EP3673018B1 - Film-forming dispersion and sizing dispersion - Google Patents
Film-forming dispersion and sizing dispersion Download PDFInfo
- Publication number
- EP3673018B1 EP3673018B1 EP18762469.7A EP18762469A EP3673018B1 EP 3673018 B1 EP3673018 B1 EP 3673018B1 EP 18762469 A EP18762469 A EP 18762469A EP 3673018 B1 EP3673018 B1 EP 3673018B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- film
- weight
- fibres
- forming dispersion
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006185 dispersion Substances 0.000 title claims description 149
- 238000004513 sizing Methods 0.000 title description 39
- 229920002647 polyamide Polymers 0.000 claims description 91
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 90
- 239000004952 Polyamide Substances 0.000 claims description 89
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 53
- 239000011347 resin Substances 0.000 claims description 41
- 229920005989 resin Polymers 0.000 claims description 41
- 239000007787 solid Substances 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 239000003795 chemical substances by application Substances 0.000 claims description 29
- 230000003472 neutralizing effect Effects 0.000 claims description 29
- 229920000642 polymer Polymers 0.000 claims description 29
- 229910052799 carbon Inorganic materials 0.000 claims description 28
- 239000002253 acid Substances 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- 239000000835 fiber Substances 0.000 claims description 18
- 150000001412 amines Chemical class 0.000 claims description 15
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 claims description 10
- 238000006386 neutralization reaction Methods 0.000 claims description 10
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 239000002736 nonionic surfactant Substances 0.000 claims description 9
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims description 8
- 238000003918 potentiometric titration Methods 0.000 claims description 8
- 238000002411 thermogravimetry Methods 0.000 claims description 8
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 8
- 230000004580 weight loss Effects 0.000 claims description 8
- 229920005992 thermoplastic resin Polymers 0.000 claims description 7
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 4
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 4
- 239000012153 distilled water Substances 0.000 claims description 4
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical class OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001361 adipic acid Substances 0.000 claims description 3
- 235000011037 adipic acid Nutrition 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 229910001853 inorganic hydroxide Inorganic materials 0.000 claims description 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 3
- SDGNNLQZAPXALR-UHFFFAOYSA-N 3-sulfophthalic acid Chemical class OC(=O)C1=CC=CC(S(O)(=O)=O)=C1C(O)=O SDGNNLQZAPXALR-UHFFFAOYSA-N 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- NUBZKXFFIDEZKG-UHFFFAOYSA-K trisodium;5-sulfonatobenzene-1,3-dicarboxylate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=CC(C([O-])=O)=CC(S([O-])(=O)=O)=C1 NUBZKXFFIDEZKG-UHFFFAOYSA-K 0.000 claims description 2
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 36
- 239000000463 material Substances 0.000 description 14
- 229940086542 triethylamine Drugs 0.000 description 12
- 150000004756 silanes Chemical class 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002131 composite material Substances 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 9
- 229910000077 silane Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- -1 polypropylene Polymers 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 7
- 229920003235 aromatic polyamide Polymers 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 6
- 229920001169 thermoplastic Polymers 0.000 description 6
- 229920002302 Nylon 6,6 Polymers 0.000 description 5
- 239000000159 acid neutralizing agent Substances 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000004760 aramid Substances 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- 239000004815 dispersion polymer Substances 0.000 description 4
- 238000005189 flocculation Methods 0.000 description 4
- 230000016615 flocculation Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229920006122 polyamide resin Polymers 0.000 description 4
- 229920006264 polyurethane film Polymers 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004697 Polyetherimide Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 3
- 235000019438 castor oil Nutrition 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920001601 polyetherimide Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- 241001618883 Euphorbia uralensis Species 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920000577 Nylon 6/66 Polymers 0.000 description 2
- 229920006659 PA12 Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000016507 interphase Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- KJOMYNHMBRNCNY-UHFFFAOYSA-N pentane-1,1-diamine Chemical compound CCCCC(N)N KJOMYNHMBRNCNY-UHFFFAOYSA-N 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000007415 particle size distribution analysis Methods 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/48—Polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1656—Antifouling paints; Underwater paints characterised by the film-forming substance
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/092—Polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
- C08K5/19—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/41—Compounds containing sulfur bound to oxygen
- C08K5/42—Sulfonic acids; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/08—Ingredients agglomerated by treatment with a binding agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/019—Specific properties of additives the composition being defined by the absence of a certain additive
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/54—Aqueous solutions or dispersions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
Definitions
- the present invention relates to a film-forming dispersion and a sizing dispersion comprising a functionalized polyamide and water, preferably to be applied on carbon fibres.
- Thermoplastic composites are essentially the combination of a thermoplastic resin matrix (e.g. polyamide (PA), polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), polyphenylsulphide (PPS), polyether ether ketone (PEEK), polyether imide (PEI), etc.) and reinforcing fibres (e.g. glass, carbon, aramid fibres, etc.). Reinforcing fibres, which can be short, long or continuous, allow the use of thermoplastic composites in structural applications, where significant loads are involved.
- the fibre-resin matrix interphase is where the loads are transferred from the resin matrix to the fibres.
- Fibres are typically coated with a film-forming composition or a sizing, generally applied to the fibre's surface once they are drawn out of a bushing.
- Sizing or film forming on one hand improves fibre processing, allowing their handling; on the other hand it improves the interfacial strength, which has a strong influence on the mechanical properties of the final composite.
- Sizing or film-forming compositions typically comprise several components with different functions: film formers (polymer-based water emulsions/dispersions of different chemical nature which allow film formation during fibre processing), coupling agents for sizing compositions (mainly silanes which influence bonding between resin matrix and reinforcing fibres), lubricants, antistatic agents, pH adjusters, crosslinkers, etc.
- thermoplastic composites a significant portion of the market is represented by composites based on a polyamide resin matrix, such as PA6, PA66, PA12; which are particularly suited in applications where high temperature and high hydrolysis resistances are required.
- a polyamide resin matrix such as PA6, PA66, PA12
- PU polyurethane
- Polyurethane film formers allow relatively good fibre processing and provide compatibility between polyamide resin matrix and the reinforcing fibres. However, they are not very resistant to high temperatures.
- the fibres are typically heated, the fibres may be stored, before the liquid resin is applied during compounding.
- the melting point is significantly high, for example around 268°C for nylon 66, or around 285°C for PPS.
- the formed film or sizing needs to be able to sufficiently resist high temperatures. Decomposition of the formed film or sizing at these elevated temperatures may lead to defects in the formed film or sizing, defects in the fibre-resin matrix interphase and hence may deteriorate the mechanical properties of the composite.
- US 2006/177490 A1 provides a method to produce antimicrobial thermoplastic polymer blends by blending chitosan acid salts with polymers having amino-reactive functional groups.
- WO 2015/200591 A1 discloses a composition comprising a urethane; where hydroxyl or amine linkages on the urethane are functionalized with molecules that contain fluorine atoms, phosphorus atoms, sulfur atoms, unsaturated carboxylic acids, derivatives of unsaturated carboxylic acids, or combinations thereof.
- WO 2005/019315 A1 relates to a process for making antimicrobial articles comprising contacting a chitosan solution with a polymer surface that contains amino-reactive functional groups.
- EP 0 587 114 A2 discloses an emulsion composition which comprises an aqueous emulsion (A) obtained by emulsion polymerization of 100 parts by weight of an ethylenically unsaturated monomer in the presence of 1 to 15 parts by weight of a carboxyl group-modified polyvinyl alcohol such as itaconic acid-modified polyvinyl alcohol as the dispersant and a polyamide resin (B) such as polyamide epichlorohydrin.
- A aqueous emulsion
- B polyamide resin
- the present invention solves one or more of the problems cited above. Preferred embodiments of the present invention solve one or more of the other problems cited above. More in particular, the present invention allows for improved high temperature resistance. (Preferred) embodiments of one aspect are also (preferred) embodiments of another aspect.
- the invention relates to a film-forming dispersion comprising a functionalized polyamide and water, wherein said functionalized polyamide is a carboxylic compound functionalized polyamide and/or a sulfonated compound functionalized polyamide; and in that said functionalized polyamide is at least partially reacted with one or more neutralizing agents in the presence of water.
- the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008.
- At least 31 weight%, preferably at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- the film-forming dispersion comprises a neutralizing agent, preferably wherein the neutralizing agent is a base, more preferably wherein the neutralizing agent is selected from the group comprising: amines, preferably a secondary, tertiary, or quaternary amine, for example diethylethanolamine, or trimethylamine, diethanolamine; and/or an inorganic hydroxide, for example sodium hydroxide or potassium hydroxide.
- a neutralizing agent preferably wherein the neutralizing agent is a base, more preferably wherein the neutralizing agent is selected from the group comprising: amines, preferably a secondary, tertiary, or quaternary amine, for example diethylethanolamine, or trimethylamine, diethanolamine; and/or an inorganic hydroxide, for example sodium hydroxide or potassium hydroxide.
- the neutralizing agent is present in a molar amount so that the neutralization ratio compared to the amount of acid functionalities of the functionalised polyamide is in the range from 75% to 1000%, preferably from 90% to 750%, preferably from 100% to 750%, more preferably from 100% to 400%, even more preferably from 100% to 300%, and most preferably from 100% to 200%.
- the functionalized polymer is functionalized with one or more linear dicarboxylic acids, preferably selected from the group comprising: adipic acid, sebacic acid, and isophthalic acid.
- the sulfonated compound comprises at least two carboxyl groups and at least one sulfonate group, preferably also comprises an aromatic moiety, more preferably an dicarboxbenzensulfonic acid salt, even more preferably 3,5-dicarboxbenzensulfonic acid salt, most preferably sodium 3,5-dicarboxbenzensulfonic acid salt.
- the functionalized polyamide has an acid value of at least 10 to at most 100 (mg KOH)/g, determined by a potentiometric titration method according to ISO 2114-2000.
- the mean particle size of the dispersed particles in the dispersion is at least 5 nm to at most 1000 nm, determined by laser scattering in distilled water.
- the film forming dispersion is a dispersion of particles in a liquid phase.
- the film-forming dispersion further comprises at least 1 to at most 20% by weight of a non-ionic surfactant, more preferably of at least 3 to at most 15% by weight, even more preferably of at least 4 to at most 12% by weight and most preferably of at least 5 to at most 10% by weight, compared to the weight of the functionalized polyamide.
- the film-forming dispersion is essentially free from catalyst and/or essentially free from solvent (other than water).
- the weight loss of said functionalized polyamide is at most 15%, preferably at most 10%, more preferably at most 8%, determined by thermogravimetric analysis at 350°C in air atmosphere in a closed oven, starting from 15 mg functionalized polyamide, heated from 50°C to 400°C over a period of 70 min.
- the invention relates to a sizing dispersion comprising:
- the invention relates to a composition
- a composition comprising fibres, preferably carbon fibres, treated with:
- the invention relates to a method for forming a fibre reinforced resin article, comprising the steps of:
- the invention relates to a fibre reinforced article comprising fibres, preferably carbon fibres, treated with the film-forming dispersion according to an embodiment of the invention; or, -the sizing dispersion according to an embodiment of the invention; and a resin.
- the invention relates to use of the film-forming dispersion as described above as a film-forming agent on fibres, preferably carbon fibres.
- the invention relates to film-forming dispersion comprising a functionalized polyamide and water, wherein said functionalized polyamide is a carboxylic compound functionalized polyamide and/or a sulfonated compound functionalized polyamide; and in that said functionalized polyamide is at least partially reacted with one or more neutralizing agents in the presence of water.
- at least 31 weight%, preferably at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- the invention relates to a film-forming dispersion comprising a functionalized polyamide and water, wherein said functionalized polyamide is a carboxylic compound functionalized polyamide and/or a sulfonated compound functionalized polyamide and wherein said functionalized polyamide is at least partially reacted with one or more neutralizing agents in the presence of water, wherein the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008.
- the term "dispersion” refers to a system in which discrete particles of one material are dispersed in a continuous phase of another material.
- the continuous phase is a liquid, more preferably the continuous phase comprises water, even more preferably the continuous phase comprises at least 75 weight% water, yet more preferably at least 90 weight% water and most preferably at least 95 weight% water.
- the dispersion is a system wherein discrete particles are suspended in a continuous aqueous phase.
- the particle size of the solid particles in the film-forming dispersion is at least 1 nanometre, more preferably at least 5 nanometre, even more preferably at least 10 nanometre, yet more preferably at least 25 nanometre and most preferably at least 50 nanometre.
- the particle size of the solid particles in the film-forming dispersion is at most 10.000 nanometre, more preferably at most 1000 nanometre, even more preferably at most 750 nanometre, yet more preferably at most 500 nanometre and most preferably at most 250 nanometre.
- the particle size of the solid particles in the film-forming dispersion is at least 1 to at most 10.000 nanometre, more preferably at least 5 to at most 1000 nanometre, even more preferably at least 10 to at most 750 nanometre, yet more preferably at least 25 to at most 500 nanometre and most preferably at least 50 to at most 250 nanometre.
- the invention also relates to a method for preparing a film-forming dispersion comprising a functionalized polyamide and water, comprising the steps of:
- thermogravimetric analysis TGA thermogravimetric analysis
- the film-forming dispersion comprises a neutralizing agent, capable to at least partially neutralize the acid groups of the functionalized polyamide.
- the neutralizing agent is a base, more preferably the neutralizing agent is selected from the group comprising: amines, preferably a secondary, tertiary, or quaternary amine, for example diethylethanolamine (DEEA), trimethylamine (TMA), tri-ethylamine (TEA), diethanolamine (DEA) or mixtures thereof, more preferably diethylethanolamine (DEEA) or tri-ethylamine (TEA) and most preferred the neutralizing agent is tri-ethylamine (TEA); and/or an inorganic hydroxide, for example sodium hydroxide or potassium hydroxide.
- DEEA diethylethanolamine
- TMA trimethylamine
- TEA tri-ethylamine
- DEA diethanolamine
- the neutralizing agent is tri-ethylamine
- an inorganic hydroxide for example sodium
- Such a neutralization agent allows obtaining a stable dispersion of said functionalized polyamide in water.
- the listed neutralizing agents can also provide very high thermal resistance of the functionalized polyamide water dispersion.
- such a neutralization agent may provide at the same time a very good stability of optional silanes in the dispersion.
- the neutralizing agent is present in a molar amount so that the neutralization ratio compared to the amount of acid functionalities of the functionalised polyamide is in the range from at least 75% to at most 1000%, preferably from at least 100% to at most 750%, more preferably from at least 100% to at most 300%, even more preferably from at least 102% to at most 500%, even more preferably from at least 102% to at most 200%, yet even more preferably from at least 104% to at most 400%, yet even more preferably from at least 104% to at most 200%, and most preferably from at least 105% to at most 200%, like at least 105% to at most 120%.
- neutralization ratio refers to the amount of base functionalities (expressed in moles) used in the neutralisation reaction over the amount of acid functionalities (expressed in moles) present in the functionalized polyamide.
- the neutralizing ratio is determined by amine value determination, according to TM 5253.
- Such neutralization ratios result in a good polyamide water dispersion stability by itself and when used in combination with coupling agents, preferably silanes.
- the neutralizing agent is diethylethanolamine (DEEA), preferably at a neutralizing ratio from 75 to 200%, more preferably at least 100% to at most 200%, even more preferably at least 100% to at most 175%, yet more preferably at least 102% to at most 150%, still yet more preferably at least 104% to at most 125% and most preferably around 105%.
- DEEA diethylethanolamine
- the neutralizing agent is tri-ethylamine (TEA), preferably at a neutralizing ratio from at least 100 to at most 600%, more preferably at least 100 to at most 500%, even more preferably at least 100% to at most 400%, for example from at least 200 to at most 600%, for example at least 250 to at most 500%, for example at least 300% to at most 450% and for example around 400%.
- TAA tri-ethylamine
- the neutralizing agent is:
- the acid-functionalized polyamide is reacted in the absence of any catalyst with the neutralizing agent.
- the film-forming dispersion comprises at most 20% by weight, preferably at most 15% by weight, more preferably at most 10% by weight, even more preferably at most 8% by weight, and most preferably at most 6% by weight of said functionalized polyamide, with % by weight expressed compared to the total weight of the film-forming dispersion.
- the film-forming dispersion comprises at least 1% by weight, preferably at least 2% by weight, more preferably at least 3% by weight, even more preferably at least 4% by weight, and most preferably at least 5% by weight of said functionalized polyamide, with % by weight expressed compared to the total weight of the film-forming dispersion.
- the film-forming dispersion comprises from at least 1% to at most 20% by weight, preferably from at least 2% to at most 15% by weight, more preferably from at least 3% to at most 10% by weight, even more preferably from at least 4% to at most 8% by weight, and most preferably from at least 5% to at most 6% by weight of said functionalized polyamide, with % by weight expressed compared to the total weight of the film-forming dispersion.
- Film-forming dispersions with such amounts of functionalized polyamide have the right amount of film former on fibres during application which results in good processing and/or mechanical properties.
- the functionalized polyamide has a number average molecular weight (Mn) from at least 2 000 Da to at most 15 000 Da, more preferably from at least 2 000 Da to at most 8 000 Da, and most preferably from at least 2 000 Da to at most 5 000 Da.
- Mn number average molecular weight
- the number average molecular weight (Mn) is determined by gel permeation chromatography by dissolving the functionalized polyamide in an appropriate solvent e.g. hexafluoroisopropanol and preferably compared to monodisperse polystyrene standards. Such ranges provide good processability and/or good thermal resistance properties.
- At least one terminus of said functionalized polyamide is a carboxylic acid group, more preferably both termini of the functionalized polyamide are carboxylic acid groups.
- the functionalized polyamide is a functionalized aliphatic polyamide. In some alternative embodiments, the functionalized polyamide is a functionalized aromatic polyamide. Especially, functionalized aromatic polyamide may provide a high hydrolysis resistance.
- the functionalized polyamide is a carboxylic compound functionalized polyamide and/or a sulfonated compound functionalized polyamide.
- the functionalized polymer is functionalized with linear dicarboxylic acids, preferably selected from the group comprising: adipic acid, sebacic acid, and isophthalic acid.
- linear dicarboxylic acids preferably selected from the group comprising: adipic acid, sebacic acid, and isophthalic acid.
- the polyamide (preferably comprising difunctional amines) is reacted with dicarboxylic acids in the presence of water.
- the final acid functionality is determined by the excess of acid equivalents used.
- the excess of carboxylic groups provides good water affinity, preferably after neutralization.
- the functionalized polymer is functionalized with non-linear carboxylic acids, such as isophthalic acid.
- non-linear carboxylic acids such as isophthalic acid.
- the functionalised polymer comprises at least one polyamide section, said polyamide section being functionalized by an acid functionality, preferably an dicarboxylic acid functionality, covalently bound, preferably via an amide bond, to an atom of the repeating unit of said at least one polyamide section.
- the term polyamide section may refer to a section of the polymeric backbone wherein the different monomers are bound to each other by amide bonds.
- the sulfonated compound comprises at least two carboxyl groups and at least one sulfonate group.
- the sulfonated compound also comprises an aromatic moiety, more preferably a dicarboxybenzensulfonic acid salt, even more preferably 3,5-dicarboxybenzensulfonic acid salt, most preferably sodium 3,5-dicarboxybenzensulfonic acid salt.
- polyamide The presence of sulfonated groups in polyamide provides the right polarity/water affinity to the polymer, which results in a stable water dispersion with the right characteristics for fibre film forming and/or sizing applications.
- the functionalized polyamide (before it has been in contact with the neutralization agent) has an acid value of at least 10 (mg KOH)/g, preferably at least 15 (mg KOH)/g, more preferably at least 20 (mg KOH)/g, even more preferably at least 30 (mg KOH)/g, and most preferably at least 45 (mg KOH)/g, determined by a potentiometric titration method according to ISO 2114-2000.
- the functionalized polyamide (before it has been in contact with the neutralization agent) has an acid value of at most 100 (mg KOH)/g, preferably at most 75 (mg KOH)/g, more preferably at most 60 (mg KOH)/g, even more preferably at most 55 (mg KOH)/g, and most preferably at most 50 (mg KOH)/g determined by a potentiometric titration method according to ISO 2114-2000.
- the functionalized polyamide (before it has been in contact with the neutralization agent) has an acid value of at least 10 to at most 100 (mg KOH)/g, preferably at least 15 (mg KOH)/g to at most 75 (mg KOH)/g, more preferably at least 20 (mg KOH)/g to at most 60 (mg KOH)/g, even more preferably at least 30 (mg KOH)/g to at most 55 (mg KOH)/g, and most preferably at least 45 (mg KOH)/g to at most 50 (mg KOH)/g, determined by a potentiometric titration method according to ISO 2114-2000.
- Such acid values have a positive contribution on the long-term stability of polyamide water dispersion, preferably in combination with coupling agents, preferably silanes, wherein the stability of the dispersion being determined according to SB 108 test method.
- Such acid values also may affect the molecular weight of functionalized polyamide.
- the mean particle size of the dispersed particles in the dispersion is at least 5 nm to at most 1000 nm, preferably at least 8 nm to at most 800 nm, more preferably at least 10 nm to at most 500 nm, even more preferably at least 20 nm to at most 300 nm, and most preferably at least 30 nm to at most 200 nm determined by laser scattering in distilled water.
- particle sizes positively affect the long-term dispersion stability, preferably determined according to TM 5151 test method.
- the film-forming dispersion further comprises a non-ionic surfactant. In some preferred embodiments, the film-forming dispersion further comprises at least 1% by weight to at most 20% by weight of a non-ionic surfactant, more preferably of at least 3% by weight to at most 15% by weight, most preferably of at least 5% by weight to at most 10% by weight, compared to the weight of the functionalized polyamide.
- said non-ionic surfactant is selected from the group comprising: an ethoxylated castor oil, an alkoxylated ethylene diamine or a block copolymer of comprising ethylene oxide and propylene oxide, preferably a tri-block ethylene oxide and propylene oxide copolymer.
- the film-forming dispersion further comprises at least 1% by weight to at most 20% by weight of a non-ionic surfactant, more preferably of at least 3% by weight to at most 15% by weight, most preferably of at least 5% by weight to at most 10% by weight, compared to the weight of the functionalized polyamide, wherein the non-ionic surfactant is selected from the group comprising: a polyester comprising castor oil, ethoxylated castor oil, an alkoxylated ethylene diamine, and/or a block copolymer comprising ethylene oxide and propylene oxide.
- a non-ionic surfactant is selected from the group comprising: a polyester comprising castor oil, ethoxylated castor oil, an alkoxylated ethylene diamine, and/or a block copolymer comprising ethylene oxide and propylene oxide.
- non-ionic surfactants further contribute to the thermal resistance properties of the dispersion.
- Such non-ionic surfactants may provide a manageable viscosity of the dispersion.
- the viscosity of the dispersion at 25°C is at least 1.10 -4 Pa.s to at most 5.0 Pa.s, preferably at least 1.10 -3 Pa.s to at most 3.5 Pa.s, more preferably at least 1.10 -2 Pa.s to at most 2.5 Pa.s.
- the film-forming dispersion is essentially free from catalyst and/or essentially free from solvent (other than water). In some embodiments, the film-forming dispersion is essentially free from zinc catalysts and/or tin catalysts, such as dibutyltindilaurate. In some embodiments, the film-forming dispersion is essentially free from acetone and/or 1-methoxy-2-propanol.
- the weight loss of said functionalized polyamide is at most 15%, preferably at most 10%, more preferably at most 8%, determined by thermogravimetric analysis at 350°C in air atmosphere in a closed oven, starting from 10 to 15 mg functionalized polyamide, preferably starting from 15 mg functionalized polyamide, heated from 50°C to 400°C over a period of 70 min.
- the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008. It has been observed that such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion.
- At least 31 weight%, preferably at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- a high percentage of the solids in the dispersion is functionalised polymer; large amounts of other solids, such as surfactants and/or un-functionalised polymer, do not contribute to the high temperature resistance, or even worse may decrease the high temperature resistance.
- the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008.
- such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion.; and at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- the solid content of the film-forming dispersion is at least 10% to at most 60%; the solid content determined according to ISO 3251:2008. It has been observed that such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion; and at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008. It has been observed that such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion; and at least 35 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008. It has been observed that such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion; and at least 50 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- the film-forming dispersion may be used directly as sizing dispersion on/for carbon fibres.
- the invention relates to a sizing dispersion, especially for glass fibres, comprising:
- Silanes typically act as coupling agents: they provide chemical bonding between fibre reinforcement, especially glass fibre reinforcement, and resin matrix. Said silanes preferably also provide the required chemical compatibility with the thermoplastic resin matrix.
- the invention relates to a composition
- a composition comprising fibres, preferably carbon fibres, treated with:
- said resin is a thermoplastic resin, preferably a thermoplastic resin selected from the group comprising: acrylic resin, acrylonitrile butadiene styrene resin (ABS), polyamide resin (nylon or aramid), polylactic acid resin (PLA), polybenzimidazole resin, polycarbonate resin, polyether sulfone resin, polyetherether ketone resin, polyetherimide resin, polyethylene resin, polyphenylene oxide resin, polyphenylene sulphide resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, and polytetrafluoroethylene resin (PTFE or Teflon).
- ABS acrylonitrile butadiene styrene resin
- PDA polylactic acid resin
- polybenzimidazole resin polycarbonate resin
- polyether sulfone resin polyetherether ketone resin
- polyetherimide resin polyethylene resin
- polyphenylene oxide resin polyphenylene sulphide resin
- polypropylene resin
- the resin is a polyamide, preferably a nylon or an aramid, more preferably selected from the group comprising PA6, PA66, PA12, PA6/66 or PA66/610, and most preferably selected from the group comprising PA6, PA66, PA6/66.
- the fibres are selected from the group comprising glass fibres, carbon fibres, aramid fibres and natural fibres, preferably the fibres are glass fibres and/or carbon fibres.
- the fibres are carbon fibres, including graphite fibres.
- the carbon fibres are pitch type carbon fibres, rayon type carbon fibres, or PAN (polyacrylonitrile) type carbon fibres.
- the carbon fibres may be twisted carbon fibres, untwisted carbon fibres and/or never twisted carbon fibres.
- the fibres may be bundles of filaments, preferably each bundle may comprise at least 10 to at most 100.000 filaments, more preferably at least 100 to at most 80.000 filaments, even more preferably at least 500 to at most 60.000 filaments and most preferably at least 1.000 to at most 50.000 filaments.
- the fibres may be arranged in a sheet or fabric, this may be woven fabric, a non-woven fabric or a unidirectional sheet.
- the sizing of film-forming of said fibres may be done before or after the fibres have been arranged in a fabric or sheet.
- the invention relates to a method for forming a fibre, preferably carbon fibre, reinforced resin article, comprising the steps of:
- the treating of said fibres with the film-forming dispersion or sizing dispersion comprises bringing the fibres in contact with said dispersion followed by drying said fibres, preferably by evaporating the water from the dispersion.
- the dispersion is brought in contact with the fibres by means of a roll applicator, preferably a kiss-roll applicator.
- applying resin to the treated fibres involves compounding said treated fibres with the resin, preferably in a melt-blender or in an extruder, more preferably in an extruder.
- the invention relates to a fibre reinforced article comprising fibres, preferably carbon fibres, treated with the film-forming dispersion according to an embodiment of the invention; or, -the sizing dispersion according to an embodiment of the invention; and a resin.
- the articles are used in applications which require high temperature and high hydrolysis resistance.
- the article is selected from the group comprising:
- the present invention relates to the use of the film-forming dispersion as described above as a film-forming agent on fibres, preferably carbon fibres, also referred to herein as a film former.
- the film-former agent is solvent-free.
- the film-former agent is used for sizing compositions in fibre reinforced thermoplastic composites, most particularly for polyamide-based composites. The film-former overcomes most of the limitations in current sizing formulations based on polyurethane film formers, such as a limited high temperature and hydrolysis resistance.
- the film-former dispersion can be used as the only film former in the final sizing composition or it can be used as the main film former in combination with other co-film formers of different chemical nature such as: polyurethane, epoxy, epoxy-ester, and/or epoxy-urethane.
- the thickness of the film is at least 10 nm to at most 500 nm, more preferably at least 30 nm to at most 400 nm, more preferably at least 50 nm to at most 300 nm, even more preferably at least 70 nm to at most 200 nm, and most preferably at least 90 nm to at most 150 nm, like around 100 nm.
- test methods were used in the examples. These test methods are also preferred test methods to obtain the relevant parameters.
- the acid value expressed as mg KOH/g sample, was obtained via a potentiometric titration method, according to ISO 2114-2000.
- the content of amine groups was obtained via a potentiometric titration method as described below
- a prescribed amount of material is weighed in a beaker; the material is dissolved in a solvent (e.g. methanol): when the material is completely dissolved, a titrating solution (e.g. HBr in acetic acid 0.05N) is added and potentiometric titration is performed by using an automated dosing apparatus (e.g. Titrino PLUS 818 from Metrohm).
- a solvent e.g. methanol
- a titrating solution e.g. HBr in acetic acid 0.05N
- potentiometric titration is performed by using an automated dosing apparatus (e.g. Titrino PLUS 818 from Metrohm).
- a prescribed amount of dried material is weighed in a crucible; the material is then subjected to a heating ramp in a closed oven till the desired temperature value under nitrogen or air flow.
- the graph generated by the machine is then elaborated in order to have the weight loss at a specific temperature.
- Table 1A illustrates the weight loss at various temperatures for various dried film-former dispersions.
- Comparative examples 1-6 refer to dried film-forming dispersions (without any silane). Comparative examples 1-6 refer to standard polyurethane film-formers, while the invention refers to film-forming dispersion according to an embodiment of the invention, as shown in Table 1B.
- This method was used to determine the average diameter of the particles in a dispersion, expressed in nanometres via a laser scattering method, as described below.
- a drop of a dispersion is added to bi-distilled water and mixed until the solution is homogeneous.
- the solution is then poured in a cuvette and placed in the particle size analyser (e.g. N5 instrument from Beckman-Coulter).
- the mean particle size is expressed in nanometres and the particle size distribution profile is expressed as "unimodal” or "bimodal”.
- This method is used to determine the stability over time of a polymer dispersion in water, as described below.
- the dispersion is filtered and poured in a closed vessel. Every month the material is checked visually and its appearance is evaluated to assess if there is any separation, flocculation, sedimentation.
- Main dispersion properties are also measured and their values are compared with the original ones at the time of production (e.g. particle size).
- This method was used to determine the stability/compatibility between a polymer dispersion in water and silane compounds (typically used in fibre sizing compositions) of different chemical nature for at least 72 hours (3 days).
- the ratio between polymer dispersion in water and silane compound (e.g. amino-silane or epoxy-silane) is calculated and fixed. Solid content of the final formulation is fixed before preparing the mixture in a plastic beaker.
- silane compound e.g. amino-silane or epoxy-silane
- the amino-silane is added to the water under stirring conditions for at least 10 minutes (hydrolysis of the silane).
- the calculated polymer water dispersion amount is then added to the hydrolysed amino-silane under stirring conditions for at least 10 minutes.
- the mix is poured in a plastic closed vessel and left there; its stability over time is evaluated by visual observation (check if there is any separation, flocculation, sedimentation).
- Main dispersion properties are also measured and their values are compared with the original ones at the time of production (e.g. particle size).
- the epoxy-silane is added to the polymer water dispersion under stirring conditions for at least 45 minutes. Water is then added to the epoxy-silane/polymer water dispersion mix under stirring conditions for at least 10 minutes.
- the mix is poured in a plastic closed vessel and left there; its stability over time is evaluated by visual observation (check if there is any separation, flocculation, sedimentation).
- Main dispersion properties are also measured and their values are compared with the original ones at the time of production (e.g. particle size).
- Table 2 illustrates various properties for various film forming dispersions.
- the TGA dispersion test was performed using similar conditions as for Table 1.
- PA-COOH stands for acid-functionalized polyamide; in order to obtain said acid-functionalized polyamide (PA-COOH) 1550 grams of isophorone diamine, 343 grams of 2 methyl, 1-5 pentane diamine and 857 grams of demineralised water were charged in a 6 litres glass reactor equipped with a stirrer, nitrogen spurge, a temperature control unit and a distillation glassware. The reaction mixture was stirred until all the ingredients were dissolved. At that point, 2823 grams of sebacic acid were added over a period of 60 minutes, keeping the exothermic reaction below 80°C. After this addition, the mixture was heated slowly to 220°C, while the water was distilled off. After reaching the reaction temperature of 220°C, samples for acid value and amine value measurements were taken every hour. After reaching the targeted acid value, the mixture was vacuum distilled for 30 minutes, then the vacuum was set off and the resin discharged.
- PA-COOH acid-functionalized polyamide
- the molecular weight ranges from 1800 Da to 15000 Da.
- PA-COOH-SO3Na stands for sulfonated-functionalized polyamide; in order to obtain said sulfonated-functionalized polyamide (PA-COOH-SO3Na) 1550 grams of isophorone diamine, 343 grams of 2 methyl, 1-5 pentane diamine and 857 grams of demineralized water were charged in a 6 liters glass reactor equipped with a stirrer, nitrogen spurge, a temperature control unit and a distillation glassware. The reaction mixture was stirred until all the ingredients were dissolved. At that point, 2786 grams of sebacic acid and 47 grams of 3,5 dicarboxybenzensulfonic acid salt were added over a period of 60 minutes, keeping the exothermic reaction below 80°C.
- the mixture was heated slowly to 220°C, while the water was distilled off. After reaching the reaction temperature of 220°C, samples for acid value and amine value measurements were taken every hour. After reaching the targeted acid value, the mixture was vacuum distilled for 30 minutes, then the vacuum was set off and the resin discharged.
- the molecular weight ranges from 1800 Da to 15000 Da.
- NOVAMID ® 2430A and NOVAMID ® X21-F07 are polyamides that are not functionalized with carboxylic acid groups or sulfonic groups. These polyamides are commercially available from DSM.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Laminated Bodies (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Description
- The present invention relates to a film-forming dispersion and a sizing dispersion comprising a functionalized polyamide and water, preferably to be applied on carbon fibres.
- Thermoplastic composites are essentially the combination of a thermoplastic resin matrix (e.g. polyamide (PA), polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), polyphenylsulphide (PPS), polyether ether ketone (PEEK), polyether imide (PEI), etc.) and reinforcing fibres (e.g. glass, carbon, aramid fibres, etc.). Reinforcing fibres, which can be short, long or continuous, allow the use of thermoplastic composites in structural applications, where significant loads are involved. The fibre-resin matrix interphase is where the loads are transferred from the resin matrix to the fibres.
- Fibres are typically coated with a film-forming composition or a sizing, generally applied to the fibre's surface once they are drawn out of a bushing. Sizing or film forming on one hand improves fibre processing, allowing their handling; on the other hand it improves the interfacial strength, which has a strong influence on the mechanical properties of the final composite. Sizing or film-forming compositions typically comprise several components with different functions: film formers (polymer-based water emulsions/dispersions of different chemical nature which allow film formation during fibre processing), coupling agents for sizing compositions (mainly silanes which influence bonding between resin matrix and reinforcing fibres), lubricants, antistatic agents, pH adjusters, crosslinkers, etc.
- Within thermoplastic composites a significant portion of the market is represented by composites based on a polyamide resin matrix, such as PA6, PA66, PA12; which are particularly suited in applications where high temperature and high hydrolysis resistances are required. Currently most of the film-forming compositions and sizing compositions used in polyamide-based fibre reinforced thermoplastic composites are based on polyurethane (PU) film formers of various nature (aliphatic, blocked, crosslinked polyurethane, etc.). Polyurethane film formers allow relatively good fibre processing and provide compatibility between polyamide resin matrix and the reinforcing fibres. However, they are not very resistant to high temperatures. After film-forming or sizing is applied on the fibres, the fibres are typically heated, the fibres may be stored, before the liquid resin is applied during compounding. For some resins, the melting point is significantly high, for example around 268°C for nylon 66, or around 285°C for PPS. Hence, the formed film or sizing needs to be able to sufficiently resist high temperatures. Decomposition of the formed film or sizing at these elevated temperatures may lead to defects in the formed film or sizing, defects in the fibre-resin matrix interphase and hence may deteriorate the mechanical properties of the composite.
- In order to obtain a (preferably organic solvent-free) polymer water dispersion suitable for fibre sizing or film-forming applications, some key characteristics are preferably present:
- the polymer shows good water compatibility/affinity and good polarity to form a dispersion in water which is stable over time without giving any sedimentation, aggregation, flocculation, etc.;
- the polymer water dispersion has a good stability when mixed with silanes (e.g. aminosilanes, epoxy silanes) in sizing formulations, preferably for at least 72 hours without giving any precipitation, sedimentation etc.; and/or,
- the colour of the polymer is white or slightly yellow, in order to not influence colour of final polymer water dispersion; dark colour dispersions when applied on fibres (e.g. glass fibres) affect their final appearance (dark glass fibres are typically not accepted in the market).
- When using an amine-functionalized polyamide in the absence of a solvent it appears to be impossible to obtain a stable polyamide water dispersion due to polymer/water compatibility issues. When functionalizing a polyamide with maleic anhydride the colour of the modified polymer (and therefore of the final water dispersion) is dark. This is thus not acceptable for use in glass fibre film forming or sizing applications, especially when transparent resins or light coloured resins are being used.
-
US 2006/177490 A1 provides a method to produce antimicrobial thermoplastic polymer blends by blending chitosan acid salts with polymers having amino-reactive functional groups. -
WO 2015/200591 A1 discloses a composition comprising a urethane; where hydroxyl or amine linkages on the urethane are functionalized with molecules that contain fluorine atoms, phosphorus atoms, sulfur atoms, unsaturated carboxylic acids, derivatives of unsaturated carboxylic acids, or combinations thereof. -
WO 2005/019315 A1 relates to a process for making antimicrobial articles comprising contacting a chitosan solution with a polymer surface that contains amino-reactive functional groups. -
EP 0 587 114 A2 discloses an emulsion composition which comprises an aqueous emulsion (A) obtained by emulsion polymerization of 100 parts by weight of an ethylenically unsaturated monomer in the presence of 1 to 15 parts by weight of a carboxyl group-modified polyvinyl alcohol such as itaconic acid-modified polyvinyl alcohol as the dispersant and a polyamide resin (B) such as polyamide epichlorohydrin. - The present invention solves one or more of the problems cited above. Preferred embodiments of the present invention solve one or more of the other problems cited above. More in particular, the present invention allows for improved high temperature resistance. (Preferred) embodiments of one aspect are also (preferred) embodiments of another aspect.
- In an aspect, the invention relates to a film-forming dispersion comprising a functionalized polyamide and water, wherein said functionalized polyamide is a carboxylic compound functionalized polyamide and/or a sulfonated compound functionalized polyamide; and in that said functionalized polyamide is at least partially reacted with one or more neutralizing agents in the presence of water.
- In some preferred embodiments, the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008.
- In some preferred embodiments, at least 31 weight%, preferably at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- In some preferred embodiments, the film-forming dispersion comprises a neutralizing agent, preferably wherein the neutralizing agent is a base, more preferably wherein the neutralizing agent is selected from the group comprising: amines, preferably a secondary, tertiary, or quaternary amine, for example diethylethanolamine, or trimethylamine, diethanolamine; and/or an inorganic hydroxide, for example sodium hydroxide or potassium hydroxide.
- In some preferred embodiments, the neutralizing agent is present in a molar amount so that the neutralization ratio compared to the amount of acid functionalities of the functionalised polyamide is in the range from 75% to 1000%, preferably from 90% to 750%, preferably from 100% to 750%, more preferably from 100% to 400%, even more preferably from 100% to 300%, and most preferably from 100% to 200%.
- In some preferred embodiments, the functionalized polymer is functionalized with one or more linear dicarboxylic acids, preferably selected from the group comprising: adipic acid, sebacic acid, and isophthalic acid.
- In some preferred embodiments, the sulfonated compound comprises at least two carboxyl groups and at least one sulfonate group, preferably also comprises an aromatic moiety, more preferably an dicarboxbenzensulfonic acid salt, even more preferably 3,5-dicarboxbenzensulfonic acid salt, most preferably sodium 3,5-dicarboxbenzensulfonic acid salt.
- In some preferred embodiments, the functionalized polyamide has an acid value of at least 10 to at most 100 (mg KOH)/g, determined by a potentiometric titration method according to ISO 2114-2000.
- In some preferred embodiments, the mean particle size of the dispersed particles in the dispersion is at least 5 nm to at most 1000 nm, determined by laser scattering in distilled water.
- In some embodiments, the film forming dispersion is a dispersion of particles in a liquid phase.
- In some preferred embodiments, the film-forming dispersion further comprises at least 1 to at most 20% by weight of a non-ionic surfactant, more preferably of at least 3 to at most 15% by weight, even more preferably of at least 4 to at most 12% by weight and most preferably of at least 5 to at most 10% by weight, compared to the weight of the functionalized polyamide.
- In some preferred embodiments, the film-forming dispersion is essentially free from catalyst and/or essentially free from solvent (other than water).
- In some preferred embodiments, the weight loss of said functionalized polyamide is at most 15%, preferably at most 10%, more preferably at most 8%, determined by thermogravimetric analysis at 350°C in air atmosphere in a closed oven, starting from 15 mg functionalized polyamide, heated from 50°C to 400°C over a period of 70 min.
- In an aspect, the invention relates to a sizing dispersion comprising:
- the film-forming dispersion according to an embodiment of the invention; and,
- a silane, preferably selected from the group comprising: an aminosilane, an epoxysilane, or mixtures thereof; preferably an aminosilane.
- In an aspect, the invention relates to a composition comprising fibres, preferably carbon fibres, treated with:
- the film-forming dispersion according to an embodiment of the invention; or,
- the sizing dispersion according to an embodiment of the invention;
- In an aspect, the invention relates to a method for forming a fibre reinforced resin article, comprising the steps of:
- providing fibres, preferably carbon fibres;
- treating said fibres with the film-forming dispersion according to an embodiment of the invention or the sizing dispersion according to an embodiment of the invention, thereby obtaining treated fibres; and,
- applying resin to said treated fibres.
- In an aspect, the invention relates to a fibre reinforced article comprising fibres, preferably carbon fibres, treated with the film-forming dispersion according to an embodiment of the invention; or, -the sizing dispersion according to an embodiment of the invention; and a resin.
- In an aspect, the invention relates to use of the film-forming dispersion as described above as a film-forming agent on fibres, preferably carbon fibres.
- Before the present unit and method of the invention is described, it is to be understood that this invention is not limited to particular units and methods or combinations described, since such units and methods and combinations may, of course, vary. It is also to be understood that the terminology used herein is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
- As used herein, the singular forms "a", "an", and "the" include both singular and plural referents unless the context clearly dictates otherwise. The terms "comprising", "comprises" and "comprised of" as used herein are synonymous with "including", "includes" or "containing", "contains", and are inclusive or open-ended and do not exclude additional, non-recited members, elements or method steps. It will be appreciated that the terms "comprising", "comprises" and "comprised of" as used herein comprise the terms "consisting of", "consists" and "consists of".
- The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints. Whereas the terms "one or more" or "at least one", such as one or more or at least one member(s) of a group of members, is clear per se, by means of further exemplification, the term encompasses inter alia a reference to any one of said members, or to any two or more of said members, such as, e.g., any ≥3, ≥4, ≥5, ≥6 or ≥7 etc. of said members, and up to all said members.
- All references cited in the present specification are hereby incorporated by reference in their entirety. In particular, the teachings of all references herein specifically referred to are incorporated by reference.
- Unless otherwise defined, all terms used in disclosing the invention, including technical and scientific terms, have the meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. By means of further guidance, term definitions are included to better appreciate the teaching of the present invention.
- In the following passages, different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous. Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those in the art. For example, in the appended claims, any of the claimed embodiments can be used in any combination.
- Parenthesized and/or emboldened reference numerals affixed to respective elements merely exemplify the elements by way of example, with which it is not intended to limit the respective elements. It is to be understood that other embodiments may be utilised and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
- In an aspect, the invention relates to film-forming dispersion comprising a functionalized polyamide and water, wherein said functionalized polyamide is a carboxylic compound functionalized polyamide and/or a sulfonated compound functionalized polyamide; and in that said functionalized polyamide is at least partially reacted with one or more neutralizing agents in the presence of water. Preferably, at least 31 weight%, preferably at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- In some embodiments, the invention relates to a film-forming dispersion comprising a functionalized polyamide and water, wherein said functionalized polyamide is a carboxylic compound functionalized polyamide and/or a sulfonated compound functionalized polyamide and wherein said functionalized polyamide is at least partially reacted with one or more neutralizing agents in the presence of water, wherein the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008.
- The term "dispersion" refers to a system in which discrete particles of one material are dispersed in a continuous phase of another material. Preferably, the continuous phase is a liquid, more preferably the continuous phase comprises water, even more preferably the continuous phase comprises at least 75 weight% water, yet more preferably at least 90 weight% water and most preferably at least 95 weight% water. In the present invention, the dispersion is a system wherein discrete particles are suspended in a continuous aqueous phase.
- In some embodiments, the particle size of the solid particles in the film-forming dispersion is at least 1 nanometre, more preferably at least 5 nanometre, even more preferably at least 10 nanometre, yet more preferably at least 25 nanometre and most preferably at least 50 nanometre.
- In some embodiments, the particle size of the solid particles in the film-forming dispersion is at most 10.000 nanometre, more preferably at most 1000 nanometre, even more preferably at most 750 nanometre, yet more preferably at most 500 nanometre and most preferably at most 250 nanometre.
- In some embodiments, the particle size of the solid particles in the film-forming dispersion is at least 1 to at most 10.000 nanometre, more preferably at least 5 to at most 1000 nanometre, even more preferably at least 10 to at most 750 nanometre, yet more preferably at least 25 to at most 500 nanometre and most preferably at least 50 to at most 250 nanometre.
- The invention also relates to a method for preparing a film-forming dispersion comprising a functionalized polyamide and water, comprising the steps of:
- functionalizing a polyamide with a carboxylic compound and/or a sulfonated compound; and,
- reacting the functionalized polyamide at least partially with one or more neutralizing agents in the presence of water. The step of at least partially reacting said functionalized polyamide with neutralizing agent is further also referred to as the neutralisation step or neutralisation reaction.
- The inventors have found that such a film-forming dispersion, and preferred embodiments thereof, show a significant improvement in thermal resistance compared with current commercial polyurethane film formers. This is shown in the results of thermogravimetric analysis TGA, where a weight loss of less than 15% is obtained with polyamide film former at 350°C in air environment compared with a weight loss of 25-30% obtained with commercial polyurethane film former in the same testing conditions, as exemplified in the Example Section.
- In some preferred embodiments, the film-forming dispersion comprises a neutralizing agent, capable to at least partially neutralize the acid groups of the functionalized polyamide. Preferably the neutralizing agent is a base, more preferably the neutralizing agent is selected from the group comprising: amines, preferably a secondary, tertiary, or quaternary amine, for example diethylethanolamine (DEEA), trimethylamine (TMA), tri-ethylamine (TEA), diethanolamine (DEA) or mixtures thereof, more preferably diethylethanolamine (DEEA) or tri-ethylamine (TEA) and most preferred the neutralizing agent is tri-ethylamine (TEA); and/or an inorganic hydroxide, for example sodium hydroxide or potassium hydroxide. The inventors have found that such a neutralization agent allows obtaining a stable dispersion of said functionalized polyamide in water. The listed neutralizing agents can also provide very high thermal resistance of the functionalized polyamide water dispersion. Furthermore, such a neutralization agent may provide at the same time a very good stability of optional silanes in the dispersion.
- In some preferred embodiments, the neutralizing agent is present in a molar amount so that the neutralization ratio compared to the amount of acid functionalities of the functionalised polyamide is in the range from at least 75% to at most 1000%, preferably from at least 100% to at most 750%, more preferably from at least 100% to at most 300%, even more preferably from at least 102% to at most 500%, even more preferably from at least 102% to at most 200%, yet even more preferably from at least 104% to at most 400%, yet even more preferably from at least 104% to at most 200%, and most preferably from at least 105% to at most 200%, like at least 105% to at most 120%. The term "neutralization ratio" as used herein refers to the amount of base functionalities (expressed in moles) used in the neutralisation reaction over the amount of acid functionalities (expressed in moles) present in the functionalized polyamide. Preferably the neutralizing ratio is determined by amine value determination, according to TM 5253. Such neutralization ratios result in a good polyamide water dispersion stability by itself and when used in combination with coupling agents, preferably silanes.
- In some embodiments, the neutralizing agent is diethylethanolamine (DEEA), preferably at a neutralizing ratio from 75 to 200%, more preferably at least 100% to at most 200%, even more preferably at least 100% to at most 175%, yet more preferably at least 102% to at most 150%, still yet more preferably at least 104% to at most 125% and most preferably around 105%.
- In some embodiments, the neutralizing agent is tri-ethylamine (TEA), preferably at a neutralizing ratio from at least 100 to at most 600%, more preferably at least 100 to at most 500%, even more preferably at least 100% to at most 400%, for example from at least 200 to at most 600%, for example at least 250 to at most 500%, for example at least 300% to at most 450% and for example around 400%.
- In some embodiments, the neutralizing agent is:
- diethylethanolamine (DEEA), preferably at a neutralizing ratio from 75 to 200%, more preferably at least 100% to at most 200%, even more preferably at least 100% to at most 175%, yet more preferably at least 102% to at most 150%, still yet more preferably at least 104% to at most 125% and most preferably around 105%; and/or,
- tri-ethylamine (TEA), preferably at a neutralizing ratio from at least100 to at most 600%, more preferably at least 100 to at most 500%, even more preferably at least 100% to at most 400% and most preferably at least 200% to at most 400%, for example from 200 to at most 600%, for example from at least 250 to at most 500%, for example from at least 300% to at most 450% and for example around 400%.
- In some embodiments, the acid-functionalized polyamide is reacted in the absence of any catalyst with the neutralizing agent.
- In some embodiments, the film-forming dispersion comprises at most 20% by weight, preferably at most 15% by weight, more preferably at most 10% by weight, even more preferably at most 8% by weight, and most preferably at most 6% by weight of said functionalized polyamide, with % by weight expressed compared to the total weight of the film-forming dispersion.
- In some embodiments, the film-forming dispersion comprises at least 1% by weight, preferably at least 2% by weight, more preferably at least 3% by weight, even more preferably at least 4% by weight, and most preferably at least 5% by weight of said functionalized polyamide, with % by weight expressed compared to the total weight of the film-forming dispersion.
- In some preferred embodiments, the film-forming dispersion comprises from at least 1% to at most 20% by weight, preferably from at least 2% to at most 15% by weight, more preferably from at least 3% to at most 10% by weight, even more preferably from at least 4% to at most 8% by weight, and most preferably from at least 5% to at most 6% by weight of said functionalized polyamide, with % by weight expressed compared to the total weight of the film-forming dispersion. Film-forming dispersions with such amounts of functionalized polyamide have the right amount of film former on fibres during application which results in good processing and/or mechanical properties.
- In some embodiments, the functionalized polyamide has a number average molecular weight (Mn) from at least 2 000 Da to at most 15 000 Da, more preferably from at least 2 000 Da to at most 8 000 Da, and most preferably from at least 2 000 Da to at most 5 000 Da. Preferably, the number average molecular weight (Mn) is determined by gel permeation chromatography by dissolving the functionalized polyamide in an appropriate solvent e.g. hexafluoroisopropanol and preferably compared to monodisperse polystyrene standards. Such ranges provide good processability and/or good thermal resistance properties.
- In some embodiments at least one terminus of said functionalized polyamide is a carboxylic acid group, more preferably both termini of the functionalized polyamide are carboxylic acid groups. This gives the functionalized polyamide after neutralisation surface-active properties, which are necessary to provide a film on the surface of the fibres during sizing. The surface-active properties also provide a good compatibility with water and/or provide a stable dispersion of the polyamide.
- In some preferred embodiments, the functionalized polyamide is a functionalized aliphatic polyamide. In some alternative embodiments, the functionalized polyamide is a functionalized aromatic polyamide. Especially, functionalized aromatic polyamide may provide a high hydrolysis resistance.
- The functionalized polyamide is a carboxylic compound functionalized polyamide and/or a sulfonated compound functionalized polyamide. In some preferred embodiments, the functionalized polymer is functionalized with linear dicarboxylic acids, preferably selected from the group comprising: adipic acid, sebacic acid, and isophthalic acid. The inventors have found that when the carboxylic compound is such a linear dicarboxylic acid, the colour of the functionalized polyamide and/or the colour that is left on the fibres after film forming and/or sizing is white to slightly light yellow.
- In some embodiments, the polyamide (preferably comprising difunctional amines) is reacted with dicarboxylic acids in the presence of water. The final acid functionality is determined by the excess of acid equivalents used. The excess of carboxylic groups provides good water affinity, preferably after neutralization.
- In some embodiments, the functionalized polymer is functionalized with non-linear carboxylic acids, such as isophthalic acid. However this may have an impact on the colour of the film-forming dispersion and/or on the colour that is left on the fibres after sizing.
- In some embodiments, the functionalised polymer comprises at least one polyamide section, said polyamide section being functionalized by an acid functionality, preferably an dicarboxylic acid functionality, covalently bound, preferably via an amide bond, to an atom of the repeating unit of said at least one polyamide section. The term polyamide section may refer to a section of the polymeric backbone wherein the different monomers are bound to each other by amide bonds.
- In some preferred embodiments, the sulfonated compound comprises at least two carboxyl groups and at least one sulfonate group. Preferably, the sulfonated compound also comprises an aromatic moiety, more preferably a dicarboxybenzensulfonic acid salt, even more preferably 3,5-dicarboxybenzensulfonic acid salt, most preferably sodium 3,5-dicarboxybenzensulfonic acid salt.
- The presence of sulfonated groups in polyamide provides the right polarity/water affinity to the polymer, which results in a stable water dispersion with the right characteristics for fibre film forming and/or sizing applications.
- In some embodiments, the functionalized polyamide (before it has been in contact with the neutralization agent) has an acid value of at least 10 (mg KOH)/g, preferably at least 15 (mg KOH)/g, more preferably at least 20 (mg KOH)/g, even more preferably at least 30 (mg KOH)/g, and most preferably at least 45 (mg KOH)/g, determined by a potentiometric titration method according to ISO 2114-2000.
- In some embodiments, the functionalized polyamide (before it has been in contact with the neutralization agent) has an acid value of at most 100 (mg KOH)/g, preferably at most 75 (mg KOH)/g, more preferably at most 60 (mg KOH)/g, even more preferably at most 55 (mg KOH)/g, and most preferably at most 50 (mg KOH)/g determined by a potentiometric titration method according to ISO 2114-2000.
- In some preferred embodiments, the functionalized polyamide (before it has been in contact with the neutralization agent) has an acid value of at least 10 to at most 100 (mg KOH)/g, preferably at least 15 (mg KOH)/g to at most 75 (mg KOH)/g, more preferably at least 20 (mg KOH)/g to at most 60 (mg KOH)/g, even more preferably at least 30 (mg KOH)/g to at most 55 (mg KOH)/g, and most preferably at least 45 (mg KOH)/g to at most 50 (mg KOH)/g, determined by a potentiometric titration method according to ISO 2114-2000. Such acid values have a positive contribution on the long-term stability of polyamide water dispersion, preferably in combination with coupling agents, preferably silanes, wherein the stability of the dispersion being determined according to SB 108 test method. Such acid values also may affect the molecular weight of functionalized polyamide.
- In some preferred embodiments, the mean particle size of the dispersed particles in the dispersion is at least 5 nm to at most 1000 nm, preferably at least 8 nm to at most 800 nm, more preferably at least 10 nm to at most 500 nm, even more preferably at least 20 nm to at most 300 nm, and most preferably at least 30 nm to at most 200 nm determined by laser scattering in distilled water. Such particle sizes positively affect the long-term dispersion stability, preferably determined according to TM 5151 test method.
- In some preferred embodiments, the film-forming dispersion further comprises a non-ionic surfactant. In some preferred embodiments, the film-forming dispersion further comprises at least 1% by weight to at most 20% by weight of a non-ionic surfactant, more preferably of at least 3% by weight to at most 15% by weight, most preferably of at least 5% by weight to at most 10% by weight, compared to the weight of the functionalized polyamide.
- In some preferred embodiments, said non-ionic surfactant is selected from the group comprising: an ethoxylated castor oil, an alkoxylated ethylene diamine or a block copolymer of comprising ethylene oxide and propylene oxide, preferably a tri-block ethylene oxide and propylene oxide copolymer.
- In some preferred embodiments, the film-forming dispersion further comprises at least 1% by weight to at most 20% by weight of a non-ionic surfactant, more preferably of at least 3% by weight to at most 15% by weight, most preferably of at least 5% by weight to at most 10% by weight, compared to the weight of the functionalized polyamide, wherein the non-ionic surfactant is selected from the group comprising: a polyester comprising castor oil, ethoxylated castor oil, an alkoxylated ethylene diamine, and/or a block copolymer comprising ethylene oxide and propylene oxide.
- The inventors have found that such non-ionic surfactants further contribute to the thermal resistance properties of the dispersion. Such non-ionic surfactants may provide a manageable viscosity of the dispersion. Preferably, the viscosity of the dispersion at 25°C is at least 1.10-4 Pa.s to at most 5.0 Pa.s, preferably at least 1.10-3 Pa.s to at most 3.5 Pa.s, more preferably at least 1.10-2 Pa.s to at most 2.5 Pa.s.
- In some preferred embodiments, the film-forming dispersion is essentially free from catalyst and/or essentially free from solvent (other than water). In some embodiments, the film-forming dispersion is essentially free from zinc catalysts and/or tin catalysts, such as dibutyltindilaurate. In some embodiments, the film-forming dispersion is essentially free from acetone and/or 1-methoxy-2-propanol.
- The phrase "the composition is essentially free of a compound" means that the composition does not comprise said compound other than as unavoidable impurities that found their way into the composition as impurities in the starting materials or as residues after a purification step to specifically remove said compound.
- In some preferred embodiments, the weight loss of said functionalized polyamide is at most 15%, preferably at most 10%, more preferably at most 8%, determined by thermogravimetric analysis at 350°C in air atmosphere in a closed oven, starting from 10 to 15 mg functionalized polyamide, preferably starting from 15 mg functionalized polyamide, heated from 50°C to 400°C over a period of 70 min.
- In some embodiments, the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008. It has been observed that such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion.
- In some preferred embodiments, at least 31 weight%, preferably at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion. Especially for the high temperature resistance of the film formed by the film forming dispersion, it is beneficial that a high percentage of the solids in the dispersion is functionalised polymer; large amounts of other solids, such as surfactants and/or un-functionalised polymer, do not contribute to the high temperature resistance, or even worse may decrease the high temperature resistance.
- In some embodiments, the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008. It has been observed that such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion.; and at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- In some embodiments, the solid content of the film-forming dispersion is at least 10% to at most 60%; the solid content determined according to ISO 3251:2008. It has been observed that such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion; and at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight% yet even more preferably at least 75 weight% and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- In some embodiments, the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008. It has been observed that such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion; and at least 35 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- In some embodiments, the solid content of the film-forming dispersion is at least 10% to at most 60%, preferably at least 15% to at most 50%, more preferably at least 20% to at most 45%, even more preferably at least 25% to at most 40%, and most preferably at least 30% to at most 35%; the solid content determined according to ISO 3251:2008. It has been observed that such a solid content provides an increased thermal stability, especially at higher temperature such as 350°C, of the film forming composition and/or the sizing dispersion; and at least 50 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- In some embodiments, the film-forming dispersion may be used directly as sizing dispersion on/for carbon fibres.
- In an aspect, the invention relates to a sizing dispersion, especially for glass fibres, comprising:
- the film-forming dispersion according to an embodiment of the invention; and,
- a silane, preferably selected from the group comprising: an aminosilane such as γ-aminopropyltriethoxysilane, an epoxysilane such as [3-(2,3-epoxypropoxy)propyl] trimethoxysilane, or mixtures thereof; preferably an aminosilane.
- Silanes typically act as coupling agents: they provide chemical bonding between fibre reinforcement, especially glass fibre reinforcement, and resin matrix. Said silanes preferably also provide the required chemical compatibility with the thermoplastic resin matrix.
- In an aspect, the invention relates to a composition comprising fibres, preferably carbon fibres, treated with:
- the film-forming dispersion according to an embodiment of the invention; or,
- the sizing dispersion according to an embodiment of the invention;
- In some preferred embodiment, said resin is a thermoplastic resin, preferably a thermoplastic resin selected from the group comprising: acrylic resin, acrylonitrile butadiene styrene resin (ABS), polyamide resin (nylon or aramid), polylactic acid resin (PLA), polybenzimidazole resin, polycarbonate resin, polyether sulfone resin, polyetherether ketone resin, polyetherimide resin, polyethylene resin, polyphenylene oxide resin, polyphenylene sulphide resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, and polytetrafluoroethylene resin (PTFE or Teflon). In a more preferred embodiment, the resin is a polyamide, preferably a nylon or an aramid, more preferably selected from the group comprising PA6, PA66, PA12, PA6/66 or PA66/610, and most preferably selected from the group comprising PA6, PA66, PA6/66.
- In some preferred embodiments, the fibres are selected from the group comprising glass fibres, carbon fibres, aramid fibres and natural fibres, preferably the fibres are glass fibres and/or carbon fibres.
- In some embodiments, the fibres are carbon fibres, including graphite fibres. In some embodiments, the carbon fibres are pitch type carbon fibres, rayon type carbon fibres, or PAN (polyacrylonitrile) type carbon fibres.
- In some embodiments, the carbon fibres may be twisted carbon fibres, untwisted carbon fibres and/or never twisted carbon fibres.
- In some embodiments, the fibres, especially the carbon fibres, may be bundles of filaments, preferably each bundle may comprise at least 10 to at most 100.000 filaments, more preferably at least 100 to at most 80.000 filaments, even more preferably at least 500 to at most 60.000 filaments and most preferably at least 1.000 to at most 50.000 filaments.
- In some embodiments, the fibres may be arranged in a sheet or fabric, this may be woven fabric, a non-woven fabric or a unidirectional sheet. The sizing of film-forming of said fibres may be done before or after the fibres have been arranged in a fabric or sheet.
- In an aspect, the invention relates to a method for forming a fibre, preferably carbon fibre, reinforced resin article, comprising the steps of:
- providing fibres, preferably carbon fibres,;
- treating said fibres with the film-forming dispersion according to an embodiment of the invention or the sizing dispersion according to an embodiment of the invention, thereby obtaining treated fibres; and,
- applying resin to said treated fibres.
- In some embodiments, the treating of said fibres with the film-forming dispersion or sizing dispersion comprises bringing the fibres in contact with said dispersion followed by drying said fibres, preferably by evaporating the water from the dispersion. Preferably the dispersion is brought in contact with the fibres by means of a roll applicator, preferably a kiss-roll applicator.
- In some embodiments, applying resin to the treated fibres involves compounding said treated fibres with the resin, preferably in a melt-blender or in an extruder, more preferably in an extruder.
- In an aspect, the invention relates to a fibre reinforced article comprising fibres, preferably carbon fibres, treated with the film-forming dispersion according to an embodiment of the invention; or, -the sizing dispersion according to an embodiment of the invention; and a resin.
- In some embodiments, the articles are used in applications which require high temperature and high hydrolysis resistance. In some embodiments, the article is selected from the group comprising:
- under the hood parts in automotive applications;
- semi-structural and structural automotive applications;
- electric and electronic applications (e.g. connectors);
- appliances;
- sports goods; and/or,
- gears and bearings.
- In an aspect, the present invention relates to the use of the film-forming dispersion as described above as a film-forming agent on fibres, preferably carbon fibres, also referred to herein as a film former. In some preferred embodiments, the film-former agent is solvent-free. In some embodiments, the film-former agent is used for sizing compositions in fibre reinforced thermoplastic composites, most particularly for polyamide-based composites. The film-former overcomes most of the limitations in current sizing formulations based on polyurethane film formers, such as a limited high temperature and hydrolysis resistance.
- The film-former dispersion can be used as the only film former in the final sizing composition or it can be used as the main film former in combination with other co-film formers of different chemical nature such as: polyurethane, epoxy, epoxy-ester, and/or epoxy-urethane.
- Preferably, the thickness of the film is at least 10 nm to at most 500 nm, more preferably at least 30 nm to at most 400 nm, more preferably at least 50 nm to at most 300 nm, even more preferably at least 70 nm to at most 200 nm, and most preferably at least 90 nm to at most 150 nm, like around 100 nm.
- To better illustrate the properties, advantages and features of the present invention some preferred embodiments are disclosed as examples. Accordingly, the present invention discloses many embodiments and adjustments as appreciated by those skilled in the art and the scope of the present invention is by no means limited to one the illustrative examples presented below.
- The following test methods were used in the examples. These test methods are also preferred test methods to obtain the relevant parameters.
- The acid value, expressed as mg KOH/g sample, was obtained via a potentiometric titration method, according to ISO 2114-2000.
- The content of amine groups, expressed as meq NH2/g or mg KOH/g sample, was obtained via a potentiometric titration method as described below
- A prescribed amount of material is weighed in a beaker; the material is dissolved in a solvent (e.g. methanol): when the material is completely dissolved, a titrating solution (e.g. HBr in acetic acid 0.05N) is added and potentiometric titration is performed by using an automated dosing apparatus (e.g. Titrino PLUS 818 from Metrohm).
- Amine value (meq NH2 / g) = (V * N HBr) / m
- Amine value (meq KOH / g) = Amine value (meq NH2/g) * PE KOH
- V = Volume (ml) of HBr needed to reach the equivalent point
- N HBr = Normality of HBr solution
- m = amount of material (g)
- PE KOH = KOH equivalent weight (56,1 g/eq)
- This method was used to determine the weight loss of a material in a specific temperature range, in nitrogen or air environment, as described below:
Typical instruments used for these measurements are METTLER TG50, METTLER M3, METTLER TC10A/TC15 TA CONTROLLER from METTLER TOLEDO. - A prescribed amount of dried material is weighed in a crucible; the material is then subjected to a heating ramp in a closed oven till the desired temperature value under nitrogen or air flow. The graph generated by the machine is then elaborated in order to have the weight loss at a specific temperature.
- In this specific example, 10-15 mg dried film-forming dispersion was used, that was heated up from 50°C to 400°C over a period of 70 min in an air atmosphere.
Table 1A Temp °C Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Comparative example 5 Comparative example 6 Invention 50 100,00 100,00 100,00 100,00 100,00 100,00 100,00 75 98,85 99,45 98,69 99,46 100,00 99,59 99,57 100 98,77 99,29 98,66 99,32 100,00 99,50 99,46 125 98,68 99,13 98,66 99,17 100,00 99,47 99,35 150 98,60 98,96 98,64 99,02 100,00 99,45 99,31 175 98,53 98,81 98,62 98,88 99,57 99,44 99,12 200 98,43 98,63 98,57 98,72 97,65 99,42 98,62 225 98,03 98,28 98,38 98,31 93,76 99,37 98,38 250 97,15 97,44 97,96 97,55 90,24 99,17 97,79 275 95,93 95,99 96,94 96,27 87,70 98,39 97,19 300 92,75 92,60 93,36 92,89 85,02 96,25 96,69 325 83,31 84,13 82,69 84,34 80,77 91,57 95,17 350 66,56 69,76 64,58 68,35 73,38 83,66 92,83 375 44,47 48,70 40,97 43,19 61,71 68,75 88,72 - Table 1A illustrates the weight loss at various temperatures for various dried film-former dispersions.
- Comparative examples 1-6 refer to dried film-forming dispersions (without any silane). Comparative examples 1-6 refer to standard polyurethane film-formers, while the invention refers to film-forming dispersion according to an embodiment of the invention, as shown in Table 1B.
Table 1B PA-COOH (AV=46.3) 285.9 Tri-ethylamine (TEA) 48.2 Maxemul 9107 (surfactant) 14.3 Demi-water 651.6 TOTAL 1000.0 - The comparative examples are commercially available: Comp. ex.1: Neoxil 9851 (Aliancys); Comp. ex. 2 = Neoxil 9851 HF (Aliancys); Comp. ex. 3 = Neoxil 8200 A (Aliancys); Comp. ex. 4 = Neoxil 8200 A HF (Aliancys); Comp. ex. 5 = Baybond PU 405 (Covestro); Comp. ex. 6 = Baybond PU 407 (Covestro).
- This method was used to determine the average diameter of the particles in a dispersion, expressed in nanometres via a laser scattering method, as described below.
- A drop of a dispersion is added to bi-distilled water and mixed until the solution is homogeneous. The solution is then poured in a cuvette and placed in the particle size analyser (e.g. N5 instrument from Beckman-Coulter).
- The mean particle size is expressed in nanometres and the particle size distribution profile is expressed as "unimodal" or "bimodal".
- This method is used to determine the stability over time of a polymer dispersion in water, as described below.
- The dispersion is filtered and poured in a closed vessel. Every month the material is checked visually and its appearance is evaluated to assess if there is any separation, flocculation, sedimentation.
- Main dispersion properties are also measured and their values are compared with the original ones at the time of production (e.g. particle size).
- This method was used to evaluate the appearance of a polymer dispersion in water as such; results are expressed in a qualitative way, as described below.
- Colour:
- Assesses the colour of the material, e.g. white, yellowish, etc.
- Clarity:
- Assesses the clarity of the material, e.g. clear, hazy, turbid etc.
- Contamination:
- Assesses if there is any contamination and in case there is it gives a description
- Homogeneity:
- Assesses the homogeneity of the material
- Status:
- Assesses the status of the material e.g. liquid, crystalline, powder, etc.
- This method was used to determine the stability/compatibility between a polymer dispersion in water and silane compounds (typically used in fibre sizing compositions) of different chemical nature for at least 72 hours (3 days).
- The ratio between polymer dispersion in water and silane compound (e.g. amino-silane or epoxy-silane) is calculated and fixed. Solid content of the final formulation is fixed before preparing the mixture in a plastic beaker.
- The amino-silane is added to the water under stirring conditions for at least 10 minutes (hydrolysis of the silane). The calculated polymer water dispersion amount is then added to the hydrolysed amino-silane under stirring conditions for at least 10 minutes.
- The mix is poured in a plastic closed vessel and left there; its stability over time is evaluated by visual observation (check if there is any separation, flocculation, sedimentation).
- Main dispersion properties are also measured and their values are compared with the original ones at the time of production (e.g. particle size).
- The epoxy-silane is added to the polymer water dispersion under stirring conditions for at least 45 minutes. Water is then added to the epoxy-silane/polymer water dispersion mix under stirring conditions for at least 10 minutes.
- The mix is poured in a plastic closed vessel and left there; its stability over time is evaluated by visual observation (check if there is any separation, flocculation, sedimentation).
- Main dispersion properties are also measured and their values are compared with the original ones at the time of production (e.g. particle size).
-
- PA-COOH stands for acid-functionalized polyamide; in order to obtain said acid-functionalized polyamide (PA-COOH) 1550 grams of isophorone diamine, 343 grams of 2 methyl, 1-5 pentane diamine and 857 grams of demineralised water were charged in a 6 litres glass reactor equipped with a stirrer, nitrogen spurge, a temperature control unit and a distillation glassware. The reaction mixture was stirred until all the ingredients were dissolved. At that point, 2823 grams of sebacic acid were added over a period of 60 minutes, keeping the exothermic reaction below 80°C. After this addition, the mixture was heated slowly to 220°C, while the water was distilled off. After reaching the reaction temperature of 220°C, samples for acid value and amine value measurements were taken every hour. After reaching the targeted acid value, the mixture was vacuum distilled for 30 minutes, then the vacuum was set off and the resin discharged.
- For the PA-COOH resins listed in Table 1, the molecular weight ranges from 1800 Da to 15000 Da.
- PA-COOH-SO3Na stands for sulfonated-functionalized polyamide; in order to obtain said sulfonated-functionalized polyamide (PA-COOH-SO3Na) 1550 grams of isophorone diamine, 343 grams of 2 methyl, 1-5 pentane diamine and 857 grams of demineralized water were charged in a 6 liters glass reactor equipped with a stirrer, nitrogen spurge, a temperature control unit and a distillation glassware. The reaction mixture was stirred until all the ingredients were dissolved. At that point, 2786 grams of sebacic acid and 47 grams of 3,5 dicarboxybenzensulfonic acid salt were added over a period of 60 minutes, keeping the exothermic reaction below 80°C. After this addition, the mixture was heated slowly to 220°C, while the water was distilled off. After reaching the reaction temperature of 220°C, samples for acid value and amine value measurements were taken every hour. After reaching the targeted acid value, the mixture was vacuum distilled for 30 minutes, then the vacuum was set off and the resin discharged.
- For the PA-COOH-SO3Na resins listed in Table 2, the molecular weight ranges from 1800 Da to 15000 Da.
- NOVAMID® 2430A and NOVAMID® X21-F07 are polyamides that are not functionalized with carboxylic acid groups or sulfonic groups. These polyamides are commercially available from DSM.
Claims (15)
- Film-forming dispersion comprising a functionalized polyamide and water, wherein said functionalized polyamide is a carboxylic compound functionalized polyamide and/or a sulfonated compound functionalized polyamide and wherein said functionalized polyamide is at least partially reacted with one or more neutralizing agents in the presence of water, wherein at least 35 weight%, more preferably at least 50 weight%, even more preferably at least 45 weight%, yet even more preferably at least 75 weight%, and most preferably at least 90 weight% of the solid content of the film-forming dispersion is functionalised polymer, based on the total weight of solid content of the film-forming dispersion.
- Film-forming dispersion according to claim 1, comprising a neutralizing agent, preferably wherein the neutralizing agent is a base, more preferably wherein the neutralizing agent is selected from the group comprising: amines, preferably a secondary, tertiary, or quaternary amine, for example diethylethanolamine, or trimethylamine, diethanolamine; and/or an inorganic hydroxide, for example sodium hydroxide or potassium hydroxide.
- Film-forming dispersion according to any one of claims 1 or 2, wherein the neutralizing agent is present in a molar amount so that the neutralization ratio compared to the amount of acid functionalities of the functionalised polyamide is in the range from at least 100% to at most 400%, preferably from at least 100% to at most 200%.
- Film-forming dispersion according any one of claims 1 to 3, wherein the functionalized polymer is functionalized with one or more linear dicarboxylic acids, preferably selected from the group comprising: adipic acid, sebacic acid, and isophthalic acid.
- Film-forming dispersion according to any one of claims 1 to 4, wherein the sulfonated compound comprises at least two carboxyl groups and at least one sulfonate group, preferably wherein the sulfonated compound also comprises an aromatic moiety, more preferably an dicarboxybenzensulfonic acid salt, even more preferably 3,5 dicarboxybenzensulfonic acid salt, most preferably sodium 3,5 dicarboxybenzensulfonic acid salt.
- Film-forming dispersion according to any one of claims 1 to 5, wherein the functionalized polyamide has an acid value of at least 10 (mg KOH)/g to at most 100 (mg KOH)/g, determined by potentiometric titration according to ISO 2114-2000.
- Film-forming dispersion according to any one of claims 1 to 6, wherein the mean particle size of the dispersed particles in the dispersion is at least 5 nm to at most 1000 nm, determined by laser scattering in distilled water.
- Film-forming dispersion according to any one of claims 1 to 7, further comprising at least 1% by weight to at most 20% by weight of a non-ionic surfactant, more preferably of at least 3% by weight to at most 15% by weight, most preferably of at least 5% by weight to at most 10% by weight, compared to the weight of the functionalized polyamide.
- Film-forming dispersion according to any one of claims 1 to 8, wherein the film-forming dispersion is essentially free from catalyst and/or essentially free from solvent.
- Film-forming dispersion according to any one of claims 1 to 9, wherein the weight loss of said functionalized polyamide is at most 15%, preferably at most 10%, more preferably at most 8%, determined by thermogravimetric analysis at 350°C in air atmosphere in a closed oven, starting from 15 mg functionalized polyamide, heated from 50°C to 400°C over a period of 70 min.
- Film-forming dispersion according to any one of claims 1 to 10, wherein the film forming dispersion is a dispersion of particles in a liquid phase.
- Composition comprising:- fibres, preferably carbon fibres, treated with:- the film-forming dispersion according to any one of claims 1 to 11; and,- a resin, preferably a thermoplastic resin.
- Method for forming a fibre reinforced resin article, comprising the steps of:- providing fibres, preferably carbon fibres;- treating said fibres with the film-forming dispersion according to any one of claims 1 to 11, thereby obtaining treated fibres; and,- applying the resin to said treated fibres.
- Fibre reinforced article comprising fibres, preferably carbon fibres, treated with the film-forming dispersion according to any one of claims 1 to 11, and a resin.
- Use of the film-forming dispersion according to any one of claims 1 to 11 as a film-forming agent on fibres, preferably carbon fibres.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL18762469T PL3673018T3 (en) | 2017-08-21 | 2018-08-21 | Film-forming dispersion and sizing dispersion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17187074 | 2017-08-21 | ||
PCT/EP2018/072483 WO2019038249A1 (en) | 2017-08-21 | 2018-08-21 | Film-forming dispersion and sizing dispersion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3673018A1 EP3673018A1 (en) | 2020-07-01 |
EP3673018B1 true EP3673018B1 (en) | 2021-12-29 |
Family
ID=59829128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18762469.7A Active EP3673018B1 (en) | 2017-08-21 | 2018-08-21 | Film-forming dispersion and sizing dispersion |
Country Status (8)
Country | Link |
---|---|
US (1) | US11359053B2 (en) |
EP (1) | EP3673018B1 (en) |
JP (1) | JP7209719B2 (en) |
CN (1) | CN111094470A (en) |
HU (1) | HUE057937T2 (en) |
MX (1) | MX2020001987A (en) |
PL (1) | PL3673018T3 (en) |
WO (1) | WO2019038249A1 (en) |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57391B2 (en) * | 1973-06-22 | 1982-01-06 | ||
JP3311086B2 (en) * | 1992-09-07 | 2002-08-05 | 株式会社クラレ | Emulsion composition |
US5387638A (en) * | 1992-09-07 | 1995-02-07 | Kuraray Co., Ltd. | Emulsion composition |
FR2735151B1 (en) | 1995-06-09 | 1997-07-18 | Vetrotex France Sa | SIZING COMPOSITION FOR COMPOSITE YARNS AND COMPOSITE YARNS COATED WITH THIS COMPOSITION |
US8043632B2 (en) | 2003-08-18 | 2011-10-25 | E. I. Du Pont De Nemours And Company | Process for making antimicrobial articles by reacting chitosan with amino-reactive polymer surfaces |
DE102005005493A1 (en) * | 2005-02-04 | 2006-08-10 | Basf Ag | Process for the preparation of an aqueous polymer dispersion |
AR053438A1 (en) * | 2005-02-07 | 2007-05-09 | Du Pont | MIXTURES OF QUITOSANE-BASED THERMOPLASTIC ANTIMICROBIAL POLYMERS |
JP2010090188A (en) | 2008-10-03 | 2010-04-22 | Unitika Ltd | Resin aqueous dispersion and production method of the same |
CN102686674B (en) | 2009-10-30 | 2014-10-08 | 尤尼吉可株式会社 | Aqueous polyamide resin dispersion, method for producing same, and laminate |
EP2824235B1 (en) * | 2012-03-09 | 2018-08-01 | Teijin Limited | Carbon fiber bundle and process for producing same |
JP6106515B2 (en) | 2012-05-09 | 2017-04-05 | 第一工業製薬株式会社 | Glass fiber sizing agent |
FR2992968B1 (en) * | 2012-07-06 | 2014-07-04 | Arkema France | HYDRODISPERSIBLE POLYAMIDE POWDER |
JP5988771B2 (en) | 2012-08-27 | 2016-09-07 | 住友精化株式会社 | Method for producing aqueous polyamide resin dispersion |
JP6333803B2 (en) | 2013-03-06 | 2018-05-30 | 住友精化株式会社 | Fiber treatment agent, carbon fiber treated with the fiber treatment agent, and carbon fiber composite material containing the carbon fiber |
JP5905866B2 (en) | 2013-10-04 | 2016-04-20 | トヨタ自動車株式会社 | Sizing agent for carbon fiber |
FR3020819B1 (en) | 2014-05-12 | 2020-02-14 | Arkema France | PROCESS FOR IMPREGNATION OF NATURAL FIBERS WITH AN AQUEOUS DISPERSION POLYMER AND USE OF SAID FIBERS IN COMPOSITE MATERIALS. |
FR3020776B1 (en) | 2014-05-12 | 2016-05-27 | Dehondt Tech | CONTINUOUS DEVICE FOR IMPREGNATING ONLY ONE STEP NATURAL FIBERS OR RIBBONS, IN PARTICULAR LIN |
FR3020813B1 (en) | 2014-05-12 | 2017-10-13 | Arkema France | USE OF A FINE POLYMERIC AQUEOUS DISPERSION FOR THE IMPREGNATION OF NATURAL FIBERS. |
US10221274B2 (en) | 2014-06-25 | 2019-03-05 | University Of Florida Research Foundation, Incorporated | Polyurethanes, articles comprising the same and methods of manufacture thereof |
CN107223146B (en) | 2014-12-18 | 2020-08-07 | 路博润先进材料公司 | Water-dispersible polyamide structural units |
-
2018
- 2018-08-21 US US16/639,317 patent/US11359053B2/en active Active
- 2018-08-21 MX MX2020001987A patent/MX2020001987A/en unknown
- 2018-08-21 JP JP2020531811A patent/JP7209719B2/en active Active
- 2018-08-21 CN CN201880051954.1A patent/CN111094470A/en active Pending
- 2018-08-21 HU HUE18762469A patent/HUE057937T2/en unknown
- 2018-08-21 PL PL18762469T patent/PL3673018T3/en unknown
- 2018-08-21 WO PCT/EP2018/072483 patent/WO2019038249A1/en active Search and Examination
- 2018-08-21 EP EP18762469.7A patent/EP3673018B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
BR112020003437A2 (en) | 2020-08-25 |
US20210139649A1 (en) | 2021-05-13 |
MX2020001987A (en) | 2020-09-25 |
CN111094470A (en) | 2020-05-01 |
US11359053B2 (en) | 2022-06-14 |
EP3673018A1 (en) | 2020-07-01 |
HUE057937T2 (en) | 2022-06-28 |
JP2020531713A (en) | 2020-11-05 |
JP7209719B2 (en) | 2023-01-20 |
PL3673018T3 (en) | 2022-04-04 |
WO2019038249A1 (en) | 2019-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7333106B2 (en) | Composition for fiber surface treatment and method for treating fiber | |
JP3003705B2 (en) | Size and mat for glass fiber | |
TWI544017B (en) | Carbon fiber bundle for resin reinforcement, and manufacturing method of carbon fiber bundle for resin reinforcement, carbon fiber reinforced thermoplastic resin composition and molding | |
CA2753852C (en) | Compositions useful for non-cellulose fiber sizing, coating or binding compositions, and composites incorporating same | |
NO170981B (en) | THERMOPLASTIC COMPOSITION OF VINYL CHLORIDE RESIN AND GLASS FIBER, PROCEDURE FOR PREPARING PELLET AND USING FOR PRESENT ARTICLES | |
WO1998055415A1 (en) | High solubility size composition for fibers | |
WO2015194457A1 (en) | Reinforced fiber bundle and method for producing same | |
CN109071946A (en) | Polyarylene sulfide resin composition with excellent chemical resistance | |
JP2016074604A (en) | Glass fiber strand and reinforced product containing the same | |
US20140178685A1 (en) | Sizing Composition for Charges Used in Thermoplastic Polymeric Material Reinforcement, Reinforced Polymeric Materials and Method of Manufacture | |
EP3673018B1 (en) | Film-forming dispersion and sizing dispersion | |
EP0257524B1 (en) | Glass fiber reinforced vinyl chloride polymer products and process for their preparation | |
EP0897376A1 (en) | High solubility size composition for fibers | |
WO2000039192A1 (en) | Method of producing branched polyamides | |
JPH04103625A (en) | Glass fiber size | |
Luo et al. | Reinforcement effect of glass fiber modified by tannic acid and polyethyleneimine on polyamide 6 composites with no volatile organic compounds emission | |
BR112020003437B1 (en) | FILM-FORMING DISPERSION, COMPOSITION, METHOD FOR FORMING A FIBER-REINFORCED RESIN ARTICLE, FIBER-REINFORCED ARTICLE AND USE OF SAID FILM-FORMING DISPERSION | |
EP0981661B1 (en) | Nonaqueous sizing for glass and carbon fibers | |
Didier et al. | Preparation of polyimide/silica hybrid material by sol–gel process under basic catalysis: comparison with acid conditions | |
KR20080082915A (en) | Organic polysiloxane, adhesive composition comprising the same, and rubber stiffener treated thereby | |
JP2001226545A (en) | Aqueous dispersion and its use | |
MOOLSIN et al. | Epoxidized natural rubber/silane modified silica nanocomposites prepared in latex stage | |
Neelambaram et al. | Cellulose nanofiber‐incorporated high‐solid siloxane acrylic latex by mini‐emulsion polymerization for hydrophobic coating and wood adhesive | |
JP2000044793A (en) | Preparation of glass fiber reinforced thermoplastic resin, chopped glass strand and sizing agent | |
JP3555243B2 (en) | Method for producing composite of organic polymer and metal oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200313 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40020733 Country of ref document: HK |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210224 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210728 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018028848 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1458648 Country of ref document: AT Kind code of ref document: T Effective date: 20220115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20211229 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220329 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1458648 Country of ref document: AT Kind code of ref document: T Effective date: 20211229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E057937 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220429 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220429 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018028848 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220821 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220821 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230818 Year of fee payment: 6 Ref country code: NO Payment date: 20230824 Year of fee payment: 6 Ref country code: IT Payment date: 20230825 Year of fee payment: 6 Ref country code: CH Payment date: 20230902 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20230814 Year of fee payment: 6 Ref country code: PL Payment date: 20230724 Year of fee payment: 6 Ref country code: HU Payment date: 20230823 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240821 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240826 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240821 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240830 Year of fee payment: 7 |