EP3671957B1 - Leaky wave antenna - Google Patents

Leaky wave antenna Download PDF

Info

Publication number
EP3671957B1
EP3671957B1 EP18213890.9A EP18213890A EP3671957B1 EP 3671957 B1 EP3671957 B1 EP 3671957B1 EP 18213890 A EP18213890 A EP 18213890A EP 3671957 B1 EP3671957 B1 EP 3671957B1
Authority
EP
European Patent Office
Prior art keywords
line
ply
layer
insulating
leaky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18213890.9A
Other languages
German (de)
French (fr)
Other versions
EP3671957A1 (en
Inventor
Lukas Walter Mayer
Andreas Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP18213890.9A priority Critical patent/EP3671957B1/en
Priority to PCT/EP2019/081649 priority patent/WO2020126254A1/en
Publication of EP3671957A1 publication Critical patent/EP3671957A1/en
Application granted granted Critical
Publication of EP3671957B1 publication Critical patent/EP3671957B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3291Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted in or on other locations inside the vehicle or vehicle body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way

Definitions

  • the invention relates to a leaky wave antenna and a method for producing a leaky wave antenna.
  • a leaky antenna is an antenna that emits power in small amounts per unit length either continuously or discretely from a leaky line or structure to free space.
  • Leaky antennas and methods suitable for the manufacture of such leaky antennas are out GB 1247546A , U.S. 2012/229364 A1 , US4728962A , JP S63 260302 A , U.S. 2018/053981 A1 , U.S. 2010/194500 A1 known.
  • leaky wave antennas in the form of coaxial lines are often used, which have several corresponding openings along the line in the outer sheath, each of which has the same shape as a result of the production process and are used as slot antennas.
  • coaxial leaky-wave antennas usually have the disadvantage that the respective emission of electromagnetic power of the individual antennas along the line is not the same due to the manufacturing process, but rather decreases over the length.
  • the object is achieved by a leaky wave antenna according to claim 1.
  • the invention thus builds on an embedded stripline.
  • the conductor strip is covered by a dielectric of the same thickness at the top and bottom and runs parallel to two conductive layers (ground) that are applied to the dielectrics.
  • the distance to both ground planes can also be different (offset stripline).
  • layers and plies are parts of a composite material which is intended to form the leaky wave antenna in the finished state.
  • the term layer or sheet should not be construed as limiting as to the nature of the material or the manufacturing process.
  • the layers and plies may be of a flexible material such as plastic, cellular foam, metal foils, or a woven fibrous material.
  • materials based on fiberglass or Teflon can also be used, for example.
  • the layers preferably use a flexible material such as foam, a material with a low relative permittivity, such as less than two or three, or a combination of a flexible material and a low relative permittivity.
  • the layers and plies can, for example, be piecewise made of a solid material, such as FR4 or Teflon circuit board carrier with one-sided, two-sided or multi-layer metallization for circuit layers, individual boards being fed piecewise to the method according to the invention and then connected one after the other and to one another.
  • a solid material such as FR4 or Teflon circuit board carrier with one-sided, two-sided or multi-layer metallization for circuit layers
  • the layers and plies can, for example, be made of a material which is printed, sprayed or applied by a chemical or physical process to foils or plates.
  • openings or structures, for example for coupling means, can also be provided in the layers and/or layers.
  • the multiplicity of antenna elements of the leaky wave antenna comprises at least ten, preferably at least thirty and particularly preferably at least fifty antenna elements, since the effect according to the invention can be perceived particularly advantageously with increasing line length compared to the prior art.
  • the necessary transmission power can be reduced accordingly, since also the last located antenna element of the leaky wave antenna, starting from the feed point, can be sufficiently supplied with power. Furthermore, the reception of electromagnetic power from the antenna element of the leaky wave antenna located last can also be improved.
  • the leaky wave antenna according to the invention allows a uniform emission and reception of electromagnetic power over the entire length of the leaky wave antenna. This makes the leaky wave antenna particularly suitable for use when mounting on elongated objects with many antenna elements, in particular train cars, aircraft fuselages or buildings.
  • the length of the at least one line of the leaky wave antenna is at least five meters, preferably at least ten meters and particularly preferably at least 20 meters and is therefore greater than a single typical panel in the production of printed circuit boards.
  • a panel usually includes several printed circuit boards during their manufacture and can be limited to the dimensions of the production systems used.
  • a panel In electrical connection technology, a panel is referred to as a panel in production, which consists of individual circuit boards and has not yet been separated.
  • a maximum panel size or circuit board size can vary depending on the circuit board manufacturer and technical equipment. Based on the standard panel cut of 610 mm * 530 mm, which is often processed, many manufacturers result in maximum dimensions of approx. 570 mm * 490 mm.
  • the base materials for printed circuit boards can shrink or stretch undesirably (dimensional stability) during a printed circuit board manufacturing process, which reduces the size of a printed circuit board. Furthermore, in the case of very large printed circuit boards or large panels, the positioning of structures or components on the printed circuit boards cannot always be carried out with the necessary accuracy, or an undesirable offset from layer to layer of the printed circuit board can arise as the size increases. Bending of a large blank during transport in transport devices can lead to unfavorable mechanical stresses, for example at soldering points.
  • At least two lines are included, which are preferably provided for feeding in or decoupling electrical signals, each with different frequencies.
  • the insulating layer has a first insulating layer and a second insulating layer, which are preferably each formed by a foam material.
  • the at least one line is arranged between the first insulating layer and the second insulating layer is. As a result, a particularly inexpensive and compact design is achieved.
  • the respective coupling means is formed by the distance between the at least one line and the respective antenna element, the distance being determined in a plane transverse to the at least one line.
  • the respective coupling means is formed by a coupling structure in the form of a directional coupler. This allows the coupling between the line and the respective antenna element to be defined in a particularly simple manner, with an even broader selection of antenna types being supported, for example circularly polarized antennas or antennas with specific radiation characteristics.
  • the respective coupling means is formed or arranged between the first insulating layer and the second insulating layer.
  • the coupling means can be integrated into the antenna in a cost-effective and simple manner, and a compact design can be achieved overall.
  • the coupling means does not have to have a dedicated structural element, but can be formed by an arrangement of line and antenna element.
  • the invention also provides for an adapter element to be inserted between the lower layer and the upper layer.
  • an electrical and/or mechanical connection can be created, by means of which the leaky-wave antenna can be attached to other components, or a signal can be coupled in or out For example, can be done with a corresponding high-frequency connector.
  • a leaky wave antenna according to the invention is provided as part of a communication device in an airplane, a train or a building.
  • the invention also relates to a method for producing a leaky wave antenna according to the invention according to claim 7.
  • This provides a method for the simple and cost-effective production of a leaky-wave antenna, which allows uniform emission and reception of electromagnetic power over the entire length of the leaky-wave antenna, which is particularly suitable for long line lengths of the leaky-wave antenna.
  • Additional layers can be provided between the first insulating layer and the second insulating layer, for example for additional circuit components or also additional mechanical support layers. Provision can thus be made for a line or a coupling structure to be arranged on an electrically non-conductive carrier layer and thus fed to the method. Provision can also be made for a line or a coupling structure to form a composite, which is connected in advance by means of mechanical carrier layers and is thus supplied to the method.
  • the coupling factors stored in the memory can then be accessed for the production and taken into account when introducing a respective opening.
  • the coupling factors are determined taking into account the material properties and the dimensions of the composite material and the antenna elements, as well as the desired electromagnetic properties of the leaky wave antenna.
  • the invention also provides for the layers to be aligned with one another when the material stack is formed in such a way that they form the leaky wave antenna, and the material stack is moved continuously in one production direction, with the opening before the material stack is formed, starting from the respective feed point is introduced at a fixed distance from the at least one line, which determines the coupling factor, in a plane transverse to the production direction by means of a cutting device.
  • This allows a leaky wave antenna with theoretically any length of line to be made possible.
  • the cutting device introduces the opening by punching, laser cutting or a combination thereof. This allows the opening for a respective antenna element to be introduced in a simple and cost-effective manner, with the respective position of the opening being flexibly adjustable, in particular in a plane transverse to the production direction, and the respective coupling factor thus being set easily.
  • connection takes place by lamination, gluing, pressing or a combination thereof. This allows a simple and reliable mechanical connection of the material stack during continuous movement in the production direction in the manufacturing process.
  • the respective coupling means for the respective antenna element is formed by the distance between the respective antenna element and the at least one line, in a plane transverse to the at least one line, which determines the coupling factor.
  • the lower layer has/have a first transverse overhang and/or the upper layer has/have a second transverse overhang in a plane transverse to the at least one line, which transverse overhangs relative to the line layer and/or or the first insulating layer and/or the second insulating layer, and the first and/or second transverse projection is connected to the other of the lower layer and/or the upper layer in a method step subsequent to step i becomes.
  • electromagnetic shielding can be created at the edge of the composite material of the leaky wave line, which reduces undesired emission of signals that are coupled into the at least one line.
  • the invention also provides that the lower layer has/have a first longitudinal overhang and the upper layer has/have a second longitudinal overhang in a plane along the at least one line, which longitudinal overhangs relative to the line layer and/or the first Insulating layer and/or the second insulating layer protrude, and an adapter element is introduced between the respective longitudinal projections in a method step following step i.
  • the adapter element can be used to create an electrical or mechanical coupling of the composite material of the leaky-wave antenna at a fastening point or an electrical contact element.
  • At least one via which connects the lower layer to the upper layer (, is introduced in a method step following step i. This enables the electromagnetic coupling of signals on two or more lines in the material composite of the Leaky-wave antenna can be reduced, or undesired emission of signals from an open edge of the composite material of the leaky-wave line, which are coupled into the at least one line, can be reduced.
  • the respective coupling means for the respective antenna element is formed by a coupling structure which determines the coupling factor between the at least one line and the respective antenna element, with an electrically conductive material is provided as a coupling layer of the composite material and structured accordingly for the respective antenna element, and is arranged between the first insulating layer and the second insulating layer aligned with one another, and all arranged layers aligned with one another form the material stack before step i is carried out.
  • a further structural means in the form of the coupling structure for example a directional coupler or a phase shifter, further degrees of freedom are made possible for setting the coupling factor.
  • a coupling for a circularly polarized antenna can be implemented.
  • the coupling layer corresponds to the line layer, which means that the coupling structure and the line can be produced in the same layer and the method is simplified.
  • first and the second insulating layer, the line layer and the lower and upper layer are each a material in strip form, which layers are fed to the process in rolled form, unrolled there and made available in the corresponding process steps.
  • FIG. 1 shows a first embodiment of a leaky wave antenna 100 according to the invention schematically in a cross-sectional view.
  • the leaky wave antenna 100 has two lines 110, 111 which are embedded in an insulating layer 120 and form a symmetrical stripline.
  • the lines 110, 111 lie in one plane and form a common line layer 115.
  • the insulating layer 120 has a first insulating layer 121 and a second insulating layer 122, which are preferably each formed by a foam material.
  • the insulating layer 120 is arranged between an electrically conductive lower layer 130 and an electrically conductive upper layer 140 .
  • the lines 110, 111 are arranged between the first insulating layer 121 and the second insulating layer 122.
  • FIG. 1 A large number of antenna elements in the form of openings 150, 155 along the lines 110, 111 are introduced in the upper layer 140.
  • FIG. 1 A large number of antenna elements in the form of openings 150, 155 along the lines 110, 111 are introduced in the upper layer 140.
  • the lower layer 130 and the upper layer 140, the first insulating layer 121 and the second insulating layer 122 together with the line layer 115 form a material stack or a material composite 303.
  • the material stack means a loose stack of layers and plies, which are first connected mechanically, for example by gluing.
  • the material composite 303 means the already mechanically connected material stack.
  • a transverse core area 400 can be seen in the figure, which contains a section of the material stack (or the material composite 303) with the lines 110, 111.
  • the leaky wave antenna 100 also has longitudinal edge regions 401, 402, which form the edge or end of the material stack or the material composite 303 and run along or parallel to the lines 110, 111.
  • the longitudinal edge regions 401, 402 can, for example, as shown in the figure, form a joint termination of the plies and layers of the material stack along the lines 110, 111.
  • the leaky wave antenna 100 is shown schematically in plan view.
  • the two lines 110, 111 are for feeding in electrical signals, each with different frequencies, and can be generated, for example, by a communication device for use in an airplane, a train or a building.
  • the lines 110, 111 each have a feed point 101, 102 and run parallel.
  • Running two or more lines in parallel is advantageous for a very long leaky-wave antenna, since theoretically any length of line of the leaky-wave antenna can be produced.
  • the openings 150-153, 155-159 each have a slot length 103, 105 and a slot width 104, 106, the geometry of the openings being determined by the center frequency of the respective antenna elements 150-153, 155-158.
  • the openings 150-153, 155-159 are of the same size, but the openings 150-153, 155-159 are spaced at different distances from the respective line 110, 111.
  • a coupling means is provided between the lines 110, 111 and a respective antenna element 150-153, 155-158 from the plurality of antenna elements, which coupler defines a respective coupling factor.
  • the respective coupling factor describes the electromagnetic coupling between the line 110, 111 and the respective antenna element 150-153, 155-158.
  • the respective coupling means is formed by a transverse spacing 160-163, 165-168 between the lines 110, 111 and the respective antenna element 150-153, 155-158.
  • the transverse distance 160-163, 165-168 is determined in a plane across the lines 110, 111 and can be measured, for example, in the plane from the center point of the line 110, 111 to an edge of the antenna element 150-153, 155-158.
  • Other definitions are also permissible provided they are applied to all lateral distances 160-163, 165-168.
  • the coupling factor of the respective antenna element 150-153, 155-158 increases along the respective line 110, 111, ie with increasing longitudinal spacing 170-173, 175-178.
  • the leaky wave antenna 100 has a static radiation characteristic. Basically, however, is also a beam deflection possible by considering appropriate mechanisms, such as in the WO2001043228A1 executed.
  • the multiplicity of antenna elements of the leaky wave antenna 100 comprises at least ten, preferably at least 30 and particularly preferably at least fifty antenna elements 150-153, 155-158.
  • the leaky wave antenna 100 is particularly suitable for use when mounting on elongated objects, in particular train cars, aircraft fuselages or corresponding buildings.
  • the length of the lines 101, 102 of the leaky wave antenna 100 is at least five meters, preferably at least ten meters and particularly preferably at least 20 meters.
  • a longitudinal core region 500 of the can be seen in the figure, which contains a section of the material stack or of the material composite 303 with the lines 110, 111.
  • the leaky wave antenna 100 also has transverse edge regions 501, 502, which form the edge or end of the material stack or the material composite 303 and run transversely to the lines 110, 111.
  • the transverse edge regions 501, 502 can, for example, as shown in the figure, form a joint termination of the plies and layers of the material stack transverse to the lines 110, 111. In this specific arrangement, no division into areas occurs, but the longitudinal core area 500 and the transverse edge areas 501, 502 form a common area.
  • the feed points 101, 102 of the lines 110, 111 are located in the transverse edge area 501 in this example.
  • the feed points 101, 102 of the lines 110, 111 are located in the longitudinal core region 500.
  • a second exemplary embodiment of a leaky wave antenna 200 is shown schematically in a plan view.
  • the respective coupling means is formed by a coupling structure in the form of a directional coupler.
  • the lines 210, 211 each have a feed point 201, 202 and run parallel.
  • the openings 250-253, 255-258 each include two partial openings in the form of slot antennas, which are arranged rotated at an angle of 90Ā° to one another and, by means of a correspondingly designed coupling, generate a circularly polarized electromagnetic field of the leaky wave antenna 200 .
  • the coupling is set up to feed the respective two partial openings from the respective line 210, 211 at a phase angle differing by 90Ā°, with the amplitude coupling along the respective line 210, 211 also decreasing according to the invention.
  • the openings 250-253, 255-258 are the same size and shape and are spaced different distances from the respective conduit 210, 211.
  • a coupling means is provided between the lines 110, 111 and a respective antenna element 150-153, 155-158 from the plurality of antenna elements, which coupler defines a respective coupling factor.
  • the respective coupling factor describes the electromagnetic coupling between the line 110, 111 and the respective antenna element 150-153, 155-158.
  • the respective coupling means is formed by a transverse spacing 160-163, 165-168 between the lines 110, 111 and the respective antenna element 150-153, 155-158.
  • the transverse distance 160-163, 165-168 is determined in a plane across the lines 110, 111 and can be measured, for example, in the plane from the center point of the line 110, 111 to an edge of the antenna element 150-153, 155-158. Other definitions for determining the transverse distance are also possible.
  • the coupling factor of the respective antenna element 150-153, 155-158 increases along the respective line 110, 111, ie with increasing longitudinal spacing 170-173, 175-178.
  • the respective coupling means is formed by the transverse distance 160-163, 165-168 and is therefore not a dedicated structural means and is consequently formed between the first insulating layer 221 and the second insulating layer 222.
  • 4 1 shows a first example of a production plant 1 for carrying out a method 300 for producing the leaky wave antenna 100 1 and 2 .
  • the leaky wave antenna 100 has a large number of antenna elements, two lines 110, 111, each with a feed point 101, 102, and the composite material 303.
  • the first and second insulating layer 121, 122 can each also be formed from a different material which, for example, only functions as a spacer, ie has a relative permittivity of almost one.
  • the bottom and top layers 130, 130 may also be formed of other electrically conductive material, such as aluminum, silver-plated copper, a conductive plastic composite, embossed or corrugated foil, mesh, or fabric.
  • the production plant 1 has a base 302 over which the lower layer 130 is guided via deflection rollers 350, 351.
  • the deflection rollers 350, 351 also serve to tension the lower layer 130 and thus ensure or support the subsequent alignment of the individual layers or plies with one another.
  • the lower layer 130 is continuously moved over the base 302 in a production direction 301 and the method steps according to the invention are carried out.
  • the first insulating layer 121 is fed via a deflection roller 352 to a laminating device 360 with a pretensioning roller guide 371, with a transfer roller 372 producing a laminating connection between the lower layer 130 and the first insulating layer 121 by pressing and heating.
  • lamination refers on the one hand to a cohesive, thermal joining process without auxiliary materials, which means the joining of a thin, often foil-like layer to a carrier material using an adhesive.
  • lamination also refers to the joining of at least two film layers of thermoplastics by reaching the glass transition temperature and corresponding pressure.
  • the roller guide 371 is used to adjust or to produce a mutually aligned arrangement of layers from the lower layer 130 and the first insulating layer 121, as a result of which a material stack is formed.
  • the layers of the material stack are connected by means of the lamination by the transfer roller 372, as a result of which a first part of the material composite 303 is produced.
  • the transfer roller 372 applies heat and pressure to the joining process.
  • an adhesive material is already applied to the first insulating layer 121, which is intended for the connection between the lower layer 130 and the first insulating layer 121 and permanent adhesion of the lower layer 130 and the first insulating layer 121 is achieved by the joining method.
  • the line layer 115 is fed via a deflection roller 353 to a laminating device 361 with a pretensioning roller guide 373, with a transfer roller 374 producing a laminating connection between the first insulating layer 121 and the line layer 115 by pressing and heating.
  • the lamination takes place analogously to the laminating device 360, as a result of which the composite material 303 produced up to now is expanded by the line layer 115.
  • the line layer 115 has the lines 110, 111.
  • the lines are applied to a plastic film as a carrier layer, to which an adhesive material for lamination with the first insulating layer 121 is additionally applied.
  • the lines 110, 111 could also be supplied to the process directly, ie without a carrier layer, for example in the form of copper strips.
  • the lines 110, 111 each have a predefined line width. Together with the layer thicknesses of the first and second insulating layers 121, 122 and their dielectric material properties is the respective characteristic impedance of the lines 110, 111 defined.
  • the second insulating layer 122 is fed via a deflection roller 354 to a laminating device 362 with a pretensioning roller guide 375, with a transfer roller 376 producing a laminating connection between the line layer 115 and the second insulating layer 122 by pressing and heating.
  • the upper layer 140 is fed via a deflection roller 355 to a cutting device 380 in the form of a punching device with roller guides.
  • the cutting device 380 has tensioning roller guides 381, 382 which tension the material of the top layer 140 on a cutting pad 383.
  • the cutting device 380 comprises a punch 384 which, by means of a punching stroke 385, makes an opening 150-153, 155-158 in the upper layer 140 normal to the surface of the tensioned upper layer 140.
  • the shape of the stamp 384 corresponds to the desired shape of the respective antenna element 150-153, 155-158.
  • the punching base 383 is matched to the punch 384.
  • the stamp 384 can also be movably controlled transversely to the production direction 301 . This allows positioning of the stamp 384 transversely to the respective line 110, 111 depending on the distance from the respective feed point 101, 102 at a distance 160-163, 165-168, whereby the coupling of the respective antenna element 150-153, 155 -158 to the respective line 110, 111 is adjustable.
  • the respective coupling is formed by the respective distance 160-163, 165-168 between the respective antenna element 150-153, 155-158 and the respective line 110, 111 in a plane transverse to the respective line 110, 111.
  • the movement of the material to be die-cut can be stopped briefly, since the deflection rollers 355 and 356 are designed in such a way that they compensate for the short-term stopping of the material without slowing down or stopping the continuous lamination process.
  • the punch 384 and the punching pad 383 of the cutting device 380 can be moved along with the tensioned top layer 140 during the punching process. Then, after the punching process, the punch 384 and the punching pad 383 are returned to the original position.
  • the now punched upper layer 140 is fed via a deflection roller 356 to a laminating device 363 with a pretensioning roller guide 377, with a transfer roller 378 creating a laminating connection between the second insulating layer 122 and the upper layer 140 is produced.
  • An adhesive material is already applied to the top layer 140 for subsequent lamination with the second insulating layer 122 .
  • the lamination takes place analogously to the laminating device 360, as a result of which the composite material 303 produced up to now is expanded by the upper layer 140 and completed.
  • the composite material that is produced successively is also continuously moved in the production direction 301 .
  • the result of this is that the individual steps of the production method for each antenna element are repeated for all antenna elements 150-153, 155-158 from the large number of antenna elements.
  • the composite material 303 of the leaky wave antenna 100 is defined in section AA, which is shown as a sectional image in 1 is recognizable.
  • figure 5 shows a second example of a production plant 2 for carrying out a method 400 for manufacturing the leaky wave antenna 200.
  • the production plant 2 corresponds to a large extent to the production plant 1.
  • the openings 250-253, 255-258 each have two partial openings and a different shape or orientation compared to the openings 150-153, 155-158. Therefore, the punch 386 is accordingly designed for punching two partial openings.
  • the punching pad 387 is matched to the punch 386.
  • the respective coupling structure is formed in the form of a two-part directional coupler, which in this example is printed onto the line layer 115 by means of a printing process as electrically conductive printing ink. After the ink has dried, the layer can be further processed in the further lamination process.
  • the printing method is carried out by a printing device 390, which has, for example, a printing matrix, a screen printing arrangement or a digitally controllable print head of an inkjet printer.
  • the printing device 390, or those parts that generate the printed image can be movably controlled transversely to the production direction 302 in order to achieve an adjustment of the position of the coupling structure with respect to the lines 201, 202.
  • the coupling layer which includes the coupling structures, corresponds to line layer 215.
  • the respective coupling structure can also be applied, for example, by simple gluing using local adhesive elements.
  • the respective coupling structure can, for example, already be produced and provided in advance on a carrier layer of the line layer 215 .
  • the composite material 304 of the leaky wave antenna 200 is defined in section BB.
  • Steps h and i can be spread over several of steps a to g, as in FIGS 4 and 5 shown. In other words, it is not necessary to first form a complete material stack, which has all the layers, and only then establish a connection between the individual layers. Provision can also be made, for example, for individual layers to be successively erected and connected to one another.
  • steps a and b are applied sequentially.
  • Step c occurs independently of the other steps.
  • Steps d to g take place independently of the other steps, but chronologically in the sequence defg, where f denotes the repetition of step e.
  • the layers produced are aligned with one another in step h as a material stack and are structurally connected to one another in step i.
  • steps a, b, c and g can be performed independently of one another.
  • the layers produced are again aligned with one another in step h as a material stack and structurally connected to one another in step i.
  • steps d and e or step f, in which step e is repeated
  • steps h and i are sequential.
  • FIG. 9 shows a sectional view of the leaky wave antenna 100 with alternative designs for longitudinal edge areas, which the longitudinal edge areas 401, 402 of 1 should replace.
  • the lower layer 130 and the upper layer 140 each extend beyond the first insulating layer 121 and the second insulating layer 122 and form optional transverse projections 413, 414, 415, 416 of the respective layer 130, 140, with other applications, only a transverse overhang can be provided.
  • the transverse projections 413, 414, 415, 416 can be used to achieve lateral electromagnetic sealing of the leaky wave antenna 100. As a result, undesired electromagnetic radiation from open longitudinal edge regions 401, 402 during operation of the leaky wave antenna 100 can be reduced if necessary.
  • the transverse projections 413, 414, 415, 416 are used to electrically connect the bottom layer 130 and the top layer 140 together.
  • the lower layer 130 thus has a first transverse projection 414, 416, 424, 444 and the upper layer 140 has a second transverse projection 413, 415, 423, 433, 443, each in a plane transverse to the lines 110, 111.
  • the transverse projections 413, 414, 415, 416, 423, 424, 433, 443, 444 protrude from the line layer 115 and the first insulating layer 121 and the second insulating layer 121.
  • the first and the second transverse projection 413, 414, 415, 416, 423, 424, 433, 443, 444 are connected to the other of the lower layer 130 and/or the upper layer 140 in a method step following step i.
  • Establishing a connection between the lower layer 130 and the upper layer 140 can be done in different ways, as shown in FIGS Figures 10 to 12 shown.
  • a longitudinal edge region 421 of leaky wave antenna 100 can be seen in a sectional view, with the transverse projections 423, 424 each having a length that is shorter than the height of the material stack made up of the first insulating layer 121, the second insulating layer 122 and the embedded line layer 115
  • the transverse projections 423, 424 can be folded in and attached to the lateral terminations of the first and second insulating layer 121, 122 and connected to one another, for example by gluing using an electrically conductive adhesive.
  • Folding in the transverse projections 423, 424 can take place by appropriately guiding the lower and upper layers 130, 140, if necessary with the support of pressure rollers.
  • a longitudinal edge area 431 of the leaky wave antenna 100 can be seen in a sectional view, where the transverse overhang 433 has a length that is longer than the height of the material stack of the first insulating layer 121, the second insulating layer 122 and the conductor layer 115.
  • a second transverse overhang has a length of zero, i.e. the second transverse overhang does not stand out. Therefore, in this example, the second lateral overhang of zero length is replaced by the lateral overhang 433.
  • the second transverse overhang protrudes slightly or is recessed in order to allow higher tolerances in production.
  • the transverse projection 433 can thus be folded in and attached to the lateral ends of the first and second insulating layers 121, 122 and to the lower layer 130 and connected to one another, for example by gluing using an electrically conductive adhesive.
  • a longitudinal edge region 441 of leaky-wave antenna 100 can be seen in a sectional view, the transverse projections 443, 444 each having a length such that the lower layer 130 and the upper layer 140 can be connected directly to one another, for example by gluing using an electrically conductive adhesive.
  • the transverse core area 500 can be seen in a sectional view of the leaky wave antenna 100 .
  • the statements of the 2 .
  • Alternative designs for the lateral edge areas 511, 512 are shown which are the lateral edge areas 501, 502 of the 2 should replace.
  • the space formed between optional longitudinal projections 513, 514 can be used to accommodate an adapter element 550, 560, 570 for the leaky wave antenna 100.
  • an adapter element 550, 560, 570 between the lower layer 130 and the upper layer 140 may be inserted.
  • only one longitudinal overhang can be provided on one side of the leaky wave antenna, for example on the side on which the feed points 101, 102 are located.
  • an adapter element is accommodated, for example, in the transverse edge area 512 .
  • the adapter element 550, 560, 570 can be provided, for example, for mechanical or electrical tasks.
  • a mechanical adapter element 550, 560, 570 can be provided, for example, to provide a mechanically stable layer by means of which the leaky wave antenna 100 can be attached to an operating location, for example when using the leaky wave antenna 100 in a communication system in a train, building or airplane .
  • Fastening can be done using mechanical fasteners such as screws and mounting holes.
  • An electrical adapter element 550, 560, 570 can be provided, for example, to establish a mechanical and electrical connection from the leaky wave antenna 100 to an electrical connection element, such as a coaxial plug, which is attached to the adapter element 550, 560, 570.
  • the adapter element 550, 560, 570 can be made, for example, from a circuit board material such as FR4 and corresponding conductor tracks on one or more layers for a respective planar coaxial stripline transition for the lines 110, 111, as well as optional electronic assemblies or high-frequency electronic assemblies such as transmitters , receivers, terminators or power measurement devices exhibit.
  • another line type preferred for the respective application can also be provided for connecting the leaky wave antenna.
  • a combination of electrical and mechanical connecting elements can also be provided by means of the adapter element 550, 560, 570.
  • additional reinforcement elements can be applied to the surfaces of the lower and upper layers 130, 140, for example by gluing, which connect the transverse edge area 501, 502, 511, 512 to the transverse core area 500.
  • the adapter element 550, 560 can easily be pushed into the composite material 303 in a respective insertion direction 561, 562, for example, and glued in the material stack.
  • the adapter element 550, 560 should have the same thickness as specified by the volume between the longitudinal projections 513, 514.
  • An adhesive layer can be provided between the longitudinal projections 513, 514 and the adapter element 550, for example by means of adhesive, in order to produce a mechanical connection.
  • the lower layer 130 has a first longitudinal overhang 514 and the upper layer 140 has a second longitudinal overhang 513, each in a plane along the at least one line 110, 111.
  • the longitudinal projections 513, 514 protrude from the line layer 115 and/or the first insulating layer 121 and/or the second insulating layer 121.
  • the adapter element 550, 560 is introduced between the respective projections in a method step following step i, as in 14 in a longitudinal section of the leaky wave antenna 100 along the production direction 301 or parallel to the lines 110, 111 shown. Furthermore, in the 13 a via 600 can be seen, which can be used to reduce an undesired emission of electromagnetic signals, which are fed into the lines 110, 111, from longitudinal edge regions 401, 402.
  • the via 600 which connects the lower layer 130, 230 to the upper layer 140, 240, can be introduced in a method step following step i. Multiple vias along the line are usually required to create electromagnetic shielding.
  • a further example of a transverse edge area 521 of the leaky wave antenna 100 is shown with a further example of an adapter element 570 in a section along the production direction 301.
  • the adapter element 570 has the same thickness as the lower insulating layer 121 and is arranged adjacent to it.
  • a longitudinal overhang 524 of the lower layer 130 and/or a longitudinal overhang 523 of the upper layer 140 can each be connected to the adapter element 570 .
  • the longitudinal projections 523, 524 can be electrically connected to corresponding electrically conductive surfaces on the adapter element 570, for example by gluing with an electrically conductive adhesive.
  • Parts of the line layer 115, in particular the ends of the lines 110, 111 with the feed points 101, 102 have a corresponding longitudinal overhang 525, which protrudes beyond the lower insulating layer 121, and a corresponding Longitudinal shelter 527 from the upper insulating layer 122, behind which the line layer 115 remains.
  • the upper insulating layer 122 consequently has a longitudinal projection 526 compared to the lower insulating layer 121, which also projects beyond the longitudinal projection 525 of the line layer 115. This ensures electrical insulation between the longitudinal overhang 525 of the line layer 115 and the upper electrically conductive layer 140 .
  • the adapter element 570 can be introduced between the longitudinal overhang 525 of the line layer 115 and the longitudinal overhang 524 of the lower layer 130 and subsequently the material stack can be electrically conductively connected to the adapter element 570 .
  • the upper layer 140 is provided with a longitudinal projection 523 which projects beyond the projection of the upper insulating layer 526 and has a length which corresponds at least to the height of the upper insulating layer 122.
  • the overhang 523 can be connected to the adapter element 570 to establish a mechanical and/or electrical connection, for example by gluing with an electrically conductive adhesive.
  • the adapter element 570 in the form of a single-sided, double-sided or multi-layer printed circuit board allows electrical signals to be led out from the core 400 of the leaky-wave antenna 100 to a connection, for example in the form of a plug and/or to electronic assemblies.
  • a dual-band mobile radio communication system 107 with a leaky wave antenna 100 is shown schematically. This ensures even radio coverage within of a wagon, which leads to improved transmission and reception performance for mobile devices in the wagon.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

Die Erfindung betrifft eine Leckwellenantenne und ein Verfahren zur Herstellung einer Leckwellenantenne.The invention relates to a leaky wave antenna and a method for producing a leaky wave antenna.

Eine Leckwellenantenne ist eine Antenne, welche Leistung in kleinen Mengen pro LƤngeneinheit entweder fortlaufend oder diskret von einer Leckwellenleitung beziehungsweise Leckwellenstruktur zum Freiraum abgibt. Leckwellenantennen und Verfahren, die fĆ¼r die Herstellung von solchen Leckwellenantennen geeignet sind, sind aus GB 1247546 A , US 2012/229364 A1 , US 4728962 A , JP S63 260302 A , US 2018/053981 A1 , US 2010/194500 A1 bekannt.A leaky antenna is an antenna that emits power in small amounts per unit length either continuously or discretely from a leaky line or structure to free space. Leaky antennas and methods suitable for the manufacture of such leaky antennas are out GB 1247546A , U.S. 2012/229364 A1 , US4728962A , JP S63 260302 A , U.S. 2018/053981 A1 , U.S. 2010/194500 A1 known.

Bei sehr langen Antennen, beispielsweise Antennen fĆ¼r StraƟentunnel, werden hƤufig Leckwellenantennen in Form von Koaxialleitungen eingesetzt, welche lƤngs der Leitung im ƤuƟeren Mantel mehrere entsprechende, jeweils herstellungsbedingt gleich geformte Ɩffnungen aufweisen, die als Schlitzantennen verwendet werden. Derartige Koaxial-Leckwellenantennen weisen allerdings meist den Nachteil auf, dass die jeweilige Abgabe elektromagnetischer Leistung der einzelnen Antennen lƤngs der Leitung herstellungsbedingt nicht gleich groƟ ist, sondern Ć¼ber die LƤnge abnimmt.In the case of very long antennas, for example antennas for road tunnels, leaky wave antennas in the form of coaxial lines are often used, which have several corresponding openings along the line in the outer sheath, each of which has the same shape as a result of the production process and are used as slot antennas. However, such coaxial leaky-wave antennas usually have the disadvantage that the respective emission of electromagnetic power of the individual antennas along the line is not the same due to the manufacturing process, but rather decreases over the length.

Es ist Aufgabe der Erfindung eine Leckwellenantenne und ein Herstellungsverfahren fĆ¼r eine derartige Leckwellenantenne bereitzustellen, welche eine gleichmƤƟige Abstrahlung elektromagnetischer Leistung Ć¼ber die LƤnge der Leckwellenantenne erlaubt, insbesondere fĆ¼r lange LeitungslƤngen der Leckwellenantenne.It is the object of the invention to provide a leaky-wave antenna and a manufacturing method for such a leaky-wave antenna which allows uniform emission of electromagnetic power over the length of the leaky-wave antenna, in particular for long line lengths of the leaky-wave antenna.

Die Aufgabe wird durch eine Leckwellenantenne nach Anspruch 1 gelƶst.The object is achieved by a leaky wave antenna according to claim 1.

Die Erfindung baut folglich auf einer eingebetteten Streifenleitung auf.The invention thus builds on an embedded stripline.

Bei einer symmetrischen Streifenleitung (englisch stripline) ist der Leiterstreifen oben wie unten von einem gleich dicken Dielektrikum bedeckt und verlƤuft parallel zu zwei leitfƤhigen Schichten (Masse), die auf den Dielektrika aufgebracht sind. Der Abstand zu beiden MasseflƤchen kann auch unterschiedlich sein (offset stripline).In a symmetrical stripline, the conductor strip is covered by a dielectric of the same thickness at the top and bottom and runs parallel to two conductive layers (ground) that are applied to the dielectrics. The distance to both ground planes can also be different (offset stripline).

Im Zusammenhang mit der Erfindung sind Schichten und Lagen Teile eines Materialverbunds, welcher im fertigen Zustand die Leckwellenantenne bilden soll. Der Begriff Schicht oder Lage soll nicht einschrƤnkend hinsichtlich der Art des Materials oder des Herstellungsverfahrens ausgelegt werden.In connection with the invention, layers and plies are parts of a composite material which is intended to form the leaky wave antenna in the finished state. The term layer or sheet should not be construed as limiting as to the nature of the material or the manufacturing process.

Die Schichten und Lagen kƶnnen beispielsweise aus einem flexiblen Material sein, wie Kunststoff, Schaumstoff mit LufteinschlĆ¼ssen, Metallfolien oder einem verwobenen Fasermaterial. Je nach Anwendung kƶnnen beispielsweise auch Materialien auf Glasfaser- oder Teflon-Basis verwendet werden.For example, the layers and plies may be of a flexible material such as plastic, cellular foam, metal foils, or a woven fibrous material. Depending on the application, materials based on fiberglass or Teflon can also be used, for example.

Jedoch wird fĆ¼r die Schichten bevorzugt ein flexibles Material wie Schaumstoff verwendet, sowie ein Material mit einer niedrigen relativen PermittivitƤt, wie beispielsweise kleiner als Zwei oder Drei, oder eine Kombination aus einem flexiblen Material und mit einer niedrigen relativen PermittivitƤt.However, the layers preferably use a flexible material such as foam, a material with a low relative permittivity, such as less than two or three, or a combination of a flexible material and a low relative permittivity.

Die Schichten und Lagen kƶnnen beispielsweise stĆ¼ckweise aus einem festen Material sein, wie FR4- oder Teflon-LeiterplattentrƤger mit einseitiger, zweiseitiger oder mehrlagiger Metallisierung fĆ¼r Leitungslagen, wobei einzelne Platten stĆ¼ckweise dem erfindungsgemƤƟen Verfahren zugefĆ¼hrt werden und dann nacheinander und miteinander verbunden werden.The layers and plies can, for example, be piecewise made of a solid material, such as FR4 or Teflon circuit board carrier with one-sided, two-sided or multi-layer metallization for circuit layers, individual boards being fed piecewise to the method according to the invention and then connected one after the other and to one another.

Die Schichten und Lagen kƶnnen beispielsweise aus einem Material sein, welches auf Folien oder Platten aufgedruckt, aufgesprĆ¼ht oder durch ein chemisches oder physikalisches Verfahren aufgebacht wird. Dabei kƶnnen in den Schichten und/oder Lagen auch Ɩffnungen oder Strukturen, beispielsweise fĆ¼r Koppelmittel, vorgesehen werden.The layers and plies can, for example, be made of a material which is printed, sprayed or applied by a chemical or physical process to foils or plates. In this case, openings or structures, for example for coupling means, can also be provided in the layers and/or layers.

Durch den entlang der Leitung zunehmenden Koppelfaktor des jeweiligen Antennenelements ist es mƶglich, die Kopplung derart zu gestalten, dass die Abgabe der elektromagnetischen Leistung Ć¼ber die LƤnge beziehungsweise Ć¼ber aufeinander folgende Antennenelemente konstant bleibt und eine gleichmƤƟige Funkausleuchtung entlang der Leckwellenantenne erreicht wird.Due to the increasing coupling factor of the respective antenna element along the line, it is possible to design the coupling in such a way that the emission of the electromagnetic power remains constant over the length or over successive antenna elements and uniform radio coverage is achieved along the leaky wave antenna.

Es ist dabei gĆ¼nstig, wenn die Vielzahl an Antennenelementen der Leckwellenantenne zumindest zehn, bevorzugt zumindest dreiƟig und besonders bevorzugt zumindest fĆ¼nfzig Antennenelemente umfasst, da der erfindungsgemƤƟe Effekt mit zunehmender LeitungslƤnge gegenĆ¼ber dem Stand der Technik besonders vorteilhaft wahrgenommen werden kann. Zudem kann die notwendige Sendeleistung entsprechend reduziert werden, da auch das zuletzt gelegene Antennenelement der Leckwellenantenne, ausgehend vom Einspeisepunkt, hinreichend mit Leistung versorgt werden kann. Ferner kann auch der Empfang von elektromagnetischer Leistung vom zuletzt gelegenen Antennenelement der Leckwellenantenne verbessert werden.It is advantageous if the multiplicity of antenna elements of the leaky wave antenna comprises at least ten, preferably at least thirty and particularly preferably at least fifty antenna elements, since the effect according to the invention can be perceived particularly advantageously with increasing line length compared to the prior art. In addition, the necessary transmission power can be reduced accordingly, since also the last located antenna element of the leaky wave antenna, starting from the feed point, can be sufficiently supplied with power. Furthermore, the reception of electromagnetic power from the antenna element of the leaky wave antenna located last can also be improved.

Zusammenfassend erlaubt die erfindungsgemƤƟe Leckwellenantenne eine gleichmƤƟige Abgabe und einen gleichmƤƟigen Empfang von elektromagnetischer Leistung Ć¼ber die gesamte LƤnge der Leckwellenantenne. Dadurch ist die Leckwellenantenne speziell zur Verwendung bei der Montage an langerstreckten Objekten mit vielen Antennenelementen geeignet, insbesondere Zugwaggons, FlugzeugrĆ¼mpfe oder GebƤude.In summary, the leaky wave antenna according to the invention allows a uniform emission and reception of electromagnetic power over the entire length of the leaky wave antenna. This makes the leaky wave antenna particularly suitable for use when mounting on elongated objects with many antenna elements, in particular train cars, aircraft fuselages or buildings.

Es ist dabei auch gĆ¼nstig, wenn die LƤnge der zumindest einen Leitung der Leckwellenantenne zumindest fĆ¼nf Meter, bevorzugt zumindest zehn Meter und besonders bevorzugt zumindest 20 Meter betrƤgt und somit grĆ¶ĆŸer ist, als ein einzelner typischer Nutzen bei der Herstellung von Leiterplatten. Ein Nutzen umfasst meist mehrere Leiterplatten wƤhrend deren Herstellung und kann auf die Dimensionen der eingesetzten Produktionsanlagen beschrƤnkt sein.It is also favorable if the length of the at least one line of the leaky wave antenna is at least five meters, preferably at least ten meters and particularly preferably at least 20 meters and is therefore greater than a single typical panel in the production of printed circuit boards. A panel usually includes several printed circuit boards during their manufacture and can be limited to the dimensions of the production systems used.

Als Nutzen wird in der elektrischen Verbindungstechnik eine Gesamtleiterplatte in der Herstellung bezeichnet, die aus einzelnen Leiterplatten besteht und noch nicht vereinzelt ist. Eine maximale NutzengrĆ¶ĆŸe bzw. LeiterplattengrĆ¶ĆŸe kann je nach Leiterplattenhersteller und technischer AusrĆ¼stung variieren. Ausgehend von dem Standard-Panelzuschnitt 610 mm * 530 mm, welcher oft verarbeitet wird, ergeben sich bei vielen Herstellern MaximalmaƟe von ca. 570 mm * 490 mm.In electrical connection technology, a panel is referred to as a panel in production, which consists of individual circuit boards and has not yet been separated. A maximum panel size or circuit board size can vary depending on the circuit board manufacturer and technical equipment. Based on the standard panel cut of 610 mm * 530 mm, which is often processed, many manufacturers result in maximum dimensions of approx. 570 mm * 490 mm.

Die Basismaterialen fĆ¼r Leiterplatten kƶnnen wƤhrend eines Leiterplattenherstellungsprozesses unerwĆ¼nscht schrumpfen oder gestreckt werden (DimensionsstabilitƤt), was die GrĆ¶ĆŸe einer Leiterplatte beschrƤnken kann. Ferner kann bei sehr groƟen Leiterplatten bzw. bei groƟen Nutzen die Positionierung von Strukturen oder Bauteilen auf den Leiterplatten nicht immer mit der nƶtigen Genauigkeit erfolgen, beziehungsweise bei zunehmender GrĆ¶ĆŸe ein unerwĆ¼nschter Versatz von Lage zu Lage der Leiterplatte entstehen. Ein Durchbiegen eines groƟen Nutzens wƤhrend des Transportes in Transportvorrichtungen kann zu ungĆ¼nstigen mechanischen Beanspruchungen fĆ¼hren, beispielsweise bei Lƶtstellen.The base materials for printed circuit boards can shrink or stretch undesirably (dimensional stability) during a printed circuit board manufacturing process, which reduces the size of a printed circuit board. Furthermore, in the case of very large printed circuit boards or large panels, the positioning of structures or components on the printed circuit boards cannot always be carried out with the necessary accuracy, or an undesirable offset from layer to layer of the printed circuit board can arise as the size increases. Bending of a large blank during transport in transport devices can lead to unfavorable mechanical stresses, for example at soldering points.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass zumindest zwei Leitungen umfasst sind, welche vorzugsweise zum Einspeisen oder Auskoppeln von elektrischen Signalen mit jeweils verschiedenen Frequenzen vorgesehen sind.In a development of the invention, it is provided that at least two lines are included, which are preferably provided for feeding in or decoupling electrical signals, each with different frequencies.

Dadurch wird erreicht, dass zwei voneinander unabhƤngige Leckwellenantennen, welche fĆ¼r unterschiedliche Anwendungen, unterschiedliche Frequenzbereiche oder unterschiedliche Polarisationen vorgesehen sind, von einem gemeinsamen Bauteil umfasst sind. Dadurch kann die Montage vereinfacht und kostengĆ¼nstiger erfolgen. Durch Verwendung entsprechender Antennen kann sowohl die jeweilige Abstrahlcharakteristik, als auch die Polarisation des abgestrahlten Signals entsprechend der jeweiligen Anwendung gewƤhlt werden.As a result, two independent leaky wave antennas, which are provided for different applications, different frequency ranges or different polarizations, are encompassed by a common component. As a result, assembly can be simplified and made more cost-effective. By using appropriate antennas, both the respective radiation characteristics and the polarization of the emitted signal can be selected according to the respective application.

Bei der Erfindung ist es ferner vorgesehen, dass die Isolierschicht eine erste Isolierlage und eine zweite Isolierlage aufweist, welche vorzugsweise jeweils durch ein Schaumstoffmaterial gebildet sind. Dadurch wird eine besonders kostengĆ¼nstige Bauform erreicht, welche ferner mechanisch flexibel ist und daher eine Montage vereinfacht.The invention further provides that the insulating layer has a first insulating layer and a second insulating layer, which are preferably each formed by a foam material. As a result, a particularly cost-effective design is achieved, which is also mechanically flexible and therefore simplifies assembly.

Dabei ist es gĆ¼nstig, wenn die zumindest eine Leitung zwischen der ersten Isolierlage und der zweiten Isolierlage angeordnet ist. Dadurch wird eine besonders kostengĆ¼nstige und kompakte Bauform erzielt.In this case, it is favorable if the at least one line is arranged between the first insulating layer and the second insulating layer is. As a result, a particularly inexpensive and compact design is achieved.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass das jeweilige Koppelmittel durch den Abstand zwischen der zumindest einen Leitung und dem jeweiligen Antennenelement gebildet ist, wobei der Abstand in einer Ebene quer zur zumindest einen Leitung bestimmt ist. Dadurch lƤsst sich auf eine besonders einfache Weise die Kopplung zwischen Leitung und jeweiligem Antennenelement festlegen.In a development of the invention, it is provided that the respective coupling means is formed by the distance between the at least one line and the respective antenna element, the distance being determined in a plane transverse to the at least one line. As a result, the coupling between the line and the respective antenna element can be defined in a particularly simple manner.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass das jeweilige Koppelmittel durch eine Koppelstruktur in Form eines Richtkopplers gebildet ist. Dadurch lƤsst sich auf eine besonders einfache Weise die Kopplung zwischen Leitung und jeweiligem Antennenelement festlegen, wobei eine noch breitere Auswahl an Antennentypen unterstĆ¼tzt wird, beispielweise zirkular polarisierte Antennen oder Antennen mit spezifischen Abstrahlcharakteristika.In a development of the invention, it is provided that the respective coupling means is formed by a coupling structure in the form of a directional coupler. This allows the coupling between the line and the respective antenna element to be defined in a particularly simple manner, with an even broader selection of antenna types being supported, for example circularly polarized antennas or antennas with specific radiation characteristics.

Dabei ist es gĆ¼nstig, wenn das jeweilige Koppelmittel zwischen der ersten Isolierlage und der zweiten Isolierlage gebildet oder angeordnet ist. Dadurch kann das Koppelmittel auf eine kostengĆ¼nstige und einfache Weise in die Antenne integriert werden und insgesamt kann eine kompakte Bauform erreicht werden. Das Koppelmittel muss dabei nicht ein dezidiertes Strukturelement aufweisen, sondern kann durch eine Anordnung von Leitung und Antennenelement gebildet sein.It is favorable here if the respective coupling means is formed or arranged between the first insulating layer and the second insulating layer. As a result, the coupling means can be integrated into the antenna in a cost-effective and simple manner, and a compact design can be achieved overall. In this case, the coupling means does not have to have a dedicated structural element, but can be formed by an arrangement of line and antenna element.

Bei der Erfindung ist es ferner vorgesehen, dass ferner ein Adapterelement zwischen der unteren Schicht und der oberen Schicht eingefĆ¼gt ist. Dadurch kann eine elektrische und/oder mechanische Verbindung geschaffen werden, mittels welcher die Leckwellenantenne an anderen Bauteilen befestigt werden kann, oder eine Signal-Einkopplung oder Signal-Auskopplung beispielsweise mit einem entsprechenden Hochfrequenz-Stecker erfolgen kann.The invention also provides for an adapter element to be inserted between the lower layer and the upper layer. As a result, an electrical and/or mechanical connection can be created, by means of which the leaky-wave antenna can be attached to other components, or a signal can be coupled in or out For example, can be done with a corresponding high-frequency connector.

In einer Weiterbildung der Erfindung ist eine Verwendung einer erfindungsgemƤƟen Leckwellenantenne als Bestandteil einer Kommunikationsvorrichtung in einem Flugzeug, einem Zug oder einem GebƤude vorgesehen.In a development of the invention, use of a leaky wave antenna according to the invention is provided as part of a communication device in an airplane, a train or a building.

Die Erfindung betrifft auch ein Verfahren zur Herstellung einer erfindungsgemƤƟen Leckwellenantenne nach Anspruch 7.The invention also relates to a method for producing a leaky wave antenna according to the invention according to claim 7.

Dadurch wird ein Verfahren zur einfachen und kostengĆ¼nstigen Herstellung einer Leckwellenantenne, welche eine gleichmƤƟige Abgabe und einen gleichmƤƟigen Empfang von elektromagnetischer Leistung Ć¼ber die gesamte LƤnge der Leckwellenantenne erlaubt, bereitgestellt, welches sich insbesondere fĆ¼r lange LeitungslƤngen der Leckwellenantenne eignet.This provides a method for the simple and cost-effective production of a leaky-wave antenna, which allows uniform emission and reception of electromagnetic power over the entire length of the leaky-wave antenna, which is particularly suitable for long line lengths of the leaky-wave antenna.

Die angefĆ¼hrte Reihenfolge der Schritte a bis i ist beispielhaft und andere Abfolgen der Schritte a bis i sind mƶglich, sofern sie zum selben Materialverbund fĆ¼hren.The sequence of steps a to i given is exemplary and other sequences of steps a to i are possible provided they lead to the same composite material.

Zwischen der ersten Isolierlage und der zweiten Isolierlage kƶnnen weitere Lagen vorgesehen sein, beispielsweise fĆ¼r weitere Schaltungsanteile oder auch weitere mechanische TrƤgerlagen. So kann es vorgesehen sein, dass eine Leitung oder eine Koppelstruktur auf einer elektrisch nicht-leitenden TrƤgerlage angeordnet ist und so dem Verfahren zugefĆ¼hrt wird. Ebenso kann es vorgesehen sein, dass eine Leitung oder eine Koppelstruktur einen Verbund bilden, welcher mittels mechanischer TrƤgerlagen vorab verbunden wird und so dem Verfahren zugefĆ¼hrt wird.Additional layers can be provided between the first insulating layer and the second insulating layer, for example for additional circuit components or also additional mechanical support layers. Provision can thus be made for a line or a coupling structure to be arranged on an electrically non-conductive carrier layer and thus fed to the method. Provision can also be made for a line or a coupling structure to form a composite, which is connected in advance by means of mechanical carrier layers and is thus supplied to the method.

Es ist vorgesehen, dass die jeweiligen Werte fĆ¼r die jeweiligen Koppelfaktoren numerisch bestimmt und festlegt werden, und beispielsweise in einem Lookup-Table fĆ¼r Koppelfaktoren in einem Speicher gespeichert werden. FĆ¼r die Herstellung kann dann auf die in dem Speicher gespeicherten Koppelfaktoren zugegriffen werden und beim Einbringen einer jeweiligen Ɩffnung berĆ¼cksichtigt werden.Provision is made for the respective values for the respective coupling factors to be determined and specified numerically, and for example to be stored in a memory in a lookup table for coupling factors. The coupling factors stored in the memory can then be accessed for the production and taken into account when introducing a respective opening.

Die Bestimmung der Koppelfaktoren erfolgt unter BerĆ¼cksichtigung der Materialeigenschaften und der Abmessungen des Materialverbunds und der Antennenelemente, sowie der gewĆ¼nschten elektromagnetischen Eigenschaften der Leckwellenantenne.The coupling factors are determined taking into account the material properties and the dimensions of the composite material and the antenna elements, as well as the desired electromagnetic properties of the leaky wave antenna.

Bei der Erfindung ist es ferner vorgesehen, dass die Lagen beim Bilden des Materialstapels untereinander so ausgerichtet werden, dass sie die Leckwellenantenne bilden, und der Materialstapel kontinuierlich in einer Produktionsrichtung bewegt wird, wobei vor dem Bilden des Materialstapels, ausgehend vom jeweiligen Einspeisepunkt, die Ɩffnung in einem festgelegten Abstand von der zumindest einen Leitung, welcher den Koppelfaktor bestimmt, in einer Ebene quer zur Produktionsrichtung mittels einer Schneidevorrichtung eingebracht wird. Dadurch kann eine Leckwellenantenne mit theoretisch beliebig groƟer LeitungslƤnge ermƶglicht werden.The invention also provides for the layers to be aligned with one another when the material stack is formed in such a way that they form the leaky wave antenna, and the material stack is moved continuously in one production direction, with the opening before the material stack is formed, starting from the respective feed point is introduced at a fixed distance from the at least one line, which determines the coupling factor, in a plane transverse to the production direction by means of a cutting device. This allows a leaky wave antenna with theoretically any length of line to be made possible.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass die Schneidevorrichtung die Ɩffnung durch Stanzen, Laser-Schneiden oder einer Kombination daraus einbringt. Dadurch kann ein Einbringen der Ɩffnung fĆ¼r ein jeweiliges Antennenelement auf einfache und kostengĆ¼nstige Weise erreicht werden, wobei die jeweilige Position der Ɩffnung flexibel einstellbar ist, insbesondere in einer Ebene quer zur Produktionsrichtung und somit die Einstellung des jeweiligen Koppelfaktors einfach erfolgt.In a development of the invention, it is provided that the cutting device introduces the opening by punching, laser cutting or a combination thereof. This allows the opening for a respective antenna element to be introduced in a simple and cost-effective manner, with the respective position of the opening being flexibly adjustable, in particular in a plane transverse to the production direction, and the respective coupling factor thus being set easily.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass das Verbinden durch Laminieren, Verkleben, Verpressen oder einer Kombination daraus erfolgt. Dies erlaubt eine einfache und zuverlƤssige mechanische Verbindung des Materialstapels wƤhrend der kontinuierlichen Bewegung in der Produktionsrichtung im Herstellungsverfahren.In a development of the invention, it is provided that the connection takes place by lamination, gluing, pressing or a combination thereof. This allows a simple and reliable mechanical connection of the material stack during continuous movement in the production direction in the manufacturing process.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass das jeweilige Koppelmittel fĆ¼r das jeweilige Antennenelement durch den Abstand zwischen dem jeweiligen Antennenelement und der zumindest einen Leitung, in einer Ebene quer zur zumindest einen Leitung, gebildet ist, wodurch der Koppelfaktor bestimmt ist. Dadurch wird erreicht, dass der Koppelfaktor auf einfache Weise eingestellt werden kann, ohne dass weitere strukturelle MaƟnahmen nƶtig sind.In a development of the invention, it is provided that the respective coupling means for the respective antenna element is formed by the distance between the respective antenna element and the at least one line, in a plane transverse to the at least one line, which determines the coupling factor. The result of this is that the coupling factor can be set in a simple manner without further structural measures being necessary.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass die untere Schicht einen ersten Quer-Ɯberstand und/oder die obere Schicht einen zweiten Quer-Ɯberstand in einer Ebene quer zur zumindest einen Leitung ausweist/aufweisen, welche Quer-ƜberstƤnde gegenĆ¼ber der Leitungslage und/oder der ersten Isolierlage und/oder der zweiten Isolierlage hervorstehen, und der erste und/oder zweite Quer-Ɯberstand mit der jeweils anderen der unteren Schicht und/oder der oberen Schicht in einem dem Schritt i nachfolgenden Verfahrensschritt verbunden wird. Dadurch kann eine elektromagnetische Abschirmung am Rand des Materialverbunds der Leckwellenleitung geschaffen werden, welche eine unerwĆ¼nschte Abstrahlung von Signalen, welche in die zumindest eine Leitung eingekoppelt werden, reduziert.In a development of the invention, it is provided that the lower layer has/have a first transverse overhang and/or the upper layer has/have a second transverse overhang in a plane transverse to the at least one line, which transverse overhangs relative to the line layer and/or or the first insulating layer and/or the second insulating layer, and the first and/or second transverse projection is connected to the other of the lower layer and/or the upper layer in a method step subsequent to step i becomes. As a result, electromagnetic shielding can be created at the edge of the composite material of the leaky wave line, which reduces undesired emission of signals that are coupled into the at least one line.

Bei der Erfindung ist es ferner vorgesehen, dass die untere Schicht einen ersten LƤngs-Ɯberstand und die obere Schicht einen zweiten LƤngs-Ɯberstand in einer Ebene lƤngs zur zumindest einen Leitung ausweist/aufweisen, welche LƤngs-ƜberstƤnde gegenĆ¼ber der Leitungslage und/oder der ersten Isolierlage und/oder der zweiten Isolierlage hervorstehen, und zwischen die jeweiligen LƤngs-ƜberstƤnde ein Adapterelement in einem dem Schritt i nachfolgenden Verfahrensschritt eingebracht wird. Durch das Adapterelement kann eine elektrische oder mechanische Kopplung des Materialverbunds der Leckwellenantenne an einem Befestigungspunkt oder einem elektrischen Kontaktelement geschaffen werden.The invention also provides that the lower layer has/have a first longitudinal overhang and the upper layer has/have a second longitudinal overhang in a plane along the at least one line, which longitudinal overhangs relative to the line layer and/or the first Insulating layer and/or the second insulating layer protrude, and an adapter element is introduced between the respective longitudinal projections in a method step following step i. The adapter element can be used to create an electrical or mechanical coupling of the composite material of the leaky-wave antenna at a fastening point or an electrical contact element.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass zumindest eine Durchkontaktierung, welche die untere Schicht mit der oberen Schicht (verbindet, in einem dem Schritt i nachfolgenden Verfahrensschritt eingebracht wird. Dadurch kann die elektromagnetische Kopplung von Signalen auf zwei oder mehreren Leitungen im Materialverbund der Leckwellenantenne reduziert werden, oder eine unerwĆ¼nschte Abstrahlung von Signalen von einem offenen Rand des Materialverbunds der Leckwellenleitung, welche in die zumindest eine Leitung eingekoppelt werden, reduziert werden.In a further development of the invention, it is provided that at least one via, which connects the lower layer to the upper layer (, is introduced in a method step following step i. This enables the electromagnetic coupling of signals on two or more lines in the material composite of the Leaky-wave antenna can be reduced, or undesired emission of signals from an open edge of the composite material of the leaky-wave line, which are coupled into the at least one line, can be reduced.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass das jeweilige Koppelmittel fĆ¼r das jeweilige Antennenelement durch eine Koppelstruktur gebildet ist, welche den Koppelfaktor zwischen der zumindest einen Leitung, und dem jeweiligen Antennenelement bestimmt, wobei ein elektrisch leitendes Material als Koppellage des Materialverbunds bereitgestellt und entsprechend fĆ¼r das jeweilige Antennenelement strukturiert wird, und zwischen der ersten Isolierlage und der zweiten Isolierlage zueinander ausgerichtet angeordnet wird, und alle zueinander ausgerichteten angeordneten Lagen den Materialstapel vor dem AusfĆ¼hren von Schritt i bilden. Dadurch wird erreicht, dass durch Hinzunahme eines weiteren strukturellen Mittels in Form der Koppelstruktur, beispielsweise ein Richtkoppler oder ein Phasenschieber, fĆ¼r die Einstellung des Koppelfaktors weitere Freiheitsgrade ermƶglicht werden. Beispielsweise kann eine Kopplung fĆ¼r eine zirkular polarisierte Antenne realisiert werden.In a development of the invention, it is provided that the respective coupling means for the respective antenna element is formed by a coupling structure which determines the coupling factor between the at least one line and the respective antenna element, with an electrically conductive material is provided as a coupling layer of the composite material and structured accordingly for the respective antenna element, and is arranged between the first insulating layer and the second insulating layer aligned with one another, and all arranged layers aligned with one another form the material stack before step i is carried out. The result of this is that by adding a further structural means in the form of the coupling structure, for example a directional coupler or a phase shifter, further degrees of freedom are made possible for setting the coupling factor. For example, a coupling for a circularly polarized antenna can be implemented.

In einer Weiterbildung der Erfindung ist es vorgesehen, dass die Koppellage der Leitungslage entspricht, wodurch die Koppelstruktur und die Leitung in derselben Lage hergestellt werden kƶnnen und wodurch das Verfahren vereinfacht wird.In a development of the invention, it is provided that the coupling layer corresponds to the line layer, which means that the coupling structure and the line can be produced in the same layer and the method is simplified.

Es ist gĆ¼nstig, wenn die erste und die zweite Isolierlage, die Leitungslage sowie die untere und obere Schicht jeweils ein Material in streifenfƶrmiger Form sind, welche Lagen in aufgerollter Form dem Verfahren zugefĆ¼hrt, dort abgerollt und in den entsprechenden Verfahrensschritten bereitgestellt werden.It is favorable if the first and the second insulating layer, the line layer and the lower and upper layer are each a material in strip form, which layers are fed to the process in rolled form, unrolled there and made available in the corresponding process steps.

Die genannten Merkmale sind untereinander kombinierbar, wodurch weitere VorzĆ¼ge der Erfindung erzielt werden kƶnnen.The features mentioned can be combined with one another, as a result of which further advantages of the invention can be achieved.

Die Erfindung wird nachfolgend anhand von in den beigeschlossenen Zeichnungen dargestellten AusfĆ¼hrungsbeispielen nƤher erlƤutert. In den Zeichnungen zeigt:

Fig. 1
schematisch einen Querschnitt eines ersten AusfĆ¼hrungsbeispiels einer erfindungsgemƤƟen Leckwellenantenne,
Fig. 2
schematisch eine Aufsicht des ersten AusfĆ¼hrungsbeispiels gemƤƟ Fig. 1,
Fig. 3
schematisch eine Aufsicht eines zweiten AusfĆ¼hrungsbeispiels einer erfindungsgemƤƟen Leckwellenantenne,
Fig. 4
eine schematische Darstellung eines ersten AusfĆ¼hrungsbeispiels einer Produktionsanlage zur DurchfĆ¼hrung des erfindungsgemƤƟen Herstellungsverfahrens,
Fig. 5
eine schematische Darstellung eines zweiten AusfĆ¼hrungsbeispiels einer Produktionsanlage zur DurchfĆ¼hrung des erfindungsgemƤƟen Herstellungsverfahrens,
Fig. 6-8
Darstellungen fĆ¼r verschiedene zeitliche Abfolgen der erfindungsgemƤƟen Verfahrensschritte,
Fig. 9
schematisch ein weiteres AusfĆ¼hrungsbeispiel einer erfindungsgemƤƟen Leckwellenantenne in einem Schnitt quer zur Leitungserstreckung,
Fig. 10-12
schematisch AusfĆ¼hrungsbeispiele mit verschiedenen Quer-ƜberstƤnden,
Fig. 13
schematisch ein weiteres AusfĆ¼hrungsbeispiel einer erfindungsgemƤƟen Leckwellenantenne in einem Schnitt lƤngs zur Leitungserstreckung,
Fig. 14, 15
schematisch AusfĆ¼hrungsbeispiele mit verschiedenen LƤngs-ƜberstƤnden und Quer-Randbereichen,
Fig. 16
eine schematische Darstellung eines Kommunikationssystems mit der Leckwellenantenne gemƤƟ Fig. 1.
The invention is explained in more detail below with reference to exemplary embodiments illustrated in the enclosed drawings. In the drawings shows:
1
schematically a cross section of a first embodiment of a leaky wave antenna according to the invention,
2
schematically shows a top view of the first exemplary embodiment according to FIG 1 ,
3
schematically a top view of a second embodiment of a leaky wave antenna according to the invention,
4
a schematic representation of a first exemplary embodiment of a production plant for carrying out the manufacturing method according to the invention,
figure 5
a schematic representation of a second exemplary embodiment of a production plant for carrying out the manufacturing method according to the invention,
Figures 6-8
Representations for different chronological sequences of the method steps according to the invention,
9
schematically another embodiment of a leaky wave antenna according to the invention in a section transverse to the line extension,
Figures 10-12
schematic examples with different transverse overhangs,
13
schematically another embodiment of a leaky wave antenna according to the invention in a section along the line extension,
14, 15
schematic examples with different longitudinal overhangs and transverse edge areas,
16
a schematic representation of a communication system with the leaky wave antenna according to FIG 1 .

Fig. 1 stellt ein erstes AusfĆ¼hrungsbeispiel einer erfindungsgemƤƟen Leckwellenantenne 100 schematisch in einer Querschnitts-Ansicht dar. 1 shows a first embodiment of a leaky wave antenna 100 according to the invention schematically in a cross-sectional view.

Die Leckwellenantenne 100 weist zwei Leitungen 110, 111 auf, welche in einer Isolierschicht 120 eingebettet sind und eine symmetrische Streifenleitung bilden.The leaky wave antenna 100 has two lines 110, 111 which are embedded in an insulating layer 120 and form a symmetrical stripline.

Die Leitungen 110, 111 liegen in einer Ebene und bilden eine gemeinsame Leitungslage 115.The lines 110, 111 lie in one plane and form a common line layer 115.

Die Isolierschicht 120 weist eine erste Isolierlage 121 und eine zweite Isolierlage 122 auf, welche vorzugsweise jeweils durch ein Schaumstoffmaterial gebildet sind.The insulating layer 120 has a first insulating layer 121 and a second insulating layer 122, which are preferably each formed by a foam material.

Die Isolierschicht 120 ist zwischen einer elektrisch leitenden unteren Schicht 130 und einer elektrisch leitenden oberen Schicht 140 angeordnet.The insulating layer 120 is arranged between an electrically conductive lower layer 130 and an electrically conductive upper layer 140 .

Es ist erkennbar, dass die Leitungen 110, 111 zwischen der ersten Isolierlage 121 und der zweiten Isolierlage 122 angeordnet sind.It can be seen that the lines 110, 111 are arranged between the first insulating layer 121 and the second insulating layer 122.

In der oberen Schicht 140 sind eine Vielzahl an Antennenelementen in Form von Ɩffnungen 150, 155 entlang der Leitungen 110, 111 eingebracht.A large number of antenna elements in the form of openings 150, 155 along the lines 110, 111 are introduced in the upper layer 140. FIG.

Die untere Schicht 130 und die obere Schicht 140, die erste Isolierlage 121 und die zweite Isolierlage 122 bilden gemeinsam mit der Leitungslage 115 einen Materialstapel beziehungsweise einen Materialverbund 303.The lower layer 130 and the upper layer 140, the first insulating layer 121 and the second insulating layer 122 together with the line layer 115 form a material stack or a material composite 303.

Mit dem Materialstapel ist ein loser Stapel an Schichten und Lagen gemeint, die welche mechanisch erst verbunden werden, beispielsweise durch Kleben. Mit dem Materialverbund 303 ist der bereits mechanisch verbundene Materialstapel gemeint.The material stack means a loose stack of layers and plies, which are first connected mechanically, for example by gluing. The material composite 303 means the already mechanically connected material stack.

In der Figur ist ein Quer-Kernbereich 400 erkennbar, welcher einen Abschnitt des Materialstapels (beziehungsweise des Materialverbunds 303) mit den Leitungen 110, 111 beinhaltet.A transverse core area 400 can be seen in the figure, which contains a section of the material stack (or the material composite 303) with the lines 110, 111.

Die Leckwellenantenne 100 weist ferner LƤngs-Randbereiche 401, 402 auf, welche den Rand beziehungsweise Abschluss des Materialstapels beziehungsweise des Materialverbunds 303 bilden und lƤngs oder parallel zu den Leitungen 110, 111 verlaufen.The leaky wave antenna 100 also has longitudinal edge regions 401, 402, which form the edge or end of the material stack or the material composite 303 and run along or parallel to the lines 110, 111.

Die LƤngs-Randbereiche 401, 402 kƶnnen beispielsweise, wie in der Figur dargestellt, einen gemeinsamen Abschluss der Lagen und Schichten des Materialstapels lƤngs der Leitungen 110, 111 bilden.The longitudinal edge regions 401, 402 can, for example, as shown in the figure, form a joint termination of the plies and layers of the material stack along the lines 110, 111.

In Fig. 2 ist die Leckwellenantenne 100 schematisch in Aufsicht gezeigt.In 2 the leaky wave antenna 100 is shown schematically in plan view.

Die beiden Leitungen 110, 111 sind in diesem Beispiel zum Einspeisen von elektrischen Signalen mit jeweils verschiedenen Frequenzen, und kƶnnen beispielsweise von einer Kommunikationsvorrichtung zur Verwendung in einem Flugzeug, einem Zug oder einem GebƤude erzeugt sein.In this example, the two lines 110, 111 are for feeding in electrical signals, each with different frequencies, and can be generated, for example, by a communication device for use in an airplane, a train or a building.

Die Leitungen 110, 111 weisen jeweils einen Einspeisepunkt 101, 102 auf und verlaufen parallel.The lines 110, 111 each have a feed point 101, 102 and run parallel.

Ein paralleler Verlauf von zwei oder mehreren Leitungen ist fĆ¼r eine sehr lange Leckwellenantenne vorteilhaft, da theoretisch eine beliebig groƟe LeitungslƤnge der Leckwellenantenne erzeugt werden kann.Running two or more lines in parallel is advantageous for a very long leaky-wave antenna, since theoretically any length of line of the leaky-wave antenna can be produced.

Die Ɩffnungen 150-153, 155-159 weisen jeweils eine SchlitzlƤnge 103, 105 und eine Schlitzbreite 104, 106 auf, wobei die Geometrie der Ɩffnungen durch die Mittenfrequenz der jeweiligen Antennenelemente 150-153, 155-158 bestimmt ist. In diesem Beispiel sind die Ɩffnungen 150-153, 155-159 gleich groƟ, jedoch sind die Ɩffnungen 150-153, 155-159 unterschiedlich weit von der jeweiligen Leitung 110, 111 beabstandet.The openings 150-153, 155-159 each have a slot length 103, 105 and a slot width 104, 106, the geometry of the openings being determined by the center frequency of the respective antenna elements 150-153, 155-158. In this example, the openings 150-153, 155-159 are of the same size, but the openings 150-153, 155-159 are spaced at different distances from the respective line 110, 111.

Zwischen den Leitungen 110, 111 und einem jeweiligen Antennenelement 150-153, 155-158 aus der Vielzahl an Antennenelementen ist jeweils ein Koppelmittel vorgesehen, welches einen jeweiligen Koppelfaktor festlegt.A coupling means is provided between the lines 110, 111 and a respective antenna element 150-153, 155-158 from the plurality of antenna elements, which coupler defines a respective coupling factor.

Der jeweilige Koppelfaktor beschreibt die elektromagnetische Kopplung zwischen der Leitung 110, 111 und dem jeweiligen Antennenelement 150-153, 155-158.The respective coupling factor describes the electromagnetic coupling between the line 110, 111 and the respective antenna element 150-153, 155-158.

Das jeweilige Koppelmittel ist in diesem AusfĆ¼hrungsbeispiel durch einen Querabstand 160-163, 165-168 zwischen den Leitungen 110, 111 und dem jeweiligen Antennenelement 150-153, 155-158 gebildet. Der Querabstand 160-163, 165-168 ist dabei in einer Ebene quer den Leitungen 110, 111 bestimmt und kann beispielsweise in der Ebene vom Mittelpunkt der Leitung 110, 111 bis zu einer Kante des Antennenelements 150-153, 155-158 gemessen werden. Andere Definitionen sind ebenso zulƤssig, sofern sie auf alle QuerabstƤnde 160-163, 165-168 angewandt werden.In this exemplary embodiment, the respective coupling means is formed by a transverse spacing 160-163, 165-168 between the lines 110, 111 and the respective antenna element 150-153, 155-158. The transverse distance 160-163, 165-168 is determined in a plane across the lines 110, 111 and can be measured, for example, in the plane from the center point of the line 110, 111 to an edge of the antenna element 150-153, 155-158. Other definitions are also permissible provided they are applied to all lateral distances 160-163, 165-168.

Ausgehend vom jeweiligen Einspeisepunkt 101, 102 nimmt der Koppelfaktor des jeweiligen Antennenelements 150-153, 155-158 entlang der jeweiligen Leitung 110, 111, das heiƟt mit zunehmendem LƤngsabstand 170-173, 175-178 zu.Starting from the respective feed point 101, 102, the coupling factor of the respective antenna element 150-153, 155-158 increases along the respective line 110, 111, ie with increasing longitudinal spacing 170-173, 175-178.

Die Leckwellenantenne 100 weist ein statische Abstrahlcharakteristik auf. GrundsƤtzlich ist aber auch eine Strahlschwenkung durch BerĆ¼cksichtigung entsprechender Mechanismen mƶglich, wie beispielsweise in der WO2001043228A1 ausgefĆ¼hrt.The leaky wave antenna 100 has a static radiation characteristic. Basically, however, is also a beam deflection possible by considering appropriate mechanisms, such as in the WO2001043228A1 executed.

Es ist gĆ¼nstig, wenn die Vielzahl an Antennenelementen der Leckwellenantenne 100 zumindest zehn, bevorzugt zumindest 30 und besonders bevorzugt zumindest fĆ¼nfzig Antennenelemente 150-153, 155-158 umfasst. Dadurch ist die Leckwellenantenne 100 speziell zur Verwendung bei der Montage an langerstreckten Objekten geeignet, insbesondere Zugwaggons, FlugzeugrĆ¼mpfe oder entsprechende GebƤude.It is favorable if the multiplicity of antenna elements of the leaky wave antenna 100 comprises at least ten, preferably at least 30 and particularly preferably at least fifty antenna elements 150-153, 155-158. As a result, the leaky wave antenna 100 is particularly suitable for use when mounting on elongated objects, in particular train cars, aircraft fuselages or corresponding buildings.

Es ist gĆ¼nstig, wenn die LƤnge der Leitungen 101, 102 der Leckwellenantenne 100 zumindest fĆ¼nf Meter, bevorzugt zumindest zehn Meter und besonders bevorzugt zumindest 20 Meter betrƤgt.It is favorable if the length of the lines 101, 102 of the leaky wave antenna 100 is at least five meters, preferably at least ten meters and particularly preferably at least 20 meters.

In der Figur ist ein LƤngs-Kernbereich 500 des erkennbar, welcher einen Abschnitt des Materialstapels beziehungsweise des Materialverbunds 303 mit den Leitungen 110, 111 beinhaltet.A longitudinal core region 500 of the can be seen in the figure, which contains a section of the material stack or of the material composite 303 with the lines 110, 111.

Die Leckwellenantenne 100 weist ferner Quer-Randbereiche 501, 502 auf, welche den Rand beziehungsweise Abschluss des Materialstapels beziehungsweise des Materialverbunds 303 bilden und quer zu den Leitungen 110, 111 verlaufen.The leaky wave antenna 100 also has transverse edge regions 501, 502, which form the edge or end of the material stack or the material composite 303 and run transversely to the lines 110, 111.

Die Quer-Randbereiche 501, 502 kƶnnen beispielsweise, wie in der Figur dargestellt, einen gemeinsamen Abschluss der Lagen und Schichten des Materialstapels quer zu den Leitungen 110, 111 bilden. In dieser spezifischen Anordnung tritt keine Untergliederung in Bereiche auf, sondern der LƤngs-Kernbereich 500 und die Quer-Randbereiche 501, 502 bilden einen gemeinsamen Bereich.The transverse edge regions 501, 502 can, for example, as shown in the figure, form a joint termination of the plies and layers of the material stack transverse to the lines 110, 111. In this specific arrangement, no division into areas occurs, but the longitudinal core area 500 and the transverse edge areas 501, 502 form a common area.

Die Einspeisepunkte 101, 102 der Leitungen 110, 111 sind in diesem Beispiel im Quer-Randbereiche 501 gelegen.The feed points 101, 102 of the lines 110, 111 are located in the transverse edge area 501 in this example.

Es kann alternativ jedoch auch vorgesehen sein, dass die Einspeisepunkte 101, 102 der Leitungen 110, 111 im LƤngs-Kernbereich 500 gelegen sind.Alternatively, however, it can also be provided that the feed points 101, 102 of the lines 110, 111 are located in the longitudinal core region 500.

In Fig. 3 ist ein zweites AusfĆ¼hrungsbeispiel fĆ¼r eine Leckwellenantenne 200 schematisch in Aufsicht gezeigt. In diesem Beispiel ist das jeweilige Koppelmittel durch eine Koppelstruktur in Form eines Richtkopplers gebildet.In 3 a second exemplary embodiment of a leaky wave antenna 200 is shown schematically in a plan view. In this example, the respective coupling means is formed by a coupling structure in the form of a directional coupler.

Die Leitungen 210, 211 weisen jeweils einen Einspeisepunkt 201, 202 auf und verlaufen parallel.The lines 210, 211 each have a feed point 201, 202 and run parallel.

Die Ɩffnungen 250-253, 255-258 umfassen jeweils zwei Teil-Ɩffnungen in Form von jeweils Schlitzantennen auf, welche zueinander in einem Winkel von 90Ā° verdreht angeordnet sind und, mittels einer entsprechend ausgelegten Kopplung, ein zirkular polarisiertes elektromagnetisches Feld der Leckwellenantenne 200 erzeugen. Die Kopplung ist dabei dazu eingerichtet, die jeweiligen zwei Teil-Ɩffnungen von der jeweiligen Leitung 210, 211 in einem sich um 90Ā° unterscheidenden Phasenwinkel zu speisen, wobei ferner die amplitudenmƤƟige Ankopplung lƤngs der jeweiligen Leitung 210, 211 erfindungsgemƤƟ abnimmt.The openings 250-253, 255-258 each include two partial openings in the form of slot antennas, which are arranged rotated at an angle of 90Ā° to one another and, by means of a correspondingly designed coupling, generate a circularly polarized electromagnetic field of the leaky wave antenna 200 . The coupling is set up to feed the respective two partial openings from the respective line 210, 211 at a phase angle differing by 90Ā°, with the amplitude coupling along the respective line 210, 211 also decreasing according to the invention.

In diesem Beispiel sind die Ɩffnungen 250-253, 255-258 gleich groƟ und gleich geformt und unterschiedlich weit von der jeweiligen Leitung 210, 211 beabstandet.In this example, the openings 250-253, 255-258 are the same size and shape and are spaced different distances from the respective conduit 210, 211.

Zwischen den Leitungen 110, 111 und einem jeweiligen Antennenelement 150-153, 155-158 aus der Vielzahl an Antennenelementen ist jeweils ein Koppelmittel vorgesehen, welches einen jeweiligen Koppelfaktor festlegt.A coupling means is provided between the lines 110, 111 and a respective antenna element 150-153, 155-158 from the plurality of antenna elements, which coupler defines a respective coupling factor.

Der jeweiligen Koppelfaktor beschreibt die elektromagnetische Kopplung zwischen der Leitung 110, 111 und dem jeweiligen Antennenelement 150-153, 155-158.The respective coupling factor describes the electromagnetic coupling between the line 110, 111 and the respective antenna element 150-153, 155-158.

Das jeweilige Koppelmittel ist in diesem AusfĆ¼hrungsbeispiel durch einen Querabstand 160-163, 165-168 zwischen den Leitungen 110, 111 und dem jeweiligen Antennenelement 150-153, 155-158 gebildet. Der Querabstand 160-163, 165-168 ist dabei in einer Ebene quer den Leitungen 110, 111 bestimmt und kann beispielsweise in der Ebene vom Mittelpunkt der Leitung 110, 111 bis zu einer Kante des Antennenelements 150-153, 155-158 gemessen werden. Andere Definitionen fĆ¼r die Bestimmung des Querabstands sind ebenso mƶglich.In this exemplary embodiment, the respective coupling means is formed by a transverse spacing 160-163, 165-168 between the lines 110, 111 and the respective antenna element 150-153, 155-158. The transverse distance 160-163, 165-168 is determined in a plane across the lines 110, 111 and can be measured, for example, in the plane from the center point of the line 110, 111 to an edge of the antenna element 150-153, 155-158. Other definitions for determining the transverse distance are also possible.

Ausgehend vom jeweiligen Einspeisepunkt 101, 102 nimmt der Koppelfaktor des jeweiligen Antennenelements 150-153, 155-158 entlang der jeweiligen Leitung 110, 111, das heiƟt mit zunehmendem LƤngsabstand 170-173, 175-178 zu.Starting from the respective feed point 101, 102, the coupling factor of the respective antenna element 150-153, 155-158 increases along the respective line 110, 111, ie with increasing longitudinal spacing 170-173, 175-178.

Das jeweilige Koppelmittel ist durch den Quer-Abstand 160-163, 165-168 gebildet und somit kein dezidiertes Strukturelles Mittel und ist folglich zwischen der ersten Isolierlage 221 und der zweiten Isolierlage 222 gebildet.The respective coupling means is formed by the transverse distance 160-163, 165-168 and is therefore not a dedicated structural means and is consequently formed between the first insulating layer 221 and the second insulating layer 222.

Fig. 4 zeigt ein erstes Beispiel fĆ¼r eine Produktionsanlage 1 zur DurchfĆ¼hrung eines Verfahren 300 zur Herstellung der Leckwellenantenne 100 nach Fig. 1 und 2. 4 1 shows a first example of a production plant 1 for carrying out a method 300 for producing the leaky wave antenna 100 1 and 2 .

Die Leckwellenantenne 100 weist eine Vielzahl an Antennenelementen, zwei Leitungen 110, 111 mit jeweils einem Einspeisepunkt 101, 102 sowie den Materialverbund 303 auf.The leaky wave antenna 100 has a large number of antenna elements, two lines 110, 111, each with a feed point 101, 102, and the composite material 303.

Die Produktionsanlage 1 weist verschiedene MaterialzufĆ¼hrungen zum Bereitstellen von Materialien in Form von gerollten Schichten beziehungsweise Lagen auf:

  • Eine untere Schicht 130 aus Kupfer auf einer ersten Rolle 330,
  • Eine erste Isolierlage 121 aus Schaumstoff-Material auf einer zweiten Rolle 321,
  • Eine Leitungslage 115 aus einem Kupfer-/ KunststoffVerbund auf einer dritten Rolle 310, wobei die Leitungslage 115 die Leitungen 110, 111 umfasst, welche auf einer Kunststoff-Folie als TrƤgerschicht aufgebracht sind,
  • Eine zweite Isolierlage 122 aus Schaumstoff-Material auf einer vierten Rolle 322,
  • Eine obere Schicht 140 aus Kupfer auf einer fĆ¼nften Rolle 340.
The production plant 1 has various material feeds for providing materials in the form of rolled layers or plies:
  • A lower layer 130 of copper on a first roll 330,
  • A first insulating layer 121 made of foam material on a second roll 321,
  • A line layer 115 made of a copper/plastic composite on a third roll 310, the line layer 115 comprising the lines 110, 111, which are applied to a plastic film as a carrier layer,
  • A second insulating layer 122 of foam material on a fourth roll 322,
  • A top layer 140 of copper on a fifth roll 340.

Die erste und zweite Isolierlage 121, 122 kann jeweils auch aus einem anderen Material gebildet sein, welches beispielsweise nur als Abstandhalter fungiert, das heiƟt eine relative DielektrizitƤtszahl von nahezu Eins aufweist.The first and second insulating layer 121, 122 can each also be formed from a different material which, for example, only functions as a spacer, ie has a relative permittivity of almost one.

Die untere und obere Schicht 130, 130 kann auch aus einem anderen elektrisch leitenden Material gebildet sein, beispielsweise Aluminium, versilbertes Kupfer, ein leitendender Kunststoffverbund, geprƤgte oder gewellte Folien, Gitter oder Gewebe.The bottom and top layers 130, 130 may also be formed of other electrically conductive material, such as aluminum, silver-plated copper, a conductive plastic composite, embossed or corrugated foil, mesh, or fabric.

Die Produktionsanlage 1 weist eine Unterlage 302 auf, Ć¼ber welche die untere Schicht 130 Ć¼ber Umlenk-Rollen 350, 351 gefĆ¼hrt wird. Die Umlenk-Rollen 350, 351 dienen auch dazu, dass die untere Schicht 130 gespannt wird und so die nachfolgende Ausrichtung der einzelnen Schichten beziehungsweise Lagen untereinander gewƤhrleistet beziehungsweise unterstĆ¼tzt wird.The production plant 1 has a base 302 over which the lower layer 130 is guided via deflection rollers 350, 351. The deflection rollers 350, 351 also serve to tension the lower layer 130 and thus ensure or support the subsequent alignment of the individual layers or plies with one another.

Die untere Schicht 130 wird fortwƤhrend in einer Produktionsrichtung 301 Ć¼ber die Unterlage 302 bewegt und die erfindungsgemƤƟen Verfahrensschritte werden ausgefĆ¼hrt.The lower layer 130 is continuously moved over the base 302 in a production direction 301 and the method steps according to the invention are carried out.

Die erste Isolierlage 121 wird Ć¼ber eine Umlenk-Rolle 352 einer Laminier-Vorrichtung 360 mit einer Vorspann-RollenfĆ¼hrung 371 zugefĆ¼hrt, wobei eine Transfer-Rolle 372 durch Anpressen und Erhitzen eine Laminier-Verbindung zwischen der unteren Schicht 130 und der ersten Isolierlage 121 herstellt.The first insulating layer 121 is fed via a deflection roller 352 to a laminating device 360 with a pretensioning roller guide 371, with a transfer roller 372 producing a laminating connection between the lower layer 130 and the first insulating layer 121 by pressing and heating.

Als Lamination wird in diesem Zusammenhang einerseits ein stoffschlĆ¼ssiges, thermisches FĆ¼geverfahren ohne Hilfsmaterialien bezeichnet, womit das Verbinden einer dĆ¼nnen, oftmals folienartigen Schicht mit einem TrƤgermaterial mittels eines Klebers gemeint ist.In this context, lamination refers on the one hand to a cohesive, thermal joining process without auxiliary materials, which means the joining of a thin, often foil-like layer to a carrier material using an adhesive.

Als Lamination wird andererseits auch das Verbinden mindestens zweier Folienschichten von Thermoplasten durch Erreichen der GlasĆ¼bergangstemperatur und entsprechenden Drucks bezeichnet.On the other hand, lamination also refers to the joining of at least two film layers of thermoplastics by reaching the glass transition temperature and corresponding pressure.

NatĆ¼rlich sind auch andere Verfahren zur Verbindung der Lagen und Schichten mƶglich.Of course, other methods of joining the plies and layers are also possible.

Es ist auch mƶglich, dass keine flƤchige Verbindung zwischen den Lagen und Schichten erfolgt, sondern nur an TeilflƤchen oder punktuell.It is also possible that there is no surface connection between the plies and layers, but only on partial surfaces or at certain points.

Mittels der RollenfĆ¼hrung 371 erfolgt eine Justierung beziehungsweise die Herstellung einer zueinander ausgerichteten Anordnung von Lagen aus der unteren Schicht 130 und der ersten Isolierlage 121, wodurch ein Materialstapel gebildet wird.The roller guide 371 is used to adjust or to produce a mutually aligned arrangement of layers from the lower layer 130 and the first insulating layer 121, as a result of which a material stack is formed.

Mittels der Laminierung durch die Transfer-Rolle 372 erfolgt ein Verbinden der Lagen des Materialstapels, wodurch ein erster Teil des Materialverbunds 303 hergestellt wird. Die Transfer-Rolle 372 fĆ¼hrt dem FĆ¼geverfahren WƤrme und Druck zu.The layers of the material stack are connected by means of the lamination by the transfer roller 372, as a result of which a first part of the material composite 303 is produced. The transfer roller 372 applies heat and pressure to the joining process.

In diesem Beispiel ist auf der ersten Isolierlage 121 bereits ein Klebstoffmaterial aufgebracht, welches fĆ¼r die Verbindung zwischen der unteren Schicht 130 und der ersten Isolierlage 121 vorgesehen ist und durch das FĆ¼geverfahren eine dauerhafte Verklebung der unteren Schicht 130 und der ersten Isolierlage 121 erreicht wird.In this example, an adhesive material is already applied to the first insulating layer 121, which is intended for the connection between the lower layer 130 and the first insulating layer 121 and permanent adhesion of the lower layer 130 and the first insulating layer 121 is achieved by the joining method.

Die Leitungslage 115 wird Ć¼ber eine Umlenk-Rolle 353 einer Laminier-Vorrichtung 361 mit ein Vorspann-RollenfĆ¼hrung 373 zugefĆ¼hrt, wobei eine Transfer-Rolle 374 durch Anpressen und Erhitzen eine Laminier-Verbindung zwischen der ersten Isolierlage 121 und der Leitungslage 115 herstellt.The line layer 115 is fed via a deflection roller 353 to a laminating device 361 with a pretensioning roller guide 373, with a transfer roller 374 producing a laminating connection between the first insulating layer 121 and the line layer 115 by pressing and heating.

Die Justierung beziehungsweise die Herstellung einer zueinander ausgerichteten Anordnung von Lagen erfolgt mittels der RollenfĆ¼hrung 373, wodurch der bislang erzeugte Materialstapel um die Leitungslage 115 erweitert wird.The adjustment or the production of a mutually aligned arrangement of layers takes place by means of the roller guide 373, as a result of which the material stack produced up to now is expanded by the line layer 115.

Die Laminierung erfolgt analog zur Laminier-Vorrichtung 360, wodurch der bislang erzeugte Materialverbund 303 um die Leitungslage 115 erweitert wird.The lamination takes place analogously to the laminating device 360, as a result of which the composite material 303 produced up to now is expanded by the line layer 115.

Die Leitungslage 115 weist die Leitungen 110, 111 auf. Die Leitungen sind in diesem Beispiel auf einer Kunststoff-Folie als TrƤgerschicht aufgebracht, auf welcher zusƤtzlich ein Klebstoffmaterial zur Laminierung mit der ersten Isolierschicht 121 aufgebracht ist.The line layer 115 has the lines 110, 111. In this example, the lines are applied to a plastic film as a carrier layer, to which an adhesive material for lamination with the first insulating layer 121 is additionally applied.

Alternativ kƶnnten die Leitungen 110, 111 auch direkt, also ohne TrƤgerschicht, beispielsweise in Form von Kupfer-Streifen dem Verfahren zugefĆ¼hrt werden.Alternatively, the lines 110, 111 could also be supplied to the process directly, ie without a carrier layer, for example in the form of copper strips.

Die Leitungen 110, 111 weisen jeweils eine vordefinierte Leitungsbreite auf. Gemeinsam mit den Lagendicken der ersten und zweiten Isolierlage 121, 122, sowie deren dielektrischen Materialeigenschaften ist der jeweilige Wellenwiderstand der Leitungen 110, 111 definiert.The lines 110, 111 each have a predefined line width. Together with the layer thicknesses of the first and second insulating layers 121, 122 and their dielectric material properties is the respective characteristic impedance of the lines 110, 111 defined.

Die zweite Isolierlage 122 wird Ć¼ber eine Umlenk-Rolle 354 einer Laminier-Vorrichtung 362 mit ein Vorspann-RollenfĆ¼hrung 375 zugefĆ¼hrt, wobei eine Transfer-Rolle 376 durch Anpressen und Erhitzen eine Laminier-Verbindung zwischen der Leitungslage 115 und der zweiten Isolierlage 122 herstellt.The second insulating layer 122 is fed via a deflection roller 354 to a laminating device 362 with a pretensioning roller guide 375, with a transfer roller 376 producing a laminating connection between the line layer 115 and the second insulating layer 122 by pressing and heating.

Die Justierung beziehungsweise die Herstellung einer zueinander ausgerichteten Anordnung von Lagen erfolgt mittels der RollenfĆ¼hrung 375, wodurch der bislang erzeugte Materialstapel um die zweite Isolierlage 122 erweitert wird.The adjustment or the production of a mutually aligned arrangement of layers takes place by means of the roller guide 375, as a result of which the material stack produced up to now is expanded by the second insulating layer 122.

Auf der zweiten Isolierlage 122 ist bereits ein Klebstoffmaterial zur nachfolgenden Laminierung mit der Leitungslage 115 aufgebracht. Die Laminierung erfolgt analog zur Laminier-Vorrichtung 360, wodurch der bislang erzeugte Materialverbund 303 um die zweite Isolierlage 122 erweitert wird.An adhesive material for the subsequent lamination with the line layer 115 has already been applied to the second insulating layer 122 . The lamination takes place analogously to the laminating device 360, as a result of which the composite material 303 produced up to now is expanded by the second insulating layer 122.

Die obere Schicht 140 wird Ć¼ber eine Umlenk-Rolle 355 einer Schneidevorrichtung 380 in Form einer Stanzvorrichtung mit RollenfĆ¼hrung zugefĆ¼hrt.The upper layer 140 is fed via a deflection roller 355 to a cutting device 380 in the form of a punching device with roller guides.

Die Schneidevorrichtung 380 weist Spann-RollenfĆ¼hrungen 381, 382 auf, welche das Material der obere Schicht 140 auf einer Stanzunterlage 383 spannt.The cutting device 380 has tensioning roller guides 381, 382 which tension the material of the top layer 140 on a cutting pad 383.

Ferner umfasst die Schneidevorrichtung 380 einen Stempel 384, welcher durch einen Stanzhub 385 normal auf die OberflƤche der gespannten obere Schicht 140 eine Ɩffnung 150-153, 155-158 in die obere Schicht 140 einbringt. Die Form des Stempels 384 entspricht der gewĆ¼nschten Form des jeweiligen Antennenelements 150-153, 155-158. Die Stanz-Unterlage 383 ist auf den Stempel 384 abgestimmt.Furthermore, the cutting device 380 comprises a punch 384 which, by means of a punching stroke 385, makes an opening 150-153, 155-158 in the upper layer 140 normal to the surface of the tensioned upper layer 140. The shape of the stamp 384 corresponds to the desired shape of the respective antenna element 150-153, 155-158. The punching base 383 is matched to the punch 384.

Der Stempel 384 ist zudem quer zur Produktionsrichtung 301 beweglich steuerbar. Dadurch kann eine Positionierung des Stempels 384 quer zur jeweiligen Leitung 110, 111 in AbhƤngigkeit von der Entfernung ausgehend vom jeweiligen Einspeisepunkt 101, 102 in einem Abstand 160-163, 165-168 eingestellt werden, wodurch die Kopplung des jeweiligen Antennenelements 150-153, 155-158 an die jeweilige Leitung 110, 111 einstellbar ist. Die jeweilige Kopplung ist durch den jeweiligen Abstand 160-163, 165-168 zwischen dem jeweiligen Antennenelement 150-153, 155-158 und der jeweiligen Leitung 110, 111 in einer Ebene quer zur jeweiligen Leitung 110, 111 gebildet.The stamp 384 can also be movably controlled transversely to the production direction 301 . This allows positioning of the stamp 384 transversely to the respective line 110, 111 depending on the distance from the respective feed point 101, 102 at a distance 160-163, 165-168, whereby the coupling of the respective antenna element 150-153, 155 -158 to the respective line 110, 111 is adjustable. The respective coupling is formed by the respective distance 160-163, 165-168 between the respective antenna element 150-153, 155-158 and the respective line 110, 111 in a plane transverse to the respective line 110, 111.

WƤhrend des Stanzvorganges kann das zu stanzende Material kurzfristig in seiner Bewegung gestoppt werden, da die Umlenk-Rollen 355 und 356 so ausgefĆ¼hrt sind, dass sie das kurzzeitige Stoppen des Materials ausgleichen, ohne den kontinuierlichen Laminierungsprozess zu verlangsamen oder zu stoppen.During the die-cutting process, the movement of the material to be die-cut can be stopped briefly, since the deflection rollers 355 and 356 are designed in such a way that they compensate for the short-term stopping of the material without slowing down or stopping the continuous lamination process.

Alternativ dazu kann der Stempel 384 und die Stanzunterlage 383 der Schneidevorrichtung 380 wƤhrend des Stanzvorganges mit der gespannten oberen Schicht 140 mitbewegt werden. Nach dem Stanzvorgang werden dann der Stempel 384 und die Stanzunterlage 383 wieder in die ursprĆ¼ngliche Position zurĆ¼ckbewegt.Alternatively, the punch 384 and the punching pad 383 of the cutting device 380 can be moved along with the tensioned top layer 140 during the punching process. Then, after the punching process, the punch 384 and the punching pad 383 are returned to the original position.

Nach dem Stanzen wird die nun gestanzte obere Schicht 140 Ć¼ber eine Umlenk-Rolle 356 einer Laminier-Vorrichtung 363 mit ein Vorspann-RollenfĆ¼hrung 377 zugefĆ¼hrt, wobei eine Transfer-Rolle 378 durch Anpressen und Erhitzen eine Laminier-Verbindung zwischen der zweiten Isolierlage 122 und der oberen Schicht 140 herstellt.After punching, the now punched upper layer 140 is fed via a deflection roller 356 to a laminating device 363 with a pretensioning roller guide 377, with a transfer roller 378 creating a laminating connection between the second insulating layer 122 and the upper layer 140 is produced.

Die Justierung beziehungsweise die Herstellung einer zueinander ausgerichteten Anordnung von Lagen erfolgt mittels der RollenfĆ¼hrung 377, wodurch der bislang erzeugte Materialstapel um die obere Schicht 140 erweitert wird.The adjustment or the production of a mutually aligned arrangement of layers takes place by means of the roller guide 377, as a result of which the material stack produced up to now is expanded by the upper layer 140.

Auf der oberen Schicht 140 ist bereits ein Klebstoffmaterial zur nachfolgenden Laminierung mit der zweite Isolierlage 122 aufgebracht. Die Laminierung erfolgt analog zur Laminier-Vorrichtung 360, wodurch der bislang erzeugte Materialverbund 303 um die obere Schicht 140 erweitert und vervollstƤndigt wird.An adhesive material is already applied to the top layer 140 for subsequent lamination with the second insulating layer 122 . The lamination takes place analogously to the laminating device 360, as a result of which the composite material 303 produced up to now is expanded by the upper layer 140 and completed.

Durch die fortlaufende Bewegung der unteren Schicht 130 wird auch der sukzessiv entstandene Materialverbund in der Produktionsrichtung 301 fortlaufend bewegt. Dadurch wird erreicht, dass die einzelnen Schritte des Herstellungsverfahrens je Antennenelement fĆ¼r alle Antennenelemente 150-153, 155-158 aus der Vielzahl an Antennenelementen wiederholt wird.Due to the continuous movement of the lower layer 130 , the composite material that is produced successively is also continuously moved in the production direction 301 . The result of this is that the individual steps of the production method for each antenna element are repeated for all antenna elements 150-153, 155-158 from the large number of antenna elements.

Der Materialverbund 303 der Leckwellenantenne 100 ist im Schnitt A-A definiert, welcher als Schnittbild in Fig. 1 erkennbar ist.The composite material 303 of the leaky wave antenna 100 is defined in section AA, which is shown as a sectional image in 1 is recognizable.

Fig. 5 zeigt ein zweites Beispiel fĆ¼r eine Produktionsanlage 2 zur DurchfĆ¼hrung eines Verfahren 400 zur Herstellung der Leckwellenantenne 200. figure 5 shows a second example of a production plant 2 for carrying out a method 400 for manufacturing the leaky wave antenna 200.

Die Produktionsanlage 2 entspricht in groƟen Teilen der Produktionsanlage 1. Daher gelten die obigen AusfĆ¼hrungen hinsichtlich der Produktionsanlage 1 der Fig. 4 gleichermaƟen.The production plant 2 corresponds to a large extent to the production plant 1. The above statements regarding the production plant 1 of FIG 4 equally.

Im Unterschied zur Produktionsanlage 1 der Fig. 4 ist das jeweilige Koppelmittel durch eine zusƤtzlich Koppelstruktur nach Fig. 3 gebildet. Insofern gelten auch die obigen AusfĆ¼hrungen fĆ¼r die Leckwellenantenne 200 der Fig. 3.In contrast to the production plant 1 of the 4 is the respective coupling means by an additional coupling structure 3 educated. In this respect, the above statements also apply to the leaky wave antenna 200 of FIG 3 .

AuƟerdem weisen die Ɩffnungen 250-253, 255-258 jeweils zwei Teil-Ɩffnungen auf, sowie eine andere Form beziehungsweise Orientierung gegenĆ¼ber den Ɩffnungen 150-153, 155-158. Daher ist der Stempel 386 dementsprechend zum Stanzen von zwei Teil-Ɩffnungen ausgebildet. Die Stanz-Unterlage 387 ist auf den Stempel 386 abgestimmt.In addition, the openings 250-253, 255-258 each have two partial openings and a different shape or orientation compared to the openings 150-153, 155-158. Therefore, the punch 386 is accordingly designed for punching two partial openings. The punching pad 387 is matched to the punch 386.

Die jeweilige Koppelstruktur in Form eines zweiteiligen Richtkopplers gebildet, welcher in diesem Beispiel mittels einem Druckverfahren als elektrisch leitfƤhige Drucktinte auf die Leitungslage 115 aufgedruckt wird. Nach dem Trocknen der Tinte kann die Lage im weiteren Laminierungsverfahren weiterverarbeitet werden.The respective coupling structure is formed in the form of a two-part directional coupler, which in this example is printed onto the line layer 115 by means of a printing process as electrically conductive printing ink. After the ink has dried, the layer can be further processed in the further lamination process.

Das Druckverfahren wird durch eine Druckvorrichtung 390 durchgefĆ¼hrt, welche bespielweise eine Druck-Matrize, eine Siebdruck-Anordnung oder einen digital ansteuerbaren Drucckopf eines Tintenstrahldruckers aufweist. Die Druckvorrichtung 390, beziehungsweise jene Teile, die des Druckbild erzeugen, ist dabei quer zur Produktionsrichtung 302 beweglich steuerbar, um eine Anpassung der Position der Koppelstruktur bezĆ¼glich der Leitungen 201, 202 zu erreichen.The printing method is carried out by a printing device 390, which has, for example, a printing matrix, a screen printing arrangement or a digitally controllable print head of an inkjet printer. The printing device 390, or those parts that generate the printed image, can be movably controlled transversely to the production direction 302 in order to achieve an adjustment of the position of the coupling structure with respect to the lines 201, 202.

Im Verfahren 400 entspricht die Koppellage, welche die Koppelstrukturen umfasst, der Leitungslage 215.In method 400, the coupling layer, which includes the coupling structures, corresponds to line layer 215.

Alternativ kann die jeweilige Koppelstruktur beispielsweise auch durch lokale Klebeelemente durch einfaches Kleben aufgebracht werden.Alternatively, the respective coupling structure can also be applied, for example, by simple gluing using local adhesive elements.

Ferner kann die jeweilige Koppelstruktur beispielsweise bereits vorab auf einer TrƤgerschicht der Leitungslage 215 erzeugt und bereitgestellt werden.Furthermore, the respective coupling structure can, for example, already be produced and provided in advance on a carrier layer of the line layer 215 .

Der Materialverbund 304 der Leckwellenantenne 200 ist im Schnitt B-B definiert.The composite material 304 of the leaky wave antenna 200 is defined in section BB.

In Fig. 6 bis 8 sind Beispiele fĆ¼r die Abfolge der Schritte eines erfindungsgemƤƟen Verfahrens dargestellt.In Figures 6 to 8 Examples of the sequence of steps of a method according to the invention are shown.

Die Schritte h und i kƶnnen auf mehrere der Schritte a bis g verteilt sein, so wie in den Fig. 4 und 5 dargestellt. Mit anderen Worten muss nicht erst ein vollstƤndiger Materialstapel gebildet werden, welcher sƤmtliche Lagen aufweist und erst dann eine Verbindung zwischen den einzelnen Lagen hergestellt wird. Es kann beispielsweise auch vorgesehen sein, dass einzelne Lagen sukzessive miteinander aufgerichtet und verbunden werden.Steps h and i can be spread over several of steps a to g, as in FIGS 4 and 5 shown. In other words, it is not necessary to first form a complete material stack, which has all the layers, and only then establish a connection between the individual layers. Provision can also be made, for example, for individual layers to be successively erected and connected to one another.

In Fig. 6 ist die Reihenfolge der Verfahrensschritte gemƤƟ dem unabhƤngigen Anspruch dargestellt.In 6 shows the order of the method steps according to the independent claim.

In Fig. 7 ist werden die Schritte a und b sequentiell angewandt. Schritt c erfolgt unabhƤngig von den anderen Schritten. Schritt d bis g erfolgen unabhƤngig von den anderen Schritten, jedoch chronologisch in der Abfolge d-e-f-g, wobei f die Wiederholung des Schritts e bezeichnet. Die erzeugten Lagen werden im Schritt h als Materialstapel zueinander ausgerichtet und im Schritt i miteinander strukturell verbunden.In 7 In this case, steps a and b are applied sequentially. Step c occurs independently of the other steps. Steps d to g take place independently of the other steps, but chronologically in the sequence defg, where f denotes the repetition of step e. The layers produced are aligned with one another in step h as a material stack and are structurally connected to one another in step i.

In Fig. 8 ist gezeigt, dass die Schritte a, b, c und g voneinander unabhƤngig durchgefĆ¼hrt werden kƶnnen. Ebenso die Schrittfolge d bis f. Die erzeugten Lagen werden wiederum im Schritt h als Materialstapel zueinander ausgerichtet und im Schritt i miteinander strukturell verbunden.In 8 it is shown that steps a, b, c and g can be performed independently of one another. The same applies to the sequence of steps d to f. The layers produced are again aligned with one another in step h as a material stack and structurally connected to one another in step i.

Es sind weitere Abfolgen der Verfahrensschritte mƶglich, die weitere spezifische Vorteile in der Abfolge in der Produktion ergeben, beispielsweise in der MaterialzufĆ¼hrung. Ferner kƶnnen vorab hergestellte MaterialverbĆ¼nde dem Herstellungsverfahren zugefĆ¼hrt werden. AuƟerdem kƶnnen weitere Lagen, welche beispielsweise weitere Schaltungselemente aufweisen, oder als TrƤgerlagen dienen, eingesetzt werden, und den Materialstapel vergrĆ¶ĆŸern.Further sequences of the method steps are possible, which result in further specific advantages in the sequence in production, for example in the material feed. Furthermore, material composites produced in advance can be fed into the production process. In addition, other layers, which have, for example, other circuit elements, or serve as carrier layers, are used, and increase the material stack.

Es ist erkennbar, dass nur die Schritte d und e (beziehungsweise der Schritt f, in welchem der Schritt e wiederholt wird), sowie die Schritte h und i sequenziell sind.It can be seen that only steps d and e (or step f, in which step e is repeated), and steps h and i are sequential.

Die Merkmale in den gezeigten Beispielen kƶnnen einzeln angewendet oder auch untereinander kombiniert werden.The features in the examples shown can be used individually or combined with one another.

Fig. 9 zeigt in einer Schnittansicht die Leckwellenantenne 100 mit alternativen AusfĆ¼hrungen fĆ¼r LƤngs-Randbereiche, welche die LƤngs-Randbereiche 401, 402 der Fig. 1 ersetzen sollen. 9 shows a sectional view of the leaky wave antenna 100 with alternative designs for longitudinal edge areas, which the longitudinal edge areas 401, 402 of 1 should replace.

In diesem Beispiel reichen die untere Schicht 130 und die obere Schicht 140 jeweils Ć¼ber die erste Isolierlage 121 und die zweite Isolierlage 122 hinaus und bilden dabei jeweils optionale Quer-ƜberstƤnde 413, 414, 415, 416 der jeweiligen Schicht 130, 140 aus, wobei bei anderen Anwendungen auch nur ein Quer-Ɯberstand vorgesehenen sein kann.In this example, the lower layer 130 and the upper layer 140 each extend beyond the first insulating layer 121 and the second insulating layer 122 and form optional transverse projections 413, 414, 415, 416 of the respective layer 130, 140, with other applications, only a transverse overhang can be provided.

Die Quer-ƜberstƤnde 413, 414, 415, 416 kƶnnen dazu genĆ¼tzt werden, um eine seitliche elektromagnetische Abdichtung der Leckwellenantenne 100 zu erreichen. Dadurch kann bei Bedarf eine unerwĆ¼nschte elektromagnetische Abstrahlung von offenen LƤngs-Randbereichen 401, 402 beim Betrieb der Leckwellenantenne 100 verringert werden. Es werden die Quer-ƜberstƤnde 413, 414, 415, 416 dazu verwendet, um die untere Schicht 130 und die obere Schicht 140 miteinander elektrisch zu verbinden.The transverse projections 413, 414, 415, 416 can be used to achieve lateral electromagnetic sealing of the leaky wave antenna 100. As a result, undesired electromagnetic radiation from open longitudinal edge regions 401, 402 during operation of the leaky wave antenna 100 can be reduced if necessary. The transverse projections 413, 414, 415, 416 are used to electrically connect the bottom layer 130 and the top layer 140 together.

Die untere Schicht 130 weist somit einen ersten Quer-Ɯberstand 414, 416, 424, 444 auf, und die obere Schicht 140 weist einen zweiten Quer-Ɯberstand 413, 415, 423, 433, 443 auf, jeweils in einer Ebene quer zu den Leitungen 110, 111. Die Quer-ƜberstƤnde 413, 414, 415, 416, 423, 424, 433, 443, 444 stehen gegenĆ¼ber der Leitungslage 115 und der ersten Isolierlage 121 und der zweiten Isolierlage 121 hervor.The lower layer 130 thus has a first transverse projection 414, 416, 424, 444 and the upper layer 140 has a second transverse projection 413, 415, 423, 433, 443, each in a plane transverse to the lines 110, 111. The transverse projections 413, 414, 415, 416, 423, 424, 433, 443, 444 protrude from the line layer 115 and the first insulating layer 121 and the second insulating layer 121.

Der erste und der zweite Quer-Ɯberstand 413, 414, 415, 416, 423, 424, 433, 443, 444 werden mit der jeweils anderen der unteren Schicht 130 und/oder der oberen Schicht 140 in einem dem Schritt i nachfolgenden Verfahrensschritt verbunden.The first and the second transverse projection 413, 414, 415, 416, 423, 424, 433, 443, 444 are connected to the other of the lower layer 130 and/or the upper layer 140 in a method step following step i.

Das Herstellen einer Verbindung zwischen der unteren Schicht 130 und der oberen Schicht 140 kann auf unterschiedliche Arten erfolgen, wie in den Fig. 10 bis 12 dargestellt. Es sind vorteilhafte AusfĆ¼hrungsbeispiele fĆ¼r die Quer-ƜberstƤnde 413, 414, 415, 416 in den LƤngs-Randbereichen 411, 412 vorgesehen, welche die LƤngs-Randbereiche 401, 402 der Fig. 1 entsprechend ersetzen sollen.Establishing a connection between the lower layer 130 and the upper layer 140 can be done in different ways, as shown in FIGS Figures 10 to 12 shown. There are advantageous embodiments for the transverse projections 413, 414, 415, 416 in the longitudinal edge regions 411, 412 provided which the longitudinal edge regions 401, 402 of 1 should be replaced accordingly.

In Fig. 10 ist in einer Schnittansicht ein LƤngs-Randbereich 421 der Leckwellenantenne 100 erkennbar, wobei die Quer-ƜberstƤnde 423, 424 jeweils eine LƤnge aufweisen, die kĆ¼rzer sind als die Hƶhe des Materialstapels aus der ersten Isolierlage 121, der zweiten Isolierlage 122 und der eingebetteten Leitungslage 115. Somit kƶnnen die Quer-ƜberstƤnde 423, 424 eingeschlagen werden und an die seitlichen AbschlĆ¼sse der ersten und zweiten Isolierlage 121, 122 angebracht werden und miteinander verbunden werden, beispielsweise durch Kleben mit Hilfe eines elektrisch leitfƤhigen Klebstoffs.In 10 a longitudinal edge region 421 of leaky wave antenna 100 can be seen in a sectional view, with the transverse projections 423, 424 each having a length that is shorter than the height of the material stack made up of the first insulating layer 121, the second insulating layer 122 and the embedded line layer 115 Thus, the transverse projections 423, 424 can be folded in and attached to the lateral terminations of the first and second insulating layer 121, 122 and connected to one another, for example by gluing using an electrically conductive adhesive.

Das Einschlagen der Quer-ƜberstƤnde 423, 424 kann durch eine entsprechende FĆ¼hrung der unteren und oberen Schicht 130, 140, ggf. durch UnterstĆ¼tzung mit AndrĆ¼ckrollen, erfolgen.Folding in the transverse projections 423, 424 can take place by appropriately guiding the lower and upper layers 130, 140, if necessary with the support of pressure rollers.

In Fig. 11 ist in einer Schnittansicht ein LƤngs-Randbereich 431 der Leckwellenantenne 100 erkennbar, wobei der Quer-Ɯberstand 433 eine LƤnge aufweist, die lƤnger ist als die Hƶhe des Materialstapels aus der ersten Isolierlage 121, der zweiten Isolierlage 122 und der Leitungslage 115. Ein zweiter Quer-Ɯberstand hat eine LƤnge von Null, das heiƟt der zweite Quer-Ɯberstand steht nicht hervor. Daher wird in diesem Beispiel der zweite Quer-Ɯberstand mit der LƤnge Null durch den Quer-Ɯberstand 433 ersetzt. Es kann alternativ auch vorgesehen sein, dass der zweite Quer-Ɯberstand geringfƶrmig hervorsteht oder zurĆ¼ckgesetzt ist, um in der Fertigung hƶhere Toleranzen zuzulassen. Somit kann der Quer-Ɯberstand 433 eingeschlagen werden und an die seitlichen AbschlĆ¼sse der ersten und zweiten Isolierlage 121, 122, sowie an die untere Schicht 130 angebracht werden und miteinander verbunden werden, beispielsweise durch Kleben mit Hilfe eines elektrisch leitfƤhigen Klebstoffs.In 11 a longitudinal edge area 431 of the leaky wave antenna 100 can be seen in a sectional view, where the transverse overhang 433 has a length that is longer than the height of the material stack of the first insulating layer 121, the second insulating layer 122 and the conductor layer 115. A second transverse overhang has a length of zero, i.e. the second transverse overhang does not stand out. Therefore, in this example, the second lateral overhang of zero length is replaced by the lateral overhang 433. As an alternative, it can also be provided that the second transverse overhang protrudes slightly or is recessed in order to allow higher tolerances in production. The transverse projection 433 can thus be folded in and attached to the lateral ends of the first and second insulating layers 121, 122 and to the lower layer 130 and connected to one another, for example by gluing using an electrically conductive adhesive.

In Fig. 12 ist in einer Schnittansicht ein LƤngs-Randbereich 441 der Leckwellenantenne 100 erkennbar, wobei die Quer-ƜberstƤnde 443, 444 jeweils eine LƤnge aufweisen, sodass die untere Schicht 130 und die obere Schicht 140 direkt miteinander verbunden werden kƶnnen, beispielsweise durch Kleben mit Hilfe eines elektrisch leitfƤhigen Klebstoffs.In 12 A longitudinal edge region 441 of leaky-wave antenna 100 can be seen in a sectional view, the transverse projections 443, 444 each having a length such that the lower layer 130 and the upper layer 140 can be connected directly to one another, for example by gluing using an electrically conductive adhesive.

In Fig. 13 ist in einer Schnittansicht der Leckwellenantenne 100 der Quer-Kernbereich 500 erkennbar. Es gelten die AusfĆ¼hrungen der Fig. 2. Es sind alternative AusfĆ¼hrungen fĆ¼r die Quer-Randbereiche 511, 512 dargestellt, welche die Quer-Randbereiche 501, 502 der Fig. 2 ersetzen sollen.In 13 the transverse core area 500 can be seen in a sectional view of the leaky wave antenna 100 . The statements of the 2 . Alternative designs for the lateral edge areas 511, 512 are shown which are the lateral edge areas 501, 502 of the 2 should replace.

Der gebildete Raum zwischen optionalen LƤngs-ƜberstƤnden 513, 514 kann dazu genĆ¼tzt werden, um ein Adapterelemente 550, 560, 570 fĆ¼r die Leckwellenantenne 100 aufzunehmen. Mit anderen Worten kann ein Adapterelement 550, 560, 570 zwischen der unteren Schicht 130 und der oberen Schicht 140 eingefĆ¼gt sein.The space formed between optional longitudinal projections 513, 514 can be used to accommodate an adapter element 550, 560, 570 for the leaky wave antenna 100. In other words, an adapter element 550, 560, 570 between the lower layer 130 and the upper layer 140 may be inserted.

Bei anderen Anwendungen kann auch nur ein LƤngs-Ɯberstand auf einer Seite der Leckwellenantenne vorgesehenen sein, beispielsweise an der Seite, an welcher die Einspeisepunkte 101, 102 gelegen sind.In other applications, only one longitudinal overhang can be provided on one side of the leaky wave antenna, for example on the side on which the feed points 101, 102 are located.

Es kann aber auch vorgesehen sein, dass beispielsweise im Quer-Randbereich 512 ein Adapterelement aufgenommen wird.However, it can also be provided that an adapter element is accommodated, for example, in the transverse edge area 512 .

Das Adapterelement 550, 560, 570 kann beispielsweise fĆ¼r mechanische oder elektrische Aufgaben vorgesehen sein.The adapter element 550, 560, 570 can be provided, for example, for mechanical or electrical tasks.

Ein mechanisches Adapterelement 550, 560, 570 kann beispielsweise dafĆ¼r vorgesehen sein, eine mechanisch stabile Schicht bereitzustellen, mittels welcher die Leckwellenantenne 100 an einem Betriebsort, beispielsweise bei der Verwendung der Leckwellenantenne 100 in einem Kommunikationssystem in einem Zug, GebƤude oder Flugzeug, befestigt werden kann. Die Befestigung kann mittels mechanischer Verbindungselemente wie Schrauben und Befestigungslƶchern erfolgen.A mechanical adapter element 550, 560, 570 can be provided, for example, to provide a mechanically stable layer by means of which the leaky wave antenna 100 can be attached to an operating location, for example when using the leaky wave antenna 100 in a communication system in a train, building or airplane . Fastening can be done using mechanical fasteners such as screws and mounting holes.

Ein elektrisches Adapterelement 550, 560, 570 kann beispielsweise dafĆ¼r vorgesehen sein, eine mechanische und elektrische Verbindung von der Leckwellenantenne 100 zu einem elektrischen Verbindungselement, wie einem Koaxial-Stecker, welcher auf dem Adapterelement 550, 560, 570 befestigt ist, herzustellen. Dazu kann das Adapterelement 550, 560, 570 beispielsweise aus einem Leiterplattenmaterial wie FR4 gefertigt sein und entsprechende Leiterbahnen auf einer oder mehreren Lagen fĆ¼r einen jeweiligen planaren Koaxial-Stripline-Ɯbergang fĆ¼r die Leitungen 110, 111, sowie optionale Elektronikbaugruppen oder Hochfrequenz-Elektronikbaugruppen wie Sender, EmpfƤnger, AbschlusswiderstƤnde oder Leistungsmessvorrichtungen aufweisen. NatĆ¼rlich kann auch ein anderer, fĆ¼r die jeweilige Anwendung bevorzugte Leitungstyp zum Anschluss der Leckwellenantenne vorgesehen sein.An electrical adapter element 550, 560, 570 can be provided, for example, to establish a mechanical and electrical connection from the leaky wave antenna 100 to an electrical connection element, such as a coaxial plug, which is attached to the adapter element 550, 560, 570. For this purpose, the adapter element 550, 560, 570 can be made, for example, from a circuit board material such as FR4 and corresponding conductor tracks on one or more layers for a respective planar coaxial stripline transition for the lines 110, 111, as well as optional electronic assemblies or high-frequency electronic assemblies such as transmitters , receivers, terminators or power measurement devices exhibit. Of course, another line type preferred for the respective application can also be provided for connecting the leaky wave antenna.

Es kann mittels des Adapterelements 550, 560, 570 auch einer Kombination von elektrischen und mechanischen Verbindungselementen vorgesehen sein. ZusƤtzlich kƶnnen auf die OberflƤchen den unteren und oberen Schicht 130, 140 zusƤtzliche VerstƤrkungselemente beispielsweise durch Kleben aufgebracht sein, welche den Quer-Randbereich 501, 502, 511, 512 mit dem Quer-Kernbereich 500 verbinden.A combination of electrical and mechanical connecting elements can also be provided by means of the adapter element 550, 560, 570. In addition, additional reinforcement elements can be applied to the surfaces of the lower and upper layers 130, 140, for example by gluing, which connect the transverse edge area 501, 502, 511, 512 to the transverse core area 500.

Das Adapterelement 550, 560 kann auf einfache Weise in den Materialverbund 303 in eine jeweilige Einsteckrichtung 561, 562 beispielsweise eingeschoben und im Materialstapel verklebt werden. Dazu soll das Adapterelement 550, 560 eine gleiche Dicke aufweisen, wie durch das Volumen zwischen den LƤngs-ƜberstƤnden 513, 514 vorgegeben. Es kann eine Haftschicht zwischen den LƤngs-ƜberstƤnden 513, 514 und dem Adapterelement 550, beispielsweise durch Klebstoff, vorgesehen sein, um eine mechanische Verbindung herzustellen.The adapter element 550, 560 can easily be pushed into the composite material 303 in a respective insertion direction 561, 562, for example, and glued in the material stack. For this purpose, the adapter element 550, 560 should have the same thickness as specified by the volume between the longitudinal projections 513, 514. An adhesive layer can be provided between the longitudinal projections 513, 514 and the adapter element 550, for example by means of adhesive, in order to produce a mechanical connection.

Die untere Schicht 130 weist einen ersten LƤngs-Ɯberstand 514 und die obere Schicht 140 einen zweiten LƤngs-Ɯberstand 513 jeweils in einer Ebene lƤngs zur zumindest einen Leitung 110, 111 auf.The lower layer 130 has a first longitudinal overhang 514 and the upper layer 140 has a second longitudinal overhang 513, each in a plane along the at least one line 110, 111.

Die LƤngs-ƜberstƤnde 513, 514 stehen gegenĆ¼ber der Leitungslage 115 und/oder der ersten Isolierlage 121 und/oder der zweiten Isolierlage 121 hervor.The longitudinal projections 513, 514 protrude from the line layer 115 and/or the first insulating layer 121 and/or the second insulating layer 121.

Zwischen die jeweiligen ƜberstƤnde wird das Adapterelement 550, 560 in einem dem Schritt i nachfolgenden Verfahrensschritt eingebracht, wie in Fig. 14 in einem LƤngsSchnitt der Leckwellenantenne 100 lƤngs der Produktionsrichtung 301 oder parallel zu den Leitungen 110, 111 dargestellt. Ferner ist in der Fig. 13 eine Durchkontaktierung 600, erkennbar, welche dazu verwendet werden kann, um eine unerwĆ¼nschte Abstrahlung elektromagnetischer Signale, welche in die Leitungen 110, 111 eingespeist werden, von LƤngs-Randbereichen 401, 402 zu verringern.The adapter element 550, 560 is introduced between the respective projections in a method step following step i, as in 14 in a longitudinal section of the leaky wave antenna 100 along the production direction 301 or parallel to the lines 110, 111 shown. Furthermore, in the 13 a via 600 can be seen, which can be used to reduce an undesired emission of electromagnetic signals, which are fed into the lines 110, 111, from longitudinal edge regions 401, 402.

Die Durchkontaktierung 600, welche die untere Schicht 130, 230 mit der oberen Schicht 140, 240 verbindet, kann in einem dem Schritt i nachfolgenden Verfahrensschritt eingebracht werden. Meist sind mehrere Durchkontaktierungen lƤngs der Leitung zum Herstellen einer elektromagnetischen Abschirmung erforderlich.The via 600, which connects the lower layer 130, 230 to the upper layer 140, 240, can be introduced in a method step following step i. Multiple vias along the line are usually required to create electromagnetic shielding.

In Fig. 15 ist ein weiteres Beispiel fĆ¼r einen Quer-Randbereich 521 der Leckwellenantenne 100 mit einem weiteren Beispiel fĆ¼r ein Adapterelement 570 in einem Schnitt lƤngs zur Produktionsrichtung 301 gezeigt. Das Adapterelement 570 weist eine gleiche Dicke wie die untere Isolierlage 121 auf und ist an diese angrenzend angeordnet.In 15 a further example of a transverse edge area 521 of the leaky wave antenna 100 is shown with a further example of an adapter element 570 in a section along the production direction 301. The adapter element 570 has the same thickness as the lower insulating layer 121 and is arranged adjacent to it.

Ein LƤngs-Ɯberstand 524 der unteren Schicht 130 und/oder ein LƤngs-Ɯberstand 523 der oberen Schicht 140 kann jeweils mit dem Adapterelement 570 in Verbindung gebracht werden. Falls das Adapterelement 570 als Leiterplatte ausgefĆ¼hrt ist, kƶnnen die LƤngs-ƜberstƤnde 523, 524 mit entsprechenden elektrisch leitenden FlƤchen auf dem Adapterelement 570 elektrisch verbunden werden, zum Beispiel durch Kleben mit einem elektrisch leitfƤhigen Klebstoff.A longitudinal overhang 524 of the lower layer 130 and/or a longitudinal overhang 523 of the upper layer 140 can each be connected to the adapter element 570 . If the adapter element 570 is designed as a printed circuit board, the longitudinal projections 523, 524 can be electrically connected to corresponding electrically conductive surfaces on the adapter element 570, for example by gluing with an electrically conductive adhesive.

Teile der Leitungslage 115, insbesondere die Enden der Leitungen 110, 111 mit den Einspeisepunkten 101, 102 weisen einen entsprechenden LƤngs-Ɯberstand 525 auf, welcher Ć¼ber die untere Isolierlage 121 hinausragt, sowie einen entsprechenden LƤngs-Unterstand 527 gegenĆ¼ber der oberen Isolierlage 122, hinter welchem die Leitungslage 115 zurĆ¼ckbleibt.Parts of the line layer 115, in particular the ends of the lines 110, 111 with the feed points 101, 102 have a corresponding longitudinal overhang 525, which protrudes beyond the lower insulating layer 121, and a corresponding Longitudinal shelter 527 from the upper insulating layer 122, behind which the line layer 115 remains.

Die obere Isolierlage 122 weist folglich einem LƤngs-Ɯberstand 526 gegenĆ¼ber der unteren Isolierlage 121 auf, welcher zusƤtzlich Ć¼ber den LƤngs-Ɯberstand 525 der Leitungslage 115 hinausragt. Dadurch wird eine elektrische Isolation zwischen dem LƤngs-Ɯberstand 525 der Leitungslage 115 und der oberen elektrisch leitfƤhigen Schicht 140 gewƤhrleistet.The upper insulating layer 122 consequently has a longitudinal projection 526 compared to the lower insulating layer 121, which also projects beyond the longitudinal projection 525 of the line layer 115. This ensures electrical insulation between the longitudinal overhang 525 of the line layer 115 and the upper electrically conductive layer 140 .

Zwischen dem LƤngs-Ɯberstand 525 der Leitungslage 115 und dem LƤngs-Ɯberstand 524 der unteren Schicht 130 kann das Adapterelement 570 eingebracht werden und in weiterer Folge der Materialstapels mit dem Adapterelement 570 elektrisch leitend verbunden werden.The adapter element 570 can be introduced between the longitudinal overhang 525 of the line layer 115 and the longitudinal overhang 524 of the lower layer 130 and subsequently the material stack can be electrically conductively connected to the adapter element 570 .

Die obere Schicht 140 ist mit einem LƤngs-Ɯberstand 523 versehen, welcher Ć¼ber den Ɯberstand der oberen Isolierlage 526 hinausragt und eine LƤnge aufweist, welche zumindest der Hƶhe der oberen Isolierlage 122 entspricht. Der Ɯberstand 523 kann mit dem Adapterelement 570 verbunden werden, um eine mechanische und/oder elektrische Verbindung herzustellen, zum Beispiel durch Kleben mit einem elektrischen leitfƤhigen Klebstoff.The upper layer 140 is provided with a longitudinal projection 523 which projects beyond the projection of the upper insulating layer 526 and has a length which corresponds at least to the height of the upper insulating layer 122. The overhang 523 can be connected to the adapter element 570 to establish a mechanical and/or electrical connection, for example by gluing with an electrically conductive adhesive.

Durch das Adapterelement 570 in Form einer einseitigen, doppelseitigen oder mehrlagigen Leiterplatte kƶnnen elektrische Signale von Kern 400 der Leckwellenantenne 100 zu einem Anschluss beispielsweise in Form eines Steckers und/oder zu elektronischen Baugruppen herausgefĆ¼hrt werden.The adapter element 570 in the form of a single-sided, double-sided or multi-layer printed circuit board allows electrical signals to be led out from the core 400 of the leaky-wave antenna 100 to a connection, for example in the form of a plug and/or to electronic assemblies.

In Fig. 16 ist schematisch ein Dualband-Mobilfunk-Kommunikationssystem 107 mit einer Leckwellenantenne 100 gezeigt. Dadurch wird eine gleichmƤƟige Funkausleuchtung innerhalb eines Wagons erreicht, was zu einer verbesserten Sende- und Empfangsleistung fĆ¼r MobilfunkgerƤte im Wagon fĆ¼hrt.In 16 a dual-band mobile radio communication system 107 with a leaky wave antenna 100 is shown schematically. This ensures even radio coverage within of a wagon, which leads to improved transmission and reception performance for mobile devices in the wagon.

Die genannten Merkmale sind untereinander kombinierbar, wodurch weitere VorzĆ¼ge der Erfindung erzielt werden kƶnnen.The features mentioned can be combined with one another, as a result of which further advantages of the invention can be achieved.

Bezugszeichenliste:Reference list:

1, 21, 2
Produktionanlageproduction plant
100, 200100, 200
Leckwellenantenneleaky antenna
101, 102, 201, 202101, 102, 201, 202
Einspeisepunktfeed point
103, 105103, 105
SchlitzlƤngeslot length
104, 106104, 106
Schlitzbreiteslot width
107107
Kommunikationsvorrichtungcommunication device
110, 111, 210, 211110, 111, 210, 211
LeitungLine
115, 215115, 215
Leitungslageline position
120, 220120, 220
Isolierschichtinsulating layer
121, 221121, 221
Erste IsolierlageFirst layer of insulation
122, 222122, 222
Zweite IsolierlageSecond layer of insulation
130, 230130, 230
Untere SchichtLower class
140, 240140, 240
Obere SchichtUpper layer
150-153, 155-158, 250-253, 255-258150-153, 155-158, 250-253, 255-258
Antennenelement, SchlitzantenneAntenna element, slot antenna
160-163, 165-168, 260-263, 265-268160-163, 165-168, 260-263, 265-268
Querabstand, lateraler AbstandTransverse distance, lateral distance
170-173, 175-178, 270-273, 275-278170-173, 175-178, 270-273, 275-278
LƤngsabstand vom EinspeisepunktLongitudinal distance from the feed point
280-283, 285-288280-283, 285-288
Koppelstrukturcoupling structure
300, 400300, 400
Herstellungsverfahrenproduction method
301301
Produktionsrichtungproduction direction
302, 383, 387302, 383, 387
Unterlagedocument
303, 304303, 304
Materialverbundcomposite material
310, 330, 340310, 330, 340
Kupferband-RolleCopper Tape Roll
321, 322321, 322
Schaumstoff-Rollefoam roller
350-356350-356
Umlenk-Rolleidler pulley
360-363360-363
Laminier-Vorrichtung mit Vorspann-RollenfĆ¼hrungLaminating device with preload roller guide
372, 374, 376, 378372, 374, 376, 378
Transfer-Rolletransfer roll
371, 373, 375, 377, 381, 382371, 373, 375, 377, 381, 382
Spann-Rolleidler pulley
380380
Schneidevorrichtung, Stanzvorrichtung mit RollenfĆ¼hrungCutting device, punching device with roller guide
384, 386384, 386
StempelRubber stamp
385385
Stanzhubpunch stroke
390390
Druckvorrichtungprinting device
400, 500400, 500
Kernbereichcore area
401, 402, 411, 412 421, 431, 441401, 402, 411, 412 421, 431, 441
LƤngs-RandbereichLongitudinal edge area
501, 502, 511, 512, 521501, 502, 511, 512, 521
Quer-Randbereichtransverse edge area
413, 414, 415, 416, 423, 424, 433, 443, 444413, 414, 415, 416, 423, 424, 433, 443, 444
Quer-Ɯberstand der Schichttransverse overhang of the layer
513, 514, 523, 524513, 514, 523, 524
LƤngs-Ɯberstand der SchichtLongitudinal overhang of the layer
525525
LƤngs-Ɯberstand der LeitungslageLongitudinal overhang of the cable layer
526526
LƤngs-Ɯberstand der oberen IsolierlageLongitudinal overhang of the upper insulating layer
527527
LƤngs-Unterstand der oberen IsolierlageLongitudinal shelter of the upper insulation layer
550, 560, 570550, 560, 570
Adapter, Adapterelementadapter, adapter element
551, 561551, 561
Einsteckrichtunginsertion direction

Claims (14)

  1. Leaky-wave antenna (100), wherein at least one line (110, 111, 210, 211), each having a feed-in point (101, 102, 201, 202), is embedded in an insulating layer (120, 220), and the insulating layer (120, 220) is arranged between an electrically conducting lower layer (130, 230) and an electrically conducting upper layer (140, 240),
    wherein a multiplicity of antenna elements in the form of openings along the at least one line (110, 111, 210, 211) have been introduced in the upper layer (140, 240),
    and provided in each case between the at least one line (110, 111, 210, 211) and a respective antenna element (150-153, 155-158, 250-253, 255-258) from the multiplicity of antenna elements is a coupling means, which defines a respective coupling factor which describes the electromagnetic coupling between the at least one line (110, 111, 210, 211) and the respective antenna element (150-153, 155-158, 250-253, 255-258),
    and, proceeding from the respective feed-in point (101, 102, 201, 202), the coupling factor of the respective antenna element (150-153, 155-158, 250-253, 255-258) increases along the at least one line (110, 111, 210, 211), and the insulating layer (120, 220) has a first insulating ply (121, 221) and a second insulating ply (122, 222), which are preferably formed in each case by a foam material,
    wherein the lower layer (130, 230) has a first longitudinal overhang (513) and the upper layer (140, 240) has a second longitudinal overhang (514) in a plane longitudinally in relation to the at least one line (110, 111, 210, 211), which longitudinal overhangs (513, 514) project with respect to the conducting ply (115, 215) and/or the first insulating ply (121, 221) and/or the second insulating ply (121, 221), and also an adapter element (550, 560, 570) is inserted between the respective longitudinal overhangs (513, 514).
  2. Leaky-wave antenna (100, 200) according to the preceding claim, wherein the at least one line (110, 111, 210, 211) is arranged between the first insulating ply (121, 221) and the second insulating ply (122, 222).
  3. Leaky-wave antenna (100, 200) according to one of the preceding claims, wherein the respective coupling means is formed by a transverse distance (160-163, 165-168) between the at least one line (110, 111, 210, 211) and the respective antenna element (150-153, 155-158, 250-253, 255-258), wherein the transverse distance (160-163, 165-168) is determined in a plane transversely in relation to the at least one line (110, 111, 210, 211).
  4. Leaky-wave antenna (100, 200) according to one of the preceding claims, wherein the respective coupling means is formed by a coupling structure in the form of a directional coupler.
  5. Leaky-wave antenna (100, 200) according to either of Claims 3 and 4, wherein the respective coupling means is formed or arranged between the first insulating ply (121, 221) and the second insulating ply (122, 222).
  6. Communication device (103, 203) for use in an aircraft, a train or a building, comprising a leaky-wave antenna (100, 200) according to one of the preceding claims.
  7. Method (300, 400) for producing a leaky-wave antenna (100, 200) according to one of Claims 1 to 5, wherein the leaky-wave antenna (100, 200) has a multiplicity of antenna elements, at least one line (110, 111, 210, 211), each having a feed-in point (101, 102, 201, 202), and also a material composite (303, 304), and the following steps are performed:
    a. providing an electrically conducting material as the lower layer (130, 230) of the material composite (303, 304),
    b. providing a dielectric material as the first insulating ply (121, 221) of the material composite (303, 304) and connecting it to the lower layer (130, 230),
    c. providing an electrically conducting material as the conducting ply (115, 215) of the material composite (303, 304) that has the at least one line (110, 111, 210, 211),
    d. providing an electrically conducting material as the upper layer (140, 240) of the material composite (303, 304),
    e. introducing a respective antenna element (150-153, 155-158, 250-253, 255-258) from the multiplicity of antenna elements in the form of an opening into the upper layer (140, 240), wherein the opening is positioned within the material composite (330, 340) along the at least one line (110, 111, 210, 211),
    wherein provided in each case between the at least one line (110, 111, 210, 211) and the respective antenna element (150-153, 155-158, 250-253, 255-258) is a coupling means, which defines a respective coupling factor which describes the electromagnetic coupling between the at least one line (110, 111, 210, 211) and the respective antenna element (150-153, 155-158, 250-253, 255-258),
    and, proceeding from the feed-in point (101, 102, 201, 202), the coupling factor of the respective antenna element (150-153, 155-158, 250-253, 255-258) increases along the at least one line (110, 111, 210, 211),
    f. repeating step e for all the antenna elements (150-153, 155-158, 250-253, 255-258) from the multiplicity of antenna elements,
    g. providing a dielectric material as the second insulating ply (122, 222) of the material composite (303, 304) and connecting it to the upper layer (140, 240),
    h. arranging the conducting ply (115, 215) between the first insulating ply (121, 221) and the second insulating ply (122, 222) and forming a material stack with plies aligned in relation to one another,
    i. connecting the plies of the material stack and forming the material composite (303, 304),
    wherein, during the forming of the material stack, the plies are aligned with one another so as to form the leaky-wave antenna (100, 200), and the material stack is moved continuously in the direction of production (301),
    wherein, before the forming of the material stack, proceeding from the respective feed-in point (101, 102, 201, 202), the opening is introduced by means of a cutting device (380) at a fixed transverse distance (160-163, 165-168) from the at least one line (110, 111, 210, 211), which determines the coupling factor, in a plane transversely in relation to the direction of production (301),
    wherein the lower layer (130, 230) has a first longitudinal overhang (513) and the upper layer (140, 240) has a second longitudinal overhang (514) in a plane longitudinally in relation to the at least one line (110, 111, 210, 211),
    which longitudinal overhangs (513, 514) project with respect to the conducting ply (115, 215) and/or the first insulating ply (121, 221) and/or the second insulating ply (121, 221), and an adapter element (550, 560, 570) is introduced between the respective longitudinal overhangs in a method step following step i.
  8. Method (300, 400) according to the preceding claim, wherein the cutting device (380) introduces the opening by punching, laser cutting or a combination thereof.
  9. Method (300, 400) according to either of Claims 7 and 8, wherein the connecting takes place by laminating, adhesive bonding, pressing or a combination thereof.
  10. Method (300, 400) according to one of Claims 7 to 9, wherein the respective coupling means for the respective antenna element (150-153, 155-158, 250-253, 255-258) is formed by the distance (260-262) between the respective antenna element (150-153, 155-158, 250-253, 255-258) and the at least one line (110, 111, 210, 211) in a plane transversely in relation to the at least one line (110, 111, 210, 211), whereby the coupling factor is determined.
  11. Method (300, 400) according to one of Claims 7 to 10, wherein the lower layer (130, 230) has a first transverse overhang (413, 415, 423, 433, 443) and/or the upper layer (140, 240) has a second transverse overhang (414, 416, 424, 434, 444) in a plane transversely in relation to the at least one line (110, 111, 210, 211), which transverse overhangs (413, 414, 415, 416, 423, 424, 433, 443, 444) project with respect to the conducting ply (115, 215) and/or the first insulating ply (121, 221) and/or the second insulating ply (121, 221), and the first and/or second transverse overhang (413, 414, 415, 416, 423, 424, 433, 443, 444) is connected to the other respectively of the lower layer (130, 230) and/or the upper layer (140, 240) in a method step following step i.
  12. Method (300, 400) according to one of Claims 7 to 11, wherein at least one plated-through-hole (600), which connects the lower layer (130, 230) to the upper layer (140, 240), is introduced in a method step following step i.
  13. Method (400) according to one of Claims 7 to 12, wherein the respective coupling means for the respective antenna element (150-153, 155-158, 250-253, 255-258) is formed by a coupling structure, which determines the coupling factor between the at least one line (110, 111, 210, 211) and the respective antenna element (150-153, 155-158, 250-253, 255-258),
    wherein an electrically conducting material is provided as the coupling ply of the material composite (303, 304) and is structured appropriately for the respective antenna element (150-153, 155-158, 250-253, 255-258), and is arranged between the first insulating ply (121, 221) and the second insulating ply (122, 222) such that they are aligned in relation to one another, and all of the plies arranged such that they are aligned in relation to one another form the material stack before step i is performed.
  14. Method (300, 400) according to the preceding claim, wherein the coupling ply corresponds to the conducting ply (115, 215) .
EP18213890.9A 2018-12-19 2018-12-19 Leaky wave antenna Active EP3671957B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18213890.9A EP3671957B1 (en) 2018-12-19 2018-12-19 Leaky wave antenna
PCT/EP2019/081649 WO2020126254A1 (en) 2018-12-19 2019-11-18 Leaky wave antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18213890.9A EP3671957B1 (en) 2018-12-19 2018-12-19 Leaky wave antenna

Publications (2)

Publication Number Publication Date
EP3671957A1 EP3671957A1 (en) 2020-06-24
EP3671957B1 true EP3671957B1 (en) 2023-08-23

Family

ID=64746073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18213890.9A Active EP3671957B1 (en) 2018-12-19 2018-12-19 Leaky wave antenna

Country Status (2)

Country Link
EP (1) EP3671957B1 (en)
WO (1) WO2020126254A1 (en)

Family Cites Families (9)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US2914766A (en) * 1955-06-06 1959-11-24 Sanders Associates Inc Three conductor planar antenna
US3524189A (en) * 1966-11-09 1970-08-11 Us Army Slotted waveguide antenna array providing dual frequency operation
GB1247546A (en) * 1968-12-19 1971-09-22 Decca Ltd Microwave antennas
US4728962A (en) * 1984-10-12 1988-03-01 Matsushita Electric Works, Ltd. Microwave plane antenna
JPS63260302A (en) * 1987-04-17 1988-10-27 Hitachi Cable Ltd Radiation type radio wave leakage cable
DE19958750B4 (en) 1999-12-07 2006-08-24 Robert Bosch Gmbh Leaky wave antenna
JP4742154B2 (en) * 2009-02-05 2011-08-10 ę Ŗ式会ē¤¾ćƒ•ć‚øć‚Æ惩 Leakage cable
JP5450481B2 (en) * 2010-03-17 2014-03-26 ę Ŗ式会ē¤¾č±Šē”°äø­å¤®ē ”ē©¶ę‰€ antenna
US10651526B2 (en) * 2016-08-16 2020-05-12 Samsung Electronics Co., Ltd. Flexible flat cable comprising stacked insulating layers covered by a conductive outer skin and method for manufacturing

Also Published As

Publication number Publication date
EP3671957A1 (en) 2020-06-24
WO2020126254A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
DE102019200893B4 (en) Method of creating a waveguide, circuit device and radar system
DE69821327T2 (en) Shorted stripline antenna and device with it
DE69121352T2 (en) Device for feeding a radiation element for two orthogonal polarizations
DE102013204368B4 (en) MOBILE DEVICE AND ANTENNA GROUP FOR THIS
DE3878862T2 (en) COIL-TYPE AERIAL AND METHOD FOR THEIR PRODUCTION.
DE4420903C1 (en) Antenna disk and process for its manufacture
DE69604583T2 (en) PRINTED MULTI-BAND MONOPOLAR ANTENNA
EP3465817B1 (en) Antenna device for a radar detector having at least two radiation directions, and motor vehicle having at least one radar detector
DE69512831T2 (en) antenna
DE69417429T2 (en) MULTI-STRIP LADDER ANTENNA
DE60122160T2 (en) ANTENNA STRUCTURE AND ASSOCIATED PROCEDURE
DE602005003542T2 (en) Capacitive feed structure of a flat antenna on the window pane of a motor vehicle
WO2008017386A1 (en) Antenna arrangement, in particular for a mobile radio base station
DE10124142A1 (en) Laminate pattern antenna and wireless communication device equipped with such a device
DE3727178A1 (en) FLAT AERIAL
DE102007056258A1 (en) Chip antenna and mobile telecommunication terminal, which has these
WO2011095144A1 (en) Stacked microstrip antenna
DE112018001748T5 (en) Planar antenna and radio module
DE3787681T2 (en) Antenna element with a strip hanging between two self-supporting base plates provided with radiating slots underneath one another, and method for producing the same.
DE102014011514A1 (en) Capacitor-lubricated housing, in particular capacitively lubricated component housing for an antenna device
DE102007055327A1 (en) External multi-band radio antenna module
EP3671957B1 (en) Leaky wave antenna
DE112018004510T5 (en) ANTENNA DEVICE
DE102004063266A1 (en) Flat profile antenna for a vehicle remote communication system
DE69600976T2 (en) Integrated flat antenna with conversion function

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201204

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210909

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/28 20060101ALN20221004BHEP

Ipc: H01Q 5/307 20150101ALN20221004BHEP

Ipc: H01Q 1/32 20060101ALN20221004BHEP

Ipc: H01Q 13/20 20060101AFI20221004BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/28 20060101ALN20221024BHEP

Ipc: H01Q 5/307 20150101ALN20221024BHEP

Ipc: H01Q 1/32 20060101ALN20221024BHEP

Ipc: H01Q 13/20 20060101AFI20221024BHEP

INTG Intention to grant announced

Effective date: 20221109

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/28 20060101ALN20221028BHEP

Ipc: H01Q 5/307 20150101ALN20221028BHEP

Ipc: H01Q 1/32 20060101ALN20221028BHEP

Ipc: H01Q 13/20 20060101AFI20221028BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/28 20060101ALN20230308BHEP

Ipc: H01Q 5/307 20150101ALN20230308BHEP

Ipc: H01Q 1/32 20060101ALN20230308BHEP

Ipc: H01Q 13/20 20060101AFI20230308BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230713

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013035

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018013035

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231219

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231219