EP3656639B1 - Wechselstromweichenstellvorrichtung, system und steuerungsverfahren dafür - Google Patents

Wechselstromweichenstellvorrichtung, system und steuerungsverfahren dafür Download PDF

Info

Publication number
EP3656639B1
EP3656639B1 EP19780131.9A EP19780131A EP3656639B1 EP 3656639 B1 EP3656639 B1 EP 3656639B1 EP 19780131 A EP19780131 A EP 19780131A EP 3656639 B1 EP3656639 B1 EP 3656639B1
Authority
EP
European Patent Office
Prior art keywords
circuit
point machine
indication
control
turnout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19780131.9A
Other languages
English (en)
French (fr)
Other versions
EP3656639A1 (de
EP3656639C0 (de
EP3656639A4 (de
Inventor
Hao Zhang
Xiaodong Liu
Yuanyuan LV
Yingcai ZHOU
Fusong ZHANG
Ying QI
Siran LI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRSC Research and Design Institute Group Co Ltd
Original Assignee
CRSC Research and Design Institute Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRSC Research and Design Institute Group Co Ltd filed Critical CRSC Research and Design Institute Group Co Ltd
Publication of EP3656639A1 publication Critical patent/EP3656639A1/de
Publication of EP3656639A4 publication Critical patent/EP3656639A4/de
Application granted granted Critical
Publication of EP3656639C0 publication Critical patent/EP3656639C0/de
Publication of EP3656639B1 publication Critical patent/EP3656639B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/06Electric devices for operating points or scotch-blocks, e.g. using electromotive driving means
    • B61L5/062Wiring diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/06Electric devices for operating points or scotch-blocks, e.g. using electromotive driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/10Locking mechanisms for points; Means for indicating the setting of points
    • B61L5/107Locking mechanisms for points; Means for indicating the setting of points electrical control of points position

Definitions

  • the present invention relates to the technical field of rail transit and, in particular, to an alternating current (AC) turnout apparatus, system and control method thereof.
  • AC alternating current
  • an AC turnout control system in the existing art includes a large number of components, e.g., circuit breakers RD, open-phase protectors DBQ, relays DQJ, and has an extremely complex structure.
  • the large number of electric device lead to extremely complex wiring and a large number of welding spots.
  • the complex structure requires a large area.
  • the control flow and the current flow directions are complex. In case of a failure, the tracing and locating of the fault is a complex process, and the system requires regular maintenance.
  • a turnout action circuit has following current flow directions:
  • a turnout indication circuit has a following current flow direction: terminal 3 of indication transformer BD ⁇ resistor R1 ⁇ 2DQJ 22-21 ⁇ 2DQJ 131-132 ⁇ 1DQJF 13-11 ⁇ 2DQJ 111-112 ⁇ point machine connection point 33-34 ⁇ point machine connection point 15-16 ⁇ rectifier diode Z ⁇ resistor R ⁇ point machine connection point 35-36 ⁇ coil U of point machine motor ⁇ coil W of point machine motor ⁇ IDQJ 11-13 ⁇ terminal 4 of indication transformer BD.
  • the turnout indication circuit has a following current flow direction: terminal 3 of indication transformer BD ⁇ resistor R1 ⁇ 1DQJ 22-21 ⁇ 2DQJ 131-132 ⁇ DBJ 4-1 ⁇ point machine connection point 11-12 ⁇ coil V of point machine motor ⁇ coil W of point machine motor ⁇ IDQJ 11-13 ⁇ terminal 4 of indication transformer BD.
  • the existing turnout control system generally does not have the drive circuit and the indication circuit separated from each other, and thus has low adaptability and safety, which affects the traveling safety and operation efficiency. Further relevant technologies are also known from CN 108032870A (NANJING NRIET IND CO LTD) 15 May 2018 ( 2018-05-15 ) which relates to turnout control module and full-electronic implementing method thereof, and US 6484974B1 (FRANKE RAYMOND C [US] ET AL) 26 November 2002 ( 2002-11-26 ) which relates to controller for switch machine.
  • the present invention provides an AC turnout apparatus.
  • an AC turnout apparatus including a point machine control part and a logic part, the point machine control part includes a drive part and an indication part which are independent of each other, each of the drive part and the indication part is capable of implementing data connection with the logic part.
  • the drive part is configured to control a point machine to operate a fixed rotation or a reverse rotation according to a control instruction of the logic part.
  • the indication part is configured to acquire indication information of the point machine, and send the acquired indication information of the point machine to the logic part.
  • the drive part includes a three-phase power source switch circuit, a three-phase current isolation acquisition circuit, a three-phase electronic switch circuit and a commutation and wire system conversion circuit.
  • the three-phase power source switch circuit is configured to implement on-off control for a three-phase alternating current.
  • the three-phase current isolation acquisition circuit is configured to acquire currents in respective phases of the three-phase current, and determine whether the three-phase current is complete and whether the point machine has been driven in place.
  • the three-phase electronic switch circuit is configured to increase reliability of the three-phase power source switch circuit and the commutation and wire conversion circuit.
  • the commutation and wire system conversion circuit is configured to implement commutation of the three-phase current, perform multi-wire system conversion, and control a point machine having a multi-wire system.
  • the three-phase power source switch circuit includes a switch circuit and a safety acquisition unit.
  • the switch circuit is configured to perform an on-off action according to a control signal to implement the on-off control for the three-phase alternating current.
  • the safety acquisition unit is configured to acquire an on-off state of the switch circuit.
  • the commutation and wire conversion circuit includes multiple switch circuits.
  • Each of the switch circuits is connected in parallel to two phase lines of the three-phase alternating current.
  • the switch circuit includes a switch unit, a control unit and a safety acquisition unit.
  • the switch unit is capable of performing an on-off action according to a control instruction of the control unit.
  • the safety acquisition unit is configured to acquire an on-off state of the switch unit.
  • the drive part also includes a three-phase current isolation acquisition circuit and a three-phase electronic switch circuit.
  • the three-phase current isolation acquisition circuit is configured to determine whether each of three phase lines of the three-phase alternating current is abnormal, and whether the point machine has been driven in place.
  • the three-phase electronic switch circuit is configured to perform the on-off control on the three phase lines.
  • the indication part includes an indication electric control circuit, and an indication acquisition and control circuit.
  • the indication electric control circuit is configured to convert a two-phase high-voltage alternating current into a two-phase low-voltage alternating current.
  • the indication acquisition and control circuit is connected to an internal shutter of the point machine and is configured to acquire indication state information of the point machine.
  • the point machine control part includes a first point machine control part and a second point machine control part
  • the logic part includes a first safety processing module and a second safety processing module.
  • Each of the drive part and the indication part in the first point machine control part is capable of implementing data connection with the first and second safety processing modules.
  • Each of the drive part and the indication part in the second point machine control part is capable of implementing data connection with the first and second safety processing modules.
  • a dual-system hot standby AC turnout system includes a first AC turnout apparatus and a second AC turnout apparatus, each of the first AC turnout apparatus and the second AC turnout apparatus includes a logic part, a first point machine control part and a second point machine control part.
  • the first point machine control part in the first AC turnout apparatus and the first point machine control part in the second AC turnout apparatus form a double structure.
  • the second point machine control portion in the first AC turnout apparatus and the second point machine control portion in the second AC turnout apparatus form a double structure.
  • the logic part in the first AC turnout apparatus communicates with the logic part in the second AC turnout apparatus through an inter-system bus.
  • Each of the first point machine control part and the second point machine control part includes a drive part and an indication part which are independent of each other, each of the drive part and the indication part is capable of implementing data connection with the logic part.
  • the drive part is configured to control a point machine to operate a fixed rotation or a reverse rotation according to a control instruction of the logic part.
  • the indication part is configured to acquire indication information of the point machine, and send the acquired indication information of the point machine to the logic part.
  • a turnout control method for the AC turnout apparatus includes the steps described below.
  • a logic part sends a drive control instruction to a drive part, and the drive part controls a point machine to operate a fixed rotation or a reverse rotation according to the drive control instruction.
  • the indication part acquires indication information of the point machine, and sends the indication information to the logic part.
  • a three-phase current isolation acquisition circuit in the drive part detects a state of each phase of three phases of a three-phase current, and sends the states of the three phases to the logic part; the logic part determines whether to send an instruction of safety side guiding to the drive part after receiving the states of the three phases.
  • the AC turnout apparatus sends an AC sinusoidal signal to an outdoor point machine through a normal position circuit and a reverse position circuit separately, and determines an indication state of the point machine by detecting a return current; in a case where the AC turnout apparatus controls a five-wire system point machine, and the point machine is in a normal position, an internal shutter of the point machine connects the normal position circuit in the indication part to an indication diode of the point machine in the indication part, and the reverse position circuit is in a short-circuit state in the indication part; if a normal position acquisition circuit in the indication part acquires a negative half-cycle sinusoidal current and a reverse position acquisition circuit in the indication part acquires a sinusoidal current, the point machine is determined to be in a normal position state; if the reverse position acquisition circuit acquires a positive half-cycle sinusoidal current and the normal position acquisition circuit acquires the sinusoidal current, the point machine is determined to be in a reverse position state; otherwise, the point machine is determined to be in a four-open state.
  • the AC turnout apparatus sends an AC sinusoidal signal to an outdoor point machine through a normal position circuit and a reverse position circuit separately, and determines an indication state of the point machine by detecting a return current; in a case where the AC turnout apparatus controls a seven-wire system point machine, and the point machine is in a normal position, an internal shutter of the point machine connects the normal position circuit in the indication part with an indication diode of the point machine in the indication part, and the reverse position circuit is in an open-circuit state; if the normal position acquisition circuit in the indication part acquires a positive half-cycle sinusoidal current and a reverse position acquisition circuit in the indication part acquires no current, the point machine is determined to be in a normal position state; if the reverse position acquisition circuit acquires the positive half-cycle sinusoidal current and the normal position acquisition circuit acquired no current, the point machine is determined to be in a reverse position state; otherwise, the point machine is determined to be in a four-open state.
  • the logic part controls conduction or disconnection of a normal position acquisition self-check circuit in the indication part.
  • the branch When a branch in which the normal position acquisition self-check circuit is located is in conduction, the branch enters a self-check state; if the normal position acquisition self-check circuit acquires a valid half-cycle signal and a valid negative half-cycle signal at the same time, a normal position acquisition circuit is determined to work normally; otherwise, the normal position acquisition circuit is determined to be in a failure.
  • the branch in which the normal position acquisition self-check circuit is located When the branch in which the normal position acquisition self-check circuit is located is in disconnection, the branch enters a point machine indication acquisition state, and acquires indication information of the point machine.
  • FIG. 2 is a block diagram of an AC turnout apparatus according to an embodiment of the present invention.
  • the AC turnout apparatus in the embodiment of the present invention adopts a double 2-out-of-2 structural design, including two point machine control parts and a logic part.
  • Each point machine control part includes a drive part and an indication part.
  • An upper point machine control part and a down point machine control part, each including the drive part and the indication part, is in data connection with a safety processing module in the logic module.
  • the two point machine control parts have the same principles but are physically independent.
  • the AC turnout apparatus mainly includes a drive part, an indication part and a logic part.
  • the drive part and the indication part are independent of each other.
  • the logic part, the drive part, and the indication part are respectively introduced below.
  • the logic part implements data interaction with a control network and a maintenance network to implement functions of communication interaction, output control, acquisition and safety operation.
  • the logic part is composed of a 2-out-of-2 main control unit, and cooperates with another logic unit to form a double 2-out-of-2 structure.
  • FIG. 3 is a schematic diagram of a logic part with a double 2-out-of-2 structure according to an embodiment of the present invention. As shown in FIG. 3 , two safety processing modules are provided in the logic part: a safety processing module I and a safety processing module II. Each of the two safety processing modules adopts two safety CPU chips: a safety CPU chip 1 and a safety CPU chip 2.
  • the safety CPU chip 1 implements data connection with the safety CPU chip 2, and the safety CPU chip 1 and the safety CPU chip 2 are respectively connected to a control network A and a maintenance network A.
  • the structure of the safety processing module II is the same with that of the safety processing module I, and each safety CPU chip in the safety processing module I and the safety processing module II implements data interconnection.
  • the drive part is powered by a three-phase alternating current (AC 380V) and is connected to an internal motor of the point machine.
  • the drive part may control the point machine to operate a fixed rotation or a reverse rotation based on a control instruction of the safety CPU chips in the logic part.
  • the drive part mainly includes a three-phase power source switch circuit, a three-phase current isolation acquisition circuit, a three-phase electronic switch circuit and a commutation and wire system conversion circuit.
  • FIG. 4 shows a further structural diagram of a logic part according to an embodiment of the present invention.
  • the three-phase power source switch circuit includes a safety relay, a safety AND gate and a safety acquisition unit which are respectively connected to the safety relay.
  • the safety AND gate in the three-phase power source switch circuit controls the safety relay in the three-phase power source switch circuit to implement the on-off control of the three-phase current.
  • the safety AND gate receives dynamic signals at different frequencies sent by the safety CPU chips in the safety processing module to implement the on-off control of the safety relay.
  • the safety relay may adopt a switch tube device such as a 3-on-1-off small-scale safety relay.
  • the three-phase electricity of AC 380V is respectively accessed through three normal-open contacts of the 3-on-1-off safety relay.
  • the three normal-open contacts of the 3-on-1-off safety relay are closed when the point machine acts.
  • the driving to the relay is ensured to be disconnected.
  • the two safety CPU chips in the logic part is capable of sending dynamic control signals at different frequencies to the safety gate to implement the on-off control of the safety relay and ensure the cut-off of the AC 380V power output in case of any CPU failure.
  • the safety acquisition unit in the three-phase power source switch circuit may be implemented by a dynamic code acquisition unit, which acquires a state of normal-close contacts of the safety relay connected to the dynamic code acquisition unit to ensure safety acquisition for the state of the normal-close contacts, and sends the acquired data to the safety CPU chips in the safety processing module.
  • the safety AND gate in the three-phase power source switch circuit is capable of controlling the on and off of the safety relay to implement the on-off control of the AC 380V current. For example, when a safety fault occurs, the safety AND gate controls the 3-on-1-off safety relay to act to cut off the power supply of the AC 380V power source.
  • the safety acquisition circuit monitors the safety relay, acquires an on-off state of the normal-close contacts of the safety relay, and sends the acquired on-off state data to the logic part.
  • Two safety processing modules in the logic part receive the on-off state data at the same time, so as to learn the current state of the safety relay.
  • the three-phase current isolation acquisition circuit acquires currents in all phase lines of the three-phase electricity to obtain current data (which includes data such as magnitudes and phases of the currents) of the three-phase electricity so as to determine whether each phase line is in abnormal conditions such as phase loss, powerdown or overcurrent, and sends the obtained current data to the safety CPU chips in the safety processing module I and the safety processing module II.
  • the outdoor AC point machine is driven by the three-phase electricity (U, V and W) of AC 380V
  • the abnormal in any phase causes a failure in normally driving the point machine (a case where a motor or a circuit inside the board is burnout may even occur at the time of overcurrent). Therefore, an independent current detection circuit is designed for each phase in the embodiment of the present invention (e.g., a three-phase current isolation acquisition module shown FIG. 4 ) and is configured to determine whether this phase line has phase loss, powerdown or overcurrent.
  • the three-phase electricity of 380V output is stopped (i.e., the switch of the three-phase power resource is turned off), and an alarm instruction is sent to the safety CPU chips to control the drive part to guide into a safety side.
  • the three-phase electronic switch circuit includes three independent electronic switches for performing the on-off control on the three-phase electricity.
  • three independent solid-state relays may be used to control the on and off of the three-phase electricity in parallel separately.
  • the three-phase electronic switch circuit is beneficial for improving the reliability and lifetime of the contacts of the safety relays before and after the three-phase electronic switch circuit. When an output is required to drive the point machine to rotate, the three-phase electronic switch circuit is finally closed or opened, so that the safety relays before and after the three-phase electronic switch circuit are turned on and off with no electricity.
  • the three-phase electronic switch circuit further includes an electronic switch control part which implements a data connection with the safety CPU chips in the safety processing module.
  • the safety CPU chips are capable of sending the control instruction to the electronic switch control part.
  • the electric switch control part controls the on and off of the electronic switches after receiving the control instruction, thereby controlling the on and off of the three-phase electricity.
  • the commutation and wire conversion circuit includes one or more switch circuits.
  • the switch circuit includes a safety relay, a safety AND gate and a safety acquisition unit which are respectively connected to the safety relay.
  • the commutation and wire conversion circuit takes use of two switch circuits to implement not only conversion from three phase lines to five wires, but also commutation.
  • the two switch circuits are respectively connected to two phase lines, thereby converting two phases of the three-phase electricity into four wires, and finally converting the drive circuit into a five-wire system.
  • the safety acquisition unit in each switch circuit acquires state data of the normal-open contacts and the normal-close contacts in the safety relay.
  • the state data includes the on-off state of the normal-open contacts and the normal-close contacts or a state of whether adhesion occurs.
  • the state of the relay contacts is determined.
  • the acquired state data is sent to the safety CPU chips in the safety processing module.
  • the state data may be sent to both of the safety CPU chip 1 and the safety CPU chip 2.
  • the safety AND gate in the commutation and wire conversion circuit also implements the data connection with the safety CPU chips in the safety processing module, and implements the on-off control of lines based on the control instruction of the safety CPU chips. Specifically, each of the two safety CPU chips in the safety processing module may send the control signal to one or two of two safety AND gates.
  • the commutation and wire system conversion circuit of the drive part is connected to an internal motor of the point machine through an electromagnetic compatibility protection circuit.
  • the indication part is connected to an internal shutter of the point machine.
  • the indication part acquires indication state information of the point machine, and sends the acquired indication state information of the point machine to the safety CPU chips of the logic part.
  • the indication part mainly includes an indication electric control circuit, and an indication acquisition and control circuit.
  • FIG. 5 shows a structural diagram of an indication part according to an embodiment of the present invention.
  • the indication electric control circuit of the indication part may be implemented through a transformer. Specifically, an AC 220V voltage may be converted into two AC 48V voltages and output through a power frequency transformer, and the AC 48V voltages are output to the indication acquisition and control circuit.
  • the indication acquisition and control circuit of the indication part includes an indication acquisition circuit, an indication acquisition self-check circuit and a safety relay.
  • the indication acquisition and control circuit is connected to the internal motor of the point machine through the electromagnetic compatibility protection circuit.
  • the indication part in the embodiment of the present invention adopts a four-wire system.
  • a first wire and a second wire are respectively connected to a first terminal and a second terminal of a first secondary coil of the transformer, and a third wire and a fourth wire are respectively connected to a first terminal and a second terminal of a second secondary coil of the transformer.
  • the four wires are connected to switch branches of the safety relay separately.
  • the indication acquisition and control circuit is connected to the internal shutter of the point machine and may acquire the indication state information of the point machine in operation. As shown in FIG. 5 , a circuit in which the first secondary coil of the transformer is located forms a first loop and a circuit in which the second secondary coil of the transformer is located forms a second loop.
  • the first loop includes a normal position circuit, and the second loop includes a reverse position circuit.
  • the normal position circuit includes a normal position acquisition circuit and a normal position acquisition self-check circuit.
  • the reverse position circuit includes a reverse position acquisition circuit and a reverse position acquisition self-check circuit.
  • the normal position circuit and the reverse position circuit are configured to determine indication information of the turnout, i.e., obtaining state information of the turnout such as a normal position, a reverse position or a four-open position.
  • the normal position acquisition circuit is connected to the second wire.
  • the normal position acquisition self-check circuit is connected between the first wire and the second wire.
  • the reverse position acquisition circuit is connected to the third wire, and the reverse position acquisition self-check circuit is connected between the third wire and the fourth wire.
  • the normal position circuit and the reverse position circuit determine whether the turnout is in a normal position, a reverse position or a four-open state through the normal position acquisition circuit and the reverse position acquisition circuit.
  • the internal shutter of the point machine connects the normal position circuit to an indication diode of the point machine, and the reverse position circuit is in a short-circuit state.
  • the AC turnout apparatus sends an AC sinusoidal signal to an outdoor point machine through the normal position circuit and the reverse position circuit separately.
  • the AC sinusoidal signal of the normal position circuit returns a negative half-cycle sinusoidal current after passing through the indication diode, and the reverse position circuit returns a sinusoidal current due to the short circuit of the point machine.
  • the point machine when the normal position acquisition circuit acquires the negative half-cycle sinusoidal current and the reverse position acquisition circuit acquires the sinusoidal current, the point machine is determined to be in a normal position state. Similar to the principle of the normal position acquisition, when the reverse position acquisition circuit acquires a positive half-cycle sinusoidal current and the normal position acquisition circuit acquires the sinusoidal current, the point machine is determined to be in a reverse position state. When other combinations or an abnormal current is acquired, the point machine is determined to be in a four-open state. When the AC turnout controls a seven-wire system point machine, and the point machine is in a normal position, the internal shutter of the point machine connects the normal position circuit to the indication diode of the point machine, and the reverse position circuit is in a short-circuit state.
  • the AC turnout apparatus sends the AC sinusoidal signal to the outdoor point machine through the normal position circuit and the reverse position circuit separately.
  • the AC sinusoidal signal of the normal position circuit returns the positive half-cycle sinusoidal current after passing through the indication diode, and the reverse position circuit returns no current due to the short circuit of the point machine.
  • the point machine is determined to be in a normal position state.
  • the reverse position acquisition circuit acquires the positive half-cycle sinusoidal current and the normal position acquisition circuit acquires no current
  • the point machine is determined to be in a reverse position state.
  • the point machine is determined to be in a four-open state.
  • the acquisition and self-check circuits are in a working state in real time, and periodically submits the indication state information to the logic part.
  • the normal/reverse position acquisition self-check circuit is configured to determine whether the normal/reverse position circuit works normally. When the normal/reverse position acquisition self-check circuit determines that the normal/reverse position circuit works abnormally, the turnout module guides to a safety side. That is, when it is determined to be abnormal in the indication part, the normal position acquisition self-check circuit sends an instruction to the safety CPU chips, and the safety CPU chips control the drive circuit to guide the turnout to the safety side.
  • the normal position acquisition self-check circuit and the reverse position acquisition self-check circuit may perform self-check at a certain period to implement a periodic detection for the abnormal work of the indication part.
  • the normal position acquisition self-check circuit is configured to determine whether the normal position acquisition circuit works normally. Based on the control instruction sent by the safety CPU chips, the normal position acquisition self-check circuit controls conduction or disconnection of a branch in which the normal position acquisition self-check circuit is located. When the branch in which the normal position acquisition self-check circuit is located is in conduction, the branch shorts an external circuit and enters a self-check state.in a normal condition, the normal position acquisition self-check circuit acquires a valid positive half-cycle signal and a valid negative half-cycle signal at the same time; otherwise, the normal position acquisition circuit is determined to be in failure.
  • the branch in which the normal position acquisition self-check circuit is located When the branch in which the normal position acquisition self-check circuit is located is in disconnection, the branch enters a point machine indication acquisition state, and a signal acquired by the normal position acquisition circuit is a real indication of the external point machine.
  • the work principles of the reverse position acquisition self-check circuit and the normal position acquisition self-check circuit are the same.
  • the normal position circuit and the reverse position circuit are connected to the safety relay. Specifically, the first wire, the second wire, the third wire and the fourth wire are respectively connected to contacts of four switch branches of the safety relay to connect the normal position circuit and the reverse position circuit to the safety relay.
  • the safety relay is controlled by a control circuit to implement the on-off control of each wire.
  • the safety CPU chips in the safety processing module sends the control instruction to the control circuit, so that the control circuit controls the on and off of the contacts of the safety relay.
  • An acquisition circuit is connected to the safety relay, so as to acquire the state of the normal-open contacts and the normal-close contacts in each branch of the safety relay, and determine whether each branch of the safety relay works normally (mainly determining problems of whether the coil is open or the contacts are adhered), and send the acquired state data (including the on or off state of the normal-open contacts and the normal-close contacts) to the safety CPU chips in the safety processing module.
  • the normal position acquisition circuit is connected in parallel. A first end of the paralleled circuit is connected to the first terminal of the first secondary coil. The normal position acquisition circuit is configured to acquire the turnout indication state.
  • the normal position acquisition self-check circuit is connected between the first wire and the second wire, and is connected to the normal position acquisition circuit.
  • the reverse position acquisition circuit in the reverse position circuit is connected between the third wire and the fourth wire, and is connected to the reverse position circuit.
  • the safety relay is connected to the internal shutter of the point machine through a rear plate protection circuit.
  • the normal position acquisition self-check circuit and the reverse position acquisition self-check circuit receive the control instruction of the safety CPU chips in the safety processing module. According to the control instruction, the normal position acquisition circuit and the reverse position acquisition circuit operate the acquisition and self-check to perform control.
  • the present invention provides a dual-system hot standby AC turnout system. As shown in FIG. 6 , the dual-system hot standby AC turnout system includes two AC turnout apparatuses: an AC turnout apparatus I and an AC turnout apparatus II. Each AC turnout apparatus includes a logic part as described above and two point machine control parts as described above.
  • a first point machine control part in the AC turnout apparatus I and a first point machine control part in the AC turnout apparatus II form a double structure to cooperatively control the point machine through the electromagnetic compatibility protection circuit and an outdoor distribution board.
  • a second point machine control part in the AC turnout apparatus I and a second point machine control part in the AC turnout apparatus II also form a double structure to cooperatively control the another point machine through the electromagnetic compatibility protection circuit and the outdoor distribution board.
  • the safety CPU chips in the logic parts of the two AC turnout apparatuses implements data communication through inter-system communication wires.
  • This dual-system hot standby AC turnout system further effectively improves the safety, reliability and availability in the control of the turnout.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Claims (11)

  1. Wechselstrom-, AC-, Weichenstellvorrichtung (AC-Weichenstellvorrichtung), umfassend einen Weichenantriebsteuerteil und einen Logikteil (Logikteil), wobei der Weichenantriebsteuerteil einen Antriebsteil und einen Anzeigeteil umfasst, die unabhängig voneinander sind, wobei jeder des Antriebsteils und des Anzeigeteils in der Lage ist, eine Datenverbindung mit dem Logikteil umzusetzen,
    wobei der Antriebsteil dazu konfiguriert ist, einen Weichenantrieb zu steuern, um eine feste Rotation oder eine umgekehrte Rotation gemäß einer Steueranweisung des Logikteils zu betreiben;
    wobei der Anzeigeteil dazu konfiguriert ist, Anzeigeinformationen des Weichenantriebs zu erfassen und die erfassten Anzeigeinformationen des Weichenantriebs an den Logikteil zu senden; wobei
    der Antriebsteil einen Drehstromquellenschalterstromkreis, eine Drehstromisolierungserfassungsschaltung, einen elektronischen Drehstromschalterstromkreis (elektronischer Schalter) und eine Kommutierungs- und Drahtsystemumwandlungsschaltung umfasst, wobei der Drehstromquellenschalterstromkreis dazu konfiguriert ist, eine Ein-Aus-Steuerung für einen Drehstrom umzusetzen; wobei die Drehstromisolierungserfassungsschaltung dazu konfiguriert ist, Ströme in jeweiligen Phasen des Drehstroms zu erfassen und zu bestimmen, ob der Drehstrom komplett ist und ob der Weichenantrieb an Ort und Stelle getrieben wurde; wobei der elektronische Drehstromschalterstromkreis dazu konfiguriert ist, Zuverlässigkeit des Drehstromquellenschalterstromkreises und der Kommutierungs- und Drahtsystemumwandlungsschaltung zu erhöhen; wobei die Kommutierungs- und Drahtsystemumwandlungsschaltung dazu konfiguriert ist, Kommutierung des Drehstroms umzusetzen, Umwandlungen in mehrdrahtigen Systemen durchzuführen und einen Weichenantrieb, der ein mehrdrahtiges System aufweist, zu steuern; wobei die Kommutierungs- und Drahtsystemumwandlungsschaltung eine Vielzahl von Schalterstromkreisen umfasst, wobei jeder der Vielzahl von Schalterstromkreisen parallel zu zwei Phasenleitungen des Drehstroms angeschlossen ist,
    dadurch gekennzeichnet, dass der Drehstromquellenschalterstromkreis einen Schalterstromkreis (Sicherheitsrelais) und eine Sicherheitserfassungseinheit (Sicherheitserfassung) umfasst,
    wobei der Schalterstromkreis dazu konfiguriert ist, eine Ein-Aus-Handlung gemäß einem Steuersignal zum Umsetzen der Ein-Aus-Steuerung für den Drehstrom durchzuführen; wobei die Sicherheitserfassungseinheit dazu konfiguriert ist, einen Ein-Aus-Zustand des Schalterstromkreises zu erfassen;
  2. AC-Weichenstellvorrichtung nach Anspruch 1, wobei jeder der Vielzahl von Schalterstromkreisen eine Schaltereinheit, eine Steuereinheit und eine Sicherheitserfassungseinheit umfasst,
    wobei die Schaltereinheit in der Lage ist, eine Ein-Aus-Handlung gemäß einer Steueranweisung der Steuereinheit durchzuführen;
    wobei die Sicherheitserfassungseinheit dazu konfiguriert ist, einen Ein-Aus-Zustand der Schaltereinheit zu erfassen.
  3. AC-Weichenstellvorrichtung nach Anspruch 1, wobei
    die Drehstromisolierungserfassungsschaltung ferner dazu konfiguriert ist, zu bestimmen, ob jede von drei Phasenleitungen des Drehstroms anormal ist und ob der Weichenantrieb an Ort und Stelle getrieben wurde;
    der elektronische Drehstromschalterstromkreis ferner dazu konfiguriert ist, die Ein-Aus-Steuerung an den drei Phasenleitungen durchzuführen;
  4. AC-Weichenstellvorrichtung nach Anspruch 1, wobei der Anzeigeteil einen elektrischen Anzeigesteuerstromkreis und einen Anzeigeerfassungs- und -steuerstromkreis umfasst, wobei
    der elektrische Anzeigesteuerstromkreis dazu konfiguriert ist, einen zweiphasigen Hochspannungswechselstrom in einen zweiphasigen Niederspannungswechselstrom umzuwandeln;
    der Anzeigeerfassungs- und -steuerstromkreis mit einer internen Klappe des Weichenantriebs verbunden ist und dazu konfiguriert ist, Anzeigezustandsinformationen des Weichenantriebs zu erfassen.
  5. AC-Weichenstellvorrichtung nach Anspruch 1, wobei der Weichenantriebsteuerteil einen ersten Weichenantriebsteuerteil und einen zweiten Weichenantriebsteuerteil umfasst, wobei der Logikteil ein erstes Sicherheitsverarbeitungsmodul und ein zweites Sicherheitsverarbeitungsmodul umfasst,
    wobei jeder des Antriebsteils und des Anzeigeteils in dem ersten Weichenantriebsteuerabschnitt in der Lage ist, eine Datenverbindung mit dem ersten und dem zweiten Sicherheitsverarbeitungsmodul umzusetzen;
    wobei der Antriebsteil und der Anzeigeteil in dem zweiten Weichenantriebsteuerabschnitt in der Lage sind, eine Datenverbindung mit dem ersten und dem zweiten Sicherheitsverarbeitungsmodul umzusetzen.
  6. Duales Hot-Standby-Wechselstrom- (AC-) Weichenstellsystem auf Grundlage der AC-Weichenstellvorrichtung nach einem der Ansprüche 1 bis 5, umfassend eine erste AC-Weichenstellvorrichtung und eine zweite AC-Weichenstellvorrichtung, wobei jede der ersten AC-Weichenstellvorrichtung und der zweiten AC-Weichenstellvorrichtung einen Logikteil, einen ersten Weichenantriebsteuerteil und einen zweiten Weichenantriebsteuerteil umfasst,
    wobei der erste Weichenantriebsteuerteil in der ersten AC-Weichenstellvorrichtung und der erste Weichenantriebsteuerteil in der zweiten AC-Weichenstellvorrichtung eine Doppelstruktur bilden;
    wobei der zweite Weichenantriebsteuerteil in der ersten AC-Weichenstellvorrichtung und der zweite Weichenantriebsteuerteil in der zweiten AC-Weichenstellvorrichtung eine Doppelstruktur bilden;
    wobei der Logikteil in der ersten AC-Weichenstellvorrichtung durch einen Inter-System-Bus mit dem Logikteil in der zweiten AC-Weichenstellvorrichtung kommuniziert;
    wobei jeder des ersten Weichenantriebsteuerteils und des zweiten Weichenantriebsteuerteils einen Antriebsteil und einen Anzeigeteil umfasst, die unabhängig voneinander sind, wobei jeder des Antriebsteils und des Anzeigeteils in der Lage ist, eine Datenverbindung mit dem Logikteil umzusetzen,
    wobei der Antriebsteil dazu konfiguriert ist, einen Weichenantrieb zu steuern, um eine feste Rotation oder eine umgekehrte Rotation gemäß einer Steueranweisung des Logikteils zu betreiben;
    wobei der Anzeigeteil dazu konfiguriert ist, Anzeigeinformationen des Weichenantriebs zu erfassen und die erfassten Anzeigeinformationen des Weichenantriebs an den Logikteil zu senden.
  7. Weichenstellsteuerungsverfahren für die AC-Weichenstellvorrichtung nach einem der Ansprüche 1 bis 5, umfassend:
    Senden, durch einen Logikteil, einer Antriebssteueranweisung an einen Antriebsteil und Steuern, durch den Antriebsteil, eines Weichenantriebs, um eine feste Rotation oder eine umgekehrte Rotation gemäß der Antriebssteueranweisung zu betreiben; und
    Erfassen, durch den Anzeigeteil, von Anzeigeinformationen des Weichenantriebs und Senden der Anzeigeinformationen an den Logikteil.
  8. Weichenstellsteuerungsverfahren nach Anspruch 7, wobei
    eine Drehstromisolierungserfassungsschaltung in dem Antriebsteil einen Zustand jeder Phase von drei Phasen eines Drehstroms erkennt und die Zustände der drei Phasen an den Logikteil sendet, der Logikteil bestimmt, ob nach Erhalten der Zustände der drei Phasen eine Anweisung zu Sicherheitsseitenleitung an den Antriebsteil zu senden ist.
  9. Weichenstellsteuerungsverfahren nach Anspruch 7, wobei
    die AC-Weichenstellvorrichtung getrennt über eine Normalpositionsschaltung und eine Umkehrpositionsschaltung ein sinusförmiges AC-Signal an einen Außenweichenantrieb sendet und einen Anzeigezustand des Weichenantriebs durch Erkennen eines Rückstroms bestimmt;
    in einem Fall, in dem die AC-Weichenstellvorrichtung einen Weichenantrieb mit einem fünfdrahtigen System steuert und der Weichenantrieb sich in einer Normalposition befindet, eine interne Klappe des Weichenantriebs die Normalpositionsschaltung mit einer Anzeigediode des Weichenantriebs in dem Anzeigeteil verbindet und die Umkehrpositionsschaltung sich in einem kurzgeschlossenen Zustand in dem Anzeigeteil befindet;
    in Antwort auf Bestimmen, dass eine Normalpositionserfassungsschaltung in dem Anzeigeteil einen negativen sinusförmigen Halbzyklus-Strom erfasst und eine Umkehrpositionserfassungsschaltung in dem Anzeigeteil einen sinusförmigen Strom erfasst, der Weichenantrieb als in einem Normalpositionszustand befindlich bestimmt wird; in Antwort auf Bestimmen, dass die Umkehrpositionserfassungsschaltung einen positiven sinusförmigen Halbzyklus-Strom erfasst und die Normalpositionserfassungsschaltung den sinusförmigen Strom erfasst, der Weichenantrieb als in einem Umkehrpositionszustand befindlich bestimmt wird; ansonsten wird der Weichenantrieb als in einem Zustand "vier offen" befindlich bestimmt.
  10. Weichenstellsteuerungsverfahren nach Anspruch 7, wobei
    die AC-Weichenstellvorrichtung getrennt über eine Normalpositionsschaltung und eine Umkehrpositionsschaltung ein sinusförmiges AC-Signal an einen Außenweichenantrieb sendet und einen Anzeigezustand des Weichenantriebs durch Erkennen eines Rückstroms bestimmt;
    in einem Fall, in dem die AC-Weichenstellvorrichtung einen Weichenantrieb mit einem siebendrahtigen System steuert und der Weichenantrieb sich in einer Normalposition befindet, eine interne Klappe des Weichenantriebs die Normalpositionsschaltung in dem Anzeigeteil mit einer Anzeigediode des Weichenantriebs in dem Anzeigeteil verbindet und die Umkehrpositionsschaltung sich in einem offenen Zustand befindet;
    in Antwort auf Bestimmen, dass eine Normalpositionserfassungsschaltung in dem Anzeigeteil einen positiven sinusförmigen Halbzyklus-Strom erfasst und eine Umkehrpositionserfassungsschaltung in dem Anzeigeteil keinen Strom erfasst, der Weichenantrieb als in einem Normalpositionszustand befindlich bestimmt wird; in Antwort auf Bestimmen, dass die Umkehrpositionserfassungsschaltung den positiven sinusförmigen Halbzyklus-Strom erfasst und die Normalpositionserfassungsschaltung keinen Strom erfasst, der Weichenantrieb als in einem Umkehrpositionszustand befindlich bestimmt wird; ansonsten wird der Weichenantrieb als in einem Zustand "vier offen" befindlich bestimmt.
  11. Weichenstellsteuerungsverfahren nach einem der Ansprüche 7 bis 10, wobei
    der Logikteil Leitung oder Trennung einer Selbstprüfungsschaltung der Normalpositionserfassung in dem Anzeigeteil steuert;
    in Antwort auf Bestimmen, dass eine Nebenlinie, in der die Selbstprüfungsschaltung der Normalpositionserfassung sich in einem leitenden Zustand befindet, die Nebenlinie in einen Selbstprüfungszustand übergeht; in Antwort auf Bestimmen, dass die Selbstprüfungsschaltung der Normalpositionserfassung gleichzeitig ein gültiges positives Halbzyklus-Signal und ein gültiges negatives Halbzyklus-Signal erfasst, eine Normalpositionserfassungsschaltung als normal arbeitend bestimmt wird; ansonsten wird die Positionserfassungsschaltung als in einem Fehlerzustand befindlich bestimmt; und
    in Antwort auf Bestimmen, dass die Nebenlinie, in der die Selbstprüfungsschaltung der Normalpositionserfassung sich in Trennung befindet, die Nebenlinie in einen Weichenantriebsanzeigeerfassungszustand übergeht und Anzeigeinformationen des Weichenantriebs erfasst.
EP19780131.9A 2018-09-28 2019-09-04 Wechselstromweichenstellvorrichtung, system und steuerungsverfahren dafür Active EP3656639B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811139273.9A CN109278802B (zh) 2018-09-28 2018-09-28 一种交流道岔装置、系统及其控制方法
PCT/CN2019/104326 WO2020063278A1 (zh) 2018-09-28 2019-09-04 一种交流道岔装置、系统及其控制方法

Publications (4)

Publication Number Publication Date
EP3656639A1 EP3656639A1 (de) 2020-05-27
EP3656639A4 EP3656639A4 (de) 2021-01-13
EP3656639C0 EP3656639C0 (de) 2024-05-01
EP3656639B1 true EP3656639B1 (de) 2024-05-01

Family

ID=65182309

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19780131.9A Active EP3656639B1 (de) 2018-09-28 2019-09-04 Wechselstromweichenstellvorrichtung, system und steuerungsverfahren dafür

Country Status (4)

Country Link
EP (1) EP3656639B1 (de)
CN (1) CN109278802B (de)
EA (1) EA202091838A1 (de)
WO (1) WO2020063278A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109278802B (zh) * 2018-09-28 2020-05-22 北京全路通信信号研究设计院集团有限公司 一种交流道岔装置、系统及其控制方法
CN109278801B (zh) * 2018-09-28 2020-05-22 北京全路通信信号研究设计院集团有限公司 一种道岔表示装置
CN110672935B (zh) * 2019-09-10 2022-02-15 交控科技股份有限公司 道岔失表示故障的诊断方法、装置、设备和存储介质
CN110949446B (zh) * 2019-12-19 2022-03-08 交控科技股份有限公司 电子道岔的控制电路及方法
CN112224236B (zh) * 2020-09-17 2022-07-26 中铁武汉电气化局集团有限公司 道岔牵引的控制方法及电路、装置、电子设备和存储介质
CN112339794A (zh) * 2020-11-30 2021-02-09 中铁宝桥集团有限公司 一种中低速磁浮道岔位置表示电路及实时监测方法
CN112606869B (zh) * 2020-12-28 2022-10-28 北京和利时系统工程有限公司 一种转辙机控制装置
CN112693495B (zh) * 2021-01-08 2023-05-16 北京全路通信信号研究设计院集团有限公司 一种无节点分布式道岔安全驱采控制系统
CN112793621A (zh) * 2021-03-01 2021-05-14 北京全路通信信号研究设计院集团有限公司 一种计算机联锁道岔多机控制系统及方法
CN113110404B (zh) * 2021-05-26 2023-08-11 四川都睿感控科技有限公司 一种独立模拟交流转辙机的装置及其使用方法
CN113696933B (zh) * 2021-07-29 2023-02-10 西安铁路信号有限责任公司 一种挤岔报警系统
CN113933703B (zh) * 2021-09-23 2024-04-26 交控科技股份有限公司 转辙机功率采集系统、方法、对象控制器和存储介质
CN114013473B (zh) * 2021-10-15 2024-03-01 北京和利时系统工程有限公司 一种道岔控制的位置表示电路、装置和检测方法
CN114670894B (zh) * 2022-03-03 2024-06-04 浙江众合科技股份有限公司 一种全电子联锁道岔板一驱到底功能电路
CN117087720B (zh) * 2023-08-21 2024-04-26 兰州交通大学 基于无线通信的交流转辙机轨旁控制系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484974B1 (en) * 2001-09-10 2002-11-26 Union Switch & Signal, Inc. Controller for switch machine
CN101439725B (zh) * 2008-12-20 2011-01-05 兰州大成科技股份有限公司 用于铁路道岔位置的控制和监测系统
PL2620347T3 (pl) * 2012-01-24 2015-03-31 Alstom Ferroviaria Spa Nierozpruwalne urządzenie przełączające dla przełączników kolejowych lub tym podobnych
CN103587553B (zh) * 2013-10-17 2015-10-28 上海亨钧科技有限公司 一种液压道岔的控制以及表示系统
CN106740992B (zh) * 2016-11-29 2019-01-08 卡斯柯信号有限公司 一种基于二乘二取二架构的五线制道岔驱动系统
CN107891884B (zh) * 2017-09-20 2020-03-20 浙江众合科技股份有限公司 全电子道岔位置检测装置
CN207889725U (zh) * 2017-11-15 2018-09-21 北京全路通信信号研究设计院集团有限公司 一种道岔控制系统
CN108032870A (zh) * 2017-12-06 2018-05-15 南京恩瑞特实业有限公司 道岔控制模块及其全电子化的实现方法
CN109278801B (zh) * 2018-09-28 2020-05-22 北京全路通信信号研究设计院集团有限公司 一种道岔表示装置
CN109278802B (zh) * 2018-09-28 2020-05-22 北京全路通信信号研究设计院集团有限公司 一种交流道岔装置、系统及其控制方法

Also Published As

Publication number Publication date
EA202091838A1 (ru) 2021-04-30
EP3656639A1 (de) 2020-05-27
CN109278802B (zh) 2020-05-22
EP3656639C0 (de) 2024-05-01
WO2020063278A1 (zh) 2020-04-02
EP3656639A4 (de) 2021-01-13
CN109278802A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
EP3656639B1 (de) Wechselstromweichenstellvorrichtung, system und steuerungsverfahren dafür
EP3656640B1 (de) Weichenanzeigevorrichtung
US11355957B2 (en) Isolated parallel UPS system with choke bypass switch
US7061139B2 (en) System for providing assured power to a critical load
US6465910B2 (en) System for providing assured power to a critical load
CN107819357B (zh) 带有故障位置检测的隔离并联ups系统
CN107933613B (zh) 一种基于二乘二取二架构的非国标制式道岔驱动系统
CN109278800B (zh) 一种直流转辙机控制系统和控制方法
CN109103982A (zh) 双输入四冗余高可靠不间断电源系统
CN109193915B (zh) 转辙机控制电路、系统、控制方法和故障检测方法
CN111293779A (zh) 一种无环流备自投切换系统
CN104022492B (zh) 一种长距离矿井巷道低压供电设备短路辅助保护装置
CN212302232U (zh) 一种具有冗余功能的电动调节阀驱动装置
CN104092281B (zh) 一种交流双电源切换方法
CN107769363A (zh) 强迫油循环风冷变压器冷却器强投的装置和方法
CN110120269B (zh) 一种有效消除核电厂反应堆落棒时间延长的停堆设计方法
CN204480043U (zh) 变桨距系统的测试装置
CN107565521A (zh) 一种清除柔性直流电网直流侧短路故障的方法
CN111596542A (zh) 一种具有冗余功能的电动调节阀驱动装置及其控制方法
CN112491089A (zh) 一种微网并离网混合切换系统及方法
CN212183433U (zh) 一种伺服控制系统
CN218940767U (zh) 一种电源切换系统和供电电源
CN211454332U (zh) 一种基于现场总线的两热备控制器的励磁系统
CN210941437U (zh) 地面自动过分相处理装置
CN202696520U (zh) 带有马达控制器的框架开关控制回路

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CRSC RESEARCH & DESIGN INSTITUTE GROUP CO., LTD.

A4 Supplementary search report drawn up and despatched

Effective date: 20201210

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 5/06 20060101AFI20201204BHEP

Ipc: B61L 5/10 20060101ALI20201204BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019051485

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20240515