EP3655300A1 - Procédé de gestion d'une chaîne de traction d'un véhicule automobile - Google Patents

Procédé de gestion d'une chaîne de traction d'un véhicule automobile

Info

Publication number
EP3655300A1
EP3655300A1 EP18752588.6A EP18752588A EP3655300A1 EP 3655300 A1 EP3655300 A1 EP 3655300A1 EP 18752588 A EP18752588 A EP 18752588A EP 3655300 A1 EP3655300 A1 EP 3655300A1
Authority
EP
European Patent Office
Prior art keywords
tire
motor vehicle
rolling resistance
crr
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18752588.6A
Other languages
German (de)
English (en)
Inventor
François-Jacques CORDONNIER
Frédéric DOMPROBST
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Publication of EP3655300A1 publication Critical patent/EP3655300A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/1005Driving resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2422/00Indexing codes relating to the special location or mounting of sensors
    • B60W2422/70Indexing codes relating to the special location or mounting of sensors on the wheel or the tire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/04Vehicle stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/40Altitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for managing a power train of a motor vehicle.
  • the object of the invention is to propose a method for managing a traction system of a motor vehicle that makes it possible to better predict the behavior of the tire to help optimize the energy consumption of the motor vehicle.
  • the invention relates to a method for managing a power train of a motor vehicle, characterized in that it comprises the following steps:
  • the method makes it possible to determine the future evolution of the rolling resistance coefficient of a tire incorporated in a motor vehicle.
  • This predictive rolling resistance coefficient is a new value that can be particularly useful for various control systems of a motor vehicle.
  • the method makes it possible in particular to control the traction system of the motor vehicle more finely by having the future evolution of the rolling resistance coefficient of each tire, for example to determine when to change the ratios of a box. of speeds, to adapt the torque subjected to the tire for speed regulation, to adapt the movement of a controlled clutch and more generally to optimize the operation of the motor vehicle.
  • it is particularly useful to use the future evolution of the tire rolling resistance coefficient to determine which source of energy is to be used. used and / or recharged and according to which piloting.
  • step a) is carried out starting from at least one of the pressure, the temperature, the load and the speed of rotation of the tire, and the characteristic data of the tire;
  • step a) also takes into account the ambient temperature where the tire is located;
  • step a) is carried out from the equation:
  • Crr (t) Crr stab (T amb , C, P, V) - [1 + k- (T (t) - T stab ) in which CVr sto 3 ⁇ 4 corresponds to the minimum rolling resistance coefficient value, T is the internal temperature of the tire, T sta b is the stabilized internal temperature of the tire at the operating point C, P, V, T am b and k is the coefficient of sensitivity of the rolling resistance to the temperature ;
  • step a) also takes into account the wear of the tire
  • step a) is carried out even when the motor vehicle is stationary;
  • step a) is carried out as long as the temperature of the tire measured during step a) is greater than a reference temperature
  • the reference temperature is greater than or equal to the ambient temperature where the tire is located;
  • step b) also takes into account a predictive variation of altitude of the motor vehicle
  • step b) also takes into account a predictive variation of the speed of the motor vehicle
  • step b) adapts the operation of a gearbox and / or a motor of the power train.
  • FIG. 1 is a schematic view of a motor vehicle using a method management system of a traction chain according to the invention
  • FIG. 2 is a partial sectional view of an example of a pneumatic tire monitored by the method according to the invention
  • FIG. 3 is a block diagram of a method of managing a traction chain according to the invention.
  • tread means a quantity of rubber material delimited by lateral surfaces and by two main surfaces, one of which, called the tread surface, is intended to come into contact with a roadway when the tire is rolling.
  • the invention applies to any type of pneumatic tire, in particular those intended to equip motor vehicles of tourism type, SUV ("Sport Utility Vehicles"), two wheels (in particular motorcycles), planes, industrial vehicles chosen among vans, "Heavy goods vehicles” - that is, metros, buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles such as agricultural or civil engineering vehicles - or other vehicles transportation or handling.
  • SUV Sport Utility Vehicles
  • two wheels in particular motorcycles
  • planes industrial vehicles chosen among vans
  • "Heavy goods vehicles” - that is, metros, buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles such as agricultural or civil engineering vehicles - or other vehicles transportation or handling.
  • orientation terms refer to the orthogonal reference taken with reference to the normal direction of movement of a motor vehicle 1, shown in FIG. 1 and in which there are:
  • a longitudinal axis X horizontal extending from the rear towards the front;
  • a vertical axis Z extending from bottom to top.
  • the invention relates to a method of managing a traction chain of a motor vehicle comprising a step of determining the rolling resistance coefficient of one (or more) tire (s) pneumatic (s). Indeed, it has been found that from the measurement of the state of a tire, it was possible to determine future revolution of the rolling resistance coefficient of the tire. However, advantageously according to the invention, this type of information is not currently available while it allows to better manage for example the energy of a motor vehicle.
  • the traction chain of the motor vehicle can be driven more finely by having this information for example to determine when to change gear ratios, to adapt the torque subjected to the tire for speed control , to adapt the movement of a controlled clutch and more generally optimize the operation of the motor vehicle.
  • the coefficient of rolling resistance of tires varies in particular as a function of the speed of rotation of the tire, the temperature of the tire. , the load of the tire and the pressure of the tire.
  • a tire 10 comprises a structure 12 and a tread 14.
  • the structure 12 comprises a central armature 16 extended by two external flanks F and two beads B sometimes called low zones.
  • a single flank F and a single bead B are shown in FIG. 2.
  • the tread 14 and the central armature 16 of the structure 12 form an apex S of the tire 10.
  • Two rods 18 are embedded in the beads B.
  • the two rods 18 are arranged symmetrically with respect to a median radial plane M of the tire 10.
  • Each rod 18 is of revolution about a reference axis. This reference axis, substantially parallel to the direction Y, is substantially coincident with an axis of revolution of the tire 10.
  • the tread 14 comprises sculptures 20.
  • the armature 16 comprises metal plies 26, 28 and 30 embedded in masses of rubber 32 and 34.
  • a mass of rubber 36 extends radially from the vertex S to the level of the rod 18 of the bead B defining an outer surface 37 of the sidewall F and the bead B.
  • the bead B comprises an annular sheet 38 consisting of metal reinforcements inclined relative to the circumferential direction
  • the tire 10 also comprises a waterproof inner rubber ply 40 and a carcass ply 42.
  • These plies 40 and 42 are generally toroidal in shape and are both coaxial with the rods 18.
  • the plies 40 and 42 extend between the plies.
  • the carcass ply 42 wraps around the rods 18 by virtue of its ends 44 each forming a reversal on one of the rods 18.
  • the ply 40 has an inner surface 43 intended to to be in contact with the air contained within the tire 10.
  • the bead B also comprises a mass of protective rubber 46 annular intended to allow, in part, the radial and axial attachment of the tire 10 on a rim.
  • the bead B of the tire 10 also comprises masses of tamping rubber 48, 50 of a volume V between the carcass ply 42 and the mass 36.
  • each tire 10 has its own characteristic data according to its architecture and its materials used.
  • the rolling resistance coefficient of a tire 10 will therefore be deduced by prior measurements of the tire 10 on test benches and / or simulations by varying the rolling conditions to obtain, for example, models in thermomechanical finite elements.
  • the invention relates to a method for managing a traction chain 3 of a motor vehicle 1 comprising a first step a) intended to determine the predictive rolling resistance coefficient Crr of at least one tire 10 of the motor vehicle 1 and a step b) intended to adapt the operation of the traction chain 3 according to the predictive rolling resistance coefficient Crr in order to optimize the energy consumption of the motor vehicle 1.
  • Step a) is carried out starting from at least one of the pressure P, the temperature T, the load C and the rotational speed y of the tire 10.
  • This step a) can for example be carried out at using a monitoring system 51 provided with a device 53 for measuring the state of the tire 10 arranged to determine at least one of the pressure, the temperature, the load and the speed of rotation of the tire 10.
  • a measuring device 53 may for example comprise at least one detection element 52 mounted in the tire 10.
  • the motor vehicle 1 may thus comprise a measuring device 53 comprising an element 52i, 52 2 , 52 3 , 52 4 of detection in each tire 10i, 10 2 , 10 3 , 10 4 .
  • Such detection elements 52 could for example be of the TMS type (abbreviation from the English term "Tire Mounted System”) and each be attached against the inner surface 43 of a tire 10 as disclosed by way of example in the document EP 0 887 211.
  • the measuring device 53 can also collect measurements already accessible by the motor vehicle 1 such as, for example, the ambient temperature T am b, the load C and the speed y of the motor vehicle 1.
  • Step a) can then calculate the predictive rolling resistance coefficient Cr based on these data.
  • step b) can for example determine the predictive rolling resistance coefficient Cr from the thermomechanical finite element models of the tire 10 explained above, possibly by means of successive iterations in order to offer the finest value possible. This determination of the resistance coefficient Crr can also be performed by comparison with a known law of behavior, on the basis of physical measurements.
  • the thermomechanical finite element models can take into account other values such as, for example, the ambient ambient temperature T am b or the wear rate of the tire 10.
  • This calculation can be obtained by means of a monitoring module 55 arranged to receive the data measured by the device 53 for measuring the state of the tire 10.
  • the monitoring module 55 can comprise a data acquisition element.
  • the monitoring module 55 may comprise an acquisition element capable of receiving the data of each element 52 of detection of wired or wireless communication.
  • the monitoring system 51 may further comprise a prediction module 57 arranged to estimate the predictive rolling resistance coefficient Crr of the tire 10.
  • the step a) could therefore be carried out by the prediction module 57 with the aid of a member 56 for storing the characteristics of the tire 10, an element 61 for calculating the data of the monitoring module 55 relative to those of the element 56 for storing the characteristics of the tire 10 making it possible to determine the evolution future rolling resistance coefficient of the tire.
  • Each calculation can then be recorded on a storage element 58 to know the history of the calculations and to supply, for example, massive data external to the motor vehicle 1.
  • the monitoring system 51 comprises a compilation of values of the rolling resistance coefficient predictive Crr recorded in the storage element 58 which makes it possible to follow the evolution of the estimated values of the rolling resistance coefficient of each tire 10 over time.
  • the elements used such as the element 56 for storing the characteristics of the tire 10 or the element 58 for storage are not necessarily mounted on the vehicle but could be physically deported, that is to say communicate with the motor vehicle from another place.
  • the element 56 for storing the characteristics of the tire 10 and / or the element 58 for storing the calculation history could thus belong to a server that can be remotely interrogated by a telematic system of the motor vehicle 1 .
  • step a) could be performed by the element 61 of calculation from the equation:
  • Crr s tab is the minimum rolling resistance coefficient value of the tire 10
  • T is the internal temperature of the tire
  • Tstab corresponds to the stabilized internal temperature of the tire at the operating point C, P, V, T amb ;
  • k is the coefficient of sensitivity of the rolling resistance to the temperature.
  • step a) may take into account other values such as, for example, the altitude variation and / or the variation of the regulatory speed limit and / or the wear history of the tire. accessible by the motor vehicle 1 in situ or by interrogation of a remote server. Therefore, the element The calculation method could take into account other values such as, for example, the altitude variation and / or the variation of the regulatory speed limit provided by the geolocation device 63 and / or a storage element 60 of the history of wear of each tire 10 of a measuring device (not shown) of the wear of each tire 10 already accessible by the motor vehicle 1.
  • the predictive rolling resistance coefficient Crr can be estimated even when the tire 10 is stationary, that is to say when the vehicle automobile 1 is stationary.
  • the predictive rolling resistance coefficient Crr will therefore increase during the downtime or parking period.
  • the advantage of the invention which takes into account the coefficient of predictive rolling resistance Crr especially after a immobilization of the tire 10 following a rolling of several hours.
  • the method advantageously allows to take into account the coefficient of rolling resistance predictive Crr which is much closer to reality.
  • step a) is performed as long as the temperature of the tire (10) measured in step a) is greater than a predetermined reference temperature.
  • the reference temperature is greater than or equal to the external ambient temperature r am 3 ⁇ 4 as, for example, equal to r am 3 ⁇ 4 + 10 ° C.
  • the method makes it possible to drive the traction chain 3 of the motor vehicle 1 via the traction chain control device 3 more finely by having the future evolution of the rolling resistance coefficient of each bandage.
  • pneumatic 10 for example to determine when to change the ratios of a gearbox 2, to adapt the torque subjected to the tire 10 for the speed control of the motor vehicle 1, to adapt the movement of a controlled clutch and more generally optimize the operation of the motor vehicle 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Tires In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention se rapporte à un procédé de gestion d'une chaîne de traction (3) d'un véhicule automobile (1). Selon l'invention, le procédé comporte les étapes suivantes : a) déterminer un coefficient de résistance au roulement prédictif (Crr) d'au moins un bandage pneumatique (10) du véhicule automobile (1); b) adapter le fonctionnement de la chaîne de traction (3) en fonction du coefficient de résistance au roulement prédictif (Crr) afin notamment d'optimiser la consommation d'énergie du véhicule automobile (1).

Description

PROCÉDÉ DE GESTION D'UNE CHAÎNE DE TRACTION D'UN VÉHICULE
AUTOMOBILE
DOMAINE TECHNIQUE DE L'INVENTION
La présente invention se rapporte à un procédé de gestion d'une chaîne de traction d'un véhicule automobile.
ARRIÈRE-PLAN TECHNIQUE DE L'INVENTION
Dans un véhicule automobile, il devient primordial d'optimiser la consommation d'énergie du véhicule automobile. En effet, entre la raréfaction et le prix des énergies fossiles, la réglementation des émissions polluantes et la complexité des chaînes de traction, il devient difficile de pouvoir piloter un véhicule automobile de manière optimale.
Plus particulièrement, s'agissant des véhicules automobiles à motorisation électrique, l'autonomie est un enjeu fort qui requiert une gestion optimale de l'énergie disponible. RÉSUME DE L'INVENTION
L'invention a pour but de proposer un procédé de gestion d'une chaîne de traction d'un véhicule automobile permettant de mieux prédire le comportement du bandage pneumatique pour aider à optimiser la consommation d'énergie du véhicule automobile.
A cet effet, l'invention se rapporte à un procédé de gestion d'une chaîne de traction d'un véhicule automobile, caractérisé en ce qu'il comporte les étapes suivantes :
a) déterminer un coefficient de résistance au roulement prédictif d'au moins un bandage pneumatique du véhicule automobile ;
b) adapter le fonctionnement de la chaîne de traction en fonction du coefficient de résistance au roulement prédictif afin notamment d'optimiser la consommation d'énergie du véhicule automobile.
Avantageusement selon l'invention, le procédé permet de déterminer l'évolution future du coefficient de résistance au roulement d'un bandage pneumatique intégré à un véhicule automobile. Ce coefficient de résistance au roulement prédictif est une nouvelle valeur qui peut être particulièrement utile à différents systèmes de contrôle d'un véhicule automobile.
Avantageusement selon l'invention, le procédé permet notamment de piloter la chaîne de traction du véhicule automobile plus finement en disposant de l'évolution future du coefficient de résistance au roulement de chaque bandage pneumatique par exemple pour déterminer quand changer les rapports d'une boîte de vitesses, pour adapter le couple soumis au bandage pneumatique pour la régulation de vitesse, pour adapter le mouvement d'un embrayage piloté et plus généralement optimiser le fonctionnement du véhicule automobile. De plus, dans le cas d'un véhicule automobile hybride comportant plusieurs sources d'énergie, il est particulièrement utile de se servir de l'évolution future du coefficient de résistance au roulement des bandages pneumatiques afin de déterminer quelle source d'énergie doit être utilisée et/ou rechargée et selon quel pilotage. De manière connexe, il devient également possible de mieux connaître l'autonomie des sources d'énergie utilisées et de pouvoir mieux informer l'utilisateur du véhicule automobile.
Selon d'autres caractéristiques optionnelles de réalisation de l'invention :
- l'étape a) est réalisée à partir d'au moins une valeur parmi la pression, la température, la charge et la vitesse de rotation du bandage pneumatique, et des données caractéristiques du bandage pneumatique ;
- l'étape a) prend également en compte la température ambiante où se trouve le bandage pneumatique ;
- l'étape a) est réalisée à partir de l'équation :
Crr(t)= Crrstab{ Tamb , C, P, V) - [ 1 + k- (T(t)- Tstab)\ dans laquelle CVrsto¾ correspond à la valeur de coefficient de résistance au roulement minimale, T correspond à la température interne du bandage pneumatique, Tstab correspond à température interne stabilisée du pneu au point de fonctionnement C, P, V, Tamb et k correspond au coefficient de sensibilité de la résistance au roulement par rapport à la température ;
- l'étape a) prend également en compte l'usure du bandage pneumatique ;
- l'étape a) est réalisée même quand le véhicule automobile est immobile ;
- l'étape a) est réalisée tant que la température du bandage pneumatique mesurée lors de l'étape a) est supérieure à une température de référence ;
- la température de référence est supérieure ou égale à la température ambiante où se trouve le bandage pneumatique ;
- l'adaptation de l'étape b) prend également en compte une variation prédictive d'altitude du véhicule automobile ;
- l'adaptation de l'étape b) prend également en compte une variation prédictive de la vitesse du véhicule automobile ;
- l'étape b) adapte le fonctionnement d'une boîte de vitesses et/ou d'un moteur de la chaîne de traction.
BRÈVE DESCRIPTION DES DESSINS
D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
- la figure 1 est une vue schématique d'un véhicule automobile utilisant un procédé de gestion d'une chaîne de traction selon l'invention ;
- la figure 2 est une vue partielle en coupe d'un exemple de bandage pneumatique surveillé par le procédé selon l'invention ;
- la figure 3 est un schéma fonctionnel d'un procédé de gestion d'une chaîne de traction selon l'invention.
DESCRIPTION DÉTAILLÉE D'AU MOINS UN MODE DE RÉALISATION DE L'INVENTION
Sur les différentes figures, les éléments identiques ou similaires portent les mêmes références, éventuellement additionné d'un indice. La description de leur structure et de leur fonction n'est donc pas systématiquement reprise.
Par « bandage pneumatique », on entend tous les types de bandages élastiques soumis à une pression interne.
Par « bande de roulement », on entend une quantité de matériau caoutchoutique délimitée par des surfaces latérales et par deux surfaces principales dont l'une, appelée surface de roulement, est destinée à entrer en contact avec une chaussée lorsque le pneumatique roule.
L'invention s'applique à tout type de bandage pneumatique, notamment ceux destinés à équiper des véhicules à moteur de type tourisme, SUV (« Sport Utility Vehicles »), deux roues (notamment motos), avions, véhicules industriels choisis parmi camionnettes, "Poids-lourds" - c'est-à-dire métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route tels qu'engins agricoles ou de génie civil -, ou autres véhicules de transport ou de manutention.
Dans tout ce qui suit, les termes d'orientation s'entendent par rapport au repère orthogonal pris en référence au sens de déplacement normal d'un véhicule automobile 1 , représenté sur la figure 1 et dans lequel on distingue :
- un axe longitudinal X, horizontal s'étendant de l'arrière vers l'avant ;
- un axe transversal Y, horizontal s'étendant de la droite vers la gauche ; et
- un axe vertical Z, s'étendant du bas vers le haut.
Le terme « horizontal » est défini par rapport au plan XY, le terme « vertical » est défini par rapport au plan XZ ou YZ.
L'invention se rapporte à un procédé de gestion d'une chaîne de traction d'un véhicule automobile comportant une étape de détermination du coefficient de résistance au roulement d'un (ou plusieurs) bandage(s) pneumatique(s). En effet, il a été trouvé qu'à partir de la mesure de l'état d'un bandage pneumatique, il était possible de déterminer révolution future du coefficient de résistance au roulement du bandage pneumatique. Or, avantageusement selon l'invention, ce type d'information n'est actuellement pas disponible alors qu'elle permet de pouvoir mieux gérer par exemple l'énergie d'un véhicule automobile.
On comprend en effet que la chaîne de traction du véhicule automobile peut être pilotée plus finement en disposant de cette information par exemple pour déterminer quand changer les rapports d'une boîte de vitesses, pour adapter le couple soumis au bandage pneumatique pour la régulation de vitesse, pour adapter le mouvement d'un embrayage piloté et plus généralement optimiser le fonctionnement du véhicule automobile.
En outre, dans le cas d'un véhicule automobile hybride comportant plusieurs sources d'énergie comme par exemple électrique, pneumatique ou thermique, il est particulièrement utile de se servir de la future évolution du coefficient de résistance au roulement du bandage pneumatique afin de déterminer quelle source d'énergie doit être utilisée et/ou rechargée et selon quel pilotage. De manière connexe, il devient également possible de mieux connaître l'autonomie des sources d'énergie utilisées et de pouvoir mieux informer l'utilisateur du véhicule automobile.
A titre nullement limitatif, pour les véhicules automobiles hybrides, il est parfois utilisé une stratégie du type ECMS (abréviation provenant des termes anglais « Equivalent Consumption Minimization Strategy »). C'est une stratégie de commande en temps réel basée sur la théorie de la commande optimale. Elle consiste à considérer l'accumulateur électrique du véhicule automobile comme un réservoir de carburant auxiliaire, et à choisir la commande qui minimise l'énergie totale prélevée aux deux réservoirs. On utilise un coefficient agissant comme un variateur du prix de l'énergie électrique. Plus il est grand, plus l'énergie électrique coûte cher à utiliser, et plus il sera intéressant d'en récupérer (en faisant de la régénération). Plus il est faible, et plus l'énergie électrique est peu chère, donc intéressante à utiliser conjointement avec le moteur thermique, ou bien seule. Il est donc immédiat que ce coefficient est influencé par la quantité d'énergie récupérable lors notamment lors des freinages qui dépend de la résistance au roulement des bandages pneumatiques au moment du pilotage.
Avantageusement selon l'invention, il a été trouvé que le coefficient de résistance au roulement des bandages pneumatiques, et donc la consommation d'un véhicule automobile, varie notamment en fonction de la vitesse de rotation du bandage pneumatique, de la température du bandage pneumatique, de la charge du bandage pneumatique et de la pression du bandage pneumatique.
L'étude a en effet révélé que le coefficient de résistance au roulement d'un bandage pneumatique diminue entre son état à froid et son état à chaud jusqu'à une valeur minimale propre au bandage pneumatique en fonction des caractéristiques ci-dessus. Ainsi, plus la vitesse et/ou plus le temps de roulage est élevé, plus le coefficient de résistance au roulement va se rapprocher rapidement de sa valeur minimale. Comme illustré à titre d'exemple à la figure 2, un bandage pneumatique 10 comprend une structure 12 et une bande de roulement 14. La structure 12 comprend une armature centrale 16 prolongée par deux flancs extérieurs F et deux bourrelets B parfois appelés zones basses. Un seul flanc F et un seul bourrelet B sont représentés sur la figure 2. La bande de roulement 14 et l'armature centrale 16 de la structure 12 forment un sommet S du bandage pneumatique 10.
Deux tringles 18 (une seule est représentée) sont noyées dans les bourrelets B. Les deux tringles 18 sont agencées symétriquement par rapport à un plan radial médian M du bandage pneumatique 10. Chaque tringle 18 est de révolution autour d'un axe de référence. Cet axe de référence, sensiblement parallèle à la direction Y, est sensiblement confondu avec un axe de révolution du bandage pneumatique 10.
La bande de roulement 14 comprend des sculptures 20. L'armature 16 comprend des nappes métalliques 26, 28 et 30 noyées dans des masses de gomme 32 et 34. Une masse de gomme 36 s'étend radialement du sommet S jusqu'au niveau de la tringle 18 du bourrelet B en délimitant une surface extérieure 37 du flanc F et du bourrelet B. De plus, dans l'exemple décrit, le bourrelet B comprend une nappe annulaire 38 constituée de renforts métalliques inclinés par rapport à la direction circonférentielle
Le bandage pneumatique 10 comprend également une nappe de gomme intérieure étanche 40 ainsi qu'une nappe carcasse 42. Ces nappes 40 et 42 sont de forme générale toroïdale et sont toutes deux coaxiales aux tringles 18. Les nappes 40 et 42 s'étendent entre les deux tringles annulaires 18 du bandage pneumatique 10 en passant par le sommet S. La nappe carcasse 42 s'enroule autour des tringles 18 grâce à ses extrémités 44 formant chacune un retournement sur une des tringles 18. La nappe 40 présente une surface interne 43 destinée à être en contact avec l'air contenu à l'intérieur du bandage pneumatique 10.
Le bourrelet B comprend également une masse de gomme de protection 46 annulaire destinée à permettre, en partie, l'accrochage radial et axial du bandage pneumatique 10 sur une jante. Le bourrelet B du bandage pneumatique 10 comprend également des masses de gomme 48, 50 de bourrage d'un volume V compris entre la nappe carcasse 42 et la masse 36.
On comprend donc que chaque bandage pneumatique 10 comporte ses propres données caractéristiques suivant son architecture et ses matériaux utilisés. Le coefficient de résistance au roulement d'un bandage pneumatique 10 sera donc déduit grâce à des mesures préalables du bandage pneumatique 10 sur des bancs d'essai et/ou des simulations en faisant varier les conditions de roulage pour obtenir, par exemple, des modèles en éléments finis thermomécaniques.
L'invention se rapporte à un procédé de gestion d'une chaîne de traction 3 d'un véhicule automobile 1 comportant une première étape a) destinée à déterminer le coefficient de résistance au roulement prédictif Crr d'au moins un bandage pneumatique 10 du véhicule automobile 1 et une étape b) destinée à adapter le fonctionnement de la chaîne de traction 3 en fonction du coefficient de résistance au roulement prédictif Crr afin d'optimiser la consommation d'énergie du véhicule automobile 1 .
L'étape a) est réalisée à partir d'au moins une valeur parmi la pression P, la température T, la charge C et la vitesse y de rotation du bandage pneumatique 10. Cette étape a) peut être par exemple réalisée à l'aide d'un système 51 de surveillance muni d'un dispositif 53 de mesure de l'état du bandage pneumatique 10 agencé pour déterminer au moins une valeur parmi la pression, la température, la charge et la vitesse de rotation du bandage pneumatique 10. Un tel dispositif 53 de mesure peut par exemple comporter au moins un élément 52 de détection monté dans le bandage pneumatique 10. A titre d'exemple illustré à la figure 1 , le véhicule automobile 1 peut ainsi comporter un dispositif de mesure 53 comprenant un élément 52i , 522, 523, 524 de détection dans chaque bandage pneumatique 10i , 102, 103, 104. De tels éléments de détection 52 pourraient être par exemple du type TMS (abréviation provenant des termes anglais « Tire Mounted System ») et être chacun attaché contre la surface interne 43 d'un bandage pneumatique 10 comme divulgué à titre d'exemple dans le document EP 0 887 211 . Bien entendu, le dispositif de mesure 53 peut également recueillir des mesures déjà accessibles par le véhicule automobile 1 comme, par exemple, la température ambiante Tamb, la charge C et la vitesse y du véhicule automobile 1 .
L'étape a) peut ensuite calculer le coefficient de résistance au roulement prédictif Crr en fonction de ces données. On comprend donc que l'étape b) peut par exemple déterminer le coefficient de résistance au roulement prédictif Crr à partir des modèles en éléments finis thermomécaniques du bandage pneumatique 10 expliqués ci-dessus au moyen, éventuellement, d'itérations successives afin d'offrir une valeur la plus fine possible. Cette détermination du coefficient de résistance Crr peut également être réalisée par comparaison avec une loi connue de comportement, sur la base de mesures physiques. Bien entendu, les modèles en éléments finis thermomécaniques peuvent prendre en compte d'autres valeurs comme, par exemple, la température ambiante extérieure Tamb ou le taux d'usure du bandage pneumatique 10.
Ce calcul peut être obtenu à l'aide d'un module 55 de surveillance agencé pour recevoir les données mesurées par le dispositif 53 de mesure de l'état du bandage pneumatique 10. Le module 55 de surveillance peut comporter un élément d'acquisition des données du dispositif 53 de mesure de l'état de chaque bandage pneumatique 10. Plus particulièrement, le module 55 de surveillance peut comporter un élément d'acquisition capable de recevoir les données de chaque élément 52 de détection de manière filaire ou par communication sans fil.
Le système 51 de surveillance peut en outre comporter un module 57 de prédiction agencé pour estimer le coefficient de résistance au roulement prédictif Crr du bandage pneumatique 10. L'étape a) pourrait donc être réalisée par le module 57 de prédiction à l'aide d'un élément 56 de stockage des caractéristiques du bandage pneumatique 10, d'un élément 61 de calcul des données du module 55 de surveillance par rapport à celles de l'élément 56 de stockage des caractéristiques du bandage pneumatique 10 permettant de déterminer l'évolution future du coefficient de résistance au roulement du bandage pneumatique. Chaque calcul peut ensuite être enregistré sur un élément 58 de stockage pour connaître l'historique des calculs et alimenter par exemple des données massives externes au véhicule automobile 1 . En effet, on comprend donc qu'au bout d'un certain temps, le système 51 de surveillance comporte une compilation de valeurs du coefficient de résistance au roulement prédictif Crr enregistrées dans l'élément 58 de stockage qui permet de suivre l'évolution des valeurs estimées du coefficient de résistance au roulement de chaque bandage pneumatique 10 au cours du temps.
Bien entendu, les éléments utilisés tels que l'élément 56 de stockage des caractéristiques du bandage pneumatique 10 ou l'élément 58 de stockage ne sont pas nécessairement monté sur le véhicule mais pourrait être déporté physiquement, c'est-à- dire communiquer avec le véhicule automobile depuis un autre endroit. À titre d'exemple, l'élément 56 de stockage des caractéristiques du bandage pneumatique 10 et/ou l'élément 58 de stockage de l'historique des calculs pourrait ainsi appartenir à un serveur interrogeable à distance par un système télématique du véhicule automobile 1 .
A titre nullement limitatif, l'étape a) pourrait être réalisée par l'élément 61 de calcul à partir de l'équation :
Crr(t)= Crrstab{ Tamb , C, P, V) - [ 1 + k- (T(t)- Tstab)\ Dans laquelle :
Crrstab correspond à la valeur de coefficient de résistance au roulement minimale du bandage pneumatique 10 ;
T correspond à la température interne du bandage pneumatique ;
Tstab correspond à température interne stabilisée du pneu au point de fonctionnement C, P, V, Tamb ;
k correspond au coefficient de sensibilité de la résistance au roulement par rapport à la température.
Bien entendu, l'étape a) peut prendre en compte d'autres valeurs comme, par exemple, la variation d'altitude et/ou la variation de la limite de vitesse réglementaire et/ou l'historique d'usure du bandage pneumatique déjà accessibles par le véhicule automobile 1 in situ ou par interrogation d'un serveur distant. Par conséquent, l'élément 61 de calcul pourrait prendre en compte d'autres valeurs comme, par exemple, la variation d'altitude et/ou la variation de la limite de vitesse réglementaire fourni par le dispositif de géolocalisation 63 et/ou un élément 60 de stockage de l'historique d'usure de chaque bandage pneumatique 10 d'un dispositif de mesure (non représenté) de l'usure de chaque bandage pneumatique 10 déjà accessibles par le véhicule automobile 1 .
Selon un avantage du procédé de gestion selon l'invention illustré à la figure 3, on comprend que le coefficient de résistance au roulement prédictif Crr peut être estimé même lorsque le bandage pneumatique 10 est immobile, c'est-à-dire quand le véhicule automobile 1 est à l'arrêt. Le coefficient de résistance au roulement prédictif Crr augmentera donc pendant la durée d'immobilisation ou de stationnement. Avantageusement selon l'invention, il est possible de déterminer finement l'évolution future du coefficient de résistance au roulement d'un bandage pneumatique 10. En effet, on en déduit immédiatement l'avantage de l'invention qui prend en compte le coefficient de résistance au roulement prédictif Crr notamment après une immobilisation du bandage pneumatique 10 suite à un roulage de plusieurs heures. Ainsi, au lieu de considérer le bandage pneumatique 10 comme froid suite à son immobilisation, c'est-à- dire quand le véhicule automobile 1 s'est arrêté, le procédé permet avantageusement de prendre en compte le coefficient de résistance au roulement prédictif Crr qui est beaucoup plus proche de la réalité.
Préférentiellement, l'étape a) est réalisée tant que la température du bandage pneumatique (10) mesurée lors de l'étape a) est supérieure à une température de référence prédéterminée. Préférentiellement, la température de référence est supérieure ou égale à la température ambiante externe ram¾ comme, par exemple, égale à ram¾ + 10°C.
Avantageusement selon l'invention, le procédé permet de piloter la chaîne de traction 3 du véhicule automobile 1 via le dispositif 5 de contrôle de la chaîne de traction 3 plus finement en disposant de l'évolution future du coefficient de résistance au roulement de chaque bandage pneumatique 10 par exemple pour déterminer quand changer les rapports d'une boîte de vitesses 2, pour adapter le couple soumis au bandage pneumatique 10 pour la régulation de vitesse du véhicule automobile 1 , pour adapter le mouvement d'un embrayage piloté et plus généralement optimiser le fonctionnement du véhicule automobile 1 .
De plus, dans le cas d'un véhicule automobile hybride comportant plusieurs sources d'énergie comme par exemple thermique, pneumatique et/ou électrique, il est particulièrement utile de se servir du coefficient de résistance au roulement prédictif Crr de chaque bandage pneumatique 10 afin de déterminer quelle source d'énergie doit être utilisée et/ou rechargée et selon quel pilotage par le dispositif 5 de contrôle de la chaîne de traction 3. De manière connexe, il devient également possible de mieux connaître l'autonomie des sources d'énergie utilisées et de pouvoir mieux informer l'utilisateur du véhicule automobile 1 .
L'invention n'est pas limitée aux exemples présentés et d'autres variantes apparaîtront clairement à l'homme du métier.
Il est notamment possible de réaliser les procédés à l'aide d'un flux indirect de rinformation via un serveur où sont pratiqués des traitements statistiques sur l'historique de rinformation et une analyse de données massives qui permettraient de traiter la problématique d'évolution de la résistance au roulement avec l'usure en utilisant des sources d'information à distance. A titre d'exemple, un traitement des données massives avec une gestion de l'historique pourrait être réalisé pour intégrer les effets de l'usure des pneus sur la valeur du coefficient de résistance au roulement minimale, également appelé stabilisée, couplé à l'utilisation d'un dispositif extérieur au véhicule automobile 1 de mesure de l'usure comme par exemple lorsque le véhicule automobile 1 est en entretien ou passe par un portique de détection automatique incrémentant le nombre de kilomètres effectué par les bandages pneumatiques.

Claims

REVENDICATIONS
1 . Procédé de gestion d'une chaîne de traction (3) d'un véhicule automobile (1 ), caractérisé en ce qu'il comporte les étapes suivantes :
a) déterminer un coefficient de résistance au roulement prédictif (Crr) d'au moins un bandage pneumatique (10) du véhicule automobile (1 ) ;
b) adapter le fonctionnement de la chaîne de traction (3) en fonction du coefficient de résistance au roulement prédictif (Crr) afin notamment d'optimiser la consommation d'énergie du véhicule automobile (1 ).
2. Procédé selon la revendication précédente, dans lequel l'étape a) est réalisée à partir d'au moins une valeur parmi la pression (P) , la température (7) , la charge (C) et la vitesse (V) de rotation du bandage pneumatique (10), et des données caractéristiques du bandage pneumatique (10).
3. Procédé selon la revendication précédente, dans lequel l'étape a) prend également en compte la température ambiante (ram¾) où se trouve le bandage pneumatique (10).
4. Procédé selon la revendication précédente, dans lequel l'étape a) est réalisée à partir de l'équation :
Crr(t)= Crrstab{ Tamb , C, P, V) - [ 1 + k- (T(t)- Tstab)\ dans laquelle :
Crrstab correspond à la valeur de coefficient de résistance au roulement minimale ; T correspond à la température interne du bandage pneumatique ;
Tstab correspond à température interne stabilisée du pneu au point de fonctionnement
k correspond au coefficient de sensibilité de la résistance au roulement par rapport à la température.
5. Procédé selon l'une quelconque des revendications 2 à 4, dans lequel l'étape a) prend également en compte l'usure du bandage pneumatique (10).
6. Procédé selon l'une des revendications 2 à 5, dans lequel l'étape a) est réalisée quand le véhicule automobile est immobile.
7. Procédé selon l'une des revendications 2 à 6, dans lequel l'étape a) est réalisée tant que la température du bandage pneumatique (10) mesurée lors de l'étape a) est supérieure à une température de référence.
8. Procédé selon la revendication précédente, dans lequel la température de référence est supérieure ou égale à la température ambiante (ram¾) où se trouve le bandage pneumatique (10).
9. Procédé selon l'une des revendications précédentes, dans lequel l'adaptation de l'étape b) prend également en compte une variation prédictive d'altitude du véhicule automobile (1 ).
10. Procédé selon l'une des revendications précédentes, dans lequel l'adaptation de l'étape b) prend également en compte une variation prédictive de la vitesse du véhicule automobile (1 ).
11 . Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape b) adapte le fonctionnement d'une boîte de vitesses (2) de la chaîne de traction (3).
12. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape b) adapte le fonctionnement d'un moteur (4) de la chaîne de traction (3).
EP18752588.6A 2017-07-19 2018-07-18 Procédé de gestion d'une chaîne de traction d'un véhicule automobile Pending EP3655300A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1756844A FR3069223B1 (fr) 2017-07-19 2017-07-19 Procede de gestion d'une chaine de traction d'un vehicule automobile
PCT/FR2018/051832 WO2019016471A1 (fr) 2017-07-19 2018-07-18 Procédé de gestion d'une chaîne de traction d'un véhicule automobile

Publications (1)

Publication Number Publication Date
EP3655300A1 true EP3655300A1 (fr) 2020-05-27

Family

ID=59974628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18752588.6A Pending EP3655300A1 (fr) 2017-07-19 2018-07-18 Procédé de gestion d'une chaîne de traction d'un véhicule automobile

Country Status (4)

Country Link
US (1) US11400946B2 (fr)
EP (1) EP3655300A1 (fr)
FR (1) FR3069223B1 (fr)
WO (1) WO2019016471A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211338A1 (fr) * 2022-04-29 2023-11-02 Scania Cv Ab Dispositif de commande et procédé d'estimation d'une autonomie en distance d'un véhicule

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887211B1 (fr) 1997-06-23 2003-01-02 COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN - MICHELIN & CIE Système de surveillance de pneumatiques
JP3601347B2 (ja) * 1999-03-05 2004-12-15 日産自動車株式会社 車両制御装置及び走行抵抗の測定方法
WO2013015780A1 (fr) * 2011-07-25 2013-01-31 Michelin Recherche Et Technique, S. A. Système pour prédire une limite d'endurance de pneu résiduelle en temps réel
US8862346B2 (en) * 2012-03-20 2014-10-14 Eaton Corporation System and method for simulating the performance of a virtual vehicle
WO2014078421A2 (fr) * 2012-11-13 2014-05-22 Compagnie Generale Des Etablissements Michelin Doublure d'aile et système associé de régulation thermique de pneu
WO2014149043A1 (fr) * 2013-03-20 2014-09-25 International Truck Intellectual Property Company, Llc Système de commande de vitesse de croisière intelligent
JP6266280B2 (ja) * 2013-09-18 2018-01-24 Ntn株式会社 電気自動車のスリップ制御装置
CN109661343B (zh) * 2016-05-15 2021-09-24 机械模拟公司 稳定摩托车的系统和方法
FR3083162B1 (fr) 2018-06-28 2020-10-02 Michelin & Cie Procedes de detection et de localisation d'une anomalie thermique pour ensemble monte de vehicule

Also Published As

Publication number Publication date
FR3069223B1 (fr) 2020-10-02
US11400946B2 (en) 2022-08-02
WO2019016471A1 (fr) 2019-01-24
US20200164889A1 (en) 2020-05-28
FR3069223A1 (fr) 2019-01-25

Similar Documents

Publication Publication Date Title
EP1327131B1 (fr) Procede et systeme ou centrale de surveillance de l'etat des pneumatiques, et de detection de presence de chaines ou clous, sur un vehicule
EP3894825B1 (fr) Modèle de prédiction de l'usure et de la fin de vie d'un pneumatique
CA2980666C (fr) Methode de determination de la temperature d'une partie interne des materiaux d'un pneumatique
EP2081781B1 (fr) Procede d'indication du vieillissement subi par un pneumatique
WO2012007296A1 (fr) Procede d'estimation de la charge dynamique portee par un pneumatique d'un vehicule
EP3554862B1 (fr) Procédé et système d'estimation de la sévérité de conditions d'utilisation d'un pneumatique
EP1305173B1 (fr) Procede d'evaluation de l'autonomie d'un systeme de roulage a plat
WO2008113380A1 (fr) Étalonnage pour contrôle indirect de la pression des pneumatiques
FR3092811A1 (fr) Procede et systeme de pilotage d’un essieu electrique d’une remorque ou semi-remorque
EP0794074B1 (fr) Procédé d'exploitation des mesures de pression et de température dans un systéme de surveillance de pneumatiques
EP3655300A1 (fr) Procédé de gestion d'une chaîne de traction d'un véhicule automobile
FR3052726A1 (fr) Procede d'adaptation du decollage d'un vehicule automobile
EP3814153B1 (fr) Procédés de détection et de localisation d'une anomalie thermique pour ensemble monté de véhicule
WO2020120769A1 (fr) Procédé de détection d'un risque d'éclatement d'un pneu
WO2019115494A1 (fr) Ensemble monte pour vehicule avec un systeme de surveillance de caracteristique d'un bandage pneumatique ferme
FR2815712A1 (fr) Dispositif et procede pour detecter l'adherence d'un pneumatique de vehicule sur le sol, et leurs applications
EP2346705B1 (fr) Dispositif de detection d'une crevaison lente ou d'un sous-gonflage d'un pneumatique et procede correspondant
WO2019115497A1 (fr) Élément de montage destiné à recevoir un bandage pneumatique fermé et ensemble monté comportant un tel élément avec un système de surveillance de pression de gonflage
WO2022180319A1 (fr) Systeme de mesure de la temperature interne d'un pneumatique en roulage
EP4375151A1 (fr) Procédé de détermination d'un état d'usure d'une garniture d'une plaquette de frein d'un frein à disque pour véhicule
FR3112385A1 (fr) Dispositif et procédé de caractérisation d’un pneumatique en uniformité
FR3075156A1 (fr) Procede de commande d'essieu relevable pour vehicule semi-remorque
FR2928728A1 (fr) Procede de detection et d'indication d'usure de pieces de vehicules

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230123