EP3667808B1 - Wellenleitervorrichtung zur mechanischen breitbandigen phasenverschiebung - Google Patents

Wellenleitervorrichtung zur mechanischen breitbandigen phasenverschiebung Download PDF

Info

Publication number
EP3667808B1
EP3667808B1 EP19214377.4A EP19214377A EP3667808B1 EP 3667808 B1 EP3667808 B1 EP 3667808B1 EP 19214377 A EP19214377 A EP 19214377A EP 3667808 B1 EP3667808 B1 EP 3667808B1
Authority
EP
European Patent Office
Prior art keywords
carrier
conductive pads
array
axis
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19214377.4A
Other languages
English (en)
French (fr)
Other versions
EP3667808A1 (de
Inventor
Jérôme Brossier
Dimitri Vynohradov
Gilles Navarre
Benjamin Monteillet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3667808A1 publication Critical patent/EP3667808A1/de
Application granted granted Critical
Publication of EP3667808B1 publication Critical patent/EP3667808B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/123Hollow waveguides with a complex or stepped cross-section, e.g. ridged or grooved waveguides

Definitions

  • the invention relates to a device for phase shifting a radio frequency signal. It applies in particular, but not exclusively, to the field of space telecommunications, and in particular to instruments such as interferometers and radar.
  • Phase shift devices also called phase shifters, make it possible to delay an electromagnetic wave. They are particularly used in phased array antennas.
  • the same signal is transmitted or received by a plurality of radiating elements.
  • Each radiating element is individually coupled to a phase shifter and an amplifier.
  • the individually applied phase shift can vary from 0° to 360°.
  • the radiation emitted or received by each of the radiating elements thus interferes with the radiation of the other radiating elements.
  • the beam is produced by the sum of constructive interference and can be oriented towards a specific direction by varying the phase between the elements, according to the predetermined phase law.
  • phase shifters can be divided into three large families: ferrite phase shifters, MEMS (microelectromechanical systems) phase shifters, and mechanical phase shifters.
  • the ferrite phase shifter produces a variable insertion phase in the path of a radio signal, without changing its physical length.
  • the phase shift is obtained by the variation in the permeability of the ferrite, obtained by variations in the magnetic field controlling the phase shifter.
  • Control of the driving magnetic field requires active magnetic field bias circuits, which enable very fast switching times. This fast switching time is often required in radar applications, for example for beam switching.
  • the mentioned active circuits result in high heat dissipation, and thus require thermal control.
  • Thermal control with field control circuits magnetic, give the ferrite phase shifter a complex structure, which can be a hindrance to integration, particularly for a high number of phase shifters to be mounted on a single radar. Finally, their manufacturing generates a lot of waste.
  • phase shifters In MEMS phase shifters, the phase shift is operated by changing the geometry of a microstrip line, which modifies the propagation constant of the line. The geometry change is carried out along two axes (line length and line width), by micro-actuators.
  • An example of a MEMS phase shifter is described in the document “Low-loss Millimeter-wave Phase Shifters Based on Mechanical Reconfiguration” (Romano et al., PIERS Proceedings, Prague, Czech Republic, July 6-9, 2015 ).
  • these phase shifters do not allow significant powers to pass through, due to the size of the micro-actuators.
  • the phase shift is generally not constant over a large bandwidth. These phase shifters are therefore not particularly broadband. Finally, their lifespan is limited.
  • “Slide trombone” type phase shifters include a moving part and a conductive branch.
  • the movable part is hollow and of diameter greater than the diameter of the conductive branch, which allows the movable part to slide along the conductive branch in a translational movement, to adjust the phase shift.
  • An example of a “slide trombone” type phase shifter, associated with an electrical power distributor, is described in the document FR 2 977 381 . In this type of structure, the cross section remains constant, while the length varies. Thus, the modification of the phase is not the same, depending on the frequency of the signal. “Slide trombone” type phase shifters are therefore not broadband.
  • the document US 2017/0077576 A1 describes a mechanical phase shifter, comprising a fixed plate equipped with a network of pads, and a mobile plate equipped with a row of pads.
  • the signals to be phase shifted are transmitted in a guide structure composed of a rib, located on the fixed plate, and the row of studs.
  • the movable plate moves transversely to the rib, the row of pads moves away from the rib, and the length of the path of the electric current circulating in the waveguide decreases.
  • the guidance structure described in the document US 2017/0077576 A1 does not offer a large amplitude of movement between the two plates, which limits the applied phase shift. In fact, the movement is limited to prevent the row of pads of the movable plate and the network of pads of the fixed plate from coming into contact with each other, which would generate unwanted friction between the parts.
  • the invention therefore aims to obtain an easy-to-manufacture, wide-band phase shifter, making it possible to pass significant powers, and having little or no heat dissipation.
  • An object of the invention is therefore a device for phase shifting a radio frequency signal according to claim 1.
  • the first network of conductive pads and the second network of conductive pads each comprise two straight portions, mainly included in planes orthogonal to the Z axis, and arranged respectively on either side of the first helical portion and the second helical portion.
  • the second support is configured to be movable in rotation in the first support around the Z axis, the guided portion with constant dimensions passing diametrically through the second support on distinct planes along the Z axis from the first access to the second access.
  • the third network of conductive pads comprises a third helical portion and a fourth network of conductive pads comprising a fourth helical portion, the third helical portion and the fourth helical portion being inclined according to the predetermined slope and being coupled at the end to the port of exit.
  • the recess has a curved shape, the curved shape being configured to compensate for a non-linearity of the phase variation during the rotation of the second support around the Z axis.
  • the principle underlying the invention consists of passing a radio frequency signal through a guided structure with a rectangular section whose electrical length “L” and the long side “a” vary simultaneously, in finite proportions.
  • the variation of the long side is thus a function of the variation of the electrical length.
  • the proposed solution allows, on a single degree of freedom to vary the two degrees of freedom of phase variation in the guide.
  • the advantage of using a guided wave in a guide structure with a rectangular section makes it possible to limit ohmic losses and to pass high-power radio frequency signals.
  • rectangular section we mean both guided structures with a purely rectangular section, as well as rectangular guided structures with ribs (or “ridges” according to Anglo-Saxon terminology). The presence of ribs makes it possible to widen the frequency band.
  • FIG. 1A illustrates a perspective view of the phase shifter according to the first embodiment.
  • the phase shifter has a PE input port and a PS output port, which can be materialized for example by guided accesses with a rectangular section.
  • the input port PE and the output port PS are arranged on a first support SF.
  • the first SF support is cylindrical in shape.
  • a second support SM also cylindrical in shape, is arranged inside the first support SF, concentrically, with the same axis of revolution Z.
  • the first support SF is hollow, so as to allow rotation of the second support SM in the first support, around the Z axis.
  • the first support SF and the second support SM thus form a stator/rotor couple.
  • a first network of conductive pads RP1 is distributed on the first support SF; it extends from the PE input port to the PS output port.
  • a second network of conductive pads RP2 is distributed on the second support SM; it also extends from the PE input port to the PS output port.
  • the first network of conductive pads RP1 and the second network of conductive pads RP2, the first support SF and the second support SM delimit a guide structure between the input port PE and the output port PS.
  • the conductive pads are configured to couple the electromagnetic field of the radio frequency signal over a wide bandwidth. They are periodic in that the same plot is replicated locally on a determined surface, with a period determined in particular according to the working frequency. They can be made of a solid conductive material, for example a metal. They can alternatively be coated with a conductive surface, in particular metallic. They constitute electromagnetic walls delimiting a communication channel located between the first support SF and the second support SM.
  • the conductive pads can be cylinders of revolution, or blocks, or even have a conical shape, which gives a broadband character to the network of conductive pads. More generally, the conductive pads can have any shape projecting from the support on which they are placed.
  • the height of the conductive pads of the first network of conductive pads RP1 and the second network of conductive pads RP2 is substantially equal to the spacing between the first support SF and the second support SM, however leaving a clearance between the end of each stud and the opposite support facing it. To avoid any contact between the first support SF and the second support SM.
  • the first network of conductive pads RP1 and the second network of conductive pads RP2 are both inclined along the same slope.
  • the second network of conductive pads RP2 approaches or moves away from the first network of conductive pads RP1 along the Z axis.
  • FIG. 1B illustrates a detailed view of the second support SM
  • FIG. 1C a detailed view of the first SF support.
  • the first network of conductive pads RP1 comprises a first helical portion PH1 of axis Z
  • the second network of conductive pads RP2 comprises a second helical portion PH2 of axis Z.
  • the first helical portion PH1 and the second helical portion PH2 are inclined according to the same predetermined slope.
  • the slope is predetermined according to technical constraints, which can be: the frequency band, the maximum phase shift value (+180° or -180°), the dimensions of the long side “a” for zero phase shift, and the length “L” of the guide structure for zero phase shift.
  • a long side “a” worth 10.5 mm, a length “L” worth 50 mm, variations of the long side “a” and the length “L” can be respectively equal to 1.1 mm ( ⁇ a) and 5.8 mm ( ⁇ L), for a phase shift equal to -180°.
  • the values ⁇ a and ⁇ L make it possible to calculate the slope of the first helical portion PH1 and the second helical portion PH2.
  • a first short-circuit portion PCC1 is arranged near the input port PE.
  • the first short-circuit portion PCC1 is configured to constrain the propagation of the radio frequency signals from the input port PE towards the guide structure.
  • a second short-circuit portion PCC2 is arranged near the output port PS, and configured to constrain the propagation of radio frequency signals from the guide structure to the output port PS.
  • the first short-circuit portion PCC1 and the second short-circuit portion PCC2 are made up of metallic conductive pads arranged in a network, and constitute an electromagnetic wall to prevent the radio frequency signal from propagating outside the guide structure.
  • the first short-circuit portion PCC1 is arranged on the side of the input port PE which is opposite the first helical portion PH1; it also has the same dimension, along the Z axis, as the PE input port.
  • the second short-circuit portion PCC2 is arranged on the side of the output port PS which is opposite the second helical portion PH2; it also has the same dimension, along the Z axis, as the PS output port.
  • the first network of conductive pads RP1 comprises a first straight portion PDR1, which extends, at constant height along Z, from the first short-circuit portion PCC1, to the first helical portion PH1.
  • the length of the first straight portion PDR1, between the first short-circuit portion PCC1 and the first helical portion PH1, is approximately equal to the wavelength of the guide structure.
  • a second straight portion PDR2 extends, at constant height along Z, from the second short-circuit portion PCC2, to the first helical portion PH1.
  • the structure of the second network of conductive pads PR2, arranged on the second support SM is similar to the structure of the first network of conductive pads PR1, namely: a third straight portion PDR3, a second helical portion PH2, and a fourth straight portion PDR4.
  • the length of the third right portion PDR3 and the length of the fourth right portion PDR4 are such that, during the rotation corresponding to a maximum phase shift (for example +180°, or - 180°), the third right portion PDR3 and the fourth straight portion PDR4 are always arranged respectively facing the first straight portion PDR1 and facing the second right portion PDR2.
  • the arrangement of the first straight portion PDR1 and the fourth straight portion PDR4 makes it possible to obtain an invariant section of the guide structure at the level of the input port PE
  • the arrangement of the second straight portion PDR2 and the third straight portion PDR3 makes it possible to obtain an invariant section of the guide structure at the output port PS, which improves the radio performance of the phase shifter.
  • FIGS. 2A and 2B respectively illustrate a perspective view, and a transverse section view, of the guide structure defined by the first support SF, by the second support SM, by the first network of conductive pads RP1 and by the second network of conductive pads RP2.
  • the length “L” varies, as well as the long side “a”, in accordance with the predetermined slope.
  • the rotation of the second Counterclockwise SM support results in an increase in the long side “a”.
  • rotating the second support SM clockwise causes a reduction in the long side “a”.
  • the input port PE and the output port PS can be arranged otherwise, namely an output port PS arranged at a height greater than that of the input port PE along the Z axis.
  • the slope connecting the PE input port to the PS output port can "go down” counterclockwise, as shown in the figures 1B And 1 C , or, alternatively, “go down” clockwise.
  • the first support SF and the second support SM are arranged facing each other and leave a clearance between the end of each stud and the opposite support which faces it.
  • the first support SF and the second support SM are arranged facing each other and leave a clearance between the end of each stud and the opposite support which faces it.
  • the first network of conductive pads RP1 is not arranged over the entire width of the guide structure
  • the second network of conductive pads RP2 is not arranged over the entire width of the guide structure.
  • the guide structure is delimited by the part of the first support SF devoid of studs and not having studs facing it, and by the part of the second support SM devoid of studs and not having studs facing it .
  • the guide structure thus forms a waveguide with parallel plates, whose networks of conductive pads (RP1, RP2) make it possible to channel the electromagnetic waves while limiting leaks.
  • FIG. 3 illustrates a variant of the phase shift device according to the invention.
  • the embodiment illustrated by Figure 3 corresponds to the superposition of two phase shift devices according to the Figure 1A . It thus makes it possible, with a phase shift device of constant diameter, to apply a phase shift having a maximum value twice as high as for the embodiment previously described.
  • the embodiment illustrated by Figure 3 allows for a maximum phase shift of 180° on a first stage, then a new maximum phase shift of 180° on a second stage. A maximum phase shift of 360° can thus be obtained.
  • a phase shift device illustrated by the Figure 1A would also allow maximum phase shift of 360°, by doubling the diameter of the first support SF and the second support SM.
  • the rotation of the second support SM in the first support SF causes the helical portions of the first network of conductive pads RP1 and the second network of conductive pads RP2 to move closer together or further apart.
  • the first network of conductive pads RP1 and the second network of conductive pads RP2 are coupled to a guided portion with constant dimensions TGE at a first access AC1.
  • the signal phase shifted to half the desired value is therefore recovered at the first access AC1.
  • the guided portion with constant dimensions TGE diametrically crosses the second support SM on distinct planes along the Z axis from the first access AC1 to a second access AC2.
  • the guided portion with constant dimensions TGE is represented on the Figure 3 by a stepped waveguide, but other types of guided portions can be considered, for example a sloping guide.
  • phase shift of the radio frequency signal introduced into the guided portion with constant dimensions TGE is constant for a given frequency, whatever the relative position between the first support SF and the second support SM.
  • a short-circuit portion not shown, makes it possible to force the radio frequency signal to pass through the guided portion with constant dimensions TGE, after passing through the part of the guide structure delimited by the first network of conductive pads RP1 and by the second network of conductive pads RP2.
  • a short-circuit portion can be placed near the second access AC2.
  • the short-circuit portions can be formed by networks of conductive pads.
  • the guided portion with constant dimensions TGE is coupled, at the level of the second access AC2, to a third network of conductive pads RP3, arranged on the first support SF, and to a fourth network of conductive pads RP4, arranged on the second support SM.
  • the third network of conductive pads RP3 and the fourth network of conductive pads RP4 are coupled to the output port PS.
  • the helical portions of the second network of conductive pads RP2 and the fourth network of conductive pads RP4 respectively move towards or away from the helical portions of the first network of conductive pads RP1 and of the third network of conductive pads RP3.
  • a phase shift device on two planes can in particular be implemented when ⁇ L/R>180°, where ⁇ L represents the electrical length of the guide structure in the helical parts, and R represents the radius of the first support SF and the second support SM (which are substantially identical, up to the height of the conductive pads).
  • the first support SF and the second support SM can be obtained by mechanical assembly. Other means such as additive manufacturing or electroforming can also be considered.
  • phase shift device according to the invention can, as a variant, be made with planar supports. This is the view developed at the perimeter of the cylindrical embodiment illustrated by the Figure 1A .
  • the first support SF" and the second support SM" are planar in shape and located one above the other with a constant height.
  • the constant height corresponds to the height of the conductive pads, with however a clearance between the end of each pad and the opposite support which faces it, in order to allow relative movement without contact of the second support SM" relative to the first support SF "along a translation axis
  • the first network of conductive pads RP1" and the second network of conductive pads RP2" are thus arranged between two plates formed by the first support SF" and the second support SM".
  • the input port PE and the output port PS are arranged at the level of the first support SF". In particular, the input port PE and the output port PS can be materialized by guided accesses.
  • a first portion of short -circuit PCC1" is arranged near the input port PE, and a second short-circuit portion PCC2" is arranged near the output port PS
  • the first network of conductive pads RP1" comprises two first rectilinear portions PRE1, PRE2, parallel to the translation axis predetermined ⁇ corresponds to the predetermined slope in the cylindrical embodiment.
  • the predetermined angle ⁇ fixes the variation of the long side “a” as a function of the length “L”, in the same way as the steepness of the slope in the cylindrical embodiment.
  • the second network of conductive pads RP2" comprises two second rectilinear portions (PRE3, PRE4) parallel to the translation axis according to the predetermined angle ( ⁇ ) relative to the translation axis guidance, so as to avoid a coupling phenomenon of the electromagnetic field.
  • the first inclined portion PI1 and the second inclined portion PI2 are parallel to each other.
  • the long side "a” varies.
  • the transverse section of the guide structure varies with the translation movement of the second support SM" relative to the first support SF".
  • the guide structure forms a waveguide with parallel plates, whose networks of conductive pads make it possible to channel the electromagnetic waves while limiting leaks.
  • FIG 5 illustrates a plan embodiment of the phase shift device according to the invention. It makes it possible in particular to double the value of the maximum phase shift between the input port PE and the output port PS compared to the embodiment described previously, and illustrated by the figure 4 .
  • the embodiment illustrated by figure 5 makes it possible to obtain a maximum phase shift of 360°, while the embodiment illustrated by Figure 4 allows you to obtain a maximum phase shift of 180°.
  • the first network of conductive pads RP1" is arranged on the first support SF
  • the second network of conductive pads RP2" is arranged on the second support SM". They are identical to those described in the previous embodiment, illustrated by the Figure 4 .
  • the distance separating the first support SF" and the second support SM" corresponds to the height of the conductive pads.
  • a first access AC1" is located on the second support SM", near the fourth rectilinear portion PRE4.
  • a third network of conductive pads RP3" and a fourth network of conductive pads RP4" are arranged symmetrically with respect to a median plane PM including the translation axis X.
  • the input port PE and the output port PS are arranged symmetrically on either side of the median plane PM.
  • a guided portion with constant dimensions TGE" is arranged under the second support SM", on the side opposite the first support SF". Thus, the height of the guided portion with constant dimensions TGE" does not hinder the contactless movement of the second support SM" vis-à-vis the first support SF".
  • the guided portion with constant dimensions TGE" can take the form of an assembly of two bent waveguides.
  • the short-circuit portions (PCC1", PCC2", PCC3", PCC4") are arranged respectively near the port PE input port, PS output port, first access AC1" and second access AC2", in order to channel the electromagnetic waves of the radio frequency signal.
  • FIGS. 6A, 6B And 6C schematically illustrate the variation of the long side “a” of the guide structure as a function of the guided length “L”.
  • the guided length “L” varies by translation of the second support SM" with respect to the first support SF".
  • the second support SM" When they are flat, the second support SM" can be placed on a movable carriage, in translation relative to the first support SF".
  • the phase shift device according to the plan embodiment can be manufactured using conventional machining techniques.
  • THE figures 7A And 7B illustrate, respectively in cross section (XY plane) and in longitudinal section (XZ plane), the phase shift device according to the invention, allowing a phase shift from 0° to 360°, according to a cylindrical embodiment in which the second support SM' is in rotation around the first support SF'.
  • the second support SM' is movable in rotation around the first support SF'.
  • the input port PE' and the output port PS' are arranged on the first support SF', and coaxial with the Z axis, as illustrated more specifically in Figure 7B .
  • the input port PE' is connected to the first network of conductive pads and to the second network of conductive pads via a first bent guide GC1.
  • the output port PS' is connected to the third network of conductive pads and to the fourth network of conductive pads via a second bent guide GC2.
  • the first elbow guide GC1 and the second elbow guide GC2 must be designed to avoid reflections of the radio frequency signal.
  • the first elbow guide GC1 can have a 90° inclination between its ends, and include two 45° elbows, spaced ⁇ /4 apart.
  • the second GC2 bent guide can be designed in a similar way.
  • the guided portion with constant dimensions TGE' is arranged on at least part of the annular periphery of the second support SM'.
  • the guided portion with constant dimensions TGE' thus has a constant height along the Z axis.
  • a first short-circuit portion PCC1' is arranged near the input port PE', and configured to constrain the propagation of radio frequency signals from the input port PE' towards the guide structure.
  • a second short-circuit portion PCC2' is arranged near the output port PS', and configured to constrain the propagation of radio frequency signals from the guide structure to the output port PS'.
  • Short-circuit portions (PCC3', PCC4') make it possible to channel the electromagnetic waves of the radiofrequency signal near the accesses leading to the guided portion with constant dimensions TGE'.
  • the networks of conductive pads are not shown for reasons of readability of the drawings. They are also made up of helical portions, and can also include straight portions, on either side of the helical portion, in order to guarantee an invariant section of the guide structure in the event of rotation of the second support SM'.
  • the rotation of the second support SM' creates an lengthening or shortening of the length "L" of the guide structure.
  • the variation of the long side “a” can be obtained by the helical shape of the guided zone between the rotor and the stator.
  • the axial arrangement of the input port PE' and the output port PS' may be imposed by integration and arrangement constraints of the phase shift device in relation to other components.
  • the phase shift device according to the invention can be obtained by a mechanical pin device.
  • THE figures 8A And 8B represent a sectional view in the longitudinal plane of the phase shift device, respectively before and after rotation of the second support SM'".
  • the second support SM'" and the first support SF'" are of cylindrical shape around the same axis Z
  • the second support SM'" is configured to be movable in rotation in the first support SF′′′.
  • a pin PO is fixedly arranged in a recess EV of the second support SM′′′, in the axis of rotation Z of the second support SM′′′.
  • the recess EV can have a linear shape, and thus be inclined according to a predetermined slope, which corresponds to the slope and the angle described in the previous embodiments.
  • the recess may have a curved shape so as to cause a non-linear variation of the long side "a" of the guide structure.
  • a possible natural non-linearity of the phase shift device can be compensated during the rotation of the second support SM′′′.
  • a constant phase shift is guaranteed for a given rotation step (for example exactly ten motor steps to shift phase by 5°, and exactly ten additional motor steps to shift phase by 10°). The user's work is thus simplified.
  • the pin can consist of a ball
  • the recess EV can for example be a hollow cylinder of height equal to the diameter of the ball.
  • the spacing between the first network of conductive pads and the second network of conductive pads (long side "a") varies during the rotation of the second support SM′′′
  • a guided portion of constant dimensions, of the staircase guide type can advantageously be arranged in the second support SM′′′, so as to double the maximum phase shift value.
  • a stepping motor or gear motor can advantageously position, at a desired angle, the second support in the first support, or around the first support depending on the embodiment envisaged, with sufficient resolution allowing fine adjustment of the phase shift of the radio frequency signal.
  • a servo device could advantageously create a loop between the desired phase and the relative position of the second support with respect to the first support.
  • phase shift device could be integrated into the motor, which could allow, through its own internal guiding device, the rotation of the second support in or around the first support.
  • phase shift device described above makes it possible to obtain a phase shift that is quasi-constant to the nearest degree over an entire bandwidth (typically 15%), which gives a wide-band character to the phase shift device.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Claims (10)

  1. Vorrichtung zur Phasenverschiebung eines Hochfrequenzsignals, die einen ersten Träger (SF, SF', SF", SF‴) und einen zweiten Träger (SM, SM', SM", SM‴) umfasst, wobei der erste Träger (SF, SF', SF", SF‴) und der zweite Träger (SM, SM', SM", SM‴) so montiert sind, dass sie eine relative Dreh- oder Translationsbewegung zulassen, wobei ein Eingangsport (PE) und ein Ausgangsport (PS) für Hochfrequenzsignale auf dem ersten Träger (SF, SF', SF", SF‴) vorgesehen sind, wobei die Phasenverschiebungsvorrichtung Folgendes umfasst:
    ein erstes Array von leitfähigen Pads (RP1, RP1', RP1"), die auf dem ersten Träger (SF, SF', SF", SF‴) verteilt sind und sich vom Eingangsport (PE) aus erstrecken,
    ein zweites Array von leitfähigen Pads (RP2, RP2', RP2"), die auf dem zweiten Träger (SM, SM', SM", SM‴) verteilt sind,
    wobei der erste Träger (SF, SF', SF", SF‴), der zweite Träger (SM, SM', SM", SM‴), das erste Array von leitfähigen Pads (RP1, RP1', RP1") und das zweite Array von leitfähigen Pads (RP2, RP2', RP2") zum Bilden einer Hochfrequenzsignal-Führungsstruktur mit variabler Länge und mit einem rechteckigen Querschnitt angeordnet sind, die den Eingangsport (PE) und den Ausgangsport (PS) miteinander in Verbindung bringt, wobei das erste Array von leitfähigen Pads (RP1, RP1', RP1") und das zweite Array von leitfähigen Pads (RP2, RP2', RP2") so konfiguriert sind, dass der Querschnitt und die Länge der Führungsstruktur während der relativen Bewegung zwischen dem ersten Träger (SF, SF', SF", SF‴) und dem zweiten Träger (SM, SM', SM", SM‴) über mindestens einen Teil des Ausbreitungswegs der Hochfrequenzsignale in der Führungsstruktur verändert werden,
    dadurch gekennzeichnet, dass die Kopplungsvorrichtung einen geführten Abschnitt mit konstanten Abmessungen (TGE, TGE', TGE") an einem ersten Zugang (AC1, AC1', AC1"), ein drittes Array von leitfähigen Pads (RP3, RP3', RP3") und ein viertes Array von leitfähigen Pads (RP4, RP4', RP4") umfasst, und wobei das erste Array von leitfähigen Pads (RP1, RP1', RP1") und das zweite Array von leitfähigen Pads (RP2, RP2', RP2") mit dem geführten Abschnitt mit konstanten Abmessungen (TGE, TGE', TGE") an einem ersten Zugang (AC1, AC1', AC1") gekoppelt sind,
    wobei der geführte Abschnitt mit konstanten Abmessungen (TGE, TGE', TGE") an einem zweiten Zugang (AC2, AC2', AC2") mit den dritten Array von leitfähigen Pads (RP3, RP3', RP3") und den vierten Array von leitfähigen Pads (RP4, RP4', RP4") gekoppelt ist, wobei das dritte Array von leitfähigen Pads (RP3, RP3', RP3") und das vierte Array von leitfähigen Pads (RP4, RP4', RP4") jeweils auf dem ersten Träger (SF, SF', SF", SF‴) und dem zweiten Träger (SM, SM', SM", SM‴) angeordnet sind,
    wobei die Führungsstruktur auch durch das dritte Array von leitfähigen Pads (RP3, RP3', RP3") und durch das vierte Array von leitfähigen Pads (RP4, RP4', RP4") gebildet wird, so dass der Querschnitt der Führungsstruktur an dem dritten Array von leitfähigen Pads (RP3, RP3', RP3") und dem vierten Array von leitfähigen Pads (RP4, RP4', RP4") während der relativen Bewegung zwischen dem ersten Träger (SF, SF', SF", SF‴) und dem zweiten Träger (SM, SM', SM", SM‴) verändert wird.
  2. Vorrichtung nach Anspruch 1, wobei der zweite Träger (SM, SM') und der erste Träger (SF, SF') um eine selbe Achse Z zylindrisch geformt sind,
    wobei der erste Träger (SF, SF') und der zweite Träger (SM, SM') so konfiguriert sind, dass sie relativ zueinander um die Z-Achse drehbeweglich sind,
    wobei das erste Array von leitfähigen Pads (RP1) einen ersten spiralförmigen Z-Achsenabschnitt (PH1) umfasst,
    wobei das zweite Array von leitfähigen Pads (RP2) einen zweiten spiralförmigen Z-Achsenabschnitt (PH2) umfasst,
    wobei der erste spiralförmige Abschnitt (PH1) und der zweite spiralförmige Abschnitt (PH2) mit dem gleichen vorbestimmten Gefälle geneigt sind.
  3. Vorrichtung nach Anspruch 2, wobei das erste Array von leitfähigen Pads (RP1) und das zweite Array von leitfähigen Pads (RP2) jeweils zwei gerade Abschnitte (PDR1, PDR2, PDR3, PDR4) umfassen, die überwiegend in Ebenen lotrecht zur Z-Achse eingeschlossen und jeweils auf beiden Seiten des ersten spiralförmigen Abschnitts (PH1) und des zweiten spiralförmigen Abschnitts (PH2) angeordnet sind.
  4. Vorrichtung nach Anspruch 2 oder 3, wobei der zweite Träger (SM) so konfiguriert ist, dass er im ersten Träger (SF) um die Z-Achse drehbeweglich ist,
    wobei der geführte Abschnitt mit konstanten Abmessungen (TGE) den zweiten Träger (SM) in verschiedenen Ebenen entlang der Z-Achse vom ersten Zugang (AC1) bis zum zweiten Zugang (AC2) diametral durchläuft.
  5. Vorrichtung nach Anspruch 2 oder 3, wobei der zweite Träger (SM') so konfiguriert ist, dass er um den ersten Träger (SF') drehbeweglich ist,
    wobei der Eingangsport (PE') und der Ausgangsport (PS') koaxial zur Z-Achse sind,
    wobei der Eingangsport (PE') über eine erste gekrümmte Führung (GC1) mit dem ersten Array von leitfähigen Pads (RP1) und dem zweiten Array von leitfähigen Pads (RP2) verbunden ist,
    wobei der Ausgangsport (PS') über eine zweite gekrümmte Führung (GC2) mit dem dritten Array von leitfähigen Pads (RP3) und dem vierten Array von leitfähigen Pads (RP4) verbunden ist,
    wobei der geführte Abschnitt mit konstanten Abmessungen (TGE') auf mindestens einem Teil des ringförmigen Umfangs des zweiten Trägers (SM') angeordnet ist.
  6. Vorrichtung nach einem der Ansprüche 2 bis 5, wobei das dritte Array von leitfähigen Pads (RP3, RP3') einen dritten spiralförmigen Abschnitt umfasst und ein viertes Array von leitfähigen Pads (RP4, RP4') einen vierten spiralförmigen Abschnitt umfasst, wobei der dritte spiralförmige Abschnitt und der vierte spiralförmige Abschnitt mit dem vorbestimmten Gefälle geneigt und endseitig mit dem Ausgangsport (PS) gekoppelt sind.
  7. Vorrichtung nach Anspruch 1, wobei der zweite Träger (SM‴) und der erste Träger (SF‴) um dieselbe Achse Z zylindrisch geformt sind, wobei der zweite Träger (SM‴) so konfiguriert ist, dass er im ersten Träger (SF‴) drehbeweglich ist,
    wobei ein Stift (PO) in einer Aussparung (EV) des zweiten Trägers (SM‴) angeordnet ist,
    wobei der Stift (PO) und die Aussparung (EV) so konfiguriert sind, dass die Drehung des zweiten Trägers (SM‴) um die Z-Achse eine Translation des zweiten Trägers (SM‴) bewirkt.
  8. Vorrichtung nach Anspruch 7, wobei die Aussparung (EV) eine gebogene Form hat, wobei die gebogene Form zum Kompensieren einer Nichtlinearität der Phasenänderung bei der Drehung des zweiten Trägers (SM‴) um die Z-Achse konfiguriert ist.
  9. Vorrichtung nach Anspruch 1, wobei der zweite Träger (SM") und der erste Träger (SF") eine ebene Form haben und mit einer konstanten Höhe übereinander liegen, wobei der zweite Träger (SM") in Bezug auf den ersten Träger (SF") entlang einer Translationsachse (X) beweglich ist,
    wobei das erste Array von leitfähigen Pads (RP1") zwei erste geradlinige Abschnitte (PRE1, PRE2) parallel zur Translationsachse (X) umfasst, wobei die beiden ersten geradlinigen Abschnitte (PRE1, PRE2) an ihren Enden mit einem ersten Abschnitt (PI1) verbunden sind, der in einem vorbestimmten Winkel (θ) zur Translationsachse (X) geneigt ist,
    wobei das zweite Array von leitfähigen Pads (RP2") zwei zweite geradlinige Abschnitte (PRE3, PRE4) parallel zur Translationsachse umfasst, wobei die beiden zweiten geradlinigen Abschnitte (PRE3, PRE4) untereinander an ihren Enden mit einem zweiten Abschnitt (PI2) verbunden sind, der in dem vorbestimmten Winkel (θ) in Bezug auf die Translationsachse (X) geneigt ist,
    wobei das dritte Array von leitfähigen Pads (RP3") und das vierte Array von leitfähigen Pads (RP4") symmetrisch in Bezug auf eine die Translationsachse (X) einschließende Mittelebene (PM) angeordnet sind, wobei der Eingangsport (PE") und der Ausgangsport (PS") symmetrisch auf beiden Seiten der Mittelebene (PM) angeordnet sind,
    wobei der geführte Abschnitt mit konstanten Abmessungen (TGE") unter dem zweiten Träger (SM") auf der gegenüberliegenden Seite des ersten Trägers (SF") angeordnet ist.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Führungsstruktur ein aus einem Teil des ersten Trägers (SF, SF', SF", SF‴) ohne Pads und ohne gegenüberliegende Pads und aus einem Teil des zweiten Trägers (SM, SM', SM", SM‴) ohne Pads und ohne gegenüberliegende Pads gebildeter Parallelplatten-Wellenleiter ist.
EP19214377.4A 2018-12-11 2019-12-09 Wellenleitervorrichtung zur mechanischen breitbandigen phasenverschiebung Active EP3667808B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1872664A FR3089696B1 (fr) 2018-12-11 2018-12-11 Dispositif de déphasage mécanique large bande en onde guidée

Publications (2)

Publication Number Publication Date
EP3667808A1 EP3667808A1 (de) 2020-06-17
EP3667808B1 true EP3667808B1 (de) 2024-05-29

Family

ID=66690489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19214377.4A Active EP3667808B1 (de) 2018-12-11 2019-12-09 Wellenleitervorrichtung zur mechanischen breitbandigen phasenverschiebung

Country Status (4)

Country Link
US (1) US11539126B2 (de)
EP (1) EP3667808B1 (de)
CA (1) CA3064539A1 (de)
FR (1) FR3089696B1 (de)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276455A (en) * 1991-05-24 1994-01-04 The Boeing Company Packaging architecture for phased arrays
US5999128A (en) * 1998-05-19 1999-12-07 Hughes Electronics Corporation Multibeam phased array antennas and methods
US7688268B1 (en) * 2006-07-27 2010-03-30 Rockwell Collins, Inc. Multi-band antenna system
US8779995B2 (en) * 2008-10-29 2014-07-15 Panasonic Corporation High-frequency waveguide and phase shifter using same, radiator, electronic device which uses this phase shifter and radiator, antenna device, and electronic device equipped with same
FR2977381B1 (fr) 2011-06-30 2014-06-06 Alcatel Lucent Dephaseur et repartiteur de puissance
JP6506265B2 (ja) * 2014-05-07 2019-04-24 桐野 秀樹 導波路およびそれを用いた装置
EP3147994B1 (de) * 2015-09-24 2019-04-03 Gapwaves AB Wellenleiter und übertragungsleitungen in zwischenräumen zwischen parallelen leitenden oberflächen
CN109802234B (zh) * 2019-01-30 2023-09-29 京信通信技术(广州)有限公司 基站天线及移相馈电装置
CN112563689A (zh) * 2019-09-10 2021-03-26 康普技术有限责任公司 移相器
EP3819985B1 (de) * 2019-11-08 2024-04-24 Carrier Corporation Mikrostreifen-patch-antenne mit erhöhter bandbreite

Also Published As

Publication number Publication date
FR3089696B1 (fr) 2020-11-13
US20200185829A1 (en) 2020-06-11
FR3089696A1 (fr) 2020-06-12
US11539126B2 (en) 2022-12-27
CA3064539A1 (en) 2020-06-11
EP3667808A1 (de) 2020-06-17

Similar Documents

Publication Publication Date Title
EP2564466B1 (de) Kompaktes strahlungselement mit hohlraumresonatoren
CA1338792C (fr) Dephaseur hyperfrequence a microruban et dielectrique suspendu, et application a des reseaux d'antennes a balayage de lobe
EP1325537B1 (de) Verbesserung des erregers für sender/empfänger elektromagnetischer wellen in einer mehrreflektor-antenne
CN109417228B (zh) 相控天线元件
FR2886773A1 (fr) Antenne dispersive en frequence appliquee notamment a un radar meteorologique
WO2009077501A1 (fr) Dispositif d'amplification de puissance radiale a compensation de dispersion de phase des voies amplificatrices
FR2856524A1 (fr) Dephaseur a reseau de dispositifs transversal et antennes utilisant ce dephaseur
WO2017077038A1 (fr) Antenne compacte à faisceau orientable
EP3667808B1 (de) Wellenleitervorrichtung zur mechanischen breitbandigen phasenverschiebung
WO2008135404A1 (fr) Source laser compacte a faible largeur spectrale
EP2802036B1 (de) Passiver Phasenschieber mit Längsverschiebung
EP3840124B1 (de) Leckwellenantenne mit afsiw-technologie
EP3026754A1 (de) Kompaktmodul zur funkfrequenzanregung mit integrierter kinematik, und biaxiale kompaktantenne, die mindestens ein solches kompaktmodul umfasst
FR3089358A1 (fr) Elément rayonnant à accès multiples
FR2558307A1 (fr) Dispositif d'excitation d'un guide d'onde en mode circulaire et aerien comportant un tel dispositif
EP1522119B1 (de) Phasenschieber fähig zur kontinuierlichen phasenänderung
FR2945674A1 (fr) Dispositif de depointage du faisceau d'une antenne a balayage de faisceau utilisant le dispositif
EP1677385B1 (de) Elektronisch gesteuerte breitbandige Antenne
FR3105612A1 (fr) Antenne à cavité résonante compacte
EP3900104B1 (de) Bidirektionaler hyperfrequenzkoppler mit zwei parallelen doppelrippenwellenleitern
FR3073087B1 (fr) Commutateur
FR2767226A1 (fr) Antenne cylindrique a elements rayonnants glissants
FR2470457A1 (fr) Antenne a reseau a fentes avec distribution d'amplitude dans une petite ouverture circulaire
EP3220181A1 (de) Hybrides optisches system mit reduzierter grösse für abbildungsgruppenantenne
FR2930845A1 (fr) Antenne active d'emission/reception a balayage electronique un plan

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201124

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210715

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230721

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019052861

Country of ref document: DE