EP3653774B1 - Clothes dryer or washing dryer - Google Patents

Clothes dryer or washing dryer Download PDF

Info

Publication number
EP3653774B1
EP3653774B1 EP19204253.9A EP19204253A EP3653774B1 EP 3653774 B1 EP3653774 B1 EP 3653774B1 EP 19204253 A EP19204253 A EP 19204253A EP 3653774 B1 EP3653774 B1 EP 3653774B1
Authority
EP
European Patent Office
Prior art keywords
oscillating circuit
circuit part
drum
dryer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19204253.9A
Other languages
German (de)
French (fr)
Other versions
EP3653774A1 (en
Inventor
Dominic Beier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miele und Cie KG
Original Assignee
Miele und Cie KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miele und Cie KG filed Critical Miele und Cie KG
Publication of EP3653774A1 publication Critical patent/EP3653774A1/en
Application granted granted Critical
Publication of EP3653774B1 publication Critical patent/EP3653774B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/26Condition of the drying air, e.g. air humidity or temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/02Domestic laundry dryers having dryer drums rotating about a horizontal axis
    • D06F58/04DetailsĀ 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot airĀ 

Definitions

  • the invention relates to a tumble dryer or washer dryer according to the preamble of claim 1.
  • At least one temperature This can be used to control or regulate a process as a function of the detected temperature.
  • This also includes the inductive heating of the drum, also known as the laundry drum, of a laundry dryer and in particular a washer dryer from the outside.
  • inductive coupling electromagnetic waves are emitted from the stationary housing of the tumble dryer or the washer dryer inwards to the rotating drum, which there, comparable to an inductive hob, lead to inductive heating of the metallic material of the drum.
  • this heating is given off to the laundry to be dried, so that more moisture can be removed from the laundry with the process air than without the additional inductive heating of the drum. This can accelerate the drying process of the laundry and thus shorten the drying process. The stress on the laundry can also be reduced as a result.
  • the drum temperature must be measured and the inductive heating of the drum controlled by adjusting the heating power. This requires a correspondingly accurate measurement of the drum temperature.
  • contactless temperature detection is to measure the temperature of the drum directly by means of an external sensor, for example by means of an infrared sensor.
  • an external sensor for example by means of an infrared sensor.
  • the manufacturing effort and the costs for the device in question are increased. This is particularly the case when a black outer coating of the drum, for example, is required to ensure a functioning temperature measurement.
  • a possibly necessary outer coating of the drum can also change its properties or be damaged over time and thus also impair the reliability of the measurement.
  • the risk of failure is increased or the reliability of the device is reduced, since the sensor fails or can no longer measure correctly. This is due to the fact that infrared sensors that work optically can, for example, easily become soiled, for example by lint, which inevitably occurs during drying.
  • the temperature-dependent change in the conductivity and permeability of the system which is reflected in the decay behavior of the stationary resonant circuit, is also only very small with the usual slightly ferromagnetic drum materials, so that the temperature-dependent change in the frequency measured in the time window of the decay changes only slightly.
  • the DE 199 19 843 A1 describes a one-piece oscillating circuit, the passive components of which are arranged on the moving part of a device.
  • the passive components have a temperature-dependent capacitance and / or a temperature-dependent ohmic resistance.
  • This passive parallel resonant circuit is excited with a variable-frequency electromagnetic field and the absorbed power is measured.
  • the currently absorbed power of the resonant circuit is compared with a reference power, which corresponds to a reference temperature. This allows the current temperature of the movable component to be determined.
  • the variable frequency is generated with a signal generator.
  • the power absorbed by the resonant circuit is recorded with a suitable measuring device for power measurement.
  • the invention thus poses the problem of enabling contactless temperature detection of a rotating drum of a tumble dryer or a washer dryer of the type described at the outset, which can be carried out more precisely and / or more simply than previously known.
  • At least an alternative to the known corresponding possibilities should be created.
  • the present invention relates to a tumble dryer or washer-dryer with a drum which is designed to receive laundry to be dried, and with a housing from which the drum is rotatably received.
  • the tumble dryer or washer dryer is characterized in that the housing has an active oscillating circuit part and that the drum has a passive oscillating circuit part, the passive oscillating circuit part having a temperature-dependent, frequency-influencing component and the active oscillating circuit part and the passive oscillating circuit part being designed to jointly form an oscillating circuit train whose resonance frequency depends on the temperature-dependent, frequency-influencing component on the temperature of the drum.
  • the present invention is based on the knowledge that in this way a resonant circuit or an oscillator can be created whose vibration behavior is temperature-dependent.
  • the resonant circuit can thus be excited to oscillate, which is influenced by the temperature dependency of the temperature-dependent, frequency-influencing component on the part of the passive resonant circuit part.
  • the passive resonant circuit part provides feedback to the active resonant circuit part as a function of the temperature of the Drum, so that the temperature of the drum can be deduced from the feedback or the change in the oscillation behavior of the active oscillating circuit part compared to the predetermined behavior.
  • the passive oscillating circuit part can be made completely passive, i.e. it can be excited from the outside by the active oscillating circuit part.
  • the simplest possible electronic components can be used for the passive oscillating circuit part, which can make it independent of its own electrical power supply.
  • the properties described above can be achieved via the corresponding temperature dependency of the frequency-influencing component.
  • the active oscillating circuit part is connected to a control unit in a signal-transmitting manner and the control unit is designed to determine the temperature of the drum, preferably a drum shell, from a time curve and / or from a frequency curve of the oscillation of the oscillating circuit.
  • the control unit is designed to determine the temperature of the drum, preferably a drum shell, from a time curve and / or from a frequency curve of the oscillation of the oscillating circuit.
  • This can make it possible to evaluate the resonance frequency of the resonant circuit on the part of the tumble dryer or washer dryer in such a way that the temperature of the drum or the drum shell can be determined.
  • this temperature information can be used to control or regulate an inductive heating of the drum or the drum shell.
  • the corresponding relationships that are required to determine the temperature from the behavior of the oscillating circuit can be stored in the control unit for this purpose.
  • the temperature-dependent, frequency-influencing component is so heat-conductive with the drum, preferably with a Drum shell, connected, so that the temperature of the drum, preferably the drum shell, can act on the temperature-dependent, frequency-influencing component with as little delay as possible.
  • the temperature of the drum can be transferred to the temperature-dependent, frequency-influencing component in a sufficiently heat-conducting manner, so that the temperature dependency of the frequency-influencing component can be viewed as representative of the temperature of the drum.
  • the active resonant circuit part and the passive resonant circuit part are designed to be capacitively coupled to one another.
  • at least one capacitor and preferably several capacitors can be used as capacitive coupling elements, which are arranged with their one electrode part on the part of the active resonant circuit part and with the other opposite electrode part on the part of the passive resonant circuit part.
  • the distance between the housing and the drum can form the air gap of the corresponding capacitor. In this way, a capacitive coupling between the fixed housing and the rotatable drum can be achieved.
  • the active resonant circuit part and the passive resonant circuit part are designed to be inductively coupled to one another.
  • electrical energy can be transmitted inductively.
  • at least one coil with its two coil parts can be arranged in such a way that one coil is arranged on the active oscillating circuit part and another coil is arranged opposite one another on the passive oscillating circuit part.
  • the two oscillating circuit parts can work together by electromagnetic coupling in such a way that the active oscillating circuit part can transfer electrical energy to the passive oscillating circuit part, which can be influenced by the temperature-dependent, frequency-influencing component on the part of the passive oscillating circuit part, as described above.
  • the active resonant circuit part and the passive resonant circuit part are designed to be inductively coupled to one another by means of coils with iron cores.
  • This can enable a comparatively high transfer of electrical energy from the active resonant circuit part to the passive resonant circuit part, since coils with iron cores can generate correspondingly high inductances.
  • coils with iron cores can generate correspondingly high inductances.
  • a temperature dependency of the temperature-dependent, frequency-influencing component of the passive resonant circuit part can have a strong effect on the active resonant circuit part and lead to a correspondingly clear detection of the temperature dependency there.
  • the active resonant circuit part and the passive resonant circuit part are designed to be inductively coupled to one another at least on the part of the passive resonant circuit part by means of a planar coil, preferably also on the part of the active resonant circuit part by means of a planar coil.
  • planar coils can be designed to be comparatively cheap and flat. This can keep the costs of implementing the passive resonant circuit part low.
  • the installation space that is required to implement the passive oscillating circuit part on the drum can thereby be kept comparatively small, in particular in the radial direction.
  • the passive oscillating circuit part as a whole can preferably be arranged on a printed circuit board together with the other electronic components of the passive oscillating circuit part. These can be connected to the planar coil, which can preferably be arranged around the electronic components. This can ensure the most compact and, in particular, flat construction of the passive resonant circuit part.
  • the passive resonant circuit part has an RC resonant circuit with the temperature-dependent, frequency-influencing component, which preferably consists of this.
  • the RC resonant circuit consists of two ohmic resistors and two capacitors, the temperature-dependent, frequency-influencing component being one of the two ohmic resistors.
  • the passive resonant circuit part has an LC resonant circuit with the temperature-dependent, frequency-influencing component, which preferably consists of this.
  • the properties and advantages of an LC resonant circuit can be applied to the present invention and used here.
  • the temperature-dependent, frequency-influencing component is designed as a temperature-dependent, frequency-influencing ohmic resistor, preferably as a frequency-influencing NTC resistor (Negative Temperature Coefficient resistor).
  • NTC resistor Negative Temperature Coefficient resistor
  • the passive oscillating circuit part is arranged radially from the outside on the drum, preferably on a drum shell.
  • the passive oscillating circuit part and the active oscillating circuit part can be arranged on top of one another as well as possible by being aligned radially to one another.
  • there can be a comparatively large amount of installation space for the passive oscillating circuit part in contrast to the two lateral surfaces of the drum or the drum shell.
  • This can also apply to the active oscillating circuit part, which can be arranged radially spaced from the passive oscillating circuit part or from the drum or drum shell in a larger available installation space than on the shell side.
  • the active oscillating circuit part and the passive oscillating circuit part are arranged radially and / or opposite one another in the direction of the longitudinal axis. This can support the implementation of the properties described above.
  • Arranging the passive oscillating circuit part radially from the outside on the drum and in particular on the drum shell can also be advantageous in that the temperature of the drum or the drum shell can be recorded in this way as representative and over a large area as possible.
  • an arrangement of the passive oscillating circuit part on one of the two lateral surfaces on the front side of the drum or the drum shell could ensure a comparatively local temperature detection, which can be less representative of the entire drum than with an arrangement on the radial circumferential surface of the drum or the drum shell .
  • the drum or the drum shell is usually inductively heated radially from the outside, so that the appropriate arrangement of the passive oscillating circuit part means that the temperature is precisely in this area where the inductive heating of the drum or the drum shell can take place detected there and can be used to control or regulate the inductive heating.
  • the active resonant circuit part and the passive resonant circuit part are arranged sufficiently close to one another in order to be able to act together as a resonant circuit.
  • these two oscillating circuit parts are to be placed in such a way that, taking the corresponding boundary conditions into account, a common oscillating circuit can be formed in order to implement the functions described above.
  • the active oscillating circuit part and the passive oscillating circuit part are designed to be sufficiently long in the circumferential direction of the drum in order to be able to act together as an oscillating circuit.
  • This aspect of the present invention is based on the knowledge that the active resonant circuit part and the passive resonant circuit part do not have to be fully configured in the circumferential direction in order to be able to act as a common resonant circuit, even if this is possible. Corresponding costs and installation space can be saved as a result.
  • the active oscillating circuit part and the passive oscillating circuit part are to be designed to be sufficiently extended in the circumferential direction of the drum so that they can at least temporarily interact with one another when the drum is rotating, so that the vibration behavior described above and the development of a temperature-dependent resonance frequency can arise.
  • this must be taken into account when designing and arranging the active oscillating circuit part and the passive oscillating circuit part.
  • a longitudinal axis X extends.
  • a radial direction R extends from the perpendicular to the longitudinal axis X Longitudinal axis X away.
  • a circumferential direction U extends perpendicular to the radial direction R and around the longitudinal axis X.
  • Fig. 1 shows a perspective illustration of the interior of a tumble dryer 1 or a washer dryer 1 with housing 10 and drum 2.
  • Fig. 2 shows a circuit diagram of a capacitive coupling of the resonant circuit 11, 21.
  • Fig. 3 shows a circuit diagram of an inductive coupling of the resonant circuit 11, 21.
  • Fig. 4 shows a circuit diagram of the passive resonant circuit part 21 of the inductively coupled resonant circuit 11, 21.
  • the tumble dryer 1 or washer-dryer 1 in the case under consideration consists essentially of the housing 10, which surrounds an interior of the tumble dryer 1 or washer-dryer 1.
  • the drum 2 which can also be referred to as a laundry drum 2, is arranged in this interior space.
  • the drum 2 is mounted rotatably about its longitudinal axis X in the circumferential direction U and can be driven accordingly (not shown). Laundry can be accommodated in the drum 2 to be dried.
  • an active, device-side oscillating circuit part 11 is arranged on the part of the housing 10. Furthermore, a passive, drum-side oscillating circuit part 21 is arranged on the drum 2 on the drum shell 20 on the radially outer side.
  • the two oscillating circuit parts 11, 21 lie opposite one another in the longitudinal axis X and in the radial direction R in such a way that they can form a common oscillating circuit 11, 21 with one another.
  • the active, device-side oscillating circuit part 11 is connected in a signal-transmitting manner to a control unit 12 of the tumble dryer 1 or washer dryer 1, which can also be referred to as control electronics 12.
  • the active, device-side oscillating circuit part 11 can now emit an electromagnetic oscillation radially inward to the drum shell 20 in order to to couple the passive, drum-side oscillating circuit part 21, which, depending on the rotational movement of the drum 2, is regularly located opposite the active, device-side oscillating part 11. If the two oscillating circuit parts 11, 21 are sufficiently opposite to one another, the active, device-side oscillating circuit part 11 is coupled into the passive, drum-side oscillating circuit part 21, so that an electromagnetic field is formed in the common oscillating circuit 11, 21.
  • the passive, drum-side oscillating circuit part 21 has a frequency-influencing, temperature-dependent component R2, which is connected to the drum shell 20 in a thermally conductive manner. In this way, the temperature of the drum shell 20 has an impact the temperature-dependent, frequency-influencing component R2 on the behavior of the passive, drum-side oscillating circuit part 21. Via the electromagnetic coupling, this has corresponding repercussions on the active, device-side oscillating circuit part 21, which can be detected by the control unit 12. By evaluating the frequency range or the temporal course of the detected vibrations, conclusions can be drawn about the temperature of the drum 2 or the drum shell 20 via a corresponding comparison with stored data from the resonant circuit behavior of the common resonant circuit 11, 21. In this way, contactless temperature detection of the drum 2 or its drum shell 20 can take place. This information can be used, for example, to control or regulate an inductive heating of the drum shell 20.
  • the curves can easily be detected by the control unit 12, which is connected to the active resonant circuit part 11 of the oscillator, and assigned by analyzing a temperature of the drum 2 or its drum shell 20 or its radially outwardly directed upper side. Due to the low speed of a drum 2 and the consequently low path speed of the rotating passive oscillating circuit part 21, there is sufficient time for an oscillation to occur during the coupling phase. One temperature measurement on the drum 2 is therefore possible per revolution of the drum 2.
  • the coupling of the active, device-side oscillating circuit part 11 with the passive, drum-side oscillating circuit part 21 can be carried out capacitively, for example.
  • the passive, drum-side oscillating circuit part 21 on the left side of the illustration of Fig. 2 accordingly has an ohmic resistor R1 and a capacitor C1, which are connected to a frequency-influencing NTC resistor R2 as a temperature-dependent, frequency-influencing ohmic resistor R2, which in this case represents the temperature-dependent, frequency-influencing component R2.
  • This circuit is connected to the active, device-side resonant circuit part 11 via three capacitive coupling elements Ck1-Ck3.
  • the capacitive coupling elements Ck1-Ck3 can also be referred to as coupling capacitors Ck1-Ck3.
  • the coupling capacitors Ck1-Ck3 are connected to a circuit which, among other things, has an operational amplifier U1 and two further ohmic resistors R3, R4.
  • This circuit of the active, device-side resonant circuit part 11 is designed to generate an output voltage Uf and to make this available as an output signal to the control unit 12, as described above.
  • inductive coupling can also be used instead.
  • the frequency-influencing NTC resistor R2 is connected to an ohmic resistor R1 and two capacitors C1, C2.
  • This circuit is connected to a further inductive coupling element L2 via an inductive coupling element L1 across the air gap between housing 10 and drum 2.
  • the two inductive coupling elements L1, L2 can also be referred to as coupling coils L1, L2. In the case of the Fig. 3 these can be designed as coils L1, L2 with iron cores.
  • the inductive coupling element L2 arranged there is also connected to an operational amplifier U1, which can also output an output voltage Uf to the control unit 12.
  • Fig. 4 shows a possibility of implementing the passive, drum-side oscillating circuit part 21 within the framework of an inductive coupling.
  • the ohmic resistors R1, R2 and the capacitors C1, C2 are arranged as electronic components on a printed circuit board which can be arranged radially on the outside on the drum shell 21.
  • the inductive coupling element L1 of the passive, drum-side oscillating circuit part 21 is formed around the electronic components in the form of a plurality of planar coils L1. A comparatively flat and space-saving structure of the passive, drum-side oscillating circuit part 21 can be achieved by means of these planar coils L1.
  • a capacitively or inductively coupled resonant circuit 11, 21 for temperature measurement on a rotating drum 2 can be implemented very inexpensively in this way.
  • By choosing sensitive and well-defined, low-tolerance electronic components a very precise measurement of the temperature is possible.
  • one is independent of the properties and geometric tolerances of the drum 2 realize the rotary movement of the drum 2.

Description

Die Erfindung betrifft einen WƤschetrockner oder Waschtrockner gemƤƟ dem Oberbegriff des Patentanspruchs 1.The invention relates to a tumble dryer or washer dryer according to the preamble of claim 1.

Auf verschiedenen technischen Gebieten kann es nĆ¼tzlich oder erforderlich sein, wenigstens eine Temperatur zu erfassen. Dies kann der Steuerung oder Regelung eines Prozesses in AbhƤngigkeit der erfassten Temperatur dienen.In various technical fields it can be useful or necessary to record at least one temperature. This can be used to control or regulate a process as a function of the detected temperature.

Hierzu gehƶrt auch die induktive Beheizung der Trommel, auch WƤschetrommel genannt, eines WƤschetrockners und insbesondere eines Waschtrockners von auƟen. Mittels induktiver Kopplung werden von dem feststehenden GehƤuse des WƤschetrockners bzw. des Waschtrockners elektromagnetische Wellen nach innen zur sich drehenden Trommel hin ausgesendet, welche dort, vergleichbar einem induktiven Kochfeld, zu einer induktiven ErwƤrmung des metallischen Materials der Trommel fĆ¼hren. Diese ErwƤrmung wird, ergƤnzend zu der erwƤrmten Prozessluft, an die zu trocknende WƤsche abgegeben, so dass mit der Prozessluft mehr Feuchtigkeit von der WƤsche abgefĆ¼hrt werden kann als ohne die zusƤtzliche induktive Beheizung der Trommel. Dies kann den Trocknungsprozess der WƤsche beschleunigen und damit den Trocknungsprozess verkĆ¼rzen. Auch kann die Beanspruchung der WƤsche hierdurch verkĆ¼rzt werden.This also includes the inductive heating of the drum, also known as the laundry drum, of a laundry dryer and in particular a washer dryer from the outside. By means of inductive coupling, electromagnetic waves are emitted from the stationary housing of the tumble dryer or the washer dryer inwards to the rotating drum, which there, comparable to an inductive hob, lead to inductive heating of the metallic material of the drum. In addition to the heated process air, this heating is given off to the laundry to be dried, so that more moisture can be removed from the laundry with the process air than without the additional inductive heating of the drum. This can accelerate the drying process of the laundry and thus shorten the drying process. The stress on the laundry can also be reduced as a result.

FĆ¼r einen optimalen Prozessablauf und eine mƶglichst kurze Trockenzeit muss die Trommeltemperatur gemessen und die induktive Beheizung der Trommel durch Anpassung der Heizleistung geregelt werden. Dies erfordert eine entsprechend genaue Messung der Trommeltemperatur.For an optimal process flow and the shortest possible drying time, the drum temperature must be measured and the inductive heating of the drum controlled by adjusting the heating power. This requires a correspondingly accurate measurement of the drum temperature.

Eine Mƶglichkeit zur berĆ¼hrungslosen Temperaturerfassung besteht darin, mittels eines externen Sensors, beispielsweise mittels eines Infrarotsensors, die Temperatur der Trommel direkt zu messen. Dies ist jedoch aus verschiedenen GrĆ¼nden nachteilig. So werden zum einen der Fertigungsaufwand und die Kosten fĆ¼r das betreffende GerƤt erhƶht. Dies ist insbesondere dann der Fall, wenn zur Sicherstellung einer funktionierenden Temperaturmessung eine beispielsweise schwarze AuƟenbeschichtung der Trommel erforderlich ist. Auch kann eine gegebenenfalls nƶtige AuƟenbeschichtung der Trommel mit der Zeit ihre Eigenschaften verƤndern oder beschƤdigt werden und somit ebenfalls die ZuverlƤssigkeit der Messung beeintrƤchtigen. Zum anderen wird die Ausfallgefahr erhƶht bzw. wird die ZuverlƤssigkeit des GerƤts verringert, da der Sensor ausfallen oder nicht mehr richtig messen kann. Dies ist dadurch begrĆ¼ndet, dass Infrarotsensoren, welche optisch arbeiten, beispielsweise leicht verschmutzen kƶnnen, zum Beispiel durch Flusen, welche zwangslƤufig beim Trocknen anfallen.One possibility for contactless temperature detection is to measure the temperature of the drum directly by means of an external sensor, for example by means of an infrared sensor. However, this is disadvantageous for various reasons. On the one hand, the manufacturing effort and the costs for the device in question are increased. This is particularly the case when a black outer coating of the drum, for example, is required to ensure a functioning temperature measurement. A possibly necessary outer coating of the drum can also change its properties or be damaged over time and thus also impair the reliability of the measurement. On the other hand, the risk of failure is increased or the reliability of the device is reduced, since the sensor fails or can no longer measure correctly. This is due to the fact that infrared sensors that work optically can, for example, easily become soiled, for example by lint, which inevitably occurs during drying.

Alternativ ist es aus der DE 10 2016 122 744 A1 bekannt, einen einteiligen Schwingkreis zur Temperaturmessung zu verwenden, bei dem die Schwingkreiskomponenten einer Induktionsspule und eines auf der Induktionselektronik befindlichen Kondensators den stationƤren Teil des Systems darstellen, welcher feststehend an dem GehƤuse angeordnet ist. Die temperaturabhƤngige Ƅnderung der LeitfƤhigkeit und PermeabilitƤt des Materials der Trommel bzw. dessen Mantels hat RĆ¼ckwirkungen auf das Verhalten der Induktionsspule und beeinflusst somit das Schwingverhalten des beschriebenen Schwingkreises. Diese Ƅnderung wird durch Messung des Ausschwingens des Systems nach Abschaltung der Ansteuerung in einem dafĆ¼r vorgesehenen Zeitfenster erfasst.Alternatively, it is from the DE 10 2016 122 744 A1 known to use a one-piece oscillating circuit for temperature measurement, in which the oscillating circuit components of an induction coil and a capacitor located on the induction electronics represent the stationary part of the system, which is fixedly arranged on the housing. The temperature-dependent change in the conductivity and permeability of the material of the drum or its shell has repercussions on the behavior of the induction coil and thus influences the oscillation behavior of the oscillating circuit described. This change is recorded by measuring the decay of the system after the control has been switched off in a time window provided for this purpose.

Nachteilig ist bei der in der DE 10 2016 122 744 A1 beschriebene Erfassung der Temperatur der Trommel, dass dies aufgrund vieler EinflussgrĆ¶ĆŸen nur sehr ungenau erfolgen kann. Beispielsweise haben Toleranzen im mechanischen Aufbau, die den Abstand zwischen Trommelmantel und Induktionsspule beeinflussen und im Betrieb des GerƤtes schwanken sowie Alterungseffekten unterliegen kƶnnen, neben den toleranzbehafteten Eigenschaften des Trommelmaterials einen groƟen Einfluss auf die Temperaturbestimmung. Eine akzeptable Messgenauigkeit bzgl. der absoluten Temperatur ist in der Regel nur durch eine Kalibrierung und Justierung des Systems zu erreichen, was einerseits einen zusƤtzlichen Aufwand und damit zusƤtzliche Kosten darstellen kann und wodurch andererseits keine Alterungseffekte ausgeglichen werden kƶnnen. Die temperaturabhƤngige Ƅnderung der LeitfƤhigkeit und PermeabilitƤt des Systems, die sich im Ausschwingverhalten des stationƤren Schwingkreises widerspiegelt, ist bei den Ć¼blichen leicht ferromagnetischen Trommelmaterialien ferner nur sehr gering, so dass sich die temperaturbedingte Ƅnderung der im Zeitfenster des Ausschwingens gemessenen Frequenz nur wenig Ƥndert.The disadvantage is in the DE 10 2016 122 744 A1 Detection of the temperature of the drum described above that this can only be done very imprecisely due to many influencing variables. For example, tolerances in the mechanical structure, which influence the distance between the drum shell and induction coil and which can fluctuate during operation of the device as well as being subject to aging effects, have a major influence on the temperature determination in addition to the tolerance-affected properties of the drum material. An acceptable measurement accuracy with regard to the absolute temperature can usually only be achieved by calibrating and adjusting the system, which on the one hand can represent additional effort and thus additional costs and, on the other hand, cannot compensate for aging effects. The temperature-dependent change in the conductivity and permeability of the system, which is reflected in the decay behavior of the stationary resonant circuit, is also only very small with the usual slightly ferromagnetic drum materials, so that the temperature-dependent change in the frequency measured in the time window of the decay changes only slightly.

Die DE 199 19 843 A1 beschreibt einen einteiligen Schwingkreis, dessen passive Komponenten auf dem beweglichen Bauteil eines GerƤts angeordnet sind. Die passiven Komponenten weisen eine temperaturabhƤngige KapazitƤt und bzw. oder einen temperaturabhƤngigen ohmschen Widerstand auf. Dieser passive Parallelschwingkreis wird mit einem frequenzvariablen elektromagnetischen Feld angeregt und die absorbierte Leistung gemessen. Die aktuell absorbierte Leistung des Schwingkreises wird mit einer Referenzleistung verglichen, welche einer Referenztemperatur entspricht. Hierdurch kann die aktuelle Temperatur des beweglichen Bauteils bestimmt werden. Die variable Frequenz wird mit einem Signalgenerator erzeugt. Die vom Schwingkreis absorbierte Leistung wird mit einem entsprechenden MessgerƤt zur Leistungsmessung erfasst.The DE 199 19 843 A1 describes a one-piece oscillating circuit, the passive components of which are arranged on the moving part of a device. The passive components have a temperature-dependent capacitance and / or a temperature-dependent ohmic resistance. This passive parallel resonant circuit is excited with a variable-frequency electromagnetic field and the absorbed power is measured. The currently absorbed power of the resonant circuit is compared with a reference power, which corresponds to a reference temperature. This allows the current temperature of the movable component to be determined. The variable frequency is generated with a signal generator. The power absorbed by the resonant circuit is recorded with a suitable measuring device for power measurement.

Nachteilig bei der Temperaturbestimmung gemƤƟ der DE 199 19 843 A1 ist der verhƤltnismƤƟig hohe Aufwand zur Erzeugung eines frequenzvariablen Signals, welches einen Signalgenerator erfordert, sowie zur Leistungsmessung, welche ein entsprechendes MessgerƤt erforderlich macht. DarĆ¼ber hinaus muss speziell bei rotierenden Sensoren hƤufig genug der Frequenzbereich durchfahren werden, damit in dem Moment, wenn der Sensor die Signalerzeugungs- und Messanordnung passiert, mindestens ein kompletter Frequenzdurchlauf mit gleichzeitiger Leistungsmessung stattfinden kann. Dies ist mit einem gewissen Aufwand verbunden.Disadvantageous when determining the temperature according to DE 199 19 843 A1 is the relatively high cost of generating a frequency-variable signal, which a signal generator required, as well as for power measurement, which makes a corresponding measuring device necessary. In addition, especially with rotating sensors, the frequency range must be passed through frequently enough so that at least one complete frequency sweep with simultaneous power measurement can take place at the moment when the sensor passes the signal generation and measurement arrangement. This involves a certain amount of effort.

Der Erfindung stellt sich somit das Problem, eine berĆ¼hrungslose Temperaturerfassung einer rotierenden Trommel eines WƤschetrockners oder eines Waschtrockners der eingangsbeschriebenen Art und Weise zu ermƶglichen, welcher genauer und bzw. oder einfacher als bisher bekannt erfolgen kann. Insbesondere soll die OberflƤchentemperatur einer rotierenden Trommel eines WƤschetrockners oder eines Waschtrockners genauer und bzw. oder einfacher als bisher bekannt berĆ¼hrungslos erfasst werden kƶnnen. Zumindest soll eine Alternative zu den bekannten entsprechenden Mƶglichkeiten geschaffen werden.The invention thus poses the problem of enabling contactless temperature detection of a rotating drum of a tumble dryer or a washer dryer of the type described at the outset, which can be carried out more precisely and / or more simply than previously known. In particular, it should be possible to detect the surface temperature of a rotating drum of a tumble dryer or a washer dryer more precisely and / or more simply than previously known in a contactless manner. At least an alternative to the known corresponding possibilities should be created.

ErfindungsgemƤƟ wird dieses Problem durch einen WƤschetrockner oder Waschtrockner mit den Merkmalen des Patentanspruchs 1 gelƶst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den nachfolgenden UnteransprĆ¼chen.According to the invention, this problem is solved by a tumble dryer or washer dryer with the features of claim 1. Advantageous refinements and developments of the invention emerge from the following subclaims.

Somit betrifft die vorliegende Erfindung einen WƤschetrockner oder Waschtrockner mit einer Trommel, welche zur Aufnahme zu trocknender WƤsche ausgebildet ist, und mit einem GehƤuse, von welchem die Trommel drehbeweglich aufgenommen wird.Thus, the present invention relates to a tumble dryer or washer-dryer with a drum which is designed to receive laundry to be dried, and with a housing from which the drum is rotatably received.

Der WƤschetrockner oder Waschtrockner ist dadurch gekennzeichnet, dass das GehƤuse einen aktiven Schwingkreisteil aufweist und dass die Trommel einen passiven Schwingkreisteil aufweist, wobei der passive Schwingkreisteil ein temperaturabhƤngiges, frequenzbeeinflussendes Bauelement aufweist und wobei der aktive Schwingkreisteil und der passive Schwingkreisteil dazu ausgebildet sind, gemeinsam einen Schwingkreis auszubilden, dessen Resonanzfrequenz Ć¼ber das temperaturabhƤngige, frequenzbeeinflussende Bauelement von der Temperatur der Trommel abhƤngt.The tumble dryer or washer dryer is characterized in that the housing has an active oscillating circuit part and that the drum has a passive oscillating circuit part, the passive oscillating circuit part having a temperature-dependent, frequency-influencing component and the active oscillating circuit part and the passive oscillating circuit part being designed to jointly form an oscillating circuit train whose resonance frequency depends on the temperature-dependent, frequency-influencing component on the temperature of the drum.

Der vorliegenden Erfindung liegt dabei die Erkenntnis zugrunde, dass auf diese Art und Weise ein Schwingkreis bzw. ein Oszillator geschaffen werden kann, dessen Schwingungsverhalten temperaturabhƤngig ist. Somit kann der Schwingkreis zu Schwingungen angeregt werden, auf welche sich die TemperaturabhƤngigkeit des temperaturabhƤngigen, frequenzbeeinflussenden Bauelements seitens des passiven Schwingkreisteils auswirkt. Diese VerƤnderungen im Verlauf der Zeit und bzw. oder der Frequenz kƶnnen von dem aktiven Schwingkreisteil erfasst werden, so dass hieraus RĆ¼ckschlĆ¼sse auf die Temperatur der Trommel gezogen werden kƶnnen. Mit anderen Worten erfolgt seitens des passiven Schwingkreisteils eine RĆ¼ckkopplung auf den aktiven Schwingkreisteil in AbhƤngigkeit der Temperatur der Trommel, so dass Ć¼ber die RĆ¼ckkopplung bzw. die VerƤnderung des Schwingungsverhaltens des aktiven Schwingkreisteils gegenĆ¼ber dem vorgegebenen Verhalten auf die Temperatur der Trommel geschlossen werden kann.The present invention is based on the knowledge that in this way a resonant circuit or an oscillator can be created whose vibration behavior is temperature-dependent. The resonant circuit can thus be excited to oscillate, which is influenced by the temperature dependency of the temperature-dependent, frequency-influencing component on the part of the passive resonant circuit part. These changes in the course of time and / or the frequency can be detected by the active oscillating circuit part, so that conclusions can be drawn about the temperature of the drum from them. In other words, the passive resonant circuit part provides feedback to the active resonant circuit part as a function of the temperature of the Drum, so that the temperature of the drum can be deduced from the feedback or the change in the oscillation behavior of the active oscillating circuit part compared to the predetermined behavior.

Vorteilhaft ist hierbei insbesondere zum bekannten Stand der Technik, dass ein derartiger Schwingkreis sehr einfach realisiert werden kann, da die aktiven Elemente des Schwingkreises an dem GehƤuse feststehend angeordnet werden kƶnnen. Auf diese Art und Weise kann der passive Schwingkreisteil vollstƤndig passiv ausgebildet werden, d.h. von auƟen seitens des aktiven Schwingkreisteils anregbar. Hierdurch kƶnnen mƶglichst einfache elektronische Bauteile fĆ¼r den passiven Schwingkreisteil verwendet werden, was ihn unabhƤngig von einer eigenen elektrischen Energieversorgung machen kann. Gleichzeitig kƶnnen Ć¼ber die entsprechende TemperaturabhƤngigkeit des frequenzbeeinflussenden Bauelements die zuvor beschriebenen Eigenschaften erreicht werden.It is particularly advantageous in relation to the known prior art that such a resonant circuit can be implemented very easily, since the active elements of the resonant circuit can be arranged in a fixed manner on the housing. In this way, the passive oscillating circuit part can be made completely passive, i.e. it can be excited from the outside by the active oscillating circuit part. As a result, the simplest possible electronic components can be used for the passive oscillating circuit part, which can make it independent of its own electrical power supply. At the same time, the properties described above can be achieved via the corresponding temperature dependency of the frequency-influencing component.

Insbesondere kƶnnen die Nachteile des in der DE102016122744A1 beschriebenen Systems durch den Einsatz sehr definierter und empfindlicher Elemente seitens des passiven Schwingkreisteils des erfindungsgemƤƟen zweiteiligen Schwingkreises vermieden werden.In particular, the disadvantages of the DE102016122744A1 described system can be avoided by the use of very defined and sensitive elements on the part of the passive resonant circuit part of the two-part resonant circuit according to the invention.

Die Nachteile des in der DE 19919843A1 beschriebenen Systems kƶnnen durch den Einsatz des erfindungsgemƤƟen zweiteiligen Schwingkreises vermieden werden, da der Schaltungsaufwand minimal ist und der Schwingkreis von selbst anschwingt, wenn der passive Schwingkreisteil den stationƤren, aktiven Schwingkreisteil passiert und durch entsprechende Kopplung die Schwingbedingung erfĆ¼llt ist. Hierdurch kann auf einen Signalgenerator verzichtet werden.The disadvantages of the DE 19919843A1 The system described can be avoided by using the two-part resonant circuit according to the invention, since the circuit complexity is minimal and the resonant circuit starts to oscillate by itself when the passive resonant circuit part passes the stationary, active resonant circuit part and the oscillation condition is met by appropriate coupling. This means that a signal generator can be dispensed with.

GemƤƟ einem Aspekt der vorliegenden Erfindung ist der aktive Schwingkreisteil signalĆ¼bertragend mit einer Steuerungseinheit verbunden und die Steuerungseinheit ist ausgebildet, aus einem Zeitverlauf und bzw. oder aus einem Frequenzverlauf der Schwingung des Schwingkreises die Temperatur der Trommel, vorzugsweise eines Trommelmantels, zu bestimmen. Dies kann es ermƶglichen, die Resonanzfrequenz des Schwingkreises seitens des WƤschetrockners bzw. Waschtrockners derart auszuwerten, dass die Temperatur der Trommel bzw. des Trommelmantels bestimmt werden kƶnnen. Diese Temperaturinformation kann, wie eingangs beschrieben, zur Steuerung bzw. Regelung einer induktiven Beheizung der Trommel bzw. des Trommelmantels verwendet werden. Die entsprechenden ZusammenhƤnge, welche fĆ¼r die Bestimmung der Temperatur aus dem Verhalten des Schwingkreises erforderlich sind, kƶnnen hierzu in der Steuerungseinheit hinterlegt werden.According to one aspect of the present invention, the active oscillating circuit part is connected to a control unit in a signal-transmitting manner and the control unit is designed to determine the temperature of the drum, preferably a drum shell, from a time curve and / or from a frequency curve of the oscillation of the oscillating circuit. This can make it possible to evaluate the resonance frequency of the resonant circuit on the part of the tumble dryer or washer dryer in such a way that the temperature of the drum or the drum shell can be determined. As described above, this temperature information can be used to control or regulate an inductive heating of the drum or the drum shell. The corresponding relationships that are required to determine the temperature from the behavior of the oscillating circuit can be stored in the control unit for this purpose.

GemƤƟ einem Aspekt der vorliegenden Erfindung ist das temperaturabhƤngige, frequenzbeeinflussende Bauelement derart wƤrmeleitend mit der Trommel, vorzugsweise mit einem Trommelmantel, verbunden, so dass die Temperatur der Trommel, vorzugsweise des Trommelmantels, mƶglichst verzƶgerungsfrei auf das temperaturabhƤngige, frequenzbeeinflussende Bauelement wirken kann. Hierunter ist zu verstehen, dass die Temperatur der Trommel ausreichend wƤrmeleitend auf das temperaturabhƤngige, frequenzbeeinflussende Bauelement Ć¼bertragen werden kann, so dass die TemperaturabhƤngigkeit des frequenzbeeinflussenden Bauelements als reprƤsentativ fĆ¼r die Temperatur der Trommel angesehen werden kann. Hierdurch kann durch die zuvor beschriebene Erfassung bzw. Bestimmung der Temperatur der Trommel Ć¼ber das temperaturabhƤngige, frequenzbeeinflussende Bauelement z.B. die zuvor beschriebene Funktion einer Steuerung bzw. Regelung einer induktiven Beheizung der Trommel des WƤschetrockners bzw. Waschtrockners erreicht werden.According to one aspect of the present invention, the temperature-dependent, frequency-influencing component is so heat-conductive with the drum, preferably with a Drum shell, connected, so that the temperature of the drum, preferably the drum shell, can act on the temperature-dependent, frequency-influencing component with as little delay as possible. This means that the temperature of the drum can be transferred to the temperature-dependent, frequency-influencing component in a sufficiently heat-conducting manner, so that the temperature dependency of the frequency-influencing component can be viewed as representative of the temperature of the drum. As a result, the above-described detection or determination of the temperature of the drum via the temperature-dependent, frequency-influencing component, for example, the previously described function of a control or regulation of an inductive heating of the drum of the tumble dryer or washer dryer can be achieved.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung sind der aktive Schwingkreisteil und der passive Schwingkreisteil ausgebildet, kapazitiv miteinander gekoppelt zu werden. Hierzu kann wenigstens ein Kondensator und vorzugsweise kƶnnen mehrere Kondensatoren als kapazitive Kopplungselemente verwendet werden, welche mit ihrem einen Elektrodenteil seitens des aktiven Schwingkreisteils und mit dem anderen gegenĆ¼berliegenden Elektrodenteil seitens des passiven Schwingkreisteils angeordnet sind. Der Abstand zwischen dem GehƤuse und der Trommel kann den Luftspalt des entsprechenden Kondensators bilden. Auf diese Art und Weise kann eine kapazitive Kopplung zwischen dem feststehenden GehƤuse und der drehbeweglichen Trommel erreicht werden.According to a further aspect of the present invention, the active resonant circuit part and the passive resonant circuit part are designed to be capacitively coupled to one another. For this purpose, at least one capacitor and preferably several capacitors can be used as capacitive coupling elements, which are arranged with their one electrode part on the part of the active resonant circuit part and with the other opposite electrode part on the part of the passive resonant circuit part. The distance between the housing and the drum can form the air gap of the corresponding capacitor. In this way, a capacitive coupling between the fixed housing and the rotatable drum can be achieved.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung sind der aktive Schwingkreisteil und der passive Schwingkreisteil ausgebildet, induktiv miteinander gekoppelt zu werden. Auf diese Art und Weise kann eine elektrische EnergieĆ¼bertragung induktiv erfolgen. Hierzu kann wenigstens eine Spule mit ihren beiden Spulenteilen derart angeordnet sein, dass eine Spule seitens des aktiven Schwingkreisteils und eine weitere Spule gegenĆ¼berliegend auf dem passiven Schwingkreisteil angeordnet ist. Hierdurch kƶnnen die beiden Schwingkreisteile durch elektromagnetische Kopplung derart miteinander wirken, dass seitens des aktiven Schwingkreisteils eine elektrische EnergieĆ¼bertragung auf das passive Schwingkreisteil mƶglich ist, welche durch das temperaturabhƤngige, frequenzbeeinflussende Bauelement seitens des passiven Schwingkreisteils beeinflussbar ist, wie zuvor beschrieben.According to a further aspect of the present invention, the active resonant circuit part and the passive resonant circuit part are designed to be inductively coupled to one another. In this way, electrical energy can be transmitted inductively. For this purpose, at least one coil with its two coil parts can be arranged in such a way that one coil is arranged on the active oscillating circuit part and another coil is arranged opposite one another on the passive oscillating circuit part. As a result, the two oscillating circuit parts can work together by electromagnetic coupling in such a way that the active oscillating circuit part can transfer electrical energy to the passive oscillating circuit part, which can be influenced by the temperature-dependent, frequency-influencing component on the part of the passive oscillating circuit part, as described above.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung sind der aktive Schwingkreisteil und der passive Schwingkreisteil ausgebildet, mittels Spulen mit Eisenkernen induktiv miteinander gekoppelt zu werden. Dies kann eine vergleichsweise hohe elektrische EnergieĆ¼bertragung von dem aktiven Schwingkreisteil auf den passiven Schwingkreisteil ermƶglichen, da Spulen mit Eisenkernen entsprechend hohe Induktiven erzeugen kƶnnen. Auf diese Art und Weise kann somit dem passiven Schwingkreisteil vergleichsweise viel elektrische Energie zur VerfĆ¼gung gestellt werden, um dort eine Schaltung mit entsprechend hohem Energiebedarf zu versorgen. Gleichzeitig kann sich eine TemperaturabhƤngigkeit des temperaturabhƤngigen, frequenzbeeinflussenden Bauelements des passiven Schwingkreisteils stark auf den aktiven Schwingkreisteil auswirken und dort zu einer entsprechend deutlichen Erfassung der TemperaturabhƤngigkeit fĆ¼hren.According to a further aspect of the present invention, the active resonant circuit part and the passive resonant circuit part are designed to be inductively coupled to one another by means of coils with iron cores. This can enable a comparatively high transfer of electrical energy from the active resonant circuit part to the passive resonant circuit part, since coils with iron cores can generate correspondingly high inductances. In this way, a comparatively large amount of electrical energy can be made available to the passive resonant circuit part in order to create a circuit there with a correspondingly high energy requirement to supply. At the same time, a temperature dependency of the temperature-dependent, frequency-influencing component of the passive resonant circuit part can have a strong effect on the active resonant circuit part and lead to a correspondingly clear detection of the temperature dependency there.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung sind der aktive Schwingkreisteil und der passive Schwingkreisteil ausgebildet, wenigstens seitens des passiven Schwingkreisteils mittels einer Planarspule, vorzugsweise ferner seitens des aktiven Schwingkreisteils mittels einer Planarspule, induktiv miteinander gekoppelt zu werden. Dies kann dahingehend vorteilhaft sein, dass Planarspulen vergleichsweise gĆ¼nstig und flachbauend ausgebildet sein kƶnnen. Dies kann die Kosten der Umsetzung des passiven Schwingkreisteils gering halten. Ferner kann der Bauraum, welcher zur Umsetzung des passiven Schwingkreisteils an der Trommel erforderlich ist, hierdurch vergleichsweise gering, insbesondere in der radialen Richtung, gehalten werden. Hierbei kann der passive Schwingkreisteil insgesamt vorzugsweise auf einer Leiterplatte zusammen mit den Ć¼brigen elektronischen Bauelementen des passiven Schwingkreisteils angeordnet werden. Diese kƶnnen mit der Planarspule verbunden sein, welche vorzugsweise um die elektronischen Bauelemente herum angeordnet werden kann. Dies kann fĆ¼r einen mƶglichst kompakten und insbesondere flachen Aufbau des passiven Schwingkreisteils sorgen.According to a further aspect of the present invention, the active resonant circuit part and the passive resonant circuit part are designed to be inductively coupled to one another at least on the part of the passive resonant circuit part by means of a planar coil, preferably also on the part of the active resonant circuit part by means of a planar coil. This can be advantageous in that planar coils can be designed to be comparatively cheap and flat. This can keep the costs of implementing the passive resonant circuit part low. Furthermore, the installation space that is required to implement the passive oscillating circuit part on the drum can thereby be kept comparatively small, in particular in the radial direction. In this case, the passive oscillating circuit part as a whole can preferably be arranged on a printed circuit board together with the other electronic components of the passive oscillating circuit part. These can be connected to the planar coil, which can preferably be arranged around the electronic components. This can ensure the most compact and, in particular, flat construction of the passive resonant circuit part.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung weist der passive Schwingkreisteil einen RC-Schwingkreis mit dem temperaturabhƤngigen, frequenzbeeinflussenden Bauelement auf, vorzugsweise besteht hieraus. Hierdurch kƶnnen die Eigenschaften und Vorteile eines RC-Schwingkreises genutzt werden, um auf die vorliegende Erfindung angewendet zu werden.According to a further aspect of the present invention, the passive resonant circuit part has an RC resonant circuit with the temperature-dependent, frequency-influencing component, which preferably consists of this. As a result, the properties and advantages of an RC resonant circuit can be used in order to be applied to the present invention.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung besteht der RC-Schwingkreis aus zwei ohmschen WiderstƤnden und aus zwei Kondensatoren, wobei das temperaturabhƤngige, frequenzbeeinflussende Bauelement einer der beiden ohmschen WiderstƤnde ist. Hierdurch kann ein mƶglichst kompakter Schwingkreis geschaffen werden, welcher gleichzeitig aus mƶglichst wenigen Bauelementen bestehen kann. Dies kann die Umsetzung der zuvor beschriebenen erfindungsgemƤƟen Eigenschaften ermƶglichen, wobei gleichzeitig Bauraum und Kosten hierfĆ¼r mƶglichst gering gehalten werden kƶnnen.According to a further aspect of the present invention, the RC resonant circuit consists of two ohmic resistors and two capacitors, the temperature-dependent, frequency-influencing component being one of the two ohmic resistors. As a result, an oscillating circuit that is as compact as possible can be created, which can simultaneously consist of as few components as possible. This can make it possible to implement the above-described properties according to the invention, while at the same time the installation space and costs for this can be kept as low as possible.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung weist der passive Schwingkreisteil einen LC-Schwingkreis mit dem temperaturabhƤngigen, frequenzbeeinflussenden Bauelement auf, vorzugsweise besteht hieraus. Auf diese Art und Weise kƶnnen die Eigenschaften und Vorteile eines LC-Schwingkreises auf die vorliegende Erfindung angewendet und hier genutzt werden.According to a further aspect of the present invention, the passive resonant circuit part has an LC resonant circuit with the temperature-dependent, frequency-influencing component, which preferably consists of this. In this way, the properties and advantages of an LC resonant circuit can be applied to the present invention and used here.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung ist das temperaturabhƤngige, frequenzbeeinflussende Bauelement als temperaturabhƤngiger, frequenzbeeinflussender ohmscher Widerstand, vorzugsweise als frequenzbeeinflussender NTC-Widerstand (Negative Temperature Coefficient-Widerstand), ausgebildet. Auf diese Art und Weise kann das physikalische Prinzip eines temperaturabhƤngigen, frequenzbeeinflussenden ohmschen Widerstands fĆ¼r die Umsetzung der vorliegenden Erfindung verwendet werden. Dies kann eine vergleichsweise kostengĆ¼nstige Umsetzung der Erfindung ermƶglichen. Dies kann insbesondere durch bekannte Bauteile Ć¼ber einen NTC-Widerstand erfolgen.According to a further aspect of the present invention, the temperature-dependent, frequency-influencing component is designed as a temperature-dependent, frequency-influencing ohmic resistor, preferably as a frequency-influencing NTC resistor (Negative Temperature Coefficient resistor). In this way, the physical principle of a temperature-dependent, frequency-influencing ohmic resistance can be used for the implementation of the present invention. This can enable a comparatively inexpensive implementation of the invention. This can be done in particular using known components via an NTC resistor.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung ist der passive Schwingkreisteil radial von auƟen auf der Trommel, vorzugsweise auf einem Trommelmantel, angeordnet. Auf diese Art und Weise kƶnnen der passive Schwingkreisteil und der aktive Schwingkreisteil einander mƶglichst gut Ć¼bereinanderliegend angeordnet werden, indem sie radial zueinander ausgerichtet werden. Insbesondere kann auf der radialen Seite der Trommel und insbesondere des Trommelmantels vergleichsweise viel Bauraum fĆ¼r den passiven Schwingkreisteil vorhanden sein, im Gegensatz zu den beiden MantelflƤchen der Trommel bzw. des Trommelmantels. Dies kann ebenso fĆ¼r den aktiven Schwingkreisteil gelten, welcher radial zum passiven Schwingkreisteil bzw. zur Trommel bzw. Trommelmantel beabstandet in einem grĆ¶ĆŸeren verfĆ¼gbaren Bauraum angeordnet werden kann als mantelseitig.According to a further aspect of the present invention, the passive oscillating circuit part is arranged radially from the outside on the drum, preferably on a drum shell. In this way, the passive oscillating circuit part and the active oscillating circuit part can be arranged on top of one another as well as possible by being aligned radially to one another. In particular, on the radial side of the drum and in particular the drum shell, there can be a comparatively large amount of installation space for the passive oscillating circuit part, in contrast to the two lateral surfaces of the drum or the drum shell. This can also apply to the active oscillating circuit part, which can be arranged radially spaced from the passive oscillating circuit part or from the drum or drum shell in a larger available installation space than on the shell side.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung sind der aktive Schwingkreisteil und der passive Schwingkreisteil einander radial und bzw. oder in der Richtung der LƤngsachse gegenĆ¼berliegend angeordnet. Dies kann die Umsetzung der zuvor beschriebenen Eigenschaften unterstĆ¼tzen.According to a further aspect of the present invention, the active oscillating circuit part and the passive oscillating circuit part are arranged radially and / or opposite one another in the direction of the longitudinal axis. This can support the implementation of the properties described above.

Den passiven Schwingkreisteil radial von auƟen auf der Trommel und insbesondere auf dem Trommelmantel anzuordnen, kann auch dahingehend vorteilhaft sein, dass die Temperatur der Trommel bzw. des Trommelmantels auf diese Art und Weise mƶglichst reprƤsentativ und groƟflƤchig erfasst werden kƶnnen. Andersherum ausgedrĆ¼ckt kƶnnte eine Anordnung des passiven Schwingkreisteils auf einem der beiden MantelflƤchen stirnseitig der Trommel bzw. des Trommelmantels fĆ¼r eine vergleichsweise lokale Temperaturerfassung sorgen, welche weniger reprƤsentativ fĆ¼r die gesamte Trommel sein kann als bei einer Anordnung auf der radialen UmfangsflƤche der Trommel bzw. des Trommelmantels. Hierbei ist auch zu beachten, dass die Trommel bzw. der Trommelmantel Ć¼blicherweise von radial auƟen induktiv beheizt werden, so dass durch die entsprechende Anordnung des passiven Schwingkreisteils gerade in diesem Bereich, wo die induktive Beheizung der Trommel bzw. des Trommelmantels stattfinden kann, die Temperatur dort erfasst und zur Steuerung bzw. Regelung der induktiven Beheizung verwendet werden kann.Arranging the passive oscillating circuit part radially from the outside on the drum and in particular on the drum shell can also be advantageous in that the temperature of the drum or the drum shell can be recorded in this way as representative and over a large area as possible. In other words, an arrangement of the passive oscillating circuit part on one of the two lateral surfaces on the front side of the drum or the drum shell could ensure a comparatively local temperature detection, which can be less representative of the entire drum than with an arrangement on the radial circumferential surface of the drum or the drum shell . It should also be noted here that the drum or the drum shell is usually inductively heated radially from the outside, so that the appropriate arrangement of the passive oscillating circuit part means that the temperature is precisely in this area where the inductive heating of the drum or the drum shell can take place detected there and can be used to control or regulate the inductive heating.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung sind der aktive Schwingkreisteil und der passive Schwingkreisteil ausreichend nahe zueinander angeordnet, um gemeinsam als Schwingkreis wirken zu kƶnnen. Je in AbhƤngigkeit des Anwendungsfalls sind diese beiden Schwingkreisteile somit derart zu platzieren, so dass unter BerĆ¼cksichtigung der entsprechenden Randbedingung ein gemeinsamer Schwingkreis ausgebildet werden kann, um die zuvor beschriebenen Funktionen umzusetzen.According to a further aspect of the present invention, the active resonant circuit part and the passive resonant circuit part are arranged sufficiently close to one another in order to be able to act together as a resonant circuit. Depending on the application, these two oscillating circuit parts are to be placed in such a way that, taking the corresponding boundary conditions into account, a common oscillating circuit can be formed in order to implement the functions described above.

GemƤƟ einem weiteren Aspekt der vorliegenden Erfindung sind der aktive Schwingkreisteil und der passive Schwingkreisteil ausreichend lang in der Umfangsrichtung der Trommel ausgebildet, um gemeinsam als Schwingkreis wirken zu kƶnnen. Diesem Aspekt der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass der aktive Schwingkreisteil und der passive Schwingkreisteil nicht in Umfangsrichtung vollumfƤnglich ausgebildet sein mĆ¼ssen, um als gemeinsamer Schwingkreis wirken zu kƶnnen, auch wenn dies mƶglich ist. Hierdurch kƶnnen entsprechende Kosten sowie Bauraum eingespart werden. Dennoch sind der aktive Schwingkreisteil und der passive Schwingkreisteil in der Umfangsrichtung der Trommel ausreichend ausgedehnt auszubilden, damit sie bei sich drehender Trommel zumindest zeitweise derartig miteinander wirken kƶnnen, so dass das zuvor beschriebene Schwingungsverhalten und die Ausbildung einer temperaturabhƤngigen Resonanzfrequenz entstehen kƶnnen. Dies ist in AbhƤngigkeit des Anwendungsfalls bei der Auslegung und Anordnung des aktiven Schwingkreisteils und des passiven Schwingkreisteils zu berĆ¼cksichtigen.According to a further aspect of the present invention, the active oscillating circuit part and the passive oscillating circuit part are designed to be sufficiently long in the circumferential direction of the drum in order to be able to act together as an oscillating circuit. This aspect of the present invention is based on the knowledge that the active resonant circuit part and the passive resonant circuit part do not have to be fully configured in the circumferential direction in order to be able to act as a common resonant circuit, even if this is possible. Corresponding costs and installation space can be saved as a result. Nevertheless, the active oscillating circuit part and the passive oscillating circuit part are to be designed to be sufficiently extended in the circumferential direction of the drum so that they can at least temporarily interact with one another when the drum is rotating, so that the vibration behavior described above and the development of a temperature-dependent resonance frequency can arise. Depending on the application, this must be taken into account when designing and arranging the active oscillating circuit part and the passive oscillating circuit part.

Aufgrund der geringen Drehzahl einer Bewegung einer Trommel eines WƤschetrockners oder Waschtrockners und der damit geringen Bahngeschwindigkeit des rotierenden passiven Schwingkreisteils besteht vorteilhafterweise ausreichend Zeit fĆ¼r das Zustandekommen einer Schwingung wƤhrend der Kopplungsphase. Pro Umdrehung der Trommel ist somit jeweils eine Temperaturmessung an der Trommel bzw. TrommelmantelflƤche, wie zuvor beschrieben, mƶglich.Due to the low speed of a movement of a drum of a tumble dryer or washer dryer and the consequent low path speed of the rotating passive oscillating circuit part, there is advantageously sufficient time for an oscillation to occur during the coupling phase. For each rotation of the drum, one temperature measurement on the drum or drum surface, as described above, is possible.

Mehrere AusfĆ¼hrungsbeispiele der Erfindung sind in den Zeichnungen rein schematisch dargestellt und werden nachfolgend nƤher beschrieben. Es zeigt

Figur 1
eine perspektivische Darstellung des Inneren eines WƤschetrockners oder Waschtrockners mit GehƤuse und Trommel;
Figur 2
ein Schaltbild einer kapazitiven Kopplung des Schwingkreises;
Figur 3
ein Schaltbild einer induktiven Kopplung des Schwingkreises; und
Figur 4
ein Schaltbild des passiven Schwingkreisteils des induktiv gekoppelten Schwingkreises.
Several exemplary embodiments of the invention are shown purely schematically in the drawings and are described in more detail below. It shows
Figure 1
a perspective view of the interior of a tumble dryer or washer dryer with housing and drum;
Figure 2
a circuit diagram of a capacitive coupling of the resonant circuit;
Figure 3
a circuit diagram of an inductive coupling of the resonant circuit; and
Figure 4
a circuit diagram of the passive resonant circuit part of the inductively coupled resonant circuit.

Die o.g. Figuren werden in zylindrischen Koordinaten betrachtet. Es erstreckt sich eine LƤngsachse X. Senkrecht zur LƤngsachse X erstreckt sich eine radiale Richtung R von der LƤngsachse X weg. Senkrecht zur radialen Richtung R und um die LƤngsachse X herum erstreckt sich eine Umfangsrichtung U.The above figures are viewed in cylindrical coordinates. A longitudinal axis X extends. A radial direction R extends from the perpendicular to the longitudinal axis X Longitudinal axis X away. A circumferential direction U extends perpendicular to the radial direction R and around the longitudinal axis X.

Fig. 1 zeigt eine perspektivische Darstellung des Inneren eines WƤschetrockners 1 oder eines Waschtrockners 1 mit GehƤuse 10 und Trommel 2. Fig. 2 zeigt ein Schaltbild einer kapazitiven Kopplung des Schwingkreises 11, 21. Fig. 3 zeigt ein Schaltbild einer induktiven Kopplung des Schwingkreises 11, 21. Fig. 4 zeigt ein Schaltbild des passiven Schwingkreisteils 21 des induktiv gekoppelten Schwingkreises 11, 21. Fig. 1 shows a perspective illustration of the interior of a tumble dryer 1 or a washer dryer 1 with housing 10 and drum 2. Fig. 2 shows a circuit diagram of a capacitive coupling of the resonant circuit 11, 21. Fig. 3 shows a circuit diagram of an inductive coupling of the resonant circuit 11, 21. Fig. 4 shows a circuit diagram of the passive resonant circuit part 21 of the inductively coupled resonant circuit 11, 21.

Wie in der Fig. 1 dargestellt, besteht der WƤschetrockner 1 bzw. Waschtrockner 1 in dem betrachteten Fall im Wesentlichen aus dem GehƤuse 10, welches einen Innenraum des WƤschetrockners 1 bzw. Waschtrockners 1 umgibt. In diesem Innenraum ist die Trommel 2 angeordnet, welche auch als WƤschetrommel 2 bezeichnet werden kann. Die Trommel 2 ist drehbar um ihre LƤngsachse X in der Umfangsrichtung U gelagert und kann entsprechend angetrieben werden (nicht dargestellt). In der Trommel 2 kann WƤsche aufgenommen werden, um getrocknet zu werden.Like in the Fig. 1 As shown, the tumble dryer 1 or washer-dryer 1 in the case under consideration consists essentially of the housing 10, which surrounds an interior of the tumble dryer 1 or washer-dryer 1. The drum 2, which can also be referred to as a laundry drum 2, is arranged in this interior space. The drum 2 is mounted rotatably about its longitudinal axis X in the circumferential direction U and can be driven accordingly (not shown). Laundry can be accommodated in the drum 2 to be dried.

ErfindungsgemƤƟ ist seitens des GehƤuses 10 ein aktiver, gerƤteseitiger Schwingkreisteil 11 angeordnet. Ferner ist seitens der Trommel 2 auf dessen Trommelmantel 20 radial auƟen liegend ein passiver, trommelseitiger Schwingkreisteil 21 angeordnet. Die beiden Schwingkreisteile 11, 21 liegen einander in der LƤngsachse X sowie in der radialen Richtung R derartig gegenĆ¼ber, dass sie einen gemeinsamen Schwingkreis 11, 21 miteinander ausbilden kƶnnen. Der aktive, gerƤteseitige Schwingkreisteil 11 ist dabei signalĆ¼bertragend mit einer Steuerungseinheit 12 des WƤschetrockners 1 bzw. Waschtrockners 1 verbunden, welche auch als Steuerelektronik 12 bezeichnet werden kann.According to the invention, an active, device-side oscillating circuit part 11 is arranged on the part of the housing 10. Furthermore, a passive, drum-side oscillating circuit part 21 is arranged on the drum 2 on the drum shell 20 on the radially outer side. The two oscillating circuit parts 11, 21 lie opposite one another in the longitudinal axis X and in the radial direction R in such a way that they can form a common oscillating circuit 11, 21 with one another. The active, device-side oscillating circuit part 11 is connected in a signal-transmitting manner to a control unit 12 of the tumble dryer 1 or washer dryer 1, which can also be referred to as control electronics 12.

Im Betrieb des WƤschetrockners 1 bzw. Waschtrockners 1, wenn sich die Trommel 2 gegenĆ¼ber dem GehƤuse 10 um die LƤngsachse X dreht, kann nun seitens des aktiven, gerƤteseitigen Schwingkreisteils 11 eine elektromagnetische Schwingung radial nach innen zum Trommelmantel 20 hin ausgesendet werden, um dort in den passiven, trommelseitigen Schwingkreisteil 21 einzukoppeln, welcher sich in AbhƤngigkeit der Drehbewegung der Trommel 2 regelmƤƟig gegenĆ¼ber dem aktiven, gerƤteseitigen Schwingungsteil 11 befindet. Liegen die beiden Schwingkreisteile 11, 21 einander ausreichend gegenĆ¼ber, so kommt es zu einer Einkopplung seitens des aktiven, gerƤteseitigen Schwingkreisteils 11 in den passiven, trommelseitigen Schwingkreisteil 21, so dass sich in dem gemeinsamen Schwingkreis 11, 21 ein elektromagnetisches Feld ausbildet.When the tumble dryer 1 or washer dryer 1 is in operation, when the drum 2 rotates around the longitudinal axis X with respect to the housing 10, the active, device-side oscillating circuit part 11 can now emit an electromagnetic oscillation radially inward to the drum shell 20 in order to to couple the passive, drum-side oscillating circuit part 21, which, depending on the rotational movement of the drum 2, is regularly located opposite the active, device-side oscillating part 11. If the two oscillating circuit parts 11, 21 are sufficiently opposite to one another, the active, device-side oscillating circuit part 11 is coupled into the passive, drum-side oscillating circuit part 21, so that an electromagnetic field is formed in the common oscillating circuit 11, 21.

Der passive, trommelseitige Schwingkreisteil 21 weist ein frequenzbeeinflussendes, temperaturabhƤngiges Bauelement R2 auf, welches wƤrmeleitend mit dem Trommelmantel 20 verbunden ist. Auf diese Art und Weise wirkt sich die Temperatur des Trommelmantels 20 Ć¼ber das temperaturabhƤngige, frequenzbeeinflussende Bauelement R2 auf das Verhalten des passiven, trommelseitigen Schwingkreisteils 21 aus. Dies hat Ć¼ber die elektromagnetische Kopplung entsprechende RĆ¼ckwirkungen auf den aktiven, gerƤteseitigen Schwingkreisteil 21, welche von der Steuerungseinheit 12 erfasst werden kƶnnen. Durch die Auswertung des Frequenzbereichs bzw. des zeitlichen Verlaufs der erfassten Schwingungen kann Ć¼ber einen entsprechenden Vergleich mit hinterlegten Daten aus dem Schwingkreisverhalten des gemeinsamen Schwingkreises 11, 21 auf die Temperatur der Trommel 2 bzw. des Trommelmantels 20 geschlossen werden. Auf diese Art und Weise kann eine berĆ¼hrungslose Temperaturerfassung der Trommel 2 bzw. dessen Trommelmantels 20 erfolgen. Diese Information kann z.B. zur Steuerung bzw. Regelung einer induktiven Beheizung des Trommelmantels 20 verwendet werden.The passive, drum-side oscillating circuit part 21 has a frequency-influencing, temperature-dependent component R2, which is connected to the drum shell 20 in a thermally conductive manner. In this way, the temperature of the drum shell 20 has an impact the temperature-dependent, frequency-influencing component R2 on the behavior of the passive, drum-side oscillating circuit part 21. Via the electromagnetic coupling, this has corresponding repercussions on the active, device-side oscillating circuit part 21, which can be detected by the control unit 12. By evaluating the frequency range or the temporal course of the detected vibrations, conclusions can be drawn about the temperature of the drum 2 or the drum shell 20 via a corresponding comparison with stored data from the resonant circuit behavior of the common resonant circuit 11, 21. In this way, contactless temperature detection of the drum 2 or its drum shell 20 can take place. This information can be used, for example, to control or regulate an inductive heating of the drum shell 20.

Mit anderen Worten kommt im Betrieb, sobald sich die Trommel 2 bei der Drehung in geeigneter Position befindet, d.h. sich die beiden Schwingkreisteile 11, 21 zumindest teilweise gegenĆ¼berstehen und die Kopplung der beiden Schwingkreisteile 11, 21 des Oszillators ausreichend gut ist, eine Schwingung zu Stande, deren Frequenz maƟgeblich von der Ƅnderung des frequenzbeeinflussenden, temperaturabhƤngigen Bauelements R2 beeinflusst wird. Da aber auch die Kopplung der beiden Schwingkreisteile 11, 21 einen Einfluss auf die Frequenz hat, ergeben sich bei jedem Passieren des rotierenden passiven Schwingkreisteils 21 charakteristische Frequenz- bzw. ZeitverlƤufe, die sich mit der Temperatur des frequenzbeeinflussenden, temperaturabhƤngigen Bauelements R2 verschieben. Die VerlƤufe kƶnnen von der Steuerungseinheit 12, die in Verbindung mit dem aktiven Schwingkreisteil 11 des Oszillators steht, leicht erfasst und durch Analyse einer Temperatur der Trommel 2 bzw. dessen Trommelmantels 20 bzw. dessen radial nach auƟen gerichteter Oberseite zugeordnet werden. Auf Grund der geringen Drehzahl einer Trommel 2 und der somit geringen Bahngeschwindigkeit des rotierenden passiven Schwingkreisteils 21 besteht ausreichend Zeit fĆ¼r das Zustandekommen einer Schwingung wƤhrend der Kopplungsphase. Pro Umdrehung der Trommel 2 ist somit jeweils eine Temperaturmessung an der Trommel 2 mƶglich.In other words, as soon as the drum 2 is in a suitable position during rotation, that is, the two oscillating circuit parts 11, 21 are at least partially opposite and the coupling of the two oscillating circuit parts 11, 21 of the oscillator is sufficiently good, an oscillation occurs whose frequency is significantly influenced by the change in the frequency-influencing, temperature-dependent component R2. However, since the coupling of the two oscillating circuit parts 11, 21 also has an influence on the frequency, each time the rotating passive oscillating circuit part 21 passes through, characteristic frequency or time curves are produced which shift with the temperature of the frequency-influencing, temperature-dependent component R2. The curves can easily be detected by the control unit 12, which is connected to the active resonant circuit part 11 of the oscillator, and assigned by analyzing a temperature of the drum 2 or its drum shell 20 or its radially outwardly directed upper side. Due to the low speed of a drum 2 and the consequently low path speed of the rotating passive oscillating circuit part 21, there is sufficient time for an oscillation to occur during the coupling phase. One temperature measurement on the drum 2 is therefore possible per revolution of the drum 2.

Die Kopplung des aktiven, gerƤteseitigen Schwingkreisteils 11 mit dem passiven, trommelseitigen Schwingkreisteil 21 kann beispielsweise kapazitiv erfolgen. Diese Mƶglichkeit ist in der Fig. 2 dargestellt. Der passive, trommelseitige Schwingkreisteil 21 auf der linken Seite der Darstellung der Fig. 2 weist entsprechend einen ohmschen Widerstand R1 sowie einen Kondensator C1 auf, welche mit einem frequenzbeeinflussenden NTC-Widerstand R2 als temperaturabhƤngiger, frequenzbeeinflussender ohmscher Widerstand R2 verbunden sind, welcher in diesem Fall das temperaturabhƤngige, frequenzbeeinflussende Bauelement R2 darstellt. Diese Schaltung ist Ć¼ber drei kapazitive Kopplungselemente Ck1-Ck3 mit dem aktiven, gerƤteseitigen Schwingkreisteil 11 verbunden. Die kapazitiven Kopplungselemente Ck1-Ck3 kƶnnen auch als Kopplungskondensatoren Ck1-Ck3 bezeichnet werden. Auf der Seite des aktiven, gerƤteseitigen Schwingkreisteils 11 sind die Kopplungskondensatoren Ck1-Ck3 mit einer Schaltung verbunden, welche unter anderem einen OperationsverstƤrker U1 sowie zwei weitere ohmsche WiderstƤnde R3, R4 aufweist. Diese Schaltung des aktiven, gerƤteseitigen Schwingkreisteils 11 ist dazu ausgebildet, eine Ausgangsspannung Uf zu erzeugen und diese als Ausgangssignal der Steuerungseinheit 12, wie zuvor beschrieben, zur VerfĆ¼gung zu stellen.The coupling of the active, device-side oscillating circuit part 11 with the passive, drum-side oscillating circuit part 21 can be carried out capacitively, for example. This possibility is in the Fig. 2 shown. The passive, drum-side oscillating circuit part 21 on the left side of the illustration of Fig. 2 accordingly has an ohmic resistor R1 and a capacitor C1, which are connected to a frequency-influencing NTC resistor R2 as a temperature-dependent, frequency-influencing ohmic resistor R2, which in this case represents the temperature-dependent, frequency-influencing component R2. This circuit is connected to the active, device-side resonant circuit part 11 via three capacitive coupling elements Ck1-Ck3. The capacitive coupling elements Ck1-Ck3 can can also be referred to as coupling capacitors Ck1-Ck3. On the side of the active, device-side resonant circuit part 11, the coupling capacitors Ck1-Ck3 are connected to a circuit which, among other things, has an operational amplifier U1 and two further ohmic resistors R3, R4. This circuit of the active, device-side resonant circuit part 11 is designed to generate an output voltage Uf and to make this available as an output signal to the control unit 12, as described above.

Wie in der Fig. 3 dargestellt, kann stattdessen auch eine induktive Kopplung erfolgen. In diesem Fall ist seitens des passiven, trommelseitigen Schwingkreisteils 21 der frequenzbeeinflussende NTC-Widerstand R2 mit einem ohmschen Widerstand R1 sowie zwei Kondensatoren C1, C2 verbunden. Diese Schaltung ist Ć¼ber ein induktives Kopplungselement L1 Ć¼ber den Luftspalt zwischen GehƤuse 10 und Trommel 2 hinweg mit einem weiteren induktiven Kopplungselement L2 verbunden. Die beiden induktiven Kopplungselemente L1, L2 kƶnnen auch als Kopplungsspulen L1, L2 bezeichnet werden. In dem Fall der Fig. 3 kƶnnen diese als Spulen L1, L2 mit Eisenkernen ausgebildet sein. Seitens des aktiven, gerƤteseitigen Schwingkreisteils 11 ist auch das dort angeordnete induktive Kopplungselement L2 mit einem OperationsverstƤrker U1 verbunden, welcher ebenfalls eine Ausgangsspannung Uf an die Steuerungseinheit 12 ausgeben kann.Like in the Fig. 3 shown, inductive coupling can also be used instead. In this case, on the part of the passive, drum-side resonant circuit part 21, the frequency-influencing NTC resistor R2 is connected to an ohmic resistor R1 and two capacitors C1, C2. This circuit is connected to a further inductive coupling element L2 via an inductive coupling element L1 across the air gap between housing 10 and drum 2. The two inductive coupling elements L1, L2 can also be referred to as coupling coils L1, L2. In the case of the Fig. 3 these can be designed as coils L1, L2 with iron cores. On the part of the active, device-side resonant circuit part 11, the inductive coupling element L2 arranged there is also connected to an operational amplifier U1, which can also output an output voltage Uf to the control unit 12.

Fig. 4 zeigt eine Mƶglichkeit einer Umsetzung des passiven, trommelseitigen Schwingkreisteils 21 im Rahmen einer induktiven Kopplung. In diesem Fall sind die ohmschen WiderstƤnde R1, R2 sowie die Kondensatoren C1, C2 als elektronische Bausteine auf einer Leiterplatte angeordnet, welche von radial auƟen auf dem Trommelmantel 21 angeordnet werden kann. Um die elektronischen Bauelemente herum ist das induktive Kopplungselement L1 des passiven, trommelseitigen Schwingkreisteils 21 in Form von mehreren Planarspulen L1 ausgebildet. Mittels dieser Planarspulen L1 kann ein vergleichsweise flacher und platzsparender Aufbau des passiven, trommelseitigen Schwingkreisteils 21 erreicht werden. Fig. 4 shows a possibility of implementing the passive, drum-side oscillating circuit part 21 within the framework of an inductive coupling. In this case, the ohmic resistors R1, R2 and the capacitors C1, C2 are arranged as electronic components on a printed circuit board which can be arranged radially on the outside on the drum shell 21. The inductive coupling element L1 of the passive, drum-side oscillating circuit part 21 is formed around the electronic components in the form of a plurality of planar coils L1. A comparatively flat and space-saving structure of the passive, drum-side oscillating circuit part 21 can be achieved by means of these planar coils L1.

ErfindungsgemƤƟ kann auf diese Art und Weise ein kapazitiv oder induktiv gekoppelter Schwingkreis 11, 21 zur Temperaturmessung an einer rotierenden Trommel 2 sich sehr preiswert realisiert werden. Durch die Wahl empfindlicher und gut definierter, toleranzarmer elektronischer Bauelemente ist hiermit eine sehr prƤzise Messung der Temperatur mƶglich. GegenĆ¼ber der bekannten Nutzung von KenngrĆ¶ĆŸen der Induktionsspulenansteuerung ist man hier unabhƤngig von den Eigenschaften und geometrischen Toleranzen der Trommel 2. DarĆ¼ber hinaus lƤsst sich aus der periodisch einsetzenden Oszillation des Schwingkreises 11, 21 bei ordnungsgemƤƟer Drehbewegung der Trommel 2 auf einfache Art und Weise gleichzeitig eine Erkennung der Drehbewegung der Trommel 2 realisieren.According to the invention, a capacitively or inductively coupled resonant circuit 11, 21 for temperature measurement on a rotating drum 2 can be implemented very inexpensively in this way. By choosing sensitive and well-defined, low-tolerance electronic components, a very precise measurement of the temperature is possible. Compared to the known use of parameters of the induction coil control, one is independent of the properties and geometric tolerances of the drum 2 realize the rotary movement of the drum 2.

Bezugszeichenliste (Bestandteil der Beschreibung)List of reference symbols (part of the description)

C1, C2C1, C2
KondensatorenCapacitors
Ck1-Ck3Ck1-Ck3
kapazitives Kopplungselement; Kopplungskondensatorcapacitive coupling element; Coupling capacitor
L1, L2L1, L2
induktives Kopplungselement; Kopplungsspulen; Spulen mit Eisenkern; Planarspuleninductive coupling element; Coupling coils; Iron core coils; Planar coils
R1, R3, R4R1, R3, R4
ohmsche WiderstƤndeohmic resistances
R2, NTCR2, NTC
temperaturabhƤngiges, frequenzbeeinflussendes Bauelement; temperaturabhƤngiger, frequenzbeeinflussender ohmscher Widerstand; frequenzbeeinflussender NTC-Widerstandtemperature-dependent, frequency-influencing component; temperature-dependent, frequency-influencing ohmic resistance; frequency-influencing NTC resistor
U1U1
OperationsverstƤrkerOperational amplifier
UfUf
AusgangsspannungOutput voltage
RR.
radiale Richtungradial direction
UU
UmfangsrichtungCircumferential direction
XX
LƤngsachseLongitudinal axis
11
WƤschetrockner; WaschtrocknerClothes dryer; Washer dryer
1010
GehƤusecasing
1111
aktiver, gerƤteseitiger Schwingkreisteilactive, device-side oscillating circuit part
1212th
Steuerungseinheit; SteuerelektronikControl unit; Control electronics
22
Trommel; WƤschetrommelDrum; Laundry drum
2020th
TrommelmantelDrum jacket
2121
passiver, trommelseitiger Schwingkreisteilpassive, drum-side oscillating circuit part

Claims (15)

  1. Tumble dryer (1) or washer-dryer (1), comprising a drum (2) which is designed to hold laundry to be dried, and comprising a housing (1) by which the drum (2) is rotatably received, the housing (1) having at least one active oscillating circuit part (11), and the drum (2) having at least one passive oscillating circuit part (21), characterised in that the passive oscillating circuit part (21) has a temperature-dependent, frequency-influencing component (R2), the active oscillating circuit part (11) and the passive oscillating circuit part (21) are designed to jointly form an oscillating circuit (11, 21) of which the resonance frequency depends on the temperature of the drum (2) via the temperature-dependent, frequency-influencing component (R2), the active oscillating circuit part (11) is connected to a control unit (12) in a signal-transmitting manner, and the control unit (12) is designed to determine the temperature of the drum (2), preferably of a drum casing (20), from a time curve and/or from a frequency curve of the oscillation of the oscillating circuit (11, 21).
  2. Tumble dryer (1) or washer-dryer (1) according to claim 1, characterised in that the control unit (12) is designed to detect a rotary movement of the drum from a time curve and/or from a frequency curve of the oscillation of the oscillating circuit (11, 21).
  3. Tumble dryer (1) or washer-dryer (1) according to either claim 1 or claim 2, characterised in that the temperature-dependent, frequency-influencing component (R2) is thermally conductively connected to the drum (2), preferably to the drum casing (20), such that the temperature of the drum (2), preferably of the drum casing (20), can act on the temperature-dependent, frequency-influencing component (R2) with as little delay as possible.
  4. Tumble dryer (1) or washer-dryer (1) according to any of claims 1 to 3, characterised in that the active oscillating circuit part (11) and the passive oscillating circuit part (21) are designed to be capacitively coupled to one another.
  5. Tumble dryer (1) or washer-dryer (1) according to any of claims 1 to 3, characterised in that the active oscillating circuit part (11) and the passive oscillating circuit part (21) are designed to be inductively coupled to one another.
  6. Tumble dryer (1) or washer-dryer (1) according to claim 5, characterised in that the active oscillating circuit part (11) and the passive oscillating circuit part (21) are designed to be inductively coupled to one another by means of coils (L1, L2) having iron cores.
  7. Tumble dryer (1) or washer-dryer (1) according to claim 5, characterised in that the active oscillating circuit part (11) and the passive oscillating circuit part (21) are designed to be inductively coupled to one another at least on the part of the passive oscillating circuit part (21) by means of a planar coil (L1), and preferably also on the part of the active oscillating circuit part (11) by means of a planar coil (L2).
  8. Tumble dryer (1) or washer-dryer (1) according to any of the preceding claims, characterised in that the passive oscillating circuit part (21) has, preferably consists of, an RC oscillating circuit comprising the temperature-dependent, frequency-influencing component (R2).
  9. Tumble dryer (1) or washer-dryer (1) according to claim 8, characterised in that the RC oscillating circuit consists of two ohmic resistors (R1, R2) and two capacitors (C1, C2), the temperature-dependent, frequency-influencing component (R2) being one of the two ohmic resistors (R1, R2).
  10. Tumble dryer (1) or washer-dryer (1) according to any of claims 1 to 7, characterised in that the passive oscillating circuit part (21) has, preferably consists of, an LC oscillating circuit comprising the temperature-dependent, frequency-influencing component (R2).
  11. Tumble dryer (1) or washer-dryer (1) according to any of the preceding claims, characterised in that the temperature-dependent, frequency-influencing component (R2) is designed as a temperature-dependent, frequency-influencing ohmic resistor (R2), preferably as a frequency-influencing NTC resistor (R2).
  12. Tumble dryer (1) or washer-dryer (1) according to any of the preceding claims, characterised in that the passive oscillating circuit part (21) is arranged radially from the outside on the drum (2), preferably on the drum casing (20).
  13. Tumble dryer (1) or washer-dryer (1) according to any of the preceding claims, characterised in that the active oscillating circuit part (11) and the passive oscillating circuit part (21) are arranged radially to and/or opposite one another in the direction of the longitudinal axis (X).
  14. Tumble dryer (1) or washer-dryer (1) according to any of the preceding claims, characterised in that the active oscillating circuit part (11) and the passive oscillating circuit part (21) are arranged sufficiently close to one another to be able to jointly act as an oscillating circuit (11, 21).
  15. Tumble dryer (1) or washer-dryer (1) according to any of the preceding claims, characterised in that the active oscillating circuit part (11) and the passive oscillating circuit part (21) are formed so as to be sufficiently long in the circumferential direction (U) of the drum (2) to be able to jointly act as an oscillating circuit (11, 21).
EP19204253.9A 2018-11-13 2019-10-21 Clothes dryer or washing dryer Active EP3653774B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018128316.4A DE102018128316A1 (en) 2018-11-13 2018-11-13 Tumble dryer or washer dryer

Publications (2)

Publication Number Publication Date
EP3653774A1 EP3653774A1 (en) 2020-05-20
EP3653774B1 true EP3653774B1 (en) 2021-05-26

Family

ID=68296208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19204253.9A Active EP3653774B1 (en) 2018-11-13 2019-10-21 Clothes dryer or washing dryer

Country Status (2)

Country Link
EP (1) EP3653774B1 (en)
DE (1) DE102018128316A1 (en)

Family Cites Families (3)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US4377733A (en) * 1978-08-31 1983-03-22 Sharp Kabushiki Kaisha Temperature-sensing probe structure for wireless temperature-sensing system
DE19919843A1 (en) 1999-04-30 2000-11-09 Juergen Kunstmann Contactless temperature measurement method, e.g. for moving engine parts, involves measuring power absorbed by resonant circuit subjected to variable frequency electromagnetic field
DE102016122744A1 (en) 2016-11-25 2018-05-30 Miele & Cie. Kg Method and control circuit for an induction-heated tumble dryer

Also Published As

Publication number Publication date
EP3653774A1 (en) 2020-05-20
DE102018128316A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
DE3910297C2 (en)
EP3227161B1 (en) Sensor system for a vehicle steering wheel, steering wheel with such a sensor system and method to operate such a system
DE4006885C2 (en) Evaluation method for a sensor for measuring the temperature of a moving, preferably rotating body, in particular a rotating brake disc
DE102011052847A1 (en) Method and device for suppressing moisture sensor signals
CH690599A5 (en) Galette for heating and conveying threads.
DE112011101947T5 (en) position sensor
EP3227162A1 (en) Sensor system for a motor vehicle steering wheel, steering wheel comprising said type of sensor system and method for operating a sensor system of said type
EP3653782B1 (en) Laundry dryer with acceleration sensor and method for its operation
EP3653774B1 (en) Clothes dryer or washing dryer
DE102006051184A1 (en) Circuit used in a vehicle door locking system comprises a sensor electrode arrangement, an evaluation circuit coupled with the sensor electrode unit, an induction-capacitor network and a generator unit
EP2324275B1 (en) Contact and proximity detection using capacitive sensors
DE102008024398A1 (en) Proximity switch operation method, involves storing measurement of detecting unit as threshold valve when calibration mode is activated, deleting or overwriting key word in storage region, and terminating calibration mode
WO2009109389A2 (en) Protective apparatus, in particular for household devices
WO2014095553A1 (en) Device for recording measured values in a nip
DE10127978C1 (en) Liquid soiling level determination device detects damping of oscillator coupled to measuring sensor with inductive-capacitive oscillation circuit
DE3037722C2 (en)
EP2307866A1 (en) Device, arrangement, and method for determining a temperature
DE102005006853B4 (en) Measuring system and method for coupling a sensor element in the measuring system
DE102008031774A1 (en) Protection system for detecting presence of e.g. infant, inside holding area of e.g. washing machine, has evaluation circuit for detecting dynamics of electric field interactions with one of two electrode devices
DE102008035910A1 (en) Laundry ball for accommodating detergents into laundry drum of e.g. washing machine, has server electrode, electrodes and modulation mechanism adjusting laundry treatment machine and designed for cooperating with machine
EP2425207B1 (en) Apparatus and method for measuring a relative movement of a target
DE102021110299A1 (en) Adaptive capacitive touch sensing steering wheel, associated assembly and motor vehicle
EP3572576A1 (en) Laundry treatment device
DE102017128471A1 (en) Inductive proximity switch and method of operating an inductive proximity switch
EP3653773B1 (en) Clothes dryer with improved control and method for operating the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201015

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: D06F 58/04 20060101ALI20210125BHEP

Ipc: D06F 25/00 20060101ALN20210125BHEP

Ipc: D06F 34/26 20200101AFI20210125BHEP

INTG Intention to grant announced

Effective date: 20210301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1396319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001500

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502019001500

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20210622

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210927

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001500

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211021

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191021

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 5

Ref country code: DE

Payment date: 20231031

Year of fee payment: 5