EP3663988A1 - Artificial neuron for neuromorphic chip with resistive synapses - Google Patents

Artificial neuron for neuromorphic chip with resistive synapses Download PDF

Info

Publication number
EP3663988A1
EP3663988A1 EP19212046.7A EP19212046A EP3663988A1 EP 3663988 A1 EP3663988 A1 EP 3663988A1 EP 19212046 A EP19212046 A EP 19212046A EP 3663988 A1 EP3663988 A1 EP 3663988A1
Authority
EP
European Patent Office
Prior art keywords
circuit
synapse
synaptic
reading
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19212046.7A
Other languages
German (de)
French (fr)
Other versions
EP3663988B1 (en
Inventor
François RUMMENS
Alexandre Valentian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3663988A1 publication Critical patent/EP3663988A1/en
Application granted granted Critical
Publication of EP3663988B1 publication Critical patent/EP3663988B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/54Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods

Definitions

  • the field of the invention is that of neuromorphic chips with artificial neural networks exploiting synapses with resistive memory.
  • ions pass through the cell membrane.
  • the imbalance of charges between the inside and the outside of the cell induces a voltage difference on either side of the membrane.
  • This membrane tension exceeds a certain level, that is to say when the cell is sufficiently excited, the neuron experiences a brutal exchange of ions.
  • This variation called action potential (“action potential” or “spike” in English), propagates along the axon, towards the synaptic buttons which constitute the outputs of the neuron. Seen from outside the cell, these "spikes” constitute the electrical activity of the neuron.
  • each neuron is connected to several thousand others via as many synapses.
  • the term synapse designates the connection between the axon termination of a so-called presynaptic neuron and a dendrite of a so-called postsynaptic neuron.
  • the influence of the presynaptic neuron on the postsynaptic neuron is balanced by the weight of the synapse which can be excitatory or inhibitory.
  • a presynaptic spike charges the membrane tension of the postsynaptic neuron and precipitates the generation of a postsynaptic action potential.
  • a Presynaptic "spike” has the effect of depolarizing the postsynaptic membrane and delaying the onset of a postsynaptic action potential.
  • Artificial neural networks are used in different fields of signal processing, such as data classification, image recognition or decision-making. They are inspired by the biological neural networks of which they imitate the functioning and are essentially composed of artificial neurons interconnected by synapses which can be implemented by resistive components whose conductance varies according to the voltage applied to their terminals.
  • resistive components memristors or RRAM are ideal candidates for the implementation of synapses.
  • the variable resistance of these components can be increased (so-called Reset operation) or decreased ( Set operation) if relatively high electrical quantities (voltage and / or current) are applied. If you simply want to read the value of their resistance without modifying it ( Read operation), you must apply relatively small electrical quantities.
  • the integration of resistive synapses often takes the form of a memory plane, which is called “synaptic plane", in which the synapses are arranged in a network with transverse lines and columns which makes it possible to connect a layer of input neurons. (presynaptic neurons) and a layer of output neurons (postsynaptic neurons).
  • Each synapse has a synapse activation terminal and a propagation terminal for a synaptic signal.
  • the terminals for activating synapses on the same line are linked together via a word line (or “Word-Line”), and the terminals for propagating synapses in the same column are connected between and connected to an artificial neuron via a bit line (or "Bit-Line").
  • a word line is used to inject a voltage pulse into the synapses of the corresponding line and the bit lines are the outputs of these synapses.
  • each bit line propagates a current weighted by the value of the corresponding resistive memory towards a postynaptic neuron.
  • a resistive memory synapse generally takes the form of a 1T1R cell composed of a variable resistor M and an access transistor T used to regulate the writing currents and whose grid forms the synapse activation terminal.
  • 1T1R cells comprising three word lines WL1-WL3, eight bit lines BL1-BL8 each intended to be connected to an output neuron and a source line (or “Source-Line”) SL connected to all synapses.
  • Source-Line source line
  • each 1S1R cell is a dipole, the terminals of which constitute the activation and propagation terminals, and the synaptic plane is organized as shown in figure 2 where we took the example of a plan comprising three word lines WL1-WL3 and four bit lines BL1-BL4, and where each synapse is taken between a voltage on the corresponding word line and a voltage on its corresponding bit line.
  • this organization offers an “all-to-all” connection according to which all the presynaptic neurons are connected via a synapse to all the postsynaptic neurons.
  • this “all-to-all” connection can lead to a mainly zero synaptic matrix and therefore to low energy efficiency.
  • This organization also requires having to process zero weights at the risk of having a network composed mainly of parasitic synapses, making the analog integration of synaptic weights even more complex.
  • RRAM memory which is composed of an insulator wedged between two layers of conductors.
  • OxRAM memory which is composed of an insulator wedged between two layers of conductors.
  • a conductive wire grows from one of the conductors towards the other, thus reducing the total resistance of the dipole.
  • a Set operation lengthens the wire and reduces the resistance, while a Reset operation has the opposite effect.
  • Reading an OxRAM memory presents a difficulty, that of parasitic writing by gradually changing the value of the resistance over successive readings. To limit this risk, it is advisable to apply a maximum reading voltage of 100 mV.
  • V spike_pre limits the membrane voltage V mem , because the membrane capacity C mem is charged through the resistor R synb on which V spike_pre is applied. In other words, the membrane tension is worth at most the tension V spike_pre .
  • V mem being an analog calculation element therefore subject in particular to problems of noise, technological variations, capacitive coupling, its voltage range cannot be reduced to a value as low as 100 mV without greatly increasing the sources of errors. Calculation.
  • RRAMs devices often have a low resistance range (with low values of the order of k ⁇ ) and that we can therefore be confronted with time constants of the cut R syn - C mem of l nanosecond order or less.
  • the reading impulse must also be propagated over the entire width of the synaptic plane. The shorter this impulse, the less “clean” it is in the end.
  • such a pulse is difficult to propagate in active analog circuits responsible for integrating the read current without being confronted with problems of bandwidth and / or distortion.
  • the invention aims to provide a solution to meet one and / or the other of the above constraints.
  • an artificial neuron for a neuromorphic chip comprising a synapse with resistive memory representative of a synaptic weight, the artificial neuron comprising an integration circuit which comprises an accumulator of synaptic weights at the terminals of which a membrane tension is established. and a comparator configured to emit a postsynaptic pulse in the event of a threshold being crossed by the membrane voltage.
  • the invention relates to an artificial neuron NA for neuromorphic chip comprising a synapse with resistive memory representative of a synaptic weight.
  • the synapse has a terminal for activating the synapse and a terminal for propagating a synaptic signal.
  • the propagation terminal propagates a synaptic signal representative of the value of the resistive memory (ie the synaptic weight) towards the artificial neuron NA via a BL bit line.
  • the artificial neuron includes an integration circuit CI which includes an accumulator of synaptic weights ACC at the terminals of which a membrane voltage V mem is established and a comparator COMP configured to emit a postsynaptic pulse SO in the event of crossing a threshold V threshold by the membrane voltage V mem .
  • the invention proposes to decouple the reading of the synaptic weight from its integration while avoiding digitizing the reading of the synaptic weight.
  • the different constraints can thus be distributed according to whether they are inherited from resistive memory technology or from the functioning of the analog neuron.
  • the invention proposes more particularly that the artificial neuron NA furthermore comprises a reading circuit CL configured to impose on the synapse a reading voltage independent of the membrane voltage V mem and to supply to the integration circuit CI an analog quantity representative of the synaptic weight PSa.
  • the reading circuit CL thus makes it possible to impose on the synapse a reading voltage having an identical polarization for each reading regardless of the state of the membrane voltage V mem .
  • This reading circuit also makes it possible to impose a sufficiently low reading voltage on the synapse to avoid any risk of parasitic writing.
  • the result of the reading namely the analog quantity representative of the synaptic weight PSa, is transmitted to the integration circuit.
  • this quantity can take different forms, such as a voltage, a current, a charge or a duration for example.
  • the integration circuit Cl thus decoupled from the reading, can thus propose a wide range of voltage for the membrane voltage, independent of the specifications of the synapse.
  • synapses which can be both excitatory and inhibitory, and which must therefore be capable of both injecting and drawing current from the neuron. Since the synapses are resistive here and the current they control depends on their resistance, two levels of synapse supply voltage are provided, a positive and a negative.
  • the figure 6 provides an example of such an excitatory and inhibitory synapse, called synapse 2R1C.
  • the synapse comprises an excitatory component CE and an inhibitory component CI arranged in series, with the propagation terminal Bp of the synapse as the midpoint, between a positive supply voltage V read and a negative supply voltage -V read .
  • the capacity C load is part of the reading circuit of a neuron according to a possible embodiment of the invention and is therefore shared by all the synapses of the same column.
  • the weight of the synapse is encoded as follows. If we want an exciting synapse, the resistance R inhi is adjusted to its maximum resistance level, while the resistance R exci ( ⁇ R inhi ) modulates the positive weight of the synapse. The lower the resistance R exci , the greater the synaptic weight, since this results in a higher synaptic current.
  • the resistance R exci is adjusted to its maximum resistance level, while the resistance R inhi ( ⁇ R exci ) modulates the negative weight of the synapse
  • the diagram composed of the capacitance C load and two resistors R inhi and R exci is similar to a damped resistive bridge.
  • the potential V load at the propagation terminal Bp is then gradually loaded as shown in the figure 7 .
  • This figure 7 illustrates that the integration of the synaptic weight can only be effective over a period of integration PI corresponding to a reading pulse duration less than the time constant of the couple R syn - C load .
  • V load V read whatever the value of R exci .
  • This time constant is also even shorter when binary RRAMs are used to obtain multivalued synapses, the paralleling of these binary RRAMs leading in effect to a lower overall resistance.
  • This problem can be circumvented by using a static reading of the synapse, that is to say reading a quantity depending on the weight of the synapse which is stabilized in the sense that it is independent of the duration. of a read pulse.
  • V load in the static state reached with a sufficiently long reading pulse, the value of V load can actually be modulated by the ratio between R exci and R inhi and therefore by playing with the number of devices in high resistance ( “High Resistive State” (HRS) or in low resistance (“Low Resistive State”, LRS) on the excitatory and inhibitory component side.
  • HRS High Resistive State
  • LRS Low Resistive State
  • the grids SL a , SL b are intended to remain polarized at ⁇ V read and the write pulses between the ground and V DD are sent to the activation terminals WL i , WL j . It is noted that the access transistors of the inhibitory cells are reverse biased.
  • the exciting component of a synapse is taken between a word line WL i_exci , WL j_exci and a bit line Bl u -Bl x while the inhibiting component of the same synapse is taken between a word line WL i_inhi , WL j_inhi and the bit line Bl u -Bl x .
  • Read pulses are sent simultaneously on the word lines WL i_exci and WL i_inhi corresponding to a presynaptic spike pertaining to line i.
  • the word line WL i_exci undergoes a pulse of the mass at V read and the word line WL i_inhi undergoes a pulse of the mass at -V read .
  • these source lines SL a and SL b can change polarization (from V read to -V read and vice versa) only when necessary by coming to exploit for this purpose a memory in each source line pilot.
  • the figures 10 and 11 illustrate another exemplary embodiment for integrating an analog signed weight in a synaptic plane according to which an analog absolute value is associated with a binary sign by means of a synapse called in the following synapse absolute value + sign.
  • the synaptic plane is then more classic, equipped with a single read voltage and having unidirectional read currents.
  • a certain number of binary RRAMs, a multivalued RRAM or a single binary RRAM in the event of binary synapse implements (s) the absolute value R abs of synaptic weight while another RRAM, modeled by a resistance R sign , is used binary to encode the sign of synaptic weight.
  • the artificial neuron reading circuit then includes a binary reading circuit Cb of the synaptic weight sign memory M sign and an analog reading circuit Ca of the synaptic weight absolute value memory M abs , said analog reading circuit Ca being controlled by the binary read circuit Cb.
  • the binary reading circuit Cb uses the sign of the presynaptic spike Sp and the sign of the synaptic weight M sign to provide the analog reading circuit Ca with an integration sign Si indicating in which direction to integrate the analog current I abs from the absolute value memory of synaptic weight M abs .
  • the analog quantity representative of the synaptic weight supplied by the read circuit to the integration circuit is a voltage.
  • the analog magnitude representative of the synaptic weight can be a voltage independent of the duration of a reading pulse, the neurons performing a static reading of the synapse.
  • the reading circuit CL1 comprises a synaptic current accumulator C load at the terminals of which a voltage V load is established , this voltage corresponding to the analog quantity representative of the synaptic weight.
  • the artificial neuron also comprises a bidirectional voltage follower circuit ST1, ST2 interposed between the read circuit CL1 and the integration circuit CI1.
  • the neuron works as follows.
  • the lower pole of C load is connected to the virtual ground Gnd by a rst_bot switch.
  • C load is first discharged by connecting its upper pole to the virtual ground using an rst_top switch, the read circuit being thus configured to discharge the accumulator from synaptic current C load before imposing the reading voltage on the synapse.
  • the reading of the synapse is then triggered by the opening of the rst_top switch.
  • the current from the bit line BL is then accumulated in C load , generating the read voltage V load . Opening rst_bot provides a floating V load voltage.
  • the voltage follower ST1, ST2 is then configured to copy the membrane voltage V mem to the lower terminal of C load .
  • the voltage at the upper limit of C load is worth the addition of V mem and V load .
  • the voltage follower ST1, ST2 is configured to copy this addition of voltage to the upper limit of the membrane capacity C mem thus providing the new membrane voltage which is compared to the spike emission threshold (s). (s).
  • the analog voltage addition proposed in the exemplary embodiments of Figures 11 and 12 allows a static reading of the 2R1C synapse. Dynamic reading is also possible provided that a sufficiently short reading pulse is generated.
  • the maximum stimulation is limited by the reading voltage of the RRAMs. We can then choose that such maximum stimulation alone can trigger a postsynaptic spike by a neuron whose membrane tension is at its resting potential. In which case, the voltage range of the membrane voltage V mem is limited by the read voltage V read . Alternatively, such a stimulation characteristic is not provided, and the membrane tension V mem can be spread over a wider voltage range.
  • the voltage follower ST1 includes two operational amplifiers, one intended via the mem2bot switch to copy the membrane voltage to the lower terminal of C load and the other intended via the top2mem switch to copy the voltage addition at the upper bound of C mem .
  • the voltage follower ST2 includes a single operational amplifier in place of the two operational amplifiers used alternately on the figure 12 .
  • an additional capacity C load_bis is provided in parallel with the switch rst_bot.
  • the reading circuit CL2 comprises a switch R ON / R OFF having a first terminal B1 intended to be connected to the synapse via the bit line BL and a second terminal B2 connected to the integration circuit CI2.
  • the integration circuit CI2 includes an integrator assembly connected to the second terminal and within which is mounted the synaptic weight accumulator C mem .
  • the synapse is read as follows. Initially, the switch is left open (it has a resistance R OFF in its blocked state), the voltage on the bit line V BL stabilizes according to the weight of the synapse (we must therefore have R OFF >> HRS ). In a second step, the switch is closed (it has a resistance R ON in its passing state), the voltage V BL is integrated by the integrator circuit, the time constant of which depends on R ON and C mem and not on the LRS of RRAMs. So we have R ON > LRS. The neuron of the figure 14 thus performs a static reading of the synapse by means of the switch R ON / R OFF and integration of the voltage V BL .
  • the neuron comprises a logic circuit LOG interposed between the read circuit CL3 and the integration circuit Cl3, the logic circuit being configured to generate from said analog quantity a pulse Cmd_exci, Cmd_inhi having said duration.
  • the integration circuit Cl3 for its part comprises a current source SI exc , SI inhi piloted by said pulse to inject a current into the accumulator of synaptic weights during said duration.
  • the reading circuit CL3 of the neuron represented in figure 15 comprises a synaptic current accumulator C load at the terminals of which a voltage V load is established and an rst_load switch making it possible to discharge this accumulator before a reading operation of the synaptic weight.
  • the C load accumulator is charged by the synaptic current, more or less quickly depending on the synaptic weight. The duration of this loading can be estimated very simply using an analog comparator.
  • the output Comp_exci of the comparator Cp is supplied to the logic circuit LOG interposed between the read circuit CL3 and the integration circuit CI3.
  • This logic circuit is configured to generate, from the result of the comparison, a voltage pulse having said duration, in this case the Cmd_exci pulse in the example of the figure 15 .
  • the integration circuit CI2 for its part comprises a current source SI exc controlled by said pulse Cmd_exci to inject a current into the accumulator of synaptic weights C mem during said duration.
  • the duration of this current injection therefore depends on the value of the synaptic weight, so that the final value of the membrane tension V mem also depends on the value of the synaptic weight.
  • the integration circuit CI2 includes another current source SI inhi piloted by a voltage pulse Cmd_inhi to draw current from the synaptic weight accumulator C mem for a period representative of the synaptic weight.
  • the neuron of the figure 15 can also take into account the sign of the presynaptic pulse, this Signe_spike being supplied to the logic circuit LOG which is then configured to determine the integration sign from the spike sign and weight sign information synaptic synapse determined by which of the comparators Cp and Cn which switches.
  • This logical and economical treatment of the spike sign allows, particularly in the case of 1T1R cells, to lighten the synaptic plane and its management. It will be noted that the synapse absolute value + sign is particularly suitable for this neuron.
  • An advantage of this embodiment is the reliability of zero weights.
  • all RRAMs devices in the synapse are at HRS. So, on the one hand, the time constant associated with a zero weight synapse is much more important than the others and, on the other hand, we will have Rexci ⁇ Rinhi. It is therefore unlikely that the voltage V load exceeds one of the two thresholds Sp, Sn not only because it will not have time but also because its final value risks being between the two thresholds. Consequently, the logic circuit LOG sees no switching at the output of the comparators Cp, Cn and does not trigger any charge injection on C mem . A true zero weight which does not in any way modify the state of the neuron is thus implemented.
  • the synapse is read in a direction long enough for V load to start abutting on V read or -V read according to the sign of the synapse. Then, the polarization of the reading is reversed, the voltage V load will therefore cross the potential difference from one polarization of V read to the other and cross the two thresholds Sp, Sn in a time relative to the weight of the synapse.
  • the logic circuit LOG is then configured to generate a voltage pulse between these two comparator switching operations.
  • the reading circuit CL4, CL5 comprises a current conveyor which comprises an input port X intended to be connected to the synapse via the bit line, an input port Y intended to be subjected to a fixed voltage (by example ground) for the duration of access to the synapse and an output port Z connected to the integration circuit.
  • Such a current conveyor based on an operational amplifier and two current mirrors, is such that the fixed voltage imposed on the input port Y is copied over the input port X and the current injected into the input port X is reproduced on the output port Z (with a sign inversion for the circuit of the figure 17 , without inversion of sign for the circuit of the figure 18 ).
  • a fixed voltage being imposed on the Y port we just slave the bit line voltage to this fixed voltage (it is thus independent of the membrane voltage of the neuron) and debit the synaptic current on the output port Z. This synaptic current is supplied to the integration circuit which will then carry out an analog integration.
  • the current conveyor comprises, as shown in figure 19 , a current mirror configured to achieve a lowering of the current between the input port X and the output port Z.
  • I OUT - I IN K , with K a factor greater than 1 which makes it possible to use reading pulses of longer duration and therefore more suited to the operation of the active elements without thereby saturating the membrane capacity.
  • the neuron comprises a transmission gate T between the read circuit and the integration circuit.
  • This gate makes it possible to dissociate the access time to the RRAMs and the integration time, which makes it possible to wait for the voltage on the input port X to stabilize before integrating the reading current and to play with a brief integration pulse without requiring a particularly reactive operational amplifier.
  • the reading circuit CL6 advantageously comprises both the reversing current mirror of the reading circuit CL4 and the non-reversing current mirror of the reading circuit CL5 (these mirrors being able to effect a lowering of the current in accordance with the figure 19 ) and a selector S controlled by a signal Signe_spike representative of the sign of the presynaptic spike to select the output of one or other of these current mirrors.
  • the invention is not limited to the above-described artificial neuron, but extends to a neuromorphic chip comprising a plurality of synapses with resistive memory arranged in a network with transverse lines and columns. Each synapse has a propagation terminal, the propagation terminals of the synapses of the same column being linked together and connected to an artificial neuron according to the invention.
  • the synapses can be excitatory or inhibitory synapses such as those presented above in connection with the figures 6 to 11 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

L'invention porte sur un neurone artificiel pour puce neuromorphique comprenant une synapse à mémoire résistive représentative d'un poids synaptique. Le neurone artificiel comprend un circuit de lecture, un circuit d'intégration et un circuit logique interposé entre le circuit de lecture et le circuit d'intégration.Le circuit de lecture (CL3) est configuré pour imposer à la synapse une tension de lecture indépendante de la tension de membrane et pour fournir une grandeur analogique représentative du poids synaptique.Le circuit logique (LOG) est configuré pour générer à partir de ladite grandeur analogique une impulsion (Cmd_exci, Cmd_inhi) présentant ladite duréeLe circuit d'intégration comprend un accumulateur de poids synaptiques aux bornes duquel s'établit une tension de membrane (V<sub>mem</sub>) et un comparateur configuré pour émettre une impulsion postsynaptique en cas de franchissement d'un seuil par la tension de membrane. Il comprend par ailleurs une source de courant (SI<sub>exc</sub>, SI<sub>inhi</sub>) pilotée par ladite impulsion pour injecter un courant dans l'accumulateur de poids synaptiques pendant ladite durée.The invention relates to an artificial neuron for a neuromorphic chip comprising a synapse with resistive memory representative of a synaptic weight. The artificial neuron comprises a reading circuit, an integration circuit and a logic circuit interposed between the reading circuit and the integration circuit.The reading circuit (CL3) is configured to impose on the synapse an independent reading voltage of the membrane voltage and to provide an analog quantity representative of the synaptic weight. The logic circuit (LOG) is configured to generate from said analog quantity a pulse (Cmd_exci, Cmd_inhi) exhibiting said duration The integration circuit comprises an accumulator of synaptic weights at the terminals of which a membrane voltage is established (V <sub> mem </sub>) and a comparator configured to emit a postsynaptic pulse in the event of a threshold being crossed by the membrane voltage. It also includes a current source (SI <sub> exc </sub>, SI <sub> inhi </sub>) controlled by said pulse to inject current into the synaptic weight accumulator during said duration.

Description

DOMAINE TECHNIQUETECHNICAL AREA

Le domaine de l'invention est celui des puces neuromorphiques à réseaux de neurones artificiels exploitant des synapses à mémoire résistive.The field of the invention is that of neuromorphic chips with artificial neural networks exploiting synapses with resistive memory.

TECHNIQUE ANTÉRIEUREPRIOR TECHNIQUE

Une cellule nerveuse, ou neurone, peut être décomposée en plusieurs parties :

  • Les dendrites qui sont les entrées du neurone via lesquelles il reçoit des signaux d'excitation ou d'inhibition ;
  • Le corps du neurone qui est le théâtre d'échanges ioniques à travers la membrane cellulaire ;
  • L'axone, une longue extension du corps cellulaire, qui est l'unique sortie du corps.
A nerve cell, or neuron, can be broken down into several parts:
  • The dendrites which are the inputs of the neuron via which it receives signals of excitation or inhibition;
  • The body of the neuron which is the scene of ionic exchanges across the cell membrane;
  • The axon, a long extension of the cell body, which is the only exit from the body.

Selon les signaux d'excitation ou d'inhibition reçus au niveau des dendrites, des ions transitent à travers la membrane cellulaire. Le déséquilibre de charges entre l'intérieur et l'extérieur de la cellule induit une différence de tension de part et d'autre de la membrane. On parle alors de tension de membrane aux bornes d'une capacité de membrane. Lorsque cette tension de membrane dépasse un certain niveau, c'est-à-dire lorsque la cellule est suffisamment excitée, le neurone connait un échange brutal d'ions. Il en résulte une variation significative de la tension de membrane. Cette variation, appelée potentiel d'action (« action potential » ou encore « spike » en anglais), se propage le long de l'axone, vers les boutons synaptiques qui constituent les sorties du neurone. Vus de l'extérieur de la cellule, ces « spikes » constituent l'activité électrique du neurone.Depending on the excitation or inhibition signals received at the dendrites, ions pass through the cell membrane. The imbalance of charges between the inside and the outside of the cell induces a voltage difference on either side of the membrane. We then speak of membrane voltage across a membrane capacity. When this membrane tension exceeds a certain level, that is to say when the cell is sufficiently excited, the neuron experiences a brutal exchange of ions. This results in a significant variation in the membrane tension. This variation, called action potential (“action potential” or “spike” in English), propagates along the axon, towards the synaptic buttons which constitute the outputs of the neuron. Seen from outside the cell, these "spikes" constitute the electrical activity of the neuron.

Dans un réseau de neurones biologiques, chaque neurone est connecté à plusieurs milliers d'autres via autant de synapses. Le terme synapse désigne la connexion entre la terminaison axonique d'un neurone dit présynaptique et une dendrite d'un neurone dit postsynaptique. L'influence du neurone présynaptique sur le neurone postsynaptique est pondérée par le poids de la synapse qui peut être excitatrice ou inhibitrice. Dans le premier cas, un « spike » présynaptique charge la tension de membrane du neurone postsynaptique et précipite la génération d'un potentiel d'action postsynaptique. Dans le second cas, un « spike » présynaptique a pour effet de dépolariser la membrane postsynaptique et de retarder l'apparition d'un potentiel d'action postsynaptique.In a network of biological neurons, each neuron is connected to several thousand others via as many synapses. The term synapse designates the connection between the axon termination of a so-called presynaptic neuron and a dendrite of a so-called postsynaptic neuron. The influence of the presynaptic neuron on the postsynaptic neuron is balanced by the weight of the synapse which can be excitatory or inhibitory. In the first case, a presynaptic spike charges the membrane tension of the postsynaptic neuron and precipitates the generation of a postsynaptic action potential. In the second case, a Presynaptic "spike" has the effect of depolarizing the postsynaptic membrane and delaying the onset of a postsynaptic action potential.

Les réseaux de neurones artificiels sont utilisés dans différents domaines de traitement du signal comme par exemple en classification de données, en reconnaissance d'images ou en prise de décision. Ils sont inspirés des réseaux de neurones biologiques dont ils imitent le fonctionnement et sont essentiellement composés de neurones artificiels interconnectés entre eux par des synapses qui peuvent être implémentées par des composants résistifs dont la conductance varie en fonction de la tension appliquée à leurs bornes.Artificial neural networks are used in different fields of signal processing, such as data classification, image recognition or decision-making. They are inspired by the biological neural networks of which they imitate the functioning and are essentially composed of artificial neurons interconnected by synapses which can be implemented by resistive components whose conductance varies according to the voltage applied to their terminals.

De par leur grande densité et leur caractère non-volatil, ces composants résistifs (memristors ou RRAM) sont des candidats idéaux à l'implémentation des synapses. La résistance variable de ces composants peut être augmentée (opération dite Reset) ou diminuée (opération Set) si on y applique des grandeurs électriques (tension et/ou courant) relativement élevées. Si on veut simplement lire la valeur de leur résistance sans la modifier (opération Read), il faut appliquer des grandeurs électriques relativement faibles.Due to their high density and their non-volatile nature, these resistive components (memristors or RRAM) are ideal candidates for the implementation of synapses. The variable resistance of these components can be increased (so-called Reset operation) or decreased ( Set operation) if relatively high electrical quantities (voltage and / or current) are applied. If you simply want to read the value of their resistance without modifying it ( Read operation), you must apply relatively small electrical quantities.

L'intégration de synapses résistives prend souvent la forme d'un plan mémoire, qu'on nomme « plan synaptique », dans lequel les synapses sont agencées en un réseau à lignes et colonnes transversales qui permet de relier une couche de neurones d'entrée (les neurones présynaptiques) et une couche de neurones de sortie (les neurones postsynaptiques). Chaque synapse dispose d'une borne d'activation de la synapse et d'une borne de propagation d'un signal synaptique. Les bornes d'activation des synapses d'une même ligne sont reliées entre elles par l'intermédiaire d'une ligne de mot (ou « Word-Line »), et les bornes de propagation des synapses d'une même colonne sont reliées entre elles et connectées à un neurone artificiel par l'intermédiaire d'une ligne de bit (ou « Bit-Line »). Une ligne de mot est utilisée pour injecter une impulsion en tension dans les synapses de la ligne correspondante et les lignes de bit sont les sorties de ces synapses. En présence d'une activation présynaptique sur une ligne de mot depuis un neurone présynaptique, chaque ligne de bit propage un courant pondéré par la valeur de la mémoire résistive correspondante vers un neurone postynaptique.The integration of resistive synapses often takes the form of a memory plane, which is called "synaptic plane", in which the synapses are arranged in a network with transverse lines and columns which makes it possible to connect a layer of input neurons. (presynaptic neurons) and a layer of output neurons (postsynaptic neurons). Each synapse has a synapse activation terminal and a propagation terminal for a synaptic signal. The terminals for activating synapses on the same line are linked together via a word line (or “Word-Line”), and the terminals for propagating synapses in the same column are connected between and connected to an artificial neuron via a bit line (or "Bit-Line"). A word line is used to inject a voltage pulse into the synapses of the corresponding line and the bit lines are the outputs of these synapses. In the presence of a presynaptic activation on a word line from a presynaptic neuron, each bit line propagates a current weighted by the value of the corresponding resistive memory towards a postynaptic neuron.

Comme représenté en figure 1 (dans ce qui suit figure x désigne la figure annexée Fig. x), une synapse à mémoire résistive prend généralement la forme d'une cellule 1T1R composée d'une résistance variable M et d'un transistor d'accès T servant à réguler les courants d'écriture et dont la grille forme la borne d'activation de la synapse. On a représenté sur la figure 1 un exemple d'un plan synaptique à cellules 1T1R comprenant trois lignes de mot WL1-WL3, huit lignes de bit BL1-BL8 chacune destinée à être reliée à un neurone de sortie et une ligne de source (ou « Source-Line ») SL reliée à toutes les synapses. La présence d'un transistor par synapse limite néanmoins la densité d'un tel plan synaptique.As shown in figure 1 (in the following figure x denotes the appended figure Fig. x), a resistive memory synapse generally takes the form of a 1T1R cell composed of a variable resistor M and an access transistor T used to regulate the writing currents and whose grid forms the synapse activation terminal. We have represented on the figure 1 an example of a synaptic plan with 1T1R cells comprising three word lines WL1-WL3, eight bit lines BL1-BL8 each intended to be connected to an output neuron and a source line (or “Source-Line”) SL connected to all synapses. The presence of a synapse transistor nevertheless limits the density of such a synaptic plane.

Comme représenté en figure 2, on peut alternativement avoir recours à des cellules 1S1R composée d'une résistance variable M et d'un sélecteur S ayant un comportement similaire à une diode, voire à deux diodes en tête-bêche. Chaque cellule 1S1R est un dipôle dont les bornes constituent les bornes d'activation et de propagation, et le plan synaptique s'organise comme représenté en figure 2 où l'on a pris l'exemple d'un plan comprenant trois lignes de mots WL1-WL3 et de quatre lignes de bits BL1-BL4, et où chaque synapse est prise entre une tension sur la ligne de mot correspondante et une tension sur sa ligne de bit correspondante.As shown in figure 2 , one can alternatively use cells 1S1R composed of a variable resistor M and a selector S having a behavior similar to a diode, or even to two diodes upside down. Each 1S1R cell is a dipole, the terminals of which constitute the activation and propagation terminals, and the synaptic plane is organized as shown in figure 2 where we took the example of a plan comprising three word lines WL1-WL3 and four bit lines BL1-BL4, and where each synapse is taken between a voltage on the corresponding word line and a voltage on its corresponding bit line.

Un certain nombre de contraintes pèsent sur l'implémentation effective d'un tel réseau de neurones artificiels.A certain number of constraints weigh on the effective implementation of such an artificial neural network.

Par exemple, si l'organisation du plan synaptique présente des avantages (parallélisation des calculs, densité, mise en commun des pilotes), elle présente néanmoins des limitations. Tout d'abord, cette organisation offre une connexion « tous-à-tous» selon laquelle tous les neurones présynaptiques sont connectés via une synapse à tous les neurones postsynaptiques. Or dans certains cas, cette connexion « tous-à-tous » peut conduire à une matrice synaptique principalement nulle et donc à une faible efficacité énergétique. Cette organisation nécessite également de devoir traiter finement les poids nuls sous peine d'avoir un réseau composé principalement de synapses parasites, rendant encore plus complexe l'intégration analogique des poids synaptiques.For example, if the organization of the synaptic plan has advantages (parallel calculations, density, pooling of pilots), it nevertheless has limitations. First of all, this organization offers an “all-to-all” connection according to which all the presynaptic neurons are connected via a synapse to all the postsynaptic neurons. However in certain cases, this “all-to-all” connection can lead to a mainly zero synaptic matrix and therefore to low energy efficiency. This organization also requires having to process zero weights at the risk of having a network composed mainly of parasitic synapses, making the analog integration of synaptic weights even more complex.

Une autre contrainte est liée à l'implémentation classique d'un neurone artificiel sous la forme d'un neurone intégratif à seuil (« Integrate and Fire » en anglais). Le principe d'une telle implémentation est représenté sur la figure 3. La contribution Vspike_pre d'un neurone présynaptique est pondérée par la valeur de la résistance synaptique correspondante Rsynb et fournit ainsi un courant d'excitation Isynb. Ce courant est injecté dans une capacité Cmem qui intègre les différentes stimulations au cours du temps. La tension de membrane, modélisée par la tension Vmem aux bornes de la capacité Cmem, est comparée à un seuil Vseuil. Lorsque ce seuil est dépassé par la tension de membrane, un spike Vspike est émis et la capacité Cmem est déchargée pour réinitialiser la tension de membrane, typiquement en la remettant à zéro.Another constraint is related to the classic implementation of an artificial neuron in the form of an integrative threshold neuron ("Integrate and Fire" in English). The principle of such an implementation is represented on the figure 3 . The contribution V spike_pre of a presynaptic neuron is weighted by the value of the corresponding synaptic resistance R synb and thus provides an excitation current I synb . This current is injected into a capacitor C mem which integrates the various stimulations over time. Membrane tension, modeled by the voltage V mem at the terminals of the capacitance C mem , is compared to a threshold V threshold . When this threshold is exceeded by the membrane tension, a spike V spike is emitted and the capacitor C mem is discharged to reset the membrane tension, typically by resetting it to zero.

Or selon la loi d'Ohm, et comme représenté en figure 4, le courant Isynb qui devrait ne dépendre que de la valeur de la résistance Rsynb de la synapse dépend en réalité de la valeur de la tension de membrane V mem : I synb = V spike pre V mem R synb .

Figure imgb0001
However according to Ohm's law, and as represented in figure 4 , the current I synb which should depend only on the value of the resistor R synb of the synapse actually depends on the value of the membrane voltage V same : I synb = V spike - pre - V same R synb .
Figure imgb0001

Ceci implique que plus la tension Vmem est élevée, donc plus le neurone est excité et susceptible d'émettre un spike, moins ses synapses afférentes ont un effet sur lui. Un tel phénomène est problématique. Ainsi, dans une couche de classification par exemple, le neurone censé émettre le plus de spikes voit son activité réduite dans une plus grande proportion que celle des neurones moins actifs. Dès lors, la différence entre ce neurone « gagnant » et les autres neurones se trouve réduite.This implies that the higher the voltage V mem , the more the neuron is excited and likely to emit a spike, the less its afferent synapses have an effect on it. Such a phenomenon is problematic. Thus, in a classification layer for example, the neuron supposed to emit the most spikes sees its activity reduced in a greater proportion than that of the less active neurons. Consequently, the difference between this “winning” neuron and the other neurons is reduced.

D'autres contraintes sont liées aux caractéristiques des mémoires RRAM. Un exemple de telle mémoire RRAM est la mémoire OxRAM qui est composée d'un isolant coincé entre deux couches de conducteurs. Lors d'une première étape de formation, un fil conducteur croît depuis l'un des conducteurs vers l'autre, réduisant ainsi la résistance totale du dipôle. Une fois ce fil formé, les actions d'écriture agissent sur sa longueur pour faire varier la résistance. Une opération Set allonge le fil et réduit la résistance tandis qu'une opération Reset a l'effet inverse. La lecture d'une mémoire OxRAM présente une difficulté, celle de l'écriture parasite en venant petit à petit modifier la valeur de la résistance au fil de lectures successives. Pour limiter ce risque, il est conseillé d'appliquer une tension de lecture maximale de 100 mV. La petitesse de cette tension complique grandement la mise en œuvre d'une lecture analogique intégrative de ces mémoires. En effet, la tension de lecture Vspike_pre limite la tension de membrane Vmem, car la capacité de membrane Cmem est chargée à travers la résistance Rsynb sur laquelle est appliquée Vspike_pre. Autrement dit, la tension de membrane vaut au plus la tension Vspike_pre. Or Vmem étant un élément de calcul analogique donc soumis notamment à des problématiques de bruit, de variations technologiques, de couplage capacitif, sa gamme de tension ne peut être réduite à une valeur aussi faible que 100 mV sans augmenter fortement les sources d'erreurs de calcul.Other constraints are linked to the characteristics of RRAM memories. An example of such an RRAM memory is the OxRAM memory which is composed of an insulator wedged between two layers of conductors. During a first stage of formation, a conductive wire grows from one of the conductors towards the other, thus reducing the total resistance of the dipole. Once this wire is formed, the writing actions act on its length to vary the resistance. A Set operation lengthens the wire and reduces the resistance, while a Reset operation has the opposite effect. Reading an OxRAM memory presents a difficulty, that of parasitic writing by gradually changing the value of the resistance over successive readings. To limit this risk, it is advisable to apply a maximum reading voltage of 100 mV. The smallness of this voltage greatly complicates the implementation of an integrative analog reading of these memories. Indeed, the reading voltage V spike_pre limits the membrane voltage V mem , because the membrane capacity C mem is charged through the resistor R synb on which V spike_pre is applied. In other words, the membrane tension is worth at most the tension V spike_pre . However, V mem being an analog calculation element therefore subject in particular to problems of noise, technological variations, capacitive coupling, its voltage range cannot be reduced to a value as low as 100 mV without greatly increasing the sources of errors. Calculation.

On relèvera par ailleurs que les dispositifs RRAMs ont souvent une gamme de résistance faible (avec des valeurs basses de l'ordre du kΩ) et que l'on peut donc être confronté à des constantes de temps du coupe Rsyn - Cmem de l'ordre de la nanoseconde voire moins. Or il n'est pas aisé de générer des impulsions de lecture inférieures à 1 ns, sauf à avoir recours à un circuit spécifique. L'impulsion de lecture doit en outre être propagée sur toute la largeur du plan synaptique. Or plus cette impulsion est courte, moins elle est « propre » en bout de ligne. Enfin, une telle impulsion se propage difficilement dans des circuits analogiques actifs chargés d'intégrer le courant de lecture sans être confrontée à des problématiques de bande passante et/ou de distorsion.It will also be noted that RRAMs devices often have a low resistance range (with low values of the order of kΩ) and that we can therefore be confronted with time constants of the cut R syn - C mem of l nanosecond order or less. However, it is not easy to generate reading pulses of less than 1 ns, except when using a specific circuit. The reading impulse must also be propagated over the entire width of the synaptic plane. The shorter this impulse, the less “clean” it is in the end. Finally, such a pulse is difficult to propagate in active analog circuits responsible for integrating the read current without being confronted with problems of bandwidth and / or distortion.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

L'invention a pour objectif d'apporter une solution permettant de répondre à l'une et/ou l'autre des contraintes susmentionnées. Elle propose pour ce faire un neurone artificiel pour puce neuromorphique comprenant une synapse à mémoire résistive représentative d'un poids synaptique, le neurone artificiel comportant un circuit d'intégration qui comprend un accumulateur de poids synaptiques aux bornes duquel s'établit une tension de membrane et un comparateur configuré pour émettre une impulsion postsynaptique en cas de franchissement d'un seuil par la tension de membrane.The invention aims to provide a solution to meet one and / or the other of the above constraints. To do this, it proposes an artificial neuron for a neuromorphic chip comprising a synapse with resistive memory representative of a synaptic weight, the artificial neuron comprising an integration circuit which comprises an accumulator of synaptic weights at the terminals of which a membrane tension is established. and a comparator configured to emit a postsynaptic pulse in the event of a threshold being crossed by the membrane voltage.

Le neurone comporte en outre :

  • un circuit de lecture configuré pour imposer à la synapse une tension de lecture indépendante de la tension de membrane et pour fournir une grandeur analogique représentative du poids synaptique, ladite grandeur analogique étant une durée ; et
  • un circuit logique interposé entre le circuit de lecture et le circuit d'intégration, le circuit logique étant configuré pour générer à partir de ladite grandeur analogique une impulsion présentant ladite durée.
The neuron also includes:
  • a reading circuit configured to impose on the synapse a reading voltage independent of the membrane voltage and to provide an analog quantity representative of the synaptic weight, said analog quantity being a duration; and
  • a logic circuit interposed between the read circuit and the integration circuit, the logic circuit being configured to generate from said analog quantity a pulse having said duration.

Le circuit d'intégration comprend une source de courant pilotée par ladite impulsion pour injecter un courant dans l'accumulateur de poids synaptiques pendant ladite durée. Certains aspects préférés mais non limitatifs de ce neurone artificiel sont les suivants :

  • le circuit de lecture comprend un accumulateur de courant synaptique, au moins un comparateur de la tension aux bornes de l'accumulateur de courant synaptique avec un seuil pour fournir un résultat de comparaison et le circuit logique est configuré pour générer ladite impulsion à partir du résultat de la comparaison ;
  • l'au moins un comparateur du circuit de lecture comprend un premier comparateur à un premier seuil et un deuxième comparateur à un deuxième seuil et le circuit logique est configuré pour déterminer un signe d'intégration en exploitant un signal représentatif d'un signe d'impulsion présynaptique et une information de signe de poids synaptique déterminée par celui des premier et deuxième comparateurs qui commute ;
  • l'au moins un comparateur du circuit de lecture comprend un premier comparateur à un premier seuil et un deuxième comparateur à un deuxième seuil et le circuit logique est configuré de telle manière que la durée de ladite impulsion corresponde à une durée séparant le franchissement de l'un des seuils puis le franchissement de l'autre des seuils ;
  • la synapse comprenant une mémoire de valeur absolue de poids synaptique et une mémoire de signe de poids synaptique, le circuit de lecture comprend un circuit de lecture binaire de la mémoire de signe de poids synaptique et un circuit de lecture analogique de la mémoire de valeur absolue de poids synaptique piloté par le circuit de lecture binaire.
The integration circuit comprises a current source controlled by said pulse to inject a current into the accumulator of synaptic weights during said duration. Some preferred but non-limiting aspects of this artificial neuron are as follows:
  • the reading circuit comprises a synaptic current accumulator, at least one comparator of the voltage across the terminals of the synaptic current accumulator with a threshold to provide a comparison result and the logic circuit is configured to generate said pulse from the result of the comparison;
  • the at least one comparator of the reading circuit comprises a first comparator at a first threshold and a second comparator at a second threshold and the logic circuit is configured to determine an integration sign by exploiting a signal representative of a sign of presynaptic pulse and synaptic weight sign information determined by which of the first and second comparators switches;
  • the at least one comparator of the reading circuit comprises a first comparator at a first threshold and a second comparator at a second threshold and the logic circuit is configured in such a way that the duration of said pulse corresponds to a duration separating the crossing of the 'one of the thresholds then crossing the other of the thresholds;
  • the synapse comprising a synaptic weight absolute value memory and a synaptic weight sign memory, the reading circuit comprises a binary reading circuit of the synaptic weight sign memory and an analog reading circuit of the absolute value memory of synaptic weight controlled by the binary reading circuit.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

D'autres aspects, buts, avantages et caractéristiques de l'invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif, et faite en référence aux dessins suivants sur lesquels, outre les figures 1 à 4 déjà discutées précédemment :

  • la figure 5 est un schéma de principe d'un neurone artificiel selon l'invention ;
  • la figure 6 illustre une synapse excitatrice ou inhibitrice pouvant être utilisée dans le cadre de l'invention ;
  • la figure 7 représente la réponse impulsionnelle de la synapse de la figure 6 ;
  • les figures 8 et 9 fournissent des exemples d'intégration de la synapse de la figure 6 dans un plan synaptique ;
  • les figures 10 et 11 fournissent un autre exemple de synapse excitatrice ou inhibitrice pouvant être utilisée dans le cadre de l'invention ;
  • les figures 12 et 13 sont des schémas de neurones artificiels disposant d'un accumulateur de courant synaptique dans le circuit de lecture et d'un accumulateur de poids synaptiques dans le circuit d'intégration et pour lesquels la grandeur analogique représentative du poids synaptique fournie par le circuit de lecture au circuit d'intégration est une tension ;
  • la figure 14 représente un autre exemple de neurone pour lequel la grandeur analogique est également une tension ;
  • la figure 15 représente un neurone selon l'invention pour lequel la grandeur analogique est également une durée ;
  • la figure 16 illustre un autre mode opératoire du neurone de la figure 15 ;
  • les figures 17, 18 et 20 représentent des circuits de lecture d'un exemple de neurone pour lequel la grandeur analogique est un courant ;
  • la figure 19 illustre une variante de réalisation des circuits de lectures des figures 17 et 18.
Other aspects, aims, advantages and characteristics of the invention will appear better on reading the following detailed description of preferred embodiments thereof, given by way of nonlimiting example, and made with reference to the following drawings on which, in addition to figures 1 to 4 already discussed previously:
  • the figure 5 is a block diagram of an artificial neuron according to the invention;
  • the figure 6 illustrates an excitatory or inhibitory synapse which can be used within the framework of the invention;
  • the figure 7 represents the impulse response of the synapse of the figure 6 ;
  • the figures 8 and 9 provide examples of integration of the synapse of the figure 6 in a synaptic plane;
  • the figures 10 and 11 provide another example of an excitatory or inhibitory synapse which can be used in the context of the invention;
  • the figures 12 and 13 are diagrams of artificial neurons with a synaptic current accumulator in the reading circuit and an accumulator synaptic weights in the integration circuit and for which the analog quantity representative of the synaptic weight supplied by the read circuit to the integration circuit is a voltage;
  • the figure 14 represents another example of a neuron for which the analog quantity is also a voltage;
  • the figure 15 represents a neuron according to the invention for which the analog quantity is also a duration;
  • the figure 16 illustrates another operating mode of the neuron of the figure 15 ;
  • the figures 17, 18 and 20 represent read circuits of an example of a neuron for which the analog quantity is a current;
  • the figure 19 illustrates an alternative embodiment of the reading circuits of the Figures 17 and 18 .

DESCRIPTION DÉTAILLÉEDETAILED DESCRIPTION

En référence à la figure 5, l'invention porte sur un neurone artificiel NA pour puce neuromorphique comprenant une synapse à mémoire résistive représentative d'un poids synaptique.With reference to the figure 5 , the invention relates to an artificial neuron NA for neuromorphic chip comprising a synapse with resistive memory representative of a synaptic weight.

La synapse dispose d'une borne d'activation de la synapse et d'une borne de propagation d'un signal synaptique. En présence d'une activation présynaptique appliquée sur la borne d'activation, la borne de propagation propage un signal synaptique représentatif de la valeur de la mémoire résistive (i.e. le poids synaptique) en direction du neurone artificiel NA par l'intermédiaire d'une ligne de bit BL.The synapse has a terminal for activating the synapse and a terminal for propagating a synaptic signal. In the presence of a presynaptic activation applied to the activation terminal, the propagation terminal propagates a synaptic signal representative of the value of the resistive memory (ie the synaptic weight) towards the artificial neuron NA via a BL bit line.

Le neurone artificiel comprend un circuit d'intégration CI qui comprend un accumulateur de poids synaptiques ACC aux bornes duquel s'établit une tension de membrane Vmem et un comparateur COMP configuré pour émettre une impulsion postsynaptique SO en cas de franchissement d'un seuil Vseuil par la tension de membrane Vmem.The artificial neuron includes an integration circuit CI which includes an accumulator of synaptic weights ACC at the terminals of which a membrane voltage V mem is established and a comparator COMP configured to emit a postsynaptic pulse SO in the event of crossing a threshold V threshold by the membrane voltage V mem .

L'invention propose de découpler la lecture du poids synaptique de son intégration en évitant de numériser la lecture du poids synaptique. Les différentes contraintes peuvent ainsi être réparties selon qu'elles sont héritées de la technologie de la mémoire résistive ou du fonctionnement du neurone analogique. Pour ce faire, l'invention propose plus particulièrement que le neurone artificiel NA comporte en outre un circuit de lecture CL configuré pour imposer à la synapse une tension de lecture indépendante de la tension de membrane Vmem et pour fournir au circuit d'intégration CI une grandeur analogique représentative du poids synaptique PSa.The invention proposes to decouple the reading of the synaptic weight from its integration while avoiding digitizing the reading of the synaptic weight. The different constraints can thus be distributed according to whether they are inherited from resistive memory technology or from the functioning of the analog neuron. To do this, the invention proposes more particularly that the artificial neuron NA furthermore comprises a reading circuit CL configured to impose on the synapse a reading voltage independent of the membrane voltage V mem and to supply to the integration circuit CI an analog quantity representative of the synaptic weight PSa.

Le circuit de lecture CL permet ainsi d'imposer à la synapse une tension de lecture présentant une polarisation identique pour chaque lecture quel que soit l'état de la tension de membrane Vmem. Ce circuit de lecture permet également d'imposer à la synapse une tension de lecture suffisamment faible pour éviter tout risque d'écriture parasite. Le résultat de la lecture, à savoir la grandeur analogique représentative du poids synaptique PSa, est transmis au circuit d'intégration. Comme on le verra par la suite, cette grandeur peut prendre différentes formes, telles qu'une tension, un courant, une charge ou une durée par exemple. Le circuit d'intégration Cl, ainsi découplé de la lecture, peut ainsi proposer une vaste plage de tension pour la tension de membrane, indépendante des spécifications de la synapse.The reading circuit CL thus makes it possible to impose on the synapse a reading voltage having an identical polarization for each reading regardless of the state of the membrane voltage V mem . This reading circuit also makes it possible to impose a sufficiently low reading voltage on the synapse to avoid any risk of parasitic writing. The result of the reading, namely the analog quantity representative of the synaptic weight PSa, is transmitted to the integration circuit. As will be seen below, this quantity can take different forms, such as a voltage, a current, a charge or a duration for example. The integration circuit Cl, thus decoupled from the reading, can thus propose a wide range of voltage for the membrane voltage, independent of the specifications of the synapse.

On détaille dans ce qui suit des implémentations de synapses résistives qui trouvent avantageusement application dans le cadre de l'invention. On comprendra cependant que l'invention n'est pas limitée à ces implémentations spécifiques.We detail in the following implementations of resistive synapses which advantageously find application in the context of the invention. It will however be understood that the invention is not limited to these specific implementations.

On peut en effet chercher à disposer de synapses qui puissent être à la fois excitatrices et inhibitrices, et qui doivent donc être capable à la fois d'injecter et de tirer du courant depuis le neurone. Les synapses étant ici résistives et le courant qu'elles pilotent dépendant de leur résistance, on prévoit deux niveaux de tension d'alimentation de la synapse, un positif et un négatif. La figure 6 fournit un exemple d'une telle synapse excitatrice et inhibitrice, dite synapse 2R1C. La synapse comprend une composante excitatrice CE et une composante inhibitrice CI agencées en série, avec pour point milieu la borne de propagation Bp de la synapse, entre une tension d'alimentation positive Vread et une tension d'alimentation négative -Vread. Chacune de ces composantes peut être constituées de n≥1 cellules 1T1R ou 1S1R selon l'encodage choisi (sur la figure, la référence Select. désigne ainsi le transistor d'accès ou le sélecteur de telles cellules 1T1R ou 1S1R). Si on utilise des RRAMs multivaluées, on peut avoir n = 1. Si par contre on utilise des RRAMs binaires, on prévoit autant de cellules que de niveaux de poids désirés. On peut également utiliser des synapses valant -1, 0 ou +1, auquel cas on peut utiliser des RRAMs binaires et n = 1. Quoi qu'il en soit, on fait dans ce qui suit référence à la résistance totale des cellules en parallèle en écrivant Rexci et Rinhi pour désigner respectivement la résistance totale de la composante excitatrice CE et la résistance totale de la composante inhibitrice CI. Sur la figure 6, la capacité Cload fait partie du circuit de lecture d'un neurone selon une réalisation possible de l'invention et est donc partagée par toutes les synapses d'une même colonne.We can indeed seek to have synapses which can be both excitatory and inhibitory, and which must therefore be capable of both injecting and drawing current from the neuron. Since the synapses are resistive here and the current they control depends on their resistance, two levels of synapse supply voltage are provided, a positive and a negative. The figure 6 provides an example of such an excitatory and inhibitory synapse, called synapse 2R1C. The synapse comprises an excitatory component CE and an inhibitory component CI arranged in series, with the propagation terminal Bp of the synapse as the midpoint, between a positive supply voltage V read and a negative supply voltage -V read . Each of these components can consist of n≥1 cells 1T1R or 1S1R depending on the encoding chosen (in the figure, the reference Select. Thus designates the access transistor or the selector of such cells 1T1R or 1S1R). If we use multivalued RRAMs, we can have n = 1. If on the other hand we use binary RRAMs, we predict as many cells as desired weight levels. We can also use synapses equal to -1, 0 or +1, in which case we can use binary RRAMs and n = 1. Anyway, reference is made in the following to the total resistance of the cells in parallel by writing R exci and R inhi to denote respectively the total resistance of the excitatory component CE and the total resistance of the inhibitory component CI. On the figure 6 , the capacity C load is part of the reading circuit of a neuron according to a possible embodiment of the invention and is therefore shared by all the synapses of the same column.

Le poids de la synapse est encodé comme suit. Si on veut une synapse excitatrice, la résistance Rinhi est réglée à son niveau de résistance maximal, tandis que la résistance Rexci (<Rinhi) module le poids positif de la synapse. Plus la résistance Rexci est faible, plus le poids synaptique est important, car il en résulte un courant synaptique supérieur. A contrario, si on veut une synapse inhibitrice, la résistance Rexci est réglée à son niveau de résistance maximal, tandis que la résistance Rinhi (<Rexci) module le poids négatif de la synapse
En négligeant les effets des sélecteurs ou transistors d'accès, le schéma composé de la capacité Cload et de deux résistances Rinhi et Rexci s'apparente à un pont résistif amorti. En appliquant les tensions d'alimentation Vread et -Vread, le potentiel Vload à la borne de propagation Bp se charge alors progressivement comme représenté sur la figure 7. Cette figure 7 illustre que l'intégration du poids synaptique ne peut être effective que sur une période d'intégration PI correspondant à une durée d'impulsion de lecture inférieure à la constante de temps du couple Rsyn - Cload. Dans le cas contraire en effet, avec par exemple Rexci << Rinhi, on risque d'obtenir Vload=Vread quelle que soit la valeur de Rexci.
The weight of the synapse is encoded as follows. If we want an exciting synapse, the resistance R inhi is adjusted to its maximum resistance level, while the resistance R exci (<R inhi ) modulates the positive weight of the synapse. The lower the resistance R exci , the greater the synaptic weight, since this results in a higher synaptic current. Conversely, if we want an inhibitory synapse, the resistance R exci is adjusted to its maximum resistance level, while the resistance R inhi (<R exci ) modulates the negative weight of the synapse
By neglecting the effects of the access selectors or transistors, the diagram composed of the capacitance C load and two resistors R inhi and R exci is similar to a damped resistive bridge. By applying the supply voltages V read and -V read , the potential V load at the propagation terminal Bp is then gradually loaded as shown in the figure 7 . This figure 7 illustrates that the integration of the synaptic weight can only be effective over a period of integration PI corresponding to a reading pulse duration less than the time constant of the couple R syn - C load . In the contrary case indeed, with for example R exci << R inhi , one risks obtaining V load = V read whatever the value of R exci .

Cette constante de temps est en outre encore plus brève lorsque l'on a recours à des RRAM binaires pour obtenir des synapses multivaluées, la mise en parallèle de ces RRAM binaires débouchant en effet sur une résistance globale plus faible. Ce problème peut être contourné en ayant recours à une lecture statique de la synapse, c'est-à-dire à la lecture d'une grandeur fonction du poids de la synapse qui est stabilisée en ce sens qu'elle est indépendante de la durée d'une impulsion de lecture. La figure 7 montre en effet qu'à l'état statique atteint avec une impulsion de lecture suffisamment longue, la valeur de Vload peut effectivement être modulée par le rapport entre Rexci et Rinhi et donc en jouant avec le nombre de dispositifs en haute résistance (« High Resistive State », HRS) ou en basse résistance (« Low Resistive State », LRS) côté composante excitatrice et composant inhibitrice.This time constant is also even shorter when binary RRAMs are used to obtain multivalued synapses, the paralleling of these binary RRAMs leading in effect to a lower overall resistance. This problem can be circumvented by using a static reading of the synapse, that is to say reading a quantity depending on the weight of the synapse which is stabilized in the sense that it is independent of the duration. of a read pulse. The figure 7 shows indeed that in the static state reached with a sufficiently long reading pulse, the value of V load can actually be modulated by the ratio between R exci and R inhi and therefore by playing with the number of devices in high resistance ( "High Resistive State" (HRS) or in low resistance ("Low Resistive State", LRS) on the excitatory and inhibitory component side.

Prenant l'exemple d'une synapse composée de 8 dispositifs OxRAM, 4 pour la composante excitatrice et 4 pour la composante inhibitrice. Avec LRS = 3kΩ, HRS = 800kΩ et Cload = 50 fF, un codage sur 9 poids (dont le poids nul) associés à des constantes de temps allant de 1 ns à 250 ps peut être obtenu. Une lecture statique offre quant à elle plus de combinaisons (13 poids possible) et évite d'avoir à générer des impulsions de lectures brèves. En revanche, cette lecture statique est plus énergivore en raison de l'accès « prolongé » à la RRAM.Taking the example of a synapse composed of 8 OxRAM devices, 4 for the excitatory component and 4 for the inhibitory component. With LRS = 3kΩ, HRS = 800kΩ and C load = 50 fF, coding on 9 weights (including zero weight) associated with time constants ranging from 1 ns to 250 ps can be obtained. A static reading offers more combinations (13 possible weights) and avoids having to generate short reading pulses. On the other hand, this static reading is more energy-consuming because of the “prolonged” access to the RRAM.

On a représenté sur les figures 8 et 9 une organisation possible du plan synaptique avec des synapses 2R1C conformes à celle de la figure 6 dans le cas où les composantes CE, CI sont respectivement basées sur des cellules 1T1R ou 1S1R.We have represented on figures 8 and 9 a possible organization of the synaptic plan with 2R1C synapses consistent with that of the figure 6 in the case where the components CE, CI are respectively based on 1T1R or 1S1R cells.

Dans le cas 1T1R (figure 8), les composantes excitatrices et inhibitrices participant à la même synapse ont leur bornes d'activation WLi, WLj mises en commun. En effet, en phase de lecture, les deux composantes sont lues en même temps. Cette mise en commun est bienvenue car le plan synaptique est complexifié par la nécessité d'avoir deux réseaux de lignes de source distincts SLa, SLb qui servent à distinguer les cellules aux BL et WL communs pendant la phase d'écriture et de polariser les synapses en Vread ou -Vread selon quelles encodent la composante excitatrice ou inhibitrice de leur synapse pendant la phase de lecture. Dans cette configuration, les grilles SLa, SLb ont vocation à demeurer polarisées à ±Vread et les impulsions d'écriture entre la masse et VDD sont envoyées sur les bornes d'activation WLi, WLj. On note que les transistors d'accès des cellules inhibitrices sont polarisés en inverse.In the case 1T1R ( figure 8 ), the excitatory and inhibitory components participating in the same synapse have their activation terminals WL i , WL j pooled. Indeed, during the reading phase, the two components are read at the same time. This pooling is welcome because the synaptic plan is complicated by the need to have two distinct source line networks SL a , SL b which are used to distinguish cells with common BL and WL during the writing phase and to polarize the synapses in V read or -V read depending on which encode the excitatory or inhibitory component of their synapse during the read phase. In this configuration, the grids SL a , SL b are intended to remain polarized at ± V read and the write pulses between the ground and V DD are sent to the activation terminals WL i , WL j . It is noted that the access transistors of the inhibitory cells are reverse biased.

Dans le cas 1S1R (figure 9), la composante excitatrice d'une synapse est prise entre une ligne de mot WLi_exci, WLj_exci et une ligne de bit Blu-Blx tandis que la composant inhibitrice de la même synapse est prise entre une ligne de mot WLi_inhi, WLj_inhi et la ligne de bit Blu-Blx. Des impulsions de lectures sont envoyées simultanément sur les lignes de mot WLi_exci et WLi_inhi correspondant à un spike présynaptique afférent à la ligne i. La ligne de mot WLi_exci subit une impulsion de la masse à Vread et la ligne de mot WLi_inhi subit une impulsion de la masse à -Vread.In the case of 1S1R ( figure 9 ), the exciting component of a synapse is taken between a word line WL i_exci , WL j_exci and a bit line Bl u -Bl x while the inhibiting component of the same synapse is taken between a word line WL i_inhi , WL j_inhi and the bit line Bl u -Bl x . Read pulses are sent simultaneously on the word lines WL i_exci and WL i_inhi corresponding to a presynaptic spike pertaining to line i. The word line WL i_exci undergoes a pulse of the mass at V read and the word line WL i_inhi undergoes a pulse of the mass at -V read .

On peut également rechercher à implémenter des spikes négatifs, à savoir des impulsions présynaptiques qui inversent le poids de la synapse qu'elles déclenchent.One can also seek to implement negative spikes, namely presynaptic impulses which reverse the weight of the synapse which they trigger.

Reprenant l'exemple de la figure 9, au lieu d'envoyer des créneaux positifs sur WLi_exci, WLj_exci et négatifs sur WLi_inhi, WLj_inhi, il suffit d'inverser ces polarisations. Ainsi, une synapse inhibitrice injecte un courant dans Cload et à l'inverse une synapse excitatrice en retire.Using the example of the figure 9 , instead of sending positive slots on WL i_exci , WL j_exci and negative slots on WL i_inhi , WL j_inhi , it is enough to reverse these polarizations. Thus, an inhibitory synapse injects a current into C load and conversely an excitatory synapse withdraws it.

Reprenant l'exemple de la figure 8, en cas de spike négatif il est également possible d'inverser la polarisation de deux lignes de source SLa, SLb. Cette solution n'est pas nécessairement favorable, car longue et couteuse en énergie du fait que ces lignes sont communes à tout le plan synaptique. En variante, il est possible d'utiliser une pilote par ligne de source et dont la polarisation est basculée de Vread à -Vread en fonction du signe de l'impulsion présynaptique à traiter. Dès lors, il n'est plus nécessaire de charger et décharger deux plans complets mais seulement les deux lignes de source SLa et SLb qui correspondent aux synapses excitées par une même impulsion présynaptique. Dans ce cadre, il est possible de déplacer la tension de ces lignes de source uniquement lors de la lecture et de les laisser à la masse sinon. Alternativement, ces lignes de source SLa et SLb peuvent changer de polarisation (de Vread à -Vread et inversement) uniquement lorsque cela est nécessaire en venant exploiter à cet effet une mémoire dans chaque pilote de ligne de source.Using the example of the figure 8 , in case of negative spike it is also possible to reverse the polarization of two source lines SL a , SL b . This solution is not necessarily favorable, because it is long and costly in energy because these lines are common to the entire synaptic plane. As a variant, it is possible to use one pilot per source line and the polarization of which is switched from V read to -V read as a function of the sign of the presynaptic pulse to be processed. Consequently, it is no longer necessary to load and unload two complete planes but only the two source lines SL a and SL b which correspond to the synapses excited by the same presynaptic pulse. In this context, it is possible to move the voltage of these source lines only during playback and leave them to ground otherwise. Alternatively, these source lines SL a and SL b can change polarization (from V read to -V read and vice versa) only when necessary by coming to exploit for this purpose a memory in each source line pilot.

Les figures 10 et 11 illustrent un autre exemple de réalisation pour intégrer un poids signé analogique dans un plan synaptique selon laquelle on associe une valeur absolue analogique à un signe binaire au moyen d'une synapse dite dans ce qui suit synapse valeur absolue + signe. Le plan synaptique est alors plus classique, équipé d'une unique tension de lecture et présentant des courants de lecture unidirectionnels. Selon cet exemple, un certain nombre de RRAMs binaires, une RRAM multivaluée ou une unique RRAM binaire en cas de synapse binaire implémente(nt) la valeur absolue Rabs du poids synaptique alors qu'une autre RRAM, modélisé par une résistance Rsigne, est utilisée de façon binaire pour encoder le signe du poids synaptique. Cette RRAM de signe peut avantageusement être constituée par un triplé ou un quintuplé de dispositifs dont le signe de la synapse est extrait à la majorité. Le circuit de lecture du neurone artificiel comprend alors un circuit de lecture binaire Cb de la mémoire de signe de poids synaptique Msigne et un circuit de lecture analogique Ca de la mémoire de valeur absolue de poids synaptique Mabs, ledit circuit de lecture analogique Ca étant piloté par le circuit de lecture binaire Cb. Le circuit de lecture binaire Cb exploite le signe du spike présynaptique Sp et le signe du poids synaptique Msigne pour fournir au circuit de lecture analogique Ca un signe d'intégration Si indiquant dans quel sens intégrer le courant analogique Iabs issu de la mémoire de valeur absolue de poids synaptique Mabs. Le sens du courant analogique Iabs étant toujours le même, son inversion en cas de signe d'intégration négatif peut être réalisée avec un simple miroir de courant comme représenté en figure 11. Sur cette figure 11, si le signe d'intégration Si vaut 1, le courant Iabs est injecté dans Cload. En revanche, si le signe d'intégration Si vaut 0, le courant Iabs est retiré de Cload.The figures 10 and 11 illustrate another exemplary embodiment for integrating an analog signed weight in a synaptic plane according to which an analog absolute value is associated with a binary sign by means of a synapse called in the following synapse absolute value + sign. The synaptic plane is then more classic, equipped with a single read voltage and having unidirectional read currents. According to this example, a certain number of binary RRAMs, a multivalued RRAM or a single binary RRAM in the event of binary synapse implements (s) the absolute value R abs of synaptic weight while another RRAM, modeled by a resistance R sign , is used binary to encode the sign of synaptic weight. This sign RRAM can advantageously be constituted by a triplet or a quintuplet of devices whose sign of the synapse is extracted by majority. The artificial neuron reading circuit then includes a binary reading circuit Cb of the synaptic weight sign memory M sign and an analog reading circuit Ca of the synaptic weight absolute value memory M abs , said analog reading circuit Ca being controlled by the binary read circuit Cb. The binary reading circuit Cb uses the sign of the presynaptic spike Sp and the sign of the synaptic weight M sign to provide the analog reading circuit Ca with an integration sign Si indicating in which direction to integrate the analog current I abs from the absolute value memory of synaptic weight M abs . The direction of the analog current I abs being always the same, its reversal in the event of a negative integration sign can be carried out with a simple current mirror as shown in figure 11 . On this figure 11 , if the sign of integration Si is 1, the current I abs is injected into C load . On the other hand, if the sign of integration Si is 0, the current I abs is removed from C load .

On a représenté sur les figures 12, 13 et 14 des exemples de réalisation d'un neurone artificiel pour lesquels la grandeur analogique représentative du poids synaptique fournie par le circuit de lecture au circuit d'intégration est une tension. Dans certaines réalisations, la grandeur analogique représentative du poids synaptique peut être une tension indépendante de la durée d'une impulsion de lecture, les neurones réalisant une lecture statique de la synapse.We have represented on figures 12 , 13 and 14 exemplary embodiments of an artificial neuron for which the analog quantity representative of the synaptic weight supplied by the read circuit to the integration circuit is a voltage. In certain embodiments, the analog magnitude representative of the synaptic weight can be a voltage independent of the duration of a reading pulse, the neurons performing a static reading of the synapse.

Sur les figures 12 et 13, le circuit de lecture CL1 comprend un accumulateur de courant synaptique Cload aux bornes duquel s'établit une tension Vload, cette tension correspondant à la grandeur analogique représentative du poids synaptique. Le neurone artificiel comprend par ailleurs un circuit suiveur de tension bidirectionnel ST1, ST2 interposé entre le circuit de lecture CL1 et le circuit d'intégration CI1.On the figures 12 and 13 , the reading circuit CL1 comprises a synaptic current accumulator C load at the terminals of which a voltage V load is established , this voltage corresponding to the analog quantity representative of the synaptic weight. The artificial neuron also comprises a bidirectional voltage follower circuit ST1, ST2 interposed between the read circuit CL1 and the integration circuit CI1.

Le fonctionnement du neurone est le suivant. Lors d'une opération de lecture de la synapse, le pôle inférieur de Cload est connecté à la masse virtuelle Gnd par un interrupteur rst_bot. Dans une première phase de l'opération de lecture, Cload est d'abord déchargée en reliant son pôle supérieur à la masse virtuelle à l'aide d'un interrupteur rst_top, le circuit de lecture étant ainsi configuré pour décharger l'accumulateur de courant synaptique Cload avant d'imposer la tension de lecture à la synapse. La lecture de la synapse est ensuite déclenchée par l'ouverture de l'interrupteur rst_top. Le courant provenant de la ligne de bit BL est alors accumulé dans Cload, générant la tension de lecture Vload. L'ouverture de rst_bot permet d'obtenir une tension Vload flottante. Le suiveur de tension ST1, ST2 est alors configuré pour recopier la tension de membrane Vmem à la borne inférieure de Cload. Ainsi la tension à la borne supérieure de Cload vaut l'addition de Vmem et Vload. Puis le suiveur de tension ST1, ST2 est configuré pour recopier cette addition de tension à la borne supérieure de la capacité de membrane Cmem fournissant ainsi la nouvelle tension de membrane qui est comparée au(x) seuil(s) d'émission de spike(s).The neuron works as follows. During a synapse read operation, the lower pole of C load is connected to the virtual ground Gnd by a rst_bot switch. In a first phase of the read operation, C load is first discharged by connecting its upper pole to the virtual ground using an rst_top switch, the read circuit being thus configured to discharge the accumulator from synaptic current C load before imposing the reading voltage on the synapse. The reading of the synapse is then triggered by the opening of the rst_top switch. The current from the bit line BL is then accumulated in C load , generating the read voltage V load . Opening rst_bot provides a floating V load voltage. The voltage follower ST1, ST2 is then configured to copy the membrane voltage V mem to the lower terminal of C load . Thus the voltage at the upper limit of C load is worth the addition of V mem and V load . Then the voltage follower ST1, ST2 is configured to copy this addition of voltage to the upper limit of the membrane capacity C mem thus providing the new membrane voltage which is compared to the spike emission threshold (s). (s).

L'addition analogique de tension proposée dans les exemples de réalisation de figures 11 et 12 permet de procéder à une lecture statique de la synapse 2R1C. La lecture dynamique est également possible à condition de générer une impulsion de lecture suffisamment brève. Dans ces exemples par ailleurs, la stimulation maximale est limitée par la tension de lecture des RRAMs. On peut alors choisir qu'une telle stimulation maximale permet à elle seul de déclencher un spike postsynaptique par un neurone dont la tension de membrane serait à son potentiel de repos. Auquel cas, la gamme de tension de la tension de membrane Vmem est limitée par la tension de lecture Vread. Alternativement, on ne prévoit pas une telle caractéristique de stimulation, et on peut étaler la tension de membrane Vmem sur une plage de tension plus vaste.The analog voltage addition proposed in the exemplary embodiments of Figures 11 and 12 allows a static reading of the 2R1C synapse. Dynamic reading is also possible provided that a sufficiently short reading pulse is generated. In these examples, moreover, the maximum stimulation is limited by the reading voltage of the RRAMs. We can then choose that such maximum stimulation alone can trigger a postsynaptic spike by a neuron whose membrane tension is at its resting potential. In which case, the voltage range of the membrane voltage V mem is limited by the read voltage V read . Alternatively, such a stimulation characteristic is not provided, and the membrane tension V mem can be spread over a wider voltage range.

Sur la figure 12, le suiveur de tension ST1 comprend deux amplificateurs opérationnels, l'un destiné via l'interrupteur mem2bot à recopier la tension de membrane à la borne inférieure de Cload et l'autre destiné via l'interrupteur top2mem à recopier l'addition de tension à la borne supérieure de Cmem.On the figure 12 , the voltage follower ST1 includes two operational amplifiers, one intended via the mem2bot switch to copy the membrane voltage to the lower terminal of C load and the other intended via the top2mem switch to copy the voltage addition at the upper bound of C mem .

Sur la figure 13, le suiveur de tension ST2 comprend un seul amplificateur opérationnel en lieu et place des deux amplificateurs opérationnels utilisés alternativement sur la figure 12. Afin de contrecarrer l'influence des capacités parasites des interrupteurs lors des transferts de charge au niveau de l'entrée de l'amplificateur opérationnel, on prévoit une capacité additionnelle Cload_bis en parallèle de l'interrupteur rst_bot.On the figure 13 , the voltage follower ST2 includes a single operational amplifier in place of the two operational amplifiers used alternately on the figure 12 . In order to counteract the influence of the parasitic capacities of the switches during load transfers at the level of the input of the operational amplifier, an additional capacity C load_bis is provided in parallel with the switch rst_bot.

On relèvera que la synapse valeur absolue + signe est adaptée aux neurones des figures 12 et 13.It will be noted that the synapse absolute value + sign is adapted to the neurons of figures 12 and 13 .

Sur la figure 14 qui propose également une grandeur analogique représentative du poids synaptique sous la forme d'une tension, le circuit de lecture CL2 comprend un commutateur RON/ROFF ayant une première borne B1 destinée à être reliée à la synapse via la ligne de bit BL et une deuxième borne B2 reliée au circuit d'intégration CI2. Le circuit d'intégration CI2 comprend un montage intégrateur relié à la deuxième borne et au sein duquel est monté l'accumulateur de poids synaptique Cmem.On the figure 14 which also offers an analog quantity representative of the synaptic weight in the form of a voltage, the reading circuit CL2 comprises a switch R ON / R OFF having a first terminal B1 intended to be connected to the synapse via the bit line BL and a second terminal B2 connected to the integration circuit CI2. The integration circuit CI2 includes an integrator assembly connected to the second terminal and within which is mounted the synaptic weight accumulator C mem .

La lecture de la synapse s'opère comme suit. Dans un premier temps, on laisse le commutateur ouvert (il présente une résistance ROFF dans son état bloqué), la tension sur la ligne de bit VBL se stabilise suivant le poids de la synapse (on doit donc avoir ROFF>>HRS). Dans un second temps, le commutateur est fermé (il présente une résistance RON dans son état passant), la tension VBL est intégrée par le montage intégrateur dont la constante de temps dépend de RON et Cmem et pas du LRS des RRAMs. On a donc RON>LRS. Le neurone de la figure 14 réalise ainsi une lecture statique de la synapse au moyen du commutateur RON/ROFF et une intégration de la tension VBL. The synapse is read as follows. Initially, the switch is left open (it has a resistance R OFF in its blocked state), the voltage on the bit line V BL stabilizes according to the weight of the synapse (we must therefore have R OFF >> HRS ). In a second step, the switch is closed (it has a resistance R ON in its passing state), the voltage V BL is integrated by the integrator circuit, the time constant of which depends on R ON and C mem and not on the LRS of RRAMs. So we have R ON > LRS. The neuron of the figure 14 thus performs a static reading of the synapse by means of the switch R ON / R OFF and integration of the voltage V BL .

On a représenté sur les figures 15 et 16 des exemples de réalisation d'un neurone artificiel selon l'invention pour lesquels la grandeur analogique représentative du poids synaptique fournie par le circuit de lecture au circuit d'intégration est une durée. Dans ces exemples, le neurone comprend un circuit logique LOG interposé entre le circuit de lecture CL3 et le circuit d'intégration Cl3, le circuit logique étant configuré pour générer à partir de ladite grandeur analogique une impulsion Cmd_exci, Cmd_inhi présentant ladite durée. Le circuit d'intégration Cl3 comprend quant à lui une source de courant SIexc, SIinhi pilotée par ladite impulsion pour injecter un courant dans l'accumulateur de poids synaptiques pendant ladite durée.We have represented on figures 15 and 16 exemplary embodiments of an artificial neuron according to the invention for which the analog quantity representative of the synaptic weight supplied by the read circuit to the integration circuit is a duration. In these examples, the neuron comprises a logic circuit LOG interposed between the read circuit CL3 and the integration circuit Cl3, the logic circuit being configured to generate from said analog quantity a pulse Cmd_exci, Cmd_inhi having said duration. The integration circuit Cl3 for its part comprises a current source SI exc , SI inhi piloted by said pulse to inject a current into the accumulator of synaptic weights during said duration.

Comme pour les neurones des figures 12 et 13, le circuit de lecture CL3 du neurone représenté en figure 15 comprend un accumulateur de courant synaptique Cload aux bornes duquel s'établit une tension Vload et un interrupteur rst_load permettant de réaliser la décharge de cet accumulateur avant une opération de lecture du poids synaptique. Lors d'une opération de lecture, l'accumulateur Cload est chargé par le courant synaptique, plus ou moins rapidement selon le poids synaptique. La durée de ce chargement peut être estimée très simplement à l'aide d'un comparateur analogique. Sur la figure 15, on considère des synapses à la fois excitatrices et inhibitrices et on prévoit donc deux comparateurs Cp et Cn chargés de comparer la tension aux bornes accumulateur de courant synaptique Cload respectivement à un premier seuil Sp (par exemple positif) et à un deuxième seuil Sn (par exemple négatif). Sur les chronogrammes à gauche sur la figure 15, la synapse est excitatrice et la tension Vload aux bornes de l'accumulateur de courant synaptique Cload, après qu'il ait été déchargé, augmente progressivement jusqu'à dépasser le premier seuil Sp et faire basculer la sortie Comp_exci du comparateur Cp qui fournit ainsi une information de durée de chargement qui est représentative du poids synaptique.As for the neurons of figures 12 and 13 , the reading circuit CL3 of the neuron represented in figure 15 comprises a synaptic current accumulator C load at the terminals of which a voltage V load is established and an rst_load switch making it possible to discharge this accumulator before a reading operation of the synaptic weight. During a read operation, the C load accumulator is charged by the synaptic current, more or less quickly depending on the synaptic weight. The duration of this loading can be estimated very simply using an analog comparator. On the figure 15 , we consider both excitatory and inhibitory synapses and we therefore provide two comparators Cp and Cn responsible for comparing the voltage across the synaptic current accumulator terminals C load respectively to a first threshold Sp (for example positive) and to a second threshold Sn (for example negative). On the chronograms on the left on the figure 15 , the synapse is exciting and the voltage V load at the terminals of the synaptic current accumulator C load , after it has been discharged, gradually increases until it exceeds the first threshold Sp and toggle the output Comp_exci of the comparator Cp which thus provides loading time information which is representative of the synaptic weight.

La sortie Comp_exci du comparateur Cp est fourni au circuit logique LOG interposé entre le circuit de lecture CL3 et le circuit d'intégration CI3. Ce circuit logique est configuré pour générer, à partir du résultat de la comparaison, une impulsion en tension présentant ladite durée, en l'occurrence l'impulsion Cmd_exci dans l'exemple de la figure 15.The output Comp_exci of the comparator Cp is supplied to the logic circuit LOG interposed between the read circuit CL3 and the integration circuit CI3. This logic circuit is configured to generate, from the result of the comparison, a voltage pulse having said duration, in this case the Cmd_exci pulse in the example of the figure 15 .

Le circuit d'intégration CI2 comprend quant à lui une source de courant SIexc pilotée par ladite impulsion Cmd_exci pour injecter un courant dans l'accumulateur de poids synaptiques Cmem pendant ladite durée. La durée de cette injection de courant dépend donc de la valeur du poids synaptique, de sorte que la valeur finale de la tension de membrane Vmem dépend également de la valeur du poids synaptique.The integration circuit CI2 for its part comprises a current source SI exc controlled by said pulse Cmd_exci to inject a current into the accumulator of synaptic weights C mem during said duration. The duration of this current injection therefore depends on the value of the synaptic weight, so that the final value of the membrane tension V mem also depends on the value of the synaptic weight.

Dans l'exemple représenté à synapses excitatrices et inhibitrices, le circuit d'intégration CI2 comprend une autre source de courant SIinhi pilotée par une impulsion en tension Cmd_inhi pour tirer du courant depuis l'accumulateur de poids synaptiques Cmem pendant une durée représentative du poids synaptique.In the example shown with excitatory and inhibitory synapses, the integration circuit CI2 includes another current source SI inhi piloted by a voltage pulse Cmd_inhi to draw current from the synaptic weight accumulator C mem for a period representative of the synaptic weight.

Le neurone de la figure 15 peut en outre prendre en compte le signe de l'impulsion présynaptique, celui-ci Signe_spike étant fourni au circuit logique LOG qui est alors configuré pour déterminer le signe d'intégration à partir du signe du spike et d'une information de signe de poids synaptique synapse déterminé par celui des comparateurs Cp et Cn qui commute. Ce traitement logique et économique du signe du spike permet, particulièrement dans le cas de cellules 1T1R, d'alléger le plan synaptique et sa gestion. On relèvera que la synapse valeur absolue + signe est particulièrement adaptée à ce neurone.The neuron of the figure 15 can also take into account the sign of the presynaptic pulse, this Signe_spike being supplied to the logic circuit LOG which is then configured to determine the integration sign from the spike sign and weight sign information synaptic synapse determined by which of the comparators Cp and Cn which switches. This logical and economical treatment of the spike sign allows, particularly in the case of 1T1R cells, to lighten the synaptic plane and its management. It will be noted that the synapse absolute value + sign is particularly suitable for this neuron.

Un avantage de cette réalisation est la fiabilité des poids nuls. Dans le cas d'un poids nul, tous les dispositifs RRAMs de la synapse sont à HRS. Donc, d'une part, la constante de temps associée à une synapse de poids nulle est bien plus importante que les autres et, d'une autre part, on aura Rexci ≈ Rinhi. Il est donc peu probable que la tension Vload franchise l'un des deux seuils Sp, Sn non seulement parce qu'elle n'en aura pas le temps mais aussi parce que sa valeur finale risque d'être comprise entre les deux seuils. Dès lors le circuit logique LOG ne voit pas de commutation en sortie des comparateurs Cp, Cn et ne déclenche aucune injection de charge sur Cmem. Un véritable poids nul qui ne modifie absolument en rien l'état du neurone est ainsi implémenté.An advantage of this embodiment is the reliability of zero weights. In the case of zero weight, all RRAMs devices in the synapse are at HRS. So, on the one hand, the time constant associated with a zero weight synapse is much more important than the others and, on the other hand, we will have Rexci ≈ Rinhi. It is therefore unlikely that the voltage V load exceeds one of the two thresholds Sp, Sn not only because it will not have time but also because its final value risks being between the two thresholds. Consequently, the logic circuit LOG sees no switching at the output of the comparators Cp, Cn and does not trigger any charge injection on C mem . A true zero weight which does not in any way modify the state of the neuron is thus implemented.

On a représenté sur la figure 16 des chronogrammes illustrant un autre mode de fonctionnement du neurone de la figure 15 selon lequel une double lecture est opérée de manière à être insensible aux délais de commutation des comparateurs Cp, Cn. En effet, suivant les technologies RRAM et transistors utilisées et la consommation des comparateurs, il est possible que le temps de commutation Tcomp de ces derniers ne soit pas négligeable devant le temps de chargement de l'accumulateur Cload. Dans ce cas, la durée de l'impulsion transmise au circuit d'intégration risque de peu varier avec la valeur de Rsyn, ce qui peut s'avérer préjudiciable. Dans cet autre mode de fonctionnement, l'impulsion est générée à partir de deux commutations de comparateur, sa durée correspondant à une durée séparant le franchissement du seuil associé à l'un des comparateurs puis le franchissement du seuil associé à l'autre des comparateurs. Les délais de commutation sont ainsi appliqués sur le début et la fin de l'impulsion et n'affectent donc pas sa durée.We have represented on the figure 16 chronograms illustrating another mode of operation of the neuron of the figure 15 according to which a double reading is operated so as to be insensitive to the switching times of the comparators Cp, Cn. In fact, according to the RRAM and transistor technologies used and the consumption of the comparators, it is possible that the switching time T comp of the latter is not negligible compared to the charging time of the accumulator C load . In this case, the duration of the pulse transmitted to the integration circuit may vary little with the value of R syn , which may prove to be detrimental. In this other operating mode, the pulse is generated from two comparator switches, its duration corresponding to a duration separating the crossing of the threshold associated with one of the comparators then the crossing of the threshold associated with the other of the comparators . The switching times are thus applied to the start and end of the pulse and therefore do not affect its duration.

Ainsi, dans un premier temps, la synapse est lue dans un sens suffisamment longtemps pour que Vload parte en buttée sur Vread ou -Vread selon le signe de la synapse. Puis, on inverse la polarisation de la lecture, la tension Vload va donc traverser la différence de potentiel d'une polarisation de Vread à l'autre et franchir les deux seuils Sp, Sn en un temps relatif au poids de la synapse. Le circuit logique LOG est alors configuré pour générer une impulsion en tension entre ces deux commutations de comparateurs.Thus, at first, the synapse is read in a direction long enough for V load to start abutting on V read or -V read according to the sign of the synapse. Then, the polarization of the reading is reversed, the voltage V load will therefore cross the potential difference from one polarization of V read to the other and cross the two thresholds Sp, Sn in a time relative to the weight of the synapse. The logic circuit LOG is then configured to generate a voltage pulse between these two comparator switching operations.

On a représenté sur les figures 17 à 20 des exemples de réalisation d'un neurone artificiel pour lesquels la grandeur analogique représentative du poids synaptique fournie par le circuit de lecture au circuit d'intégration est un courant. Dans les exemples des figures 17 et 18, le circuit de lecture CL4, CL5 comprend un convoyeur de courant qui comporte un port d'entrée X destiné à être reliée à la synapse via la ligne de bit, un port d'entrée Y destiné à se voir imposer une tension fixe (par exemple la masse) pendant la durée de l'accès à la synapse et un port de sortie Z relié au circuit d'intégration.We have represented on Figures 17 to 20 exemplary embodiments of an artificial neuron for which the analog quantity representative of the synaptic weight supplied by the read circuit to the integration circuit is a current. In the examples of Figures 17 and 18 , the reading circuit CL4, CL5 comprises a current conveyor which comprises an input port X intended to be connected to the synapse via the bit line, an input port Y intended to be subjected to a fixed voltage (by example ground) for the duration of access to the synapse and an output port Z connected to the integration circuit.

Un tel convoyeur de courant, basé sur un amplificateur opérationnel et deux miroirs de courant, est tel que la tension fixe imposée sur le port d'entrée Y est recopiée sur le port d'entrée X et le courant injecté dans le port d'entrée X est reproduit sur le port de sortie Z (avec une inversion de signe pour le circuit de la figure 17, sans inversion de signe pour le circuit de la figure 18). Une tension fixe étant imposée au port Y, on vient asservir la tension de ligne de bit à cette tension fixe (elle est ainsi indépendante de la tension de membrane du neurone) et débiter le courant synaptique sur le port de sortie Z. Ce courant synaptique est fourni au circuit d'intégration qui va alors en réaliser une intégration analogique.Such a current conveyor, based on an operational amplifier and two current mirrors, is such that the fixed voltage imposed on the input port Y is copied over the input port X and the current injected into the input port X is reproduced on the output port Z (with a sign inversion for the circuit of the figure 17 , without inversion of sign for the circuit of the figure 18 ). A fixed voltage being imposed on the Y port, we just slave the bit line voltage to this fixed voltage (it is thus independent of the membrane voltage of the neuron) and debit the synaptic current on the output port Z. This synaptic current is supplied to the integration circuit which will then carry out an analog integration.

La constante de temps Rsyn-Cmem peut toutefois s'avérer trop brève pour que l'amplificateur opérationnel et les miroirs de courant composant le convoyeur de courant fonctionnement correctement. Ainsi, dans une variante de réalisation, le convoyeur de courant comprend, comme représenté en figure 19, un miroir de courant configuré pour réaliser un abaissement du courant entre le port d'entrée X et le port de sortie Z. sur cette figure, on a effectivement I OUT = I IN K ,

Figure imgb0002
avec K un facteur supérieur à 1 qui permet d'utiliser des impulsions de lecture de durée plus longues et donc plus adaptées au fonctionnement des éléments actifs sans pour autant faire saturer la capacité de membrane.The time constant R syn -C mem may however be too short for the operational amplifier and the current mirrors making up the current conveyor working properly. Thus, in an alternative embodiment, the current conveyor comprises, as shown in figure 19 , a current mirror configured to achieve a lowering of the current between the input port X and the output port Z. in this figure, we actually I OUT = - I IN K ,
Figure imgb0002
with K a factor greater than 1 which makes it possible to use reading pulses of longer duration and therefore more suited to the operation of the active elements without thereby saturating the membrane capacity.

Dans une variante de réalisation représentée sur la figure 20, le neurone comprend une porte de transmission T entre le circuit de lecture et le circuit d'intégration. Cette porte permet de dissocier le temps d'accès aux RRAMs et le temps d'intégration, ce qui permet d'attendre que la tension sur le port d'entrée X se stabilise avant d'intégrer le courant de lecture et de jouer avec une impulsion d'intégration brève sans que cela ne requiert un amplificateur opérationnel particulièrement réactif.In an alternative embodiment shown in the figure 20 , the neuron comprises a transmission gate T between the read circuit and the integration circuit. This gate makes it possible to dissociate the access time to the RRAMs and the integration time, which makes it possible to wait for the voltage on the input port X to stabilize before integrating the reading current and to play with a brief integration pulse without requiring a particularly reactive operational amplifier.

Par ailleurs, sur cette figure 20 le circuit de lecture CL6 comprend avantageusement à la fois le miroir de courant inverseur du circuit de lecture CL4 et le miroir de courant non-inverseur du circuit de lecture CL5 (ces miroirs pouvant réaliser un abaissement du courant conformément à la figure 19) et un sélecteur S commandé par un signal Signe_spike représentatif du signe du spike présynaptique pour venir sélectionner la sortie de l'un ou l'autre de ces miroirs de courant.By the way, on this figure 20 the reading circuit CL6 advantageously comprises both the reversing current mirror of the reading circuit CL4 and the non-reversing current mirror of the reading circuit CL5 (these mirrors being able to effect a lowering of the current in accordance with the figure 19 ) and a selector S controlled by a signal Signe_spike representative of the sign of the presynaptic spike to select the output of one or other of these current mirrors.

L'invention n'est pas limitée au neurone artificiel précédemment décrit, mais s'étend à une puce neuromorphique comprenant une pluralité de synapses à mémoire résistive agencées en un réseau à lignes et colonnes transversales. Chaque synapse dispose d'une borne de propagation, les bornes de propagation des synapses d'une même colonne étant reliées entre elles et connectées à un neurone artificiel selon l'invention. Les synapses peuvent être des synapses excitatrices ou inhibitrices telles que celles présentées précédemment en liaison avec les figures 6 à 11.The invention is not limited to the above-described artificial neuron, but extends to a neuromorphic chip comprising a plurality of synapses with resistive memory arranged in a network with transverse lines and columns. Each synapse has a propagation terminal, the propagation terminals of the synapses of the same column being linked together and connected to an artificial neuron according to the invention. The synapses can be excitatory or inhibitory synapses such as those presented above in connection with the figures 6 to 11 .

Claims (7)

Neurone artificiel (NA) pour puce neuromorphique comprenant une synapse à mémoire résistive représentative d'un poids synaptique,
le neurone artificiel comportant un circuit d'intégration (CI3) qui comprend un accumulateur de poids synaptiques (Cmem) aux bornes duquel s'établit une tension de membrane (Vmem) et un comparateur (COMP) configuré pour émettre une impulsion postsynaptique en cas de franchissement d'un seuil par la tension de membrane,
le neurone artificiel étant caractérisé en ce qu'il comporte en outre : un circuit de lecture (CL3) configuré pour imposer à la synapse une tension de lecture indépendante de la tension de membrane et pour fournir une grandeur analogique représentative du poids synaptique (PSa), ladite grandeur analogique étant une durée ; un circuit logique (LOG) interposé entre le circuit de lecture (CL3) et le circuit d'intégration (CI3), le circuit logique étant configuré pour générer à partir de ladite grandeur analogique une impulsion (Cmd_exci, Cmd_inhi) présentant ladite durée ; et en ce que le circuit d'intégration (CI3) comprend une source de courant (SIexc, SIinhi) pilotée par ladite impulsion pour injecter un courant dans l'accumulateur de poids synaptiques pendant ladite durée.
Artificial neuron (NA) for a neuromorphic chip comprising a synapse with resistive memory representative of a synaptic weight,
the artificial neuron comprising an integration circuit (CI3) which comprises an accumulator of synaptic weights (C mem ) at the terminals of which a membrane tension is established (V mem ) and a comparator (COMP) configured to emit a postsynaptic pulse in membrane threshold crossing,
the artificial neuron being characterized in that it further comprises: a reading circuit (CL3) configured to impose on the synapse a reading voltage independent of the membrane voltage and to provide an analog quantity representative of the synaptic weight (PSa), said analog quantity being a duration; a logic circuit (LOG) interposed between the read circuit (CL3) and the integration circuit (CI3), the logic circuit being configured to generate from said analog quantity a pulse (Cmd_exci, Cmd_inhi) having said duration; and in that the integration circuit (CI3) comprises a current source (SI exc , SI inhi ) controlled by said pulse to inject a current into the synaptic weight accumulator during said duration.
Neurone artificiel selon la revendication 1, dans lequel le circuit de lecture (CL3) comprend un accumulateur de courant synaptique (Cload), au moins un comparateur (Cp, Cn) de la tension aux bornes de l'accumulateur de courant synaptique avec un seuil (Sp, Sn) pour fournir un résultat de comparaison et dans lequel le circuit logique est configuré pour générer ladite impulsion à partir du résultat de la comparaison.Artificial neuron according to claim 1, in which the reading circuit (CL3) comprises a synaptic current accumulator (C load ), at least one comparator (Cp, Cn) of the voltage across the synaptic current accumulator with a threshold (Sp, Sn) for providing a comparison result and in which the logic circuit is configured to generate said pulse from the result of the comparison. Neurone artificiel selon l'une des revendications 1 et 2, dans lequel l'au moins un comparateur du circuit de lecture (CL3) comprend un premier comparateur à un premier seuil et un deuxième comparateur à un deuxième seuil et dans lequel le circuit logique est configuré pour déterminer un signe d'intégration en exploitant un signal (Signe_spike) représentatif d'un signe d'impulsion présynaptique et une information de signe de poids synaptique déterminée par celui des premier et deuxième comparateurs qui commute.Artificial neuron according to either of Claims 1 and 2, in which the at least one comparator of the reading circuit (CL3) comprises a first comparator at a first threshold and a second comparator at a second threshold and in which the logic circuit is configured to determine a sign of integration by exploiting a signal (Signe_spike) representative of a presynaptic pulse sign and a synaptic weight sign information determined by that of the first and second comparators which switches. Neurone artificiel selon l'une des revendications 1 et 2, dans lequel l'au moins un comparateur du circuit de lecture (CL3) comprend un premier comparateur à un premier seuil et un deuxième comparateur à un deuxième seuil et le circuit logique est configuré de telle manière que la durée de ladite impulsion corresponde à une durée séparant le franchissement de l'un des seuils puis le franchissement de l'autre des seuils.Artificial neuron according to either of Claims 1 and 2, in which the at least one comparator of the reading circuit (CL3) comprises a first comparator at a first threshold and a second comparator at a second threshold and the logic circuit is configured such that the duration of said pulse corresponds to a duration separating the crossing of one of the thresholds then the crossing of the other of the thresholds. Neurone artificiel selon l'une des revendications 1 à 4, dans lequel, la synapse comprenant une mémoire de valeur absolue de poids synaptique (Mabs) et une mémoire de signe de poids synaptique (Msigne), le circuit de lecture comprend un circuit de lecture binaire (Cb) de la mémoire de signe de poids synaptique et un circuit de lecture analogique (Ca) de la mémoire de valeur absolue de poids synaptique Mabs piloté par le circuit de lecture binaire.Artificial neuron according to one of claims 1 to 4, in which, the synapse comprising an absolute value memory of synaptic weight (M abs ) and a synaptic weight sign memory (M sign ), the reading circuit comprises a circuit of binary reading (Cb) of the synaptic weight sign memory and an analog reading circuit (Ca) of the synaptic weight absolute value memory M abs controlled by the binary reading circuit. Puce neuromorphique comprenant une pluralité de synapses à mémoire résistive agencées en un réseau à lignes et colonnes transversales, chaque synapse disposant d'une borne de propagation d'un signal synaptique, les bornes de propagation des synapses d'une même colonne étant reliées entre elles et connectées à un neurone artificiel selon l'une des revendications 1 à 5.Neuromorphic chip comprising a plurality of resistive memory synapses arranged in a network with transverse lines and columns, each synapse having a propagation terminal of a synaptic signal, the propagation terminals of synapses of the same column being interconnected and connected to an artificial neuron according to one of claims 1 to 5. Puce neuromorphique selon la revendication 6, dans lequel chaque synapse comprend une composante excitatrice et une composante inhibitrice connectées en série par la borne de propagation de la synapse.The neuromorphic chip of claim 6, wherein each synapse comprises an excitatory component and an inhibitory component connected in series by the propagation terminal of the synapse.
EP19212046.7A 2018-12-07 2019-11-28 Artificial neuron for neuromorphic chip with resistive synapses Active EP3663988B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1872515A FR3089663B1 (en) 2018-12-07 2018-12-07 Artificial neuron for neuromorphic chip with resistive synapses

Publications (2)

Publication Number Publication Date
EP3663988A1 true EP3663988A1 (en) 2020-06-10
EP3663988B1 EP3663988B1 (en) 2022-05-18

Family

ID=66049326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19212046.7A Active EP3663988B1 (en) 2018-12-07 2019-11-28 Artificial neuron for neuromorphic chip with resistive synapses

Country Status (3)

Country Link
US (1) US11630993B2 (en)
EP (1) EP3663988B1 (en)
FR (1) FR3089663B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021262023A1 (en) * 2020-06-25 2021-12-30 PolyN Technology Limited Analog hardware realization of neural networks
RU2796649C2 (en) * 2020-06-25 2023-05-29 ПолиН Текнолоджи Лимитед Analogue hardware implementation of neural networks
US11823037B1 (en) 2023-02-28 2023-11-21 PolyN Technology Limited Optocoupler-based flexible weights in neuromorphic analog signal processors
US11885271B2 (en) 2020-06-25 2024-01-30 PolyN Technology Limited Systems and methods for detonation control in spark ignition engines using analog neuromorphic computing hardware

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11188815B2 (en) 2019-01-07 2021-11-30 International Business Machines Corporation Weight shifting for neuromorphic synapse array
KR20210056476A (en) * 2019-11-08 2021-05-20 삼성전자주식회사 Synapse element and neuromorphic processor including synapse element
KR102507770B1 (en) * 2020-08-26 2023-03-07 국민대학교산학협력단 Synaptic device and driving method thereof, and computing system using the same and driving method thereof
WO2022118340A1 (en) * 2020-12-03 2022-06-09 Indian Institute Of Technology Delhi Novel activation function with hardware realization for recurrent neuromorphic networks
US11741353B2 (en) 2020-12-09 2023-08-29 International Business Machines Corporation Bias scheme for single-device synaptic element
CN113408613B (en) * 2021-06-18 2022-07-19 电子科技大学 Single-layer image classification method based on delay mechanism
CN113643741B (en) * 2021-08-16 2023-12-15 湖北大学 1S 1R-based logic operation unit and operation method
KR102579571B1 (en) * 2021-12-03 2023-09-15 아주대학교산학협력단 Pixelated monolithic photoplethysmography sensor with spiking neural network structure and method for operating the same
WO2023128792A1 (en) * 2021-12-30 2023-07-06 PolyN Technology Limited Transformations, optimizations, and interfaces for analog hardware realization of neural networks
CN115392442B (en) * 2022-10-26 2023-01-24 深圳时识科技有限公司 Neuron ignition method, chip and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170243108A1 (en) * 2016-02-19 2017-08-24 International Business Machines Corporation Current Mirror Scheme for An Integrating Neuron Circuit
US20180260696A1 (en) * 2017-03-08 2018-09-13 Arm Ltd Spiking neural network
WO2018201060A1 (en) * 2017-04-27 2018-11-01 The Regents Of The University Of California Mixed signal neuromorphic computing with nonvolatile memory devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120011092A1 (en) * 2010-07-07 2012-01-12 Qualcomm Incorporated Methods and systems for memristor-based neuron circuits
US11501141B2 (en) * 2018-10-12 2022-11-15 Western Digital Technologies, Inc. Shifting architecture for data reuse in a neural network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170243108A1 (en) * 2016-02-19 2017-08-24 International Business Machines Corporation Current Mirror Scheme for An Integrating Neuron Circuit
US20180260696A1 (en) * 2017-03-08 2018-09-13 Arm Ltd Spiking neural network
WO2018201060A1 (en) * 2017-04-27 2018-11-01 The Regents Of The University Of California Mixed signal neuromorphic computing with nonvolatile memory devices

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EERO LEHTONEN ET AL: "Memristive Synapses Are Becoming Reality Master's thesis View project Gyrocardiography View project", 31 January 2010 (2010-01-31), XP055614483, Retrieved from the Internet <URL:https://www.researchgate.net/profile/Piotr_Dudek4/publication/49288092_Memristive_Synapses_Are_Becoming_Reality/links/55759d8b08aeb6d8c01978c2/Memristive-Synapses-Are-Becoming-Reality.pdf> [retrieved on 20190821] *
OLGA KRESTINSKAYA ET AL: "Neuro-memristive Circuits for Edge Computing: A review", 28 November 2018 (2018-11-28), XP055614484, Retrieved from the Internet <URL:https://arxiv.org/pdf/1807.00962.pdf> [retrieved on 20190821], DOI: 10.1109/TNNLS.2019.2899262 *
VAN SCHAIK A ED - ROY ASIM ET AL: "Building blocks for electronic spiking neural networks", NEURAL NETWO, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 14, no. 6-7, 9 July 2001 (2001-07-09), pages 617 - 628, XP004310067, ISSN: 0893-6080, DOI: 10.1016/S0893-6080(01)00067-3 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021262023A1 (en) * 2020-06-25 2021-12-30 PolyN Technology Limited Analog hardware realization of neural networks
RU2796649C2 (en) * 2020-06-25 2023-05-29 ПолиН Текнолоджи Лимитед Analogue hardware implementation of neural networks
US11885271B2 (en) 2020-06-25 2024-01-30 PolyN Technology Limited Systems and methods for detonation control in spark ignition engines using analog neuromorphic computing hardware
US11823037B1 (en) 2023-02-28 2023-11-21 PolyN Technology Limited Optocoupler-based flexible weights in neuromorphic analog signal processors

Also Published As

Publication number Publication date
FR3089663B1 (en) 2021-09-17
EP3663988B1 (en) 2022-05-18
FR3089663A1 (en) 2020-06-12
US20200202206A1 (en) 2020-06-25
US11630993B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
EP3663988B1 (en) Artificial neuron for neuromorphic chip with resistive synapses
EP3660749A1 (en) Neural circuit suitable for implementing synaptic learning
EP2965269B1 (en) Artificial neuron and memristor
EP2819068B1 (en) Artificial neuron including a resistive memory
EP2713318B1 (en) Neuromorphic system exploiting the intrinsic characteristics of memory cells
WO2013000940A1 (en) Network of artificial neurones based on complementary memristive devices
WO2013000939A1 (en) Method for non-supervised learning in an artificial neurone network based on memristive nanodevices, and artificial neurone network implementing said method
FR2970589A1 (en) VOLATILE MEMORY CELL / NON VOLATILE
EP3154061B1 (en) Method and circuit for controlling the programming current in a non-volatile memory array
EP2689422A1 (en) Logical memory architecture, in particular for mram, pcram, or rram
EP4224477A1 (en) Three-dimensional memory structure for in-memory computing
EP3549070B1 (en) Modulation device and method, artificial synapse comprising said modulation device, short-term plasticity method in an artificial neural network comprising said artificial synapse
EP4020479A1 (en) Differential reading of rram memory with low power consumption
EP4137999A1 (en) Neuromorphic circuit made of 2t2r rram cells
EP4292017A1 (en) Neuromorphic circuit and associated training method
FR3130447A1 (en) OxRAM/FeRAM mixed technology non-volatile memories
FR3024272A1 (en) NON-VOLATILE MEMORY WITH PROGRAMMABLE RESISTANCE
EP2987167B1 (en) Non-volatile memory cell
EP4354351A1 (en) Electronic circuit based on rram cells
EP4283621A1 (en) Method for calculating a mac operation in a 1s1r rram
FR3135562A1 (en) Memory cell, electronic circuit comprising such cells, programming method and associated multiplication and accumulation method
EP4345821A1 (en) Logic data processing circuit integrated in a data storage circuit
FR3125163A1 (en) METHOD OF READING A MULTI-LEVEL RRAM
FR2970591A1 (en) VOLATILE MEMORY CELL AND NON-VOLATILE COMBINED
FR3035998A1 (en) NON-VOLATILE MEMORY WITH PROGRAMMING CIRCUIT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019015069

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1493586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220518

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1493586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019015069

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

26N No opposition filed

Effective date: 20230221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 5

Ref country code: DE

Payment date: 20231120

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511