht miteinander verbunden sind, und,dass die Kühlungsvorrichtung (420) ausgebildet ist, um die Flüssigkeit in einer Strömung sequenziell an der Außenseite des Saugmunds (92) und dann an der unteren Außenseite des Leitraums (302) vorbeizuführen, oder um die Flüssigkeit in einer Strömung sequenziell an der unteren Außenseite des Leitraums (302) und dann an der Außenseite des Saugmunds (92) vorbeizuführen.
- Wärmepumpe nach Anspruch 1,
bei der die Flüssigkeit zum Kühlen die Arbeitsflüssigkeit der Wärmepumpe ist. - Wärmepumpe nach einem der vorhergehenden Ansprüche, bei der ein Druck in dem Kondensierer (114) im Betrieb der Wärmepumpe im Wesentlichen gleich einem Druck ist, der an der unteren Außenseite des Leitraums (302) oder der Außenseite des Saugmunds (92) vorliegt.
- Wärmepumpe nach einem der vorhergehenden Ansprüche, bei der die Kühlungsvorrichtung (420) folgende Merkmale aufweist:eine Einspeiseleitung (422, 324, 377, 376) zum Einspeisen der Flüssigkeit auf die obere Außenseite (372) des Leitraums (302);eine Ableitungsleitung (378) zum Ableiten der Flüssigkeit von der oberen Außenseite des Leitraums (302) an die Außenseite des Saugmunds (92);einem Kühlungskanal (379) zum Leiten der Flüssigkeit, die von der Ableitungsleitung (378) ausgegeben wird, entlang der Außenseite des Saugmunds (92) zu der unteren Außenseite des Leitraums (302) und entlang der unteren Außenseite des Leitraums (302); undeinen Überlauf (382) zum Leiten der Flüssigkeit von der unteren Außenseite des Leitraums (302).
- Wärmepumpe nach Anspruch 4, bei der der Überlauf (382) ausgebildet ist, um über ein Ende (381) der unteren Außenseite des Leitraums (302) um eine Strecke vorzustehen, die größer als 1 cm ist, und bei der der Überlauf (382) einen Vorstand hat, um in der Strecke, um die der Überlauf (382) vorsteht, einen Pegel an Flüssigkeit zu halten, der größer als 2 mm ist.
- Wärmepumpe nach einem der Ansprüche 4 oder 5, bei der die obere Außenseite des Leitraums (302) eine Vertiefung (372) hat, die ausgebildet ist, um die von der Einspeiseleitung (422, 324, 377, 376) zugeführte Flüssigkeit zu halten, wobei die Ableitungsleitung (378) an einem Bereich (373) in der Vertiefung (372) angebracht ist, der im Betrieb der Wärmepumpe unter einem vorhandenen Flüssigkeitspegel in der Vertiefung (372) ist.
- Wärmepumpe nach einem der Ansprüche 4 bis 6,
bei der ein Niveau der Einspeiseleitung (422, 324, 377, 376) höher als ein Niveau des Überlaufs (382) ist, so dass im Betrieb der Wärmepumpe eine Flüssigkeitsströmung durch die Einspeiseleitung (422, 324, 377, 376), die Ableitungsleitung (378) und den Kühlungskanal (379) aufgrund der Schwerkraft stattfindet. - Wärmepumpe nach einem der vorhergehenden Ansprüche,
die ausgebildet ist, um eine Dampfströmung durch den Saugmund (92) in einer bezüglich des Betriebs der Wärmepumpe senkrechten Richtung nach oben zu fördern, und bei der der Leitraum (302) ausgebildet ist, um eine Dampfströmung von einer waagerechten Strömung am Ende des Radialrads (304) in eine nach unten gerichtete Dampfströmung in den Kondensierer (114) umzuleiten. - Wärmepumpe nach einem der vorhergehenden Ansprüche,bei der der Leitraum (302) in der Draufsicht eine Kreisform aufweist und an seiner Außenkante eine kreisrunde Vertiefung (372) aufweist, undwobei die Kühlungsvorrichtung (420) ausgebildet ist, um die Vertiefung (372) mit der Flüssigkeit zu füllen.
- Wärmepumpe nach einem der vorhergehenden Ansprüche,
bei der der Leitraum (302) und der Saugmund (92) in einer Ansicht von unten kreisringförmig sind, wobei der Saugmund (92) in den Leitraum (302) übergeht, wobei die Kühlungsvorrichtung (420) einen Kühlungskanal (379) aufweist, der durch eine von der Unterseite des Saugmunds (92) und des Leitraums (302) beabstandete Kühlungskanalwand gebildet wird, die ebenfalls kreisringförmig ausgebildet ist und so angeordnet ist, dass durch die Kühlungsvorrichtung (420) in den Kühlungskanal (379) eingespeiste Flüssigkeit von der Kühlungskanalwand gehalten wird und in Berührung mit der Außenseite des Saugmunds (92) und der unteren Außenseite des Leitraums (302) ist. - Wärmepumpe nach einem der vorhergehenden Ansprüche,bei der der Kondensierer (114) ein Kondensierergehäuse aufweist,wobei der Verdichtermotor (110) an dem Kondensierergehäuse angebracht ist und ein Rotor und einen Stator (308) aufweist, wobei der Rotor eine Motorwelle (306) aufweist, an der das Radialrad (304) zum Verdichten des Arbeitsmitteldampfs angebracht ist, wobei der Verdichtermotor (110).eine Motorwand (309) aufweist,wobei ein Motorgehäuse (300) den Verdichtermotor (110) umgibt und einen Arbeitsmittelzulauf (362, 330) aufweist, um die Flüssigkeit zu einer Motorkühlung an die Motorwand (309) zu führen, undwobei das Motorgehäuse (300) ferner ausgebildet ist, um in dem Betrieb der Wärmepumpe die Flüssigkeit zur Motorkühlung über einen Durchgang (377) von dem Motorgehäuse (300) zu der oberen Außenseite des Leitraums (302) abzuleiten.
- Wärmepumpe nach einem der Ansprüche 1 bis 11,bei der der Verdichtermotor (110) ein Kugellager aufweist,bei der ferner ein abgedichtetes Volumen (364) um das Kugellager herum vorhanden ist,bei der die Kühlungsvorrichtung (420) ausgebildet ist, um die Flüssigkeit in das abgedichtete Volumen (364) hinein und wieder herauszuführen und von dort dem Leitraum (302) und dem Saugmund (92) zuzuführen, wobei die Zuführung entweder direkt oder über eine Motorkühlung erfolgt.
- Wärmepumpe nach einem der Ansprüche 1 bis 11,bei der der Verdichtermotor (110) ein Kugellager und eine Kugellagerkühlungsvorrichtung und eine Motorkühlungsvorrichtung aufweist,wobei die Kugellagerkühlungsvorrichtung ausgebildet ist, um die Flüssigkeit in ein geschlossenes Volumen (364), das sich an dem Kugellager befindet, einzuspeisen,wobei die Motorkühlungsvorrichtung ausgebildet ist, um aus dem geschlossenen Volumen (364) abgeleitete Flüssigkeit an eine Motorwand (309) zu führen,wobei die Motorkühlungsvorrichtung ausgebildet ist, um einen Flüssigkeitsüberlauf zu haben, über den die Flüssigkeit überläuft, undwobei die Kühlungsvorrichtung (420) für den Leitraum (302) und den Saugmund (92) ausgebildet ist, um von der Motorkühlungsvorrichtung übergelaufene Flüssigkeit aufzufangen und zur Kühlung des Leitraums (302) und des Saugmunds (92) zu verwenden.
- Verfahren zum Pumpen von Wärme mit einem Verdampfer (90) zum Verdampfen von Arbeitsflüssigkeit; einem Kondensierer (114) zum Kondensieren von komprimiertem Arbeitsdampf; einem Verdichtermotor (110) mit einem Saugmund (92), an dem ein Radialrad (304) angebracht ist, um einen in dem Verdampfer (90) verdampften Arbeitsdampf (314) durch den Saugmund (92) zu fördern; und einem Leitraum (302), der angeordnet ist, um einen von dem Radialrad (304) geförderten Arbeitsdampf (112) in den Kondensierer (114) zu leiten, wobei der Leitraum (302) eine untere Außenseite und eine obere Außenseite aufweist, mit folgendem Schritt:Kühlen des Leitraums (302) und des Saugmunds (92) mit einer Flüssigkeit, wobei die Flüssigkeit auf die untere Außenseite des Leitraums (302) und auf eine Außenseite des Saugmunds (92) geleitet wird (421, 422), wobei die untere und die obere Außenseite des Leitraums (302) nicht mit dem in dem Verdampfer (90) verdampften Arbeitsdampf (314) in Berührung ist, und wobei eine Innenseite des Leitraums (302) in Berührung mit dem von dem Radialrad (304) geförderten Arbeitsdampf (112) ist und eine Innenseite des Saugmunds (92) in Berührung mit dem in dem Verdampfer (90) verdampften Arbeitsdampf (314) ist,gekennzeichnet dadurch, dassdie Außenseite des Saugmunds (92) und die untere Außenseite des Leitraums (302) dampfdicht miteinander verbunden sind, und, dass das Kühlen ein Führen der Flüssigkeit in einer Strömung sequenziell an der Außenseite des Saugmunds (92) und dann an der unteren Außenseite des Leitraums (302) vorbei, oder das Führen der Flüssigkeit in einer Strömung sequenziell an der unteren Außenseite des Leitraums (302) und dann an der Außenseite des Saugmunds (92) vorbei aufweist.
- Verfahren zum Herstellen einer Wärmepumpe mit einem Verdampfer (90) zum Verdampfen von Arbeitsflüssigkeit; einem Kondensierer (114) zum Kondensieren von komprimiertem Arbeitsdampf; einem Verdichtermotor (110) mit einem Saugmund (92), an dem ein Radialrad (304) angebracht ist, um einen in dem Verdampfer (90) verdampften Arbeitsdampf (314) durch den Saugmund (92) zu fördern; und einem Leitraum (302), der angeordnet ist, um einen von dem Radialrad (304) geförderten Arbeitsdampf (112) in den Kondensierer (114) zu leiten, wobei der Leitraum (302) eine untere Außenseite und eine obere Außenseite aufweist, mit folgendem Schritt:Anbringen einer Kühlungsvorrichtung (420) zum Kühlen des Leitraums (302) und des Saugmunds (92) mit einer Flüssigkeit, wobei die Kühlungsvorrichtung (420) ausgebildet ist, um die Flüssigkeit auf die untere Außenseite des Leitraums (302) und auf eine Außenseite des Saugmunds (92) zu leiten (421, 422), wobei die untere und die obere Außenseite des Leitraums (302) nicht mit dem in dem Verdampfer (90) verdampften Arbeitsdampf (314) in Berührung ist, und wobei eine Innenseite des Leitraums (302) in Berührung mit dem von dem Radialrad (304) geförderten Arbeitsdampf (112) ist und eine Innenseite des Saugmunds (92) in Berührung mit dem in dem Verdampfer (90) verdampften Arbeitsdampf (314) ist,gekennzeichnet dadurch, dassdie Außenseite des Saugmunds (92) und die untere Außenseite des Leitraums (302) dampfdicht miteinander verbunden sind, und, dass die Kühlungsvorrichtung (420) ausgebildet ist, um die Flüssigkeit in einer Strömung sequenziell an der Außenseite des Saugmunds (92) und dann an der unteren Außenseite des Leitraums (302) vorbeizuführen, oder um die Flüssigkeit in einer Strömung sequenziell an der unteren Außenseite des Leitraums (302) und dann an der Außenseite des Saugmunds (92) vorbeizuführen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017215085.8A DE102017215085A1 (de) | 2017-08-29 | 2017-08-29 | Wärmepumpe mit einer Kühlvorrichtung zum Kühlen eines Leitraums oder eines Saugmunds |
PCT/EP2018/072548 WO2019042825A2 (de) | 2017-08-29 | 2018-08-21 | Wärmepumpe mit einer kühlvorrichtung zum kühlen eines leitraums oder eines saugmunds |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3676544A2 EP3676544A2 (de) | 2020-07-08 |
EP3676544B1 true EP3676544B1 (de) | 2023-05-24 |
Family
ID=63405205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18759919.6A Active EP3676544B1 (de) | 2017-08-29 | 2018-08-21 | Wärmepumpe mit einer kühlvorrichtung zum kühlen eines leitraums und eines saugmunds |
Country Status (6)
Country | Link |
---|---|
US (1) | US11754325B2 (de) |
EP (1) | EP3676544B1 (de) |
JP (1) | JP6985502B2 (de) |
CN (1) | CN111094874B (de) |
DE (1) | DE102017215085A1 (de) |
WO (1) | WO2019042825A2 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019210039B4 (de) * | 2019-07-08 | 2022-08-11 | Efficient Energy Gmbh | Kühlgerät, Verfahren zum Herstellen eines Kühlgeräts und Transportgerät mit einem Kühlgerät |
CN115055770B (zh) * | 2022-06-25 | 2024-08-13 | 湖北欧米隆精密机械有限公司 | 一种电火花成型机油槽用放油机构 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2604942A1 (de) * | 1976-02-09 | 1977-08-11 | Karl Dr Ing Schmidt | Waermepumpe |
US5200008A (en) | 1991-02-07 | 1993-04-06 | Michelin Recherche Et Technique | Radial tire tread and method of mounting a tire with said tread |
IL106945A (en) | 1993-09-08 | 1997-04-15 | Ide Technologies Ltd | Centrifugal compressor and heat pump containing it |
JP2002005089A (ja) * | 2000-06-20 | 2002-01-09 | Mitsubishi Heavy Ind Ltd | ターボ形圧縮機及びそれを備えた冷凍装置 |
JP2008531965A (ja) * | 2005-02-23 | 2008-08-14 | アイ・ディ・イー・テクノロジーズ・リミテッド | 冷媒として水を使用する小型ヒートポンプ |
DE202006005461U1 (de) | 2006-04-04 | 2007-08-16 | Sedlak, Holger | Vorrichtung zum Pumpen von Wärme |
JP2009150594A (ja) * | 2007-12-19 | 2009-07-09 | Mitsubishi Heavy Ind Ltd | 冷凍装置 |
DE102008016664A1 (de) * | 2008-04-01 | 2009-10-29 | Efficient Energy Gmbh | Vertikal angeordnete Wärmepumpe und Verfahren zum Herstellen der vertikal angeordneten Wärmepumpe |
DE102008016663A1 (de) | 2008-04-01 | 2009-10-08 | Efficient Energy Gmbh | Verflüssiger für eine Wärmepumpe und Wärmepumpe |
KR101212698B1 (ko) | 2010-11-01 | 2013-03-13 | 엘지전자 주식회사 | 히트 펌프식 급탕장치 |
JP5920110B2 (ja) * | 2012-02-02 | 2016-05-18 | 株式会社デンソー | エジェクタ |
JP5941297B2 (ja) * | 2012-02-23 | 2016-06-29 | 川崎重工業株式会社 | 冷凍機 |
DE102012220199A1 (de) | 2012-11-06 | 2014-05-08 | Efficient Energy Gmbh | Verflüssiger, Verfahren zum Verflüssigen und Wärmepumpe |
GB2524421B (en) * | 2012-12-07 | 2017-04-12 | Trane Int Inc | Motor cooling system for chillers |
CN106133461B (zh) * | 2014-03-28 | 2019-04-09 | 开利公司 | 带挤压膜阻尼器的制冷压缩机滚动轴承 |
CN104457027A (zh) * | 2014-12-02 | 2015-03-25 | 苟仲武 | 一种改进的压缩式热泵工作方法及其装置 |
CN106996391A (zh) * | 2016-01-25 | 2017-08-01 | 松下知识产权经营株式会社 | 叶轮、离心压缩机以及制冷循环装置 |
DE102016203407A1 (de) * | 2016-03-02 | 2017-09-07 | Efficient Energy Gmbh | Wärmepumpe mit konvektiver Wellenkühlung |
-
2017
- 2017-08-29 DE DE102017215085.8A patent/DE102017215085A1/de active Pending
-
2018
- 2018-08-21 EP EP18759919.6A patent/EP3676544B1/de active Active
- 2018-08-21 JP JP2020511953A patent/JP6985502B2/ja active Active
- 2018-08-21 WO PCT/EP2018/072548 patent/WO2019042825A2/de unknown
- 2018-08-21 CN CN201880056900.4A patent/CN111094874B/zh active Active
-
2020
- 2020-02-18 US US16/793,260 patent/US11754325B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20200200447A1 (en) | 2020-06-25 |
JP6985502B2 (ja) | 2021-12-22 |
DE102017215085A1 (de) | 2019-02-28 |
EP3676544A2 (de) | 2020-07-08 |
WO2019042825A2 (de) | 2019-03-07 |
JP2020531786A (ja) | 2020-11-05 |
WO2019042825A3 (de) | 2019-04-25 |
US11754325B2 (en) | 2023-09-12 |
CN111094874B (zh) | 2022-04-12 |
CN111094874A (zh) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2341300B1 (de) | Wärmepumpe | |
DE4431887C2 (de) | Wärmepumpenanlage | |
DE102016203414B4 (de) | Wärmepumpe mit einem Fremdgassammelraum, Verfahren zum Betreiben einer Wärmepumpe und Verfahren zum Herstellen einer Wärmepumpe | |
EP3423762B1 (de) | Wärmepumpe mit konvektiver wellenkühlung | |
DE102012220199A1 (de) | Verflüssiger, Verfahren zum Verflüssigen und Wärmepumpe | |
DE102014107294B4 (de) | Zentrifuge | |
WO2014000830A1 (de) | Vorrichtung zum erzeugen elektrischer energie mittels eines orc-kreislaufs | |
EP3676544B1 (de) | Wärmepumpe mit einer kühlvorrichtung zum kühlen eines leitraums und eines saugmunds | |
DE102019220259A1 (de) | Drehwärmetauscher und dazugehöriges system | |
EP3423763A1 (de) | Wärmepumpe mit einer motorkühlung | |
WO2017148930A1 (de) | Elektromotor, wärmepumpe mit dem elektromotor, verfahren zum herstellen des elektromotors und verfahren zum betreiben des elektromotors | |
EP3423766B1 (de) | Wärmepumpe mit einer gasfalle, verfahren zum betreiben einer wärmepumpe mit einer gasfalle und verfahren zum herstellen einer wärmepumpe mit einer gasfalle | |
DE102017217730B4 (de) | Kondensierer mit einer füllung und wärmepumpe | |
DE102015209848A1 (de) | Wärmepumpe mit verschränkter Verdampfer/Kondensator-Anordnung und Verdampferboden | |
DE102016213295A1 (de) | Wärmepumpe mit einer Füllstands-regulierenden Drossel und Verfahren zum Herstellen einer Wärmepumpe | |
AT237085B (de) | Elektrische Maschine mit einer Vorrichtung zum Kühlen | |
EP2343489A1 (de) | Wärmepumpe | |
DE1258879B (de) | Kuehlvorrichtung fuer geschlossene Elektromotoren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200218 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20221202 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018012192 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1569723 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230519 |
|
P02 | Opt-out of the competence of the unified patent court (upc) changed |
Effective date: 20230526 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230925 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230824 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230924 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231030 Year of fee payment: 6 Ref country code: CH Payment date: 20231020 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018012192 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502018012192 Country of ref document: DE Owner name: VERTIV SRL, IT Free format text: FORMER OWNER: EFFICIENT ENERGY GMBH, 85622 FELDKIRCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20240215 AND 20240221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 |
|
PLAA | Information modified related to event that no opposition was filed |
Free format text: ORIGINAL CODE: 0009299DELT |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230821 |
|
R26N | No opposition filed (corrected) |
Effective date: 20240227 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: VERTIV S.R.L. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230524 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: PD Owner name: VERTIV S.R.L.; IT Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: VERTIV S.R.L. Effective date: 20240517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240827 Year of fee payment: 7 Ref country code: DE Payment date: 20240828 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240827 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240927 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1569723 Country of ref document: AT Kind code of ref document: T Effective date: 20230821 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240826 Year of fee payment: 7 |