EP3652062B1 - Underwater body having a variable volume and method for operating such an underwater body - Google Patents
Underwater body having a variable volume and method for operating such an underwater body Download PDFInfo
- Publication number
- EP3652062B1 EP3652062B1 EP18739512.4A EP18739512A EP3652062B1 EP 3652062 B1 EP3652062 B1 EP 3652062B1 EP 18739512 A EP18739512 A EP 18739512A EP 3652062 B1 EP3652062 B1 EP 3652062B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- underwater body
- movable component
- fluid
- shell
- hollow space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 9
- 239000012530 fluid Substances 0.000 claims description 84
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 60
- 239000006260 foam Substances 0.000 claims description 57
- 239000011796 hollow space material Substances 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 2
- 230000001960 triggered effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 1
- 230000032258 transport Effects 0.000 description 14
- 238000013461 design Methods 0.000 description 8
- 230000009189 diving Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 208000031968 Cadaver Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/14—Control of attitude or depth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B22/00—Buoys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/14—Control of attitude or depth
- B63G8/24—Automatic depth adjustment; Safety equipment for increasing buoyancy, e.g. detachable ballast, floating bodies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B19/00—Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
- F42B19/01—Steering control
- F42B19/04—Depth control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B19/00—Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
- F42B19/36—Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means adapted to be used for exercise purposes, e.g. indicating position or course
- F42B19/38—Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means adapted to be used for exercise purposes, e.g. indicating position or course with means for causing torpedoes to surface at end of run
- F42B19/44—Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means adapted to be used for exercise purposes, e.g. indicating position or course with means for causing torpedoes to surface at end of run by enlarging displacement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
- B63G2008/002—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
- B63G2008/004—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
- B63G2008/002—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
- B63G2008/005—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/14—Control of attitude or depth
- B63G8/16—Control of attitude or depth by direct use of propellers or jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/14—Control of attitude or depth
- B63G8/22—Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks
Definitions
- the invention relates to an underwater body with a movable component that can be brought into an extended position and thereby increases the volume of the underwater body. Furthermore, the invention relates to a method for operating such an underwater body.
- An underwater body such as an autonomous unmanned underwater vehicle (AUV) or an underwater walking body or underwater glider, often has to be transported in an aircraft or watercraft to a deployment site when a coast has poor land-side or water-side accessibility, a land-based delivery device is not installed or a floating transport platform cannot be used, for example due to high waves or rocks.
- Such a compact configuration of the underwater body brings with it the disadvantages of insufficient buoyancy and/or an unfavorable density of the underwater body and possibly unfavorable running properties.
- DE 836603C shows a small submarine whose hull consists of two parts a and b that are plugged into each other. More precisely: The longitudinal wall of part a has two separate walls between which part b is inserted. Part b can be moved linearly relative to part a. By moving part b away from part a, the volume of the small submarine is increased. Two opposing toothed racks e each engage in a gear. The rear ends of the racks e are fixed with connected to part b, the two gears fixed to part a. The two drives of the toothed racks e are coupled to one another.
- FR2830837A1 shows an underwater vehicle (PAP 104 - «Poisson Auto Propulse», P), which is guided by a cable (filoguidé) and can, for example, destroy mines on the seabed. After a mission, this underwater vehicle PAP 104 should be able to surface again. Therefore, two balloons in a folded state (deux balloons replies 1a) are accommodated in a cavity which is closed by a two-part closure (deux demi carenage 1c), cf. 1 . A lock (verrou 1h) connects the two closure parts 1c to each other (deux demi carenage 1c, fixes entre eux, pour la navigation, par les verrous 1h).
- Each balloon 1a is mounted on the inner wall of a closure part 1c by means of a holding element (contre-forme 1e).
- Each closure part 1c is mounted on a receiving unit (adaptor 4) in such a way that the closure part 1c can be pivoted about an axis 1g.
- each balloon can hold, for example, seven liters, cf. 1 .
- compressed air can be introduced via a pneumatic connection (distribution de l'air 5) into a balloon 1a, 1b in order to inflate it.
- This source 6 comprises, for example, a compressed air bottle 6a (bouteille de gaz comprime 6a) with a connecting body (corps 6b) and a displaceable piston (piston coulissant 6c), which selectively enables or prevents the escape of compressed air, cf. 3 .
- FR2943615A1 shows an underwater body (fleeteur) with a hull (fuselage 101) on which two movable cylindrical components (deux appendices mobiles 121, 122 cylindriques) are mounted. Each component 121, 122 can be moved along an axis that is perpendicular to the longitudinal axis 11 of the fuselage 101.
- 1a shows the two components 121, 122 in a retracted position (position rentre), FIG. In an extended position (position sorti).
- position rentre position
- FIG. In an extended position (position sorti).
- a double-acting piston-cylinder unit (verin-double effet) is able to displace a component 121 relative to the body 101, see FIG.
- the cylinder 151 is mounted on the body 101, the piston rod 152 on the component 121.
- a ball bearing 161, 162, 163 prevents water ingress.
- a compliant membrane membrane souple 181, membrane 182 is mounted between component 121 and body 101, see Figures 2b and 2c.
- US6923105B1 describes an underwater running body (counter-measure device 10) with a cylindrical shell 12, which is able to destroy an attacking torpedo.
- a drive thrusters 22
- a weapon gun 14
- several inflatable chambers inflatable chambers 24
- the focus center of mass of the body 10 is close to the buoyancy point (center of buoyancy).
- US3616775 discloses an underwater body having a movable component in the form of a bellows.
- the object of the invention is to provide an underwater body with the features of the preamble of claim 1 and a method with the features of the preamble of claim 14, which easily cause the movable component to be moved to the extended position and remain there.
- This object is achieved by an underwater body having the features specified in claim 1 and a method having the features specified in claim 14.
- the moveable component is moveable relative to the shell from a retracted position to an extended position.
- the moveable component is moved from the stowed to the deployed position, the volume of the underwater body is increased.
- the expansion means is capable of directing a fluid into the cavity.
- the cavity is in operative connection with the movable component. The act of directing fluid into the cavity causes the moveable component to be moved to the extended position.
- the fluid in the cavity hardens.
- the solidified fluid in the cavity holds the moveable component in the extended position.
- the underwater body according to the invention can automatically change its volume. If the moveable component is in the stowed position, the underwater body has a smaller volume. If the moveable component is in the extended position, the underwater body has a larger volume. As a result, the underwater body meets the two conflicting requirements, namely that the underwater body should have the smallest possible volume during transport and a sufficiently large volume when used in the water. It is well known that the buoyancy experienced by a body in water is equal to the weight of the water displaced by the body. In many applications, the aim is for the buoyancy of an underwater body to be approximately equal to its weight, so that it is not necessary or only to a small extent to keep an underwater body at a desired water depth with the aid of an elevator. An elevator only changes the diving depth when the underwater body is moved, while a volume change also affects an underwater body that is not currently being moved through the water.
- a further advantage of the invention is achieved in particular when the underwater body is to be jettisoned from an aircraft or a surface water vehicle. After hitting the water, the Underwater bodies reach a desired water depth. As long as the underwater body is in the water and above this water depth, the buoyancy should be less than the weight, so that the underwater body sinks.
- the invention enables the moveable component to be moved so that it adopts the deployed position upon reaching the desired water depth.
- the underwater body performs a predetermined task with the movable component in the retracted position and then the movable component is moved into the extended position.
- the underwater body may have a desired hydrodynamic shape when the moveable component is in the stowed position. By moving the moveable component to the deployed position, the volume of the underwater body is increased such that the buoyancy is greater than the weight and the underwater body floats to the water surface where it can be collected again.
- the movable component in the retracted position reduces in many cases the risk of the underwater body being damaged during transport or even when being dropped into the water.
- the expansion means directs a fluid into the cavity.
- the cavity is in communication with the movable component.
- the moveable component is moved to the extended position.
- an actuator such as a linear electric motor or hydraulic piston-cylinder unit
- the expansion means need only be in fluid communication with the cavity. In many configurations, such a fluid connection can be established more easily than a mechanical connection between an actuator and the movable component.
- the fluid hardens in the cavity.
- the solidified fluid holds the moveable component in the extended position.
- the solidified fluid prevents the pressure of the surrounding water from moving the moveable component away from the deployed position.
- the volume of the underwater body and thus essentially the buoyancy remain constant.
- the moveable component completely or at least partially surrounds the cavity.
- the expansion means thus directs the liquid fluid into a cavity inside the moving part.
- the introduction of fluid causes the moveable component to move relative to the sheath to the deployed position.
- the fluid solidifies inside the moveable component, thereby holding the moveable component in the extended position.
- the cavity is connected to the movable component via a piston-cylinder unit.
- the cavity is formed in a chamber of the piston-cylinder unit.
- the expansion means directs the fluid into this chamber, the fluid in the chamber displaces the piston, the displacement of the piston displaces the movable component to the extended position, and the fluid solidifies in this chamber.
- This design allows it to arrange the further component spatially remote from the cavity for the fluid.
- the further component need not necessarily have a cavity. This refinement makes it easier to design the movable component and to adapt it to specified requirements, for example to a desired hydrodynamic shape of the underwater body.
- a flat element is mounted on the outside of the shell of the underwater body.
- the flat element is part of the movable component and can be pivoted relative to the cover. By pivoting the panel away from the shell, the panel is moved to an extended position and the volume of the underwater body is increased.
- the cavity is formed between the planar element and the outside of the shell.
- the flat element completely surrounds the cavity. In another embodiment, the flat element only partially surrounds the cavity in the extended position. The hardened fluid in the cavity comes into contact with the environment, for example with the surrounding water.
- the shell of the underwater body extends along a longitudinal axis.
- the movable component can be moved relative to the shell along the longitudinal axis, ie in a direction of movement parallel to the longitudinal axis.
- the movable component can form a segment of the shell. It is possible for the moveable component to telescopically overlap the shell or the remainder of the shell when in the stowed position.
- a flexible seal may be placed between the moveable component and the shell or the remainder of the shell.
- the length and volume of the underwater body are increased enlarged.
- This configuration allows the diameter, or more generally any dimension, of the underwater body to remain constant in a plane perpendicular to the longitudinal axis, regardless of the position of the movable component.
- the hydrodynamic properties of the underwater body are not significantly altered when the moveable component is moved to the deployed position.
- the movable component can be arranged in particular at the stern or at the bow of the hull of the underwater body. It is also possible for the movable component to be moved into the extended position in a direction perpendicular to or at an angle to the longitudinal axis.
- the expansion means is preferably located inside the shell and in one embodiment outside the moveable component.
- the shell protects the expansion medium from environmental influences. If the expansion means is arranged outside the movable component, it will not be moved when the movable component is moved relative to the shell. As a result, only a smaller mass needs to be moved.
- the fluid is in a liquid or gaseous state when it flows into the cavity and solidifies in the cavity.
- the fluid is entirely on board the underwater body.
- a substance on board the underwater body is directed into the cavity.
- the process of hardening of the fluid in the cavity is brought about, at least in part, by directing surrounding water into the cavity.
- the water in the cavity causes the substance in the cavity to harden.
- the fluid in the cavity hardens, for example, through a chemical process or through heating.
- the fluid is an assembly foam and/or comprises polyurethane. It is possible to use a mounting foam that can also be used to seal buildings. This design obviates the need to prepare a special fluid. Instead, commercially available assembly foam can be used.
- the expansion means comprises at least one container, for example a cartridge with the mounting foam. By opening an opening of this or each cartridge, the mounting foam exits the cartridge and is directed into the cavity.
- the expansion means preferably comprises a number of cartridges, so that even if one cartridge fails, a sufficient amount of fluid is still available.
- the fluid in the or each cartridge is maintained in a liquid state under positive pressure.
- the or each cartridge is preferably a disposable container for the fluid.
- At least one container containing the fluid is produced in advance and placed in the underwater body.
- the fluid or at least one component of the fluid is generated in the underwater body itself, for example by a chemical process.
- the fluid in the cavity is mechanically stable.
- the fluid comprises isocyanate and polyol in an aerosol mixture.
- the fluid foams and reacts with moisture in the air or with moisture on the interior walls of the cavity.
- the liquid fluid in the container comprises two different components that react with one another in the cavity, with one component acting as a crosslinking agent and/or as a hardener. These two components can be stored in two different containers and only react with each other in the cavity.
- fluid is admitted into the cavity simultaneously via multiple inlets.
- This design results in an even distribution of the fluid in the cavity compared to a design where the fluid flows into the cavity through only a single inlet.
- the moveable component is moved to the extended position by the expansion means directing the fluid into the cavity.
- an actuator additionally moves the movable component to the extended position relative to the shell.
- a locking unit can be moved from a locking state to a release state.
- the locking unit includes, for example, a folding element and/or a wedge element.
- the locked state the locking unit locks the movable component.
- the release state the locking unit allows the moveable component to be moved relative to the shell.
- the locking unit in the locked state prevents unwanted movement of the movable component relative to the cover. It is possible that an actuator additionally functions as the locking unit or that a locking unit is used in addition to the actuator.
- the locking unit holds the movable component in the retracted position.
- the locking unit in particular prevents the movable component from being unintentionally moved out of the retracted position when the underwater body is being transported. This ensures that the underwater body maintains its smallest possible volume during transport. It is also possible that the locking unit holds the movable component in the extended position.
- an actuator transfers the locking unit from the locking state to the release state.
- the introduction of fluid into the cavity causes the locking unit to be brought into the release state, for example by the pressure of the fluid in the cavity forcing the locking unit into the release state or by breaking the locking unit so that it cannot longer performs the arresting function.
- a fluid sensor onboard the underwater body measures how much fluid is directed into the cavity.
- This fluid sensor measures a measure of the amount of fluid, such as a period of time or a pressure exerted by the fluid, or in In the case of a moving component with a flexible outer shell, a measure of the pressure exerted by the fluid on the outer shell.
- the expansion means directs fluid into the pod until a predetermined amount of fluid is in the pod.
- the expansion means works depending on signals from the fluid sensor. Once the predetermined amount of fluid is in the lumen, the expansion means ceases to direct fluid into the lumen. This refinement is one way of moving the movable component to a specific extended position and thus achieving a specific volume of the underwater body.
- the movable component can be moved from the retracted to the extended position.
- the movable component performs a movement relative to the shell.
- a stop member limits possible movement of the moveable component away from the shell.
- This stop element thus defines the extended position of the movable component and consequently the maximum achievable volume of the underwater body.
- This configuration eliminates the need to monitor the inflow of fluid into the cavity and to control or regulate the amount of fluid trapped in order to achieve a desired deployed position of the moveable component and hence a desired volume of the underwater body. It is sufficient to introduce at least a predetermined quantity of fluid into the cavity and to allow it to harden there.
- the stop element limits the movement of the movable component even when the entire quantity of fluid is directed into the cavity. This refinement further reduces the number of actively moving components required and/or sensors of the underwater body.
- the stop element can be fixed in one position relative to the cover, with this position being selected from a number of possible positions.
- the process of fixing the stop element in a selected position can be carried out before the underwater body is used.
- a specific position is selected and the stop element is fixed in this selected position, a volume of several possible Achieve volumes of the underwater body with the moveable component in the deployed position.
- This configuration leads to a particularly simple mechanism for achieving a desired volume and saves a controllable actuator, which holds the movable component in a desired position, and a fluid sensor.
- the configurations with the stop element and with an actuator or the fluid sensor can also be combined with one another.
- the moveable component is brought into the extended position after the underwater body has been jettisoned, for example from an aircraft or a surface water vehicle, and a predetermined period of time has then elapsed.
- the underwater body automatically activates the expansion means, thereby automatically triggering the step of directing fluid into the cavity, in response to the detection of an event.
- a sensor is present on board the underwater body, which automatically detects this event. The event can be, for example, that the underwater body is in the water or that the underwater body is at a water depth that is greater than or equal to a predetermined water depth.
- the sensor measures the pressure of the surrounding water.
- the expansion means is activated after the sensor has detected the event and a predetermined period of time has elapsed. It is also possible that a timer is activated and the event detects that a predetermined period of time has elapsed since the activation of the timer. Detection of this event triggers the step of activating the expansion agent.
- the configuration with the sensor makes it easier to carry out the volume increase in such a way that the underwater body with the increased volume is kept at a specific water depth. If the underwater body itself can measure the current water depth, then no time period needs to be specified, and the right time to increase the volume depends to a lesser extent on environmental conditions such as water currents and water temperature and salinity.
- the movable component is a rigid component or has at least one rigid outer shell.
- the movable component deforms only insignificantly when the underwater body is exposed to the water pressure under water.
- the underwater body essentially retains its hydrodynamic shape even at different diving depths.
- the movable component has a flexible outer shell, for example in the manner of a balloon or a windsock.
- This configuration makes it possible to store the flexible component with little space, for example inside the cover, as long as the flexible component is to remain in the retracted state.
- the fluid is directed into the movable component.
- the introduced fluid expands the flexible outer shell, thereby increasing the volume of the moveable component, and then solidifies in the enlarged moveable component.
- the fluid inflates the flexible outer shell and then hardens within the inflated outer shell.
- the underwater body is designed to be deployed underwater and may be self-propelled or towed through the water by another vehicle.
- the underwater body can be designed for civil and/or military purposes and can include sensors and/or actuators.
- the underwater body can operate autonomously, i.e. without external commands.
- the underwater body is an autonomous underwater vehicle (AUV) or a manned submarine.
- the underwater body automatically triggers the step of the expansion means directing the fluid into the cavity.
- UUV autonomous underwater vehicle
- the underwater body is designed to receive adjustment commands from a spatially distant platform, for example from a surface ship or an aircraft.
- the underwater body is for example, a remotely operated unmanned underwater vehicle (ROV), an underwater robot, an underwater glider, or an underwater vehicle, such as a torpedo, controlled via a fiber optic cable.
- ROV unmanned underwater vehicle
- Such a command causes, for example, that the expansion means directs the fluid into the cavity.
- the adjustment commands are transmitted wirelessly, in particular via underwater communication, or via a cable from the remote platform to the underwater body.
- the underwater body is dropped from an aircraft, for example a helicopter or an airplane, and falls into the water.
- the aircraft transports the underwater body to a desired location.
- the underwater body is launched into the water from a platform in the water, for example from a surface ship or a stationary platform in the water.
- the moveable component is in the stowed position while the underwater body is being transported by the aircraft or watercraft so that the underwater body has the smallest possible volume during transport.
- the discarded underwater body sinks in the water.
- the movable component is brought into the extended position and the volume of the underwater body in the water is increased, so that the buoyancy acting on the underwater body is also increased.
- the underwater body now has such a volume that the weight of the displaced water is approximately equal to the weight of the underwater body and the underwater body is approximately floating in the water. In another embodiment, the weight of the displaced water is greater than the weight of the underwater body, so that the underwater body rises to the water surface again and can be collected.
- the three figures show an underwater body 101, 201, 301 moving in a direction of travel from left to right.
- An underwater body 101 has a shell 103 .
- a hinged cover 107 is arranged on the outside of the cover 103 .
- the folding cover 107 is segmented and preferably arranged all the way around a longitudinal axis of the underwater body 101 and is attached to the cover 103 of the underwater body 101 by means of rotary joints 109 .
- the swivel joints 109 are connected to a servomotor 111 .
- Inside the underwater body 101 there is a first assembly foam cartridge 113, a second assembly foam cartridge 115, a third assembly foam cartridge 117 and a fourth assembly foam cartridge 119 on an underside and an upper side, ie a total of eight cartridges.
- a respective outlet of the respective assembly foam cartridges 113, 115, 117 and 119 is led out through the shell 103 of the underwater body 101 and is located between the hinged shell 107 and the outside of the shell 103.
- the cartridges 113 to 119 belong to the expansion means of the first embodiment.
- the expansion means includes a component which keeps the mounting foam 121 in the cartridges 113 to 119 in a liquid or foamy state and thus prevents the mounting foam 121 from already being in a Cartridge hardens 113 to 119, which is unintentional.
- the underwater body 101 has a propeller drive 105 at the stern.
- the folding cover 107 While the underwater body 101 is being transported in an aircraft, for example, the folding cover 107 is in a transport position in which the flap 107 is in direct contact with the cover 103 of the underwater body.
- the hinged cover 107 is locked in this folded position by means of a predetermined breaking bracket (not shown).
- the underwater body 101 is dropped from the aircraft (not shown) into the sea or another body of water at the planned place of use and is immersed in the water.
- the underwater body 101 is automatically transferred from the transporting position to a traveling position when a predetermined event has occurred.
- This predetermined event occurs, for example, when a predetermined period of time has elapsed since the aircraft was dropped.
- a sensor (not shown) of the underwater body 101 detects the event that the underwater body 101 has reached the water, and the predetermined event occurs when a predetermined time elapses after this detection.
- a depth sensor on board the underwater body 101 measures the current diving depth of the underwater body 101 sinking in the water and in the transport position. As soon as the measured current diving depth matches a predetermined diving depth, the step is automatically triggered, the underwater body from the transport position into the driving position.
- the servomotor 111 releases the swivel joints 109 .
- the four assembly foam cartridges 113, 115, 117 and 119 are activated. For example, an opening in a cartridge 113 to 119 is opened in each case.
- assembly foam 121 is released from the assembly foam cartridges 113, 115, 117 and 119, for example because the liquid assembly foam 121 in the cartridge 113 to 119 was under overpressure.
- the release of the mounting foam 121 causes that the predetermined breaking bracket breaks and the lock is thereby released.
- the released mounting foam 121 presses against the flap 107.
- the servomotor 111 pivots the folding shell 107 away from the shell 103 of the underwater body 101. These two combined effects move the flap 107 away from the shell 103 and unfold it to its maximum position.
- a hollow space is formed between the unfolded folding cover 107 and the cover 103 .
- This cavity is filled with assembly foam 121.
- the mounting foam 121 hardens and thereby permanently locks the hinged sleeve 107 in place.
- the hinged sleeve 107 now has the shape of a truncated cone which surrounds the sleeve 103 .
- the diameter of the folding sleeve 107 increases in a direction toward the stern of the underwater body 101, so that a favorable hydrodynamic shape is still achieved.
- the folding hull 107 is permanently held in the maximum position, the volume of the underwater body 101 is permanently increased. It is also possible that the hinged cover 107 is pivoted out only to an intermediate position and the mounting foam 121 holds the hinged cover 107 in this intermediate position.
- the position in which the folding cover 107 is to be unfolded and locked is set in advance in a control program. This position can depend on a desired water depth and/or on the water temperature.
- a stop element limits the possible movement of the folding shell 107 away from the shell 103. In a preferred embodiment, this stop element can be fixed in one of several possible positions, so that a selected one of several possible volumes of the underwater body 101 is achieved.
- each folding cover 107 is connected to a respective spring element.
- This spring element strives to keep the folding cover 107 in the transport position, ie in the position in which the folding cover 107 is in contact with the cover 103 of the underwater body 101 .
- the released mounting foam 121 pivots the hinged cover 107 away from the cover 103 against the spring force of this spring element.
- the position reached by the swung-out hinged cover 107 depends on the one hand on the spring force and on the other hand on the amount of assembly foam 121 released. At least one of these two parameters can be adjusted depending on a desired water depth and/or the water temperature.
- the underwater body 201 comprises a shell 203 and a propeller drive 205.
- the shell 203 of the underwater body 201 comprises a sequence of four shell segments, namely seen in the direction of travel from left to right a first shell segment 223, a second shell segment 225, a third shell segment 227 and a fourth shell segment 229.
- a first assembly foam cartridge 213 and a second assembly foam cartridge 215 are attached to the shell 203, for example to the first shell segment 223.
- One outlet each of the cartridge 213 and 215 leads into the interior of the second shell segment 225.
- the second shell segment 225 can be displaced along the longitudinal axis of the underwater body 201 relative to the third shell segment 227 .
- An optional linear motor 231 can move the second shell segment 225 relative to the shell 203 .
- a guide device (not shown) preferably guides the second sleeve segment 225 during a movement relative to the third sleeve segment 227.
- the second, displaceable sleeve segment 225 is slid over the third sleeve segment 227 , for example telescopically, so that the second sleeve segment 225 partially overlaps the third sleeve segment 227 .
- the second shell segment 225 partially abuts the first shell segment 223 .
- the underwater body 201 has a compact shape with the smallest possible length and volume.
- a flexible seal is preferably arranged between the second shell segment 225 and the third shell segment 227 .
- a flexible seal is preferably also arranged between the second sleeve segment 225 and the first sleeve segment 223 .
- the underwater body 201 is automatically transferred to a travel position. 2 shows the underwater body 201 in this driving position.
- Mounting foam 221 emerges from the first mounting foam cartridge 213 and the second mounting foam cartridge 215 .
- the exiting mounting foam 221 causes the second shell segment 225 to be displaced away from the third shell segment 227 .
- This increases the length and volume of the underwater body 201 .
- the linear motor 231 optionally moves the second shell segment 225. It is possible that a gas, for example compressed air, is also admitted into the second shell segment 225 and also contributes to the displacement of the second shell segment 225.
- the mounting foam 221 flows into the second shell segment 225 and hardens there.
- the cured mounting foam 221 prevents water from entering the hollow interior of the second shell segment 225 .
- the first segment 223 is firmly connected to the second shell segment 225 and is also shifted away from the third shell segment 227 .
- the diameter of the second shell segment 225 is larger than the diameter of the first shell segment 223. This increases the volume of the underwater body 201 even when the first shell segment 223 is firmly connected to the third shell segment 227.
- the exiting assembly foam 221 hardens in the cavity created and thereby fixes the displaceable second shell segment 225 relative to the third shell segment 227.
- the amount by which the volume is increased depends on the amount of released assembly foam 221, which can be adjusted.
- the linear motor 231 and/or a stop element limit the possible movement of the second sleeve segment 225 away from the third sleeve segment 227 and thereby determine the amount of the increase in volume.
- the underwater body 301 has a shell 303, which in a sequence of five Shell segments is divided, namely in a first shell segment 323, a second shell segment 325, a third shell segment 327, a fourth shell segment 329 and a fifth shell segment 333.
- the fifth shell segment 333 is arranged at the stern of the underwater body 301 and carries the propeller drive 305. On its On the bow side, the fifth hull segment 333 is connected to a first assembly foam cartridge 313 and a second assembly foam cartridge 315 .
- the cartridges 313 and 315 are mounted on the rear wall of the fourth segment 329 and their outlets lead into the fifth shell segment 333.
- the first four shell segments 323-329 are rigidly connected to each other.
- the fifth shell segment 333 encloses a hollow interior and is slidable relative to the fourth shell segment 329 along the longitudinal axis of the underwater body 301 backwards.
- a guide device preferably guides the fifth casing segment 333 when it moves relative to the fourth casing segment 329.
- the fifth shell segment 333 is pushed into the fourth shell segment 329 .
- a locking wedge not shown, locks the fifth sleeve segment 333 in this position.
- the propeller drive 305 rests directly on the rear end of the fourth hull segment 329 .
- the locking of the fifth shell segment 333 is released.
- the assembly foam 321 is released from the first assembly foam cartridge 313 and the second assembly foam cartridge 315 .
- the released mounting foam 321 penetrates into the cavity inside the fifth shell segment 333 .
- the released mounting foam 321 thereby exerts pressure on the fifth shell segment 333 .
- This pressure pushes the fifth shell segment 333 together with the propeller drive 305 out of the fourth shell segment 329, specifically away from the fourth shell segment 329.
- the released mounting foam 321 fills the cavity in the fifth shell segment 333 completely or at least partially sets and hardens. This permanently fixes the fifth shell segment 333 in the extended position.
- the optional linear motor 331 additionally pushes the fifth shell segment 333 away from the fourth shell segment 329. It is possible that a gas, for example compressed air, is also introduced into the fifth shell segment 333.
- the linear motor 331 and/or a drive element limits the linear movement of the fifth shell segment 333 away from the fourth shell segment 329. Again, the amount of volume increase can be adjusted by increasing the amount of mounting foam 321 released and/or the distance , via which the linear motor 331 moves the fifth shell segment 333, is adjusted accordingly or by the stop element being fixed accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Toys (AREA)
Description
Die Erfindung betrifft einen Unterwasserkörper mit einem beweglichen Bestandteil, der sich in eine ausgefahrener Position bringen lässt und dadurch das Volumen des Unterwasserkörpers vergrößert. Weiterhin betrifft die Erfindung ein Verfahren zum Betreiben eines solchen Unterwasserkörpers.The invention relates to an underwater body with a movable component that can be brought into an extended position and thereby increases the volume of the underwater body. Furthermore, the invention relates to a method for operating such an underwater body.
Ein Unterwasserkörper, beispielsweise ein autonomes unbemanntes Unterwasserfahrzeug (AUV) oder ein Unterwasser-Laufkörper oder Unterwassergleiter, muss oft in einem Luftfahrzeug oder Wasserfahrzeug zu einem Einsatzort transportiert werden, wenn eine Küste eine schlechte landseitige oder wasserseitige Zugänglichkeit aufweist, eine Einbringvorrichtung an Land nicht installiert oder eine schwimmende Transportplattform, beispielsweise aufgrund von hohem Wellengang oder Felsen, nicht verwendet werden kann. Der Transport eines Unterwasserkörpers in einem Luftfahrzeug, beispielsweise in einem Hubschrauber, erfordert eine sehr kompakte Form des Unterwasserkörpers. Eine derartige kompakte Ausgestaltung des Unterwasserkörpers bringt jedoch im Wasser die Nachteile eines nicht genügenden Auftriebes und/oder einer ungünstigen Dichte des Unterwasserkörpers sowie ggf. ungünstige Laufeigenschaften mit sich.An underwater body, such as an autonomous unmanned underwater vehicle (AUV) or an underwater walking body or underwater glider, often has to be transported in an aircraft or watercraft to a deployment site when a coast has poor land-side or water-side accessibility, a land-based delivery device is not installed or a floating transport platform cannot be used, for example due to high waves or rocks. The transport of an underwater body in an aircraft, for example in a helicopter, requires a very compact shape of the underwater body. Such a compact configuration of the underwater body, however, brings with it the disadvantages of insufficient buoyancy and/or an unfavorable density of the underwater body and possibly unfavorable running properties.
Andererseits ist aufgrund der beengten Platzverhältnisse in einem Luftfahrzeug eine geringe Abmessung des Unterwasserkörpers und in vielen Fällen aufgrund des Abwurfes des Unterwasserkörpers aus dem Luftfahrzeug eine hohe Dichte des Unterwasserkörpers für ein schnelles Eintauchen in das Gewässer erwünscht.On the other hand, due to the cramped space conditions in an aircraft, a small dimension of the underwater body and in many cases due to the dropping of the underwater body from the aircraft, a high density of the underwater body is desirable for rapid immersion in the water.
Jeder Ballon vermag im aufgeblasenen Zustand 1b beispielsweise sieben Liter aufzunehmen, vgl.
In einer Ausgestaltung vermag eine doppelt wirkende Kolben-Zylinder-Einheit (verin ä double effet) einen Bestandteil 121 relativ zum Rumpf 101 zu verschieben, vgl. Fig. 2a. Der Zylinder 151 ist am Rumpf 101 montiert, die Kolbenstange 152 am Bestandteil 121. Ein Kugellager 161, 162, 163 verhindert das Eindringen von Wasser. In einer anderen Ausgestaltung ist ein nachgiebiges Membran (membrane souple 181, membrane 182) zwischen dem Bestandteil 121 und dem Rumpf 101 montiert, vgl. Fig. 2b und Fig. 2c.In one embodiment, a double-acting piston-cylinder unit (verin-double effet) is able to displace a
In
Der lösungsgemäße Unterwasserkörper umfasst
- eine Hülle,
- einen beweglichen Bestandteil,
- ein Expansionsmittel und
- einen Hohlraum.
- a case,
- a moving part
- an expanding agent and
- a cavity.
Der bewegliche Bestandteil lässt sich relativ zur Hülle aus einer eingezogenen Position in eine ausgefahrene Position bewegen. Wenn der bewegliche Bestandteil aus der eingezogenen in die ausgefahrene Position bewegt wird, wird das Volumen des Unterwasserkörpers vergrößert.The moveable component is moveable relative to the shell from a retracted position to an extended position. When the moveable component is moved from the stowed to the deployed position, the volume of the underwater body is increased.
Das Expansionsmittel vermag ein Fluid in den Hohlraum zu leiten. Der Hohlraum steht in einer Wirkverbindung mit dem beweglichen Bestandteil. Der Vorgang, Fluid in den Hohlraum zu leiten, bewirkt, dass der bewegliche Bestandteil in die ausgefahrene Position bewegt wird.The expansion means is capable of directing a fluid into the cavity. The cavity is in operative connection with the movable component. The act of directing fluid into the cavity causes the moveable component to be moved to the extended position.
Das Fluid im Hohlraum härtet aus. Das ausgehärtete Fluid im Hohlraum hält den beweglichen Bestandteil in der ausgefahrenen Position.The fluid in the cavity hardens. The solidified fluid in the cavity holds the moveable component in the extended position.
Der erfindungsgemäße Unterwasserkörper vermag automatisch sein Volumen zu verändern. Falls der bewegliche Bestandteil in der eingezogenen Position ist, so hat der Unterwasserkörper ein kleineres Volumen. Falls der bewegliche Bestandteil in der ausgefahrenen Position ist, so hat der Unterwasserkörper ein größeres Volumen. Dadurch erfüllt der Unterwasserkörper die beiden einander widersprechenden Anforderungen, nämlich dass der Unterwasserkörper einerseits beim Transport ein möglichst kleines Volumen und andererseits beim Einsatz im Wasser ein ausreichend großes Volumen aufweisen soll. Bekanntlich ist der Auftrieb, den ein Körper im Wasser erfährt, gleich dem Gewicht des vom Körper verdrängten Wassers. In vielen Anwendungen wird angestrebt, dass der Auftrieb eines Unterwasserkörpers annähernd gleich dem Gewicht ist, so dass es nicht oder nur im geringen Maße erforderlich ist, einen Unterwasserkörper mit Hilfe eines Höhenruders in einer gewünschten Wassertiefe zu halten. Ein Höhenruder verändert nur dann die Tauchtiefe, wenn der Unterwasserkörper bewegt wird, während eine Volumenänderung auch bei einem Unterwasserkörper wirkt, der aktuell nicht durchs Wasser bewegt wird.The underwater body according to the invention can automatically change its volume. If the moveable component is in the stowed position, the underwater body has a smaller volume. If the moveable component is in the extended position, the underwater body has a larger volume. As a result, the underwater body meets the two conflicting requirements, namely that the underwater body should have the smallest possible volume during transport and a sufficiently large volume when used in the water. It is well known that the buoyancy experienced by a body in water is equal to the weight of the water displaced by the body. In many applications, the aim is for the buoyancy of an underwater body to be approximately equal to its weight, so that it is not necessary or only to a small extent to keep an underwater body at a desired water depth with the aid of an elevator. An elevator only changes the diving depth when the underwater body is moved, while a volume change also affects an underwater body that is not currently being moved through the water.
Ein weiterer Vorteil der Erfindung wird insbesondere dann erzielt, wenn der Unterwasserkörper aus einem Luftfahrzeug oder einem Überwasserfahrzeug abgeworfen werden soll. Nach dem Auftreffen auf das Wasser soll der Unterwasserkörper eine gewünschte Wassertiefe erreichen. Solange der Unterwasserkörper im Wasser und oberhalb dieser Wassertiefe ist, soll der Auftrieb geringer als das Gewicht sein, so dass der Unterwasserkörper absinkt. Die Erfindung ermöglicht es, den beweglichen Bestandteil so zu bewegen, dass er die ausgefahrene Position bei Erreichen der gewünschten Wassertiefe annimmt.A further advantage of the invention is achieved in particular when the underwater body is to be jettisoned from an aircraft or a surface water vehicle. After hitting the water, the Underwater bodies reach a desired water depth. As long as the underwater body is in the water and above this water depth, the buoyancy should be less than the weight, so that the underwater body sinks. The invention enables the moveable component to be moved so that it adopts the deployed position upon reaching the desired water depth.
Möglich ist auch, dass der Unterwasserkörper mit dem beweglichen Bestandteil in der eingezogenen Position eine vorgegebene Aufgabe ausführt und anschließend der bewegliche Bestandteil in die ausgefahrene Position bewegt wird. Der Unterwasserkörper kann eine gewünschte hydrodynamische Form aufweisen, wenn der bewegliche Bestandteil in der eingezogenen Position ist. In dem der bewegliche Bestandteil in die ausgefahrene Position bewegt wird, wird das Volumen des Unterwasserkörpers dergestalt vergrößert, dass der Auftrieb größer als das Gewicht ist und der Unterwasserkörper an die Wasseroberfläche schwimmt, wo er wieder eingesammelt werden kann.It is also possible that the underwater body performs a predetermined task with the movable component in the retracted position and then the movable component is moved into the extended position. The underwater body may have a desired hydrodynamic shape when the moveable component is in the stowed position. By moving the moveable component to the deployed position, the volume of the underwater body is increased such that the buoyancy is greater than the weight and the underwater body floats to the water surface where it can be collected again.
Außerdem reduziert der bewegliche Bestandteil in der eingezogenen Position in vielen Fällen das Risiko, dass der Unterwasserkörper beim Transport oder auch beim Abwurf in das Wasser beschädigt wird.In addition, the movable component in the retracted position reduces in many cases the risk of the underwater body being damaged during transport or even when being dropped into the water.
Lösungsgemäß leitet das Expansionsmittel ein Fluid in den Hohlraum. Der Hohlraum steht in einer Verbindung mit dem beweglichen Bestandteil. Indem das Fluid in den Hohlraum eingeleitet wird, wird der bewegliche Bestandteil in die ausgefahrene Position bewegt. Dieses Merkmal vermeidet die Notwendigkeit, dass ein Stellantrieb, beispielsweise ein elektrischer Linearmotor oder eine hydraulische Kolben-Zylinder-Einheit, den beweglichen Bestandteil bewegt. Ein solcher Stellantrieb muss mit Energie versorgt werden und muss mechanisch mit dem beweglichen Bestandteil gekoppelt werden. Das Expansionsmittel braucht lediglich in einer Fluidverbindung mit dem Hohlraum zu stehen. Eine solche Fluidverbindung lässt sich in vielen Ausgestaltungen leichter herstellen als eine mechanische Verbindung zwischen einem Stellantrieb und dem beweglichen Bestandteil. Möglich ist aber, das lösungsgemäße Expansionsmittel mit einem Stellantrieb für den beweglichen Bestandteil zu kombinieren.According to the solution, the expansion means directs a fluid into the cavity. The cavity is in communication with the movable component. By introducing the fluid into the cavity, the moveable component is moved to the extended position. This feature avoids the need for an actuator, such as a linear electric motor or hydraulic piston-cylinder unit, to move the moving component. Such an actuator must be powered and must be mechanically coupled to the moving component. The expansion means need only be in fluid communication with the cavity. In many configurations, such a fluid connection can be established more easily than a mechanical connection between an actuator and the movable component. However, it is possible to combine the expansion means according to the solution with an actuator for the moving component.
Lösungsgemäß härtet das Fluid im Hohlraum aus. Das ausgehärteten Fluid hält den beweglichen Bestandteil in der ausgefahrenen Position. Das ausgehärteten Fluid verhindert, dass der Druck des umgebenden Wassers den beweglichen Bestandteil wieder aus der ausgefahrenen Position weg bewegt. Das Volumen des Unterwasserkörpers und somit im Wesentlichen auch der Auftrieb bleiben konstant. Diese Merkmale führen zu einer besonders einfachen Ausgestaltung, um den beweglichen Bestandteil in der ausgefahrenen Position zu halten. Das Fluid härtet von alleine im Hohlraum aus, ohne dass erforderlich ist, eine Eigenschaft des Fluids zu messen oder auf das Fluid im Hohlraum einzuwirken. Möglich, aber dank der Erfindung nicht erforderlich ist, dass eine Arretiereinheit aktiviert wird und den beweglichen Bestandteil in der ausgefahrenen Position hält. Der Mechanismus, um das Volumen des Unterwasserkörpers zu vergrößern, benötigt daher nur wenige Komponenten, die aktiv und in gesteuerter Weise bewegt werden, insbesondere eine Komponente, die ein Einleitung des Fluid in den Hohlraum auslöst. Der bewegliche Bestandteil selber kann als ein rein passives Bauteil ausgelegt sein.According to the solution, the fluid hardens in the cavity. The solidified fluid holds the moveable component in the extended position. The solidified fluid prevents the pressure of the surrounding water from moving the moveable component away from the deployed position. The volume of the underwater body and thus essentially the buoyancy remain constant. These features result in a particularly simple design for holding the moveable component in the extended position. The fluid will self-solidify in the cavity without the need to measure any property of the fluid or act on the fluid in the cavity. It is possible, but not necessary thanks to the invention, for a locking unit to be activated and hold the movable component in the extended position. The mechanism to increase the volume of the underwater body therefore requires only a few components that are moved actively and in a controlled manner, in particular a component that triggers an introduction of the fluid into the cavity. The moving component itself can be designed as a purely passive component.
In einer Ausführungsform umgibt der bewegliche Bestandteil den Hohlraum vollständig oder wenigstens teilweise. Das Expansionsmittel leitet das flüssige Fluid also in einen Hohlraum im Inneren des beweglichen Bestandteils. Die Einleitung von Fluid hat zur Folge, dass der bewegliche Bestandteil relativ zur Hülle in die ausgefahrene Position bewegt wird. Das Fluid härtet im Inneren des beweglichen Bestandteils aus und hält dadurch den beweglichen Bestandteil in der ausgefahrenen Position. Diese Ausgestaltung ermöglicht eine besonders kompakte Bauweise.In one embodiment, the moveable component completely or at least partially surrounds the cavity. The expansion means thus directs the liquid fluid into a cavity inside the moving part. The introduction of fluid causes the moveable component to move relative to the sheath to the deployed position. The fluid solidifies inside the moveable component, thereby holding the moveable component in the extended position. This configuration enables a particularly compact design.
Erfindungsgemäß ist der Hohlraum über eine Kolben-Zylinder-Einheit mit dem beweglichen Bestandteil verbunden. Der Hohlraum wird in einer Kammer der Kolben-Zylinder-Einheit gebildet. Das Expansionsmittel leitet das Fluid also in diese Kammer, das Fluid in der Kammer verschiebt den Kolben, die Verschiebung des Kolbens verschiebt den beweglichen Bestandteil in die ausgefahrene Position, und das Fluid härtet in dieser Kammer aus. Diese Ausgestaltung ermöglicht es, den weiteren Bestandteil räumlich entfernt von dem Hohlraum für das Fluid anzuordnen. Der weitere Bestandteil braucht nicht notwendigerweise einen Hohlraum aufzuweisen. Diese Ausgestaltung erleichtert es, den beweglichen Bestandteil auszulegen und an vorgegebene Anforderungen anzupassen, beispielsweise an eine gewünschte hydrodynamische Form des Unterwasserkörpers.According to the invention, the cavity is connected to the movable component via a piston-cylinder unit. The cavity is formed in a chamber of the piston-cylinder unit. Thus, the expansion means directs the fluid into this chamber, the fluid in the chamber displaces the piston, the displacement of the piston displaces the movable component to the extended position, and the fluid solidifies in this chamber. This design allows it to arrange the further component spatially remote from the cavity for the fluid. The further component need not necessarily have a cavity. This refinement makes it easier to design the movable component and to adapt it to specified requirements, for example to a desired hydrodynamic shape of the underwater body.
In einer Ausgestaltung ist ein flächiges Element an die Außenseite der Hülle des Unterwasserkörpers montiert. Das flächige Element gehört zum beweglichen Bestandteil und lässt sich relativ zur Hülle verschwenken. Indem das flächige Element von der Hülle weg verschwenkt wird, wird das flächige Element in eine ausgefahrene Position bewegt, und das Volumen des Unterwasserkörpers wird vergrößert. Der Hohlraum wird zwischen dem flächigen Element und der Außenseite der Hülle gebildet. Diese Ausgestaltung erleichtert es, die Hülle des Unterwasserkörpers aus einem einzigen Stück zu fertigen und / oder so auszugestalten, dass die Hülle einem vorgegebenen Wasserdruck standhalten kann. Der Platz im Inneren der Hülle steht vollständig für weitere Komponenten des Unterwasserkörpers zur Verfügung.In one embodiment, a flat element is mounted on the outside of the shell of the underwater body. The flat element is part of the movable component and can be pivoted relative to the cover. By pivoting the panel away from the shell, the panel is moved to an extended position and the volume of the underwater body is increased. The cavity is formed between the planar element and the outside of the shell. This configuration makes it easier to manufacture the shell of the underwater body from a single piece and/or to design it in such a way that the shell can withstand a predetermined water pressure. The space inside the shell is completely available for other components of the underwater body.
In einer Ausführungsform umgibt das flächige Element vollständig den Hohlraum. In einer anderen Ausgestaltung umgibt das flächige Element in der ausgefahrenen Position nur teilweise den Hohlraum. Das ausgehärtete Fluid im Hohlraum kommt mit der Umgebung, beispielsweise mit dem umgebenden Wasser, in Berührung.In one embodiment, the flat element completely surrounds the cavity. In another embodiment, the flat element only partially surrounds the cavity in the extended position. The hardened fluid in the cavity comes into contact with the environment, for example with the surrounding water.
In einer Ausgestaltung erstreckt sich die Hülle des Unterwasserkörpers entlang einer Längsachse. Der bewegliche Bestandteil lässt sich relativ zur Hülle entlang der Längsachse verschieben, also in eine Bewegungsrichtung parallel zur Längsachse. Der bewegliche Bestandteil kann ein Segment der Hülle bilden. Möglich ist, dass der bewegliche Bestandteil in der eingezogenen Position teleskopartig mit der Hülle oder dem Rest der Hülle überlappt. Zwischen dem beweglichen Bestandteil und der Hülle oder dem Rest der Hülle kann eine flexible Dichtung angeordnet sein.In one embodiment, the shell of the underwater body extends along a longitudinal axis. The movable component can be moved relative to the shell along the longitudinal axis, ie in a direction of movement parallel to the longitudinal axis. The movable component can form a segment of the shell. It is possible for the moveable component to telescopically overlap the shell or the remainder of the shell when in the stowed position. A flexible seal may be placed between the moveable component and the shell or the remainder of the shell.
Indem der bewegliche Bestandteil entlang der Längsachse in die ausgefahrene Position verschoben wird, werden die Länge und das Volumen des Unterwasserkörpers vergrößert. Diese Ausgestaltung ermöglicht es, dass der Durchmesser oder allgemeiner jede Abmessung des Unterwasserkörpers in einer Ebene senkrecht zur Längsachse konstant bleibt, und zwar unabhängig von der Position des beweglichen Bestandteil. Die hydrodynamischen Eigenschaften des Unterwasserkörpers werden nicht wesentlich verändert, wenn der bewegliche Bestandteil in die ausgefahrene Position bewegt wird.By sliding the moveable component along the longitudinal axis to the deployed position, the length and volume of the underwater body are increased enlarged. This configuration allows the diameter, or more generally any dimension, of the underwater body to remain constant in a plane perpendicular to the longitudinal axis, regardless of the position of the movable component. The hydrodynamic properties of the underwater body are not significantly altered when the moveable component is moved to the deployed position.
Der bewegliche Bestandteil kann insbesondere am Heck oder am Bug der Hülle des Unterwasserkörpers angeordnet sein. Möglich ist auch, dass der bewegliche Bestandteil in eine Richtung senkrecht auf die oder schräg zur Längsachse in die ausgefahrene Position bewegt wird.The movable component can be arranged in particular at the stern or at the bow of the hull of the underwater body. It is also possible for the movable component to be moved into the extended position in a direction perpendicular to or at an angle to the longitudinal axis.
Das Expansionsmittel ist bevorzugt im Inneren der Hülle und in einer Ausgestaltung außerhalb des beweglichen Bestandteils angeordnet. Die Hülle schützt das Expansionsmittel vor Umgebungseinflüssen. Wenn das Expansionsmittel außerhalb des beweglichen Bestandteils angeordnet ist, so wird es nicht mitbewegt, wenn der bewegliche Bestandteil relativ zur Hülle bewegt wird. Dadurch braucht nur eine geringere Masse bewegt zu werden.The expansion means is preferably located inside the shell and in one embodiment outside the moveable component. The shell protects the expansion medium from environmental influences. If the expansion means is arranged outside the movable component, it will not be moved when the movable component is moved relative to the shell. As a result, only a smaller mass needs to be moved.
Das Fluid ist in einem flüssigen oder gasförmigen Zustand, wenn es in den Hohlraum fließt, und härtet im Hohlraum aus. In einer Ausgestaltung ist das Fluid vollständig an Bord des Unterwasserkörpers vorhanden. In einer anderen Ausgestaltung wird eine Substanz an Bord des Unterwasserkörpers in den Hohlraum geleitet. Der Vorgang, dass das Fluid im Hohlraum aushärtet, wird wenigstens teilweise dadurch herbeigeführt, dass umgebendes Wasser in den Hohlraum geleitet wird. Das Wasser im Hohlraum bewirkt, dass die Substanz im Hohlraum aushärtet. Das Fluid im Hohlraum härtet beispielsweise durch einen chemischen Prozess oder durch Erhitzen aus.The fluid is in a liquid or gaseous state when it flows into the cavity and solidifies in the cavity. In one embodiment, the fluid is entirely on board the underwater body. In another embodiment, a substance on board the underwater body is directed into the cavity. The process of hardening of the fluid in the cavity is brought about, at least in part, by directing surrounding water into the cavity. The water in the cavity causes the substance in the cavity to harden. The fluid in the cavity hardens, for example, through a chemical process or through heating.
In einer Ausgestaltung ist das Fluid ein Montageschaum und / oder umfasst Polyurethan. Möglich ist, einen Montageschaum zu verwenden, der auch zum Abdichten von Gebäuden verwendbar ist. Diese Ausgestaltung erspart die Notwendigkeit, ein spezielles Fluid herzustellen. Vielmehr lässt sich handelsüblicher Montageschaum verwenden. Das Expansionsmittel umfasst mindestens einen Behälter, beispielsweise eine Kartusche, mit dem Montageschaum. Indem eine Öffnung dieser oder jeder Kartusche geöffnet wird, tritt der Montageschaum aus der Kartusche aus und wird in den Hohlraum geleitet. Vorzugsweise umfasst das Expansionsmittel mehrere Kartuschen, so dass auch beim Ausfall einer Kartusche noch ausreichend viel Fluid zur Verfügung steht. Vorzugsweise wird das Fluid in der oder jeder Kartusche unter einem Überdruck in einem flüssigen Zustand gehalten. Die oder jede Kartusche ist bevorzugt ein Einwegbehälter für das Fluid.In one configuration, the fluid is an assembly foam and/or comprises polyurethane. It is possible to use a mounting foam that can also be used to seal buildings. This design obviates the need to prepare a special fluid. Instead, commercially available assembly foam can be used. The expansion means comprises at least one container, for example a cartridge with the mounting foam. By opening an opening of this or each cartridge, the mounting foam exits the cartridge and is directed into the cavity. The expansion means preferably comprises a number of cartridges, so that even if one cartridge fails, a sufficient amount of fluid is still available. Preferably the fluid in the or each cartridge is maintained in a liquid state under positive pressure. The or each cartridge is preferably a disposable container for the fluid.
In einer Ausgestaltung wird mindestens ein Behälter mit dem Fluid vorab hergestellt und in den Unterwasserkörper verbracht. In einer anderen Ausgestaltung wird das Fluid oder wenigstens eine Komponente des Fluid im Unterwasserkörper selber erzeugt, beispielsweise durch einen chemischen Prozess.In one embodiment, at least one container containing the fluid is produced in advance and placed in the underwater body. In another embodiment, the fluid or at least one component of the fluid is generated in the underwater body itself, for example by a chemical process.
Nach dem Aushärten ist das Fluid im Hohlraum mechanisch stabil. Wenigstens vor dem Aushärten umfasst das Fluid beispielsweise Isocyanat und Polyol in einem Aerosol-Gemisch. Sobald das Fluid den Behälter verlassen hat und in den Hohlraum eingelassen wurde, schäumt das Fluid und reagiert mit der Feuchtigkeit der Luft oder mit der Feuchtigkeit an den Innenwänden des Hohlraums. Möglich ist auch, dass das flüssige Fluid im Behälter zwei verschiedene Komponenten umfasst, die im Hohlraum miteinander reagieren, wobei die eine Komponente als Vernetzer und oder als Härter fungiert. Diese beiden Komponenten können in zwei verschiedenen Behältern gelagert sein und erst im Hohlraum miteinander reagieren.After curing, the fluid in the cavity is mechanically stable. For example, at least prior to curing, the fluid comprises isocyanate and polyol in an aerosol mixture. Once the fluid leaves the container and is admitted into the cavity, the fluid foams and reacts with moisture in the air or with moisture on the interior walls of the cavity. It is also possible that the liquid fluid in the container comprises two different components that react with one another in the cavity, with one component acting as a crosslinking agent and/or as a hardener. These two components can be stored in two different containers and only react with each other in the cavity.
Vorzugsweise wird Fluid gleichzeitig über mehrere Einlässe in den Hohlraum eingelassen. Diese Ausgestaltung führt zu einer gleichmäßigen Verteilung des Fluid im Hohlraum verglichen mit einer Ausgestaltung, bei der das Fluid nur durch einen einzigen Einlass in den Hohlraum fließt.Preferably, fluid is admitted into the cavity simultaneously via multiple inlets. This design results in an even distribution of the fluid in the cavity compared to a design where the fluid flows into the cavity through only a single inlet.
Lösungsgemäß wird der bewegliche Bestandteil dadurch in die ausgefahrene Position bewegt, dass das Expansionsmittel das Fluid in den Hohlraum leitet. In einer Ausgestaltung bewegt zusätzlich ein Stellantrieb den beweglichen Bestandteil relativ zur Hülle in die ausgefahrene Position. Die Kombination dieser beiden Mechanismen, um den beweglichen Bestandteil zu bewegen, spart Zeit ein und bewirkt Redundanz. Wenn der eine Mechanismus ausfällt, so bewirkt bevorzugt der andere Mechanismus alleine die gewünschte Volumen-Vergrößerung.According to the solution, the moveable component is moved to the extended position by the expansion means directing the fluid into the cavity. In one embodiment, an actuator additionally moves the movable component to the extended position relative to the shell. The combination of these two mechanisms to move the moving part saves time and creates redundancy. If one mechanism fails, the other mechanism alone brings about the desired increase in volume.
In einer Ausgestaltung lässt sich eine Arretiereinheit aus einer Arretier-Zustand in einen Freigabe-Zustand bewegen. Die Arretiereinheit umfasst beispielsweise ein Klappelement und / oder ein Keilelement. In dem Arretier-Zustand arretiert die Arretiereinheit den beweglichen Bestandteil. In dem Freigabe-Zustand ermöglicht die Arretiereinheit, dass der bewegliche Bestandteil relativ zur Hülle bewegt wird. Die Arretiereinheit im Arretier-Zustand verhindert eine ungewollte Bewegung des beweglichen Bestandteils relativ zur Hülle. Möglich ist, dass ein Stellantrieb zusätzlich als die Arretiereinheit fungiert oder dass eine Arretiereinheit zusätzlich zum Stellantrieb verwendet wird.In one embodiment, a locking unit can be moved from a locking state to a release state. The locking unit includes, for example, a folding element and/or a wedge element. In the locked state, the locking unit locks the movable component. In the release state, the locking unit allows the moveable component to be moved relative to the shell. The locking unit in the locked state prevents unwanted movement of the movable component relative to the cover. It is possible that an actuator additionally functions as the locking unit or that a locking unit is used in addition to the actuator.
In einer Fortbildung dieser Ausgestaltung hält die Arretiereinheit den beweglichen Bestandteil in der eingezogenen Position. Dadurch verhindert die Arretiereinheit insbesondere, dass der bewegliche Bestandteil bei einem Transport des Unterwasserkörpers unbeabsichtigt aus der eingezogenen Position bewegt wird. Dadurch wird sichergestellt, dass der Unterwasserkörper beim Transport sein kleinstmögliches Volumen beibehält. Möglich ist auch, dass die Arretiereinheit den beweglichen Bestandteil in der ausgefahrenen Position hält.In a further development of this refinement, the locking unit holds the movable component in the retracted position. As a result, the locking unit in particular prevents the movable component from being unintentionally moved out of the retracted position when the underwater body is being transported. This ensures that the underwater body maintains its smallest possible volume during transport. It is also possible that the locking unit holds the movable component in the extended position.
In einer Ausgestaltung überführt ein Stellglied die Arretiereinheit aus dem Arretier-Zustand in den Freigabe-Zustand. In einer anderen Ausgestaltung bewirkt die Einleitung von Fluid in den Hohlraum, dass die Arretiereinheit in den Freigabe-Zustand überführt wird, beispielsweise indem der Druck des Fluid im Hohlraum die Arretiereinheit in den Freigabe-Zustand zwingt oder auch die Arretiereinheit zerbricht, so dass sie nicht mehr die arretierende Funktion ausübt.In one embodiment, an actuator transfers the locking unit from the locking state to the release state. In another embodiment, the introduction of fluid into the cavity causes the locking unit to be brought into the release state, for example by the pressure of the fluid in the cavity forcing the locking unit into the release state or by breaking the locking unit so that it cannot longer performs the arresting function.
In einer Ausgestaltung misst ein Fluid-Sensor an Bord des Unterwasserkörpers, wie viel Fluid in den Hohlraum geleitet ist. Dieser Fluid-Sensor misst ein Maß für die Menge des Fluids, beispielsweise eine Zeitspanne oder einen Druck, den das Fluid ausübt, oder im Falle eines beweglichen Bestandteils mit einer flexiblen Außenhülle ein Maß für den Druck, den das Fluid auf die Außenhülle ausübt. Das Expansionsmittel leitet Fluid in den Hohlkörper, bis eine vorgegebene Menge von Fluid im Hohlkörper ist. Das Expansionsmittel arbeitet abhängig von Signalen des Fluid-Sensors. Sobald die vorgegebene Menge von Fluid im Hohlkörper ist, bricht das Expansionsmittel den Vorgang ab, Fluid in den Hohlraum zu leiten. Diese Ausgestaltung ist eine Möglichkeit, um den beweglichen Bestandteil in eine bestimmte ausgefahrene Position zu bewegen und damit ein bestimmtes Volumen des Unterwasserkörpers zu erzielen.In one embodiment, a fluid sensor onboard the underwater body measures how much fluid is directed into the cavity. This fluid sensor measures a measure of the amount of fluid, such as a period of time or a pressure exerted by the fluid, or in In the case of a moving component with a flexible outer shell, a measure of the pressure exerted by the fluid on the outer shell. The expansion means directs fluid into the pod until a predetermined amount of fluid is in the pod. The expansion means works depending on signals from the fluid sensor. Once the predetermined amount of fluid is in the lumen, the expansion means ceases to direct fluid into the lumen. This refinement is one way of moving the movable component to a specific extended position and thus achieving a specific volume of the underwater body.
Lösungsgemäß lässt sich der bewegliche Bestandteil aus der eingezogenen in die ausgefahrene Position bewegen. Hierbei führt der bewegliche Bestandteil eine Bewegung relativ zur Hülle aus. In einer Ausgestaltung begrenzt ein Anschlagelement die mögliche Bewegung des beweglichen Bestandteils weg von der Hülle. Dieses Anschlagelement definiert damit die ausgefahrene Position des beweglichen Bestandteils und demzufolge das maximal erzielbare Volumen des Unterwasserkörpers. Diese Ausgestaltung macht es überflüssig, das Einfließen von Fluid in den Hohlraum zu überwachen und die eingeschlossene Menge von Fluid zu steuern oder zu regeln, um eine gewünschte ausgefahrene Position des beweglichen Bestandteils und damit ein gewünschtes Volumen des Unterwasserkörpers zu erzielen. Ausreichend ist, mindestens eine vorgegebene Menge von Fluid in den Hohlraum einzuleiten und dort aushärten zu lassen. Das Anschlagelement begrenzt die Bewegung des beweglichen Bestandteils, auch wenn die gesamte Menge des Fluids in den Hohlraum geleitet ist. Diese Ausgestaltung reduziert weiter die Anzahl von erforderlichen aktiv bewegten Komponenten und / oder von Sensoren des Unterwasserkörpers.According to the solution, the movable component can be moved from the retracted to the extended position. Here, the movable component performs a movement relative to the shell. In one embodiment, a stop member limits possible movement of the moveable component away from the shell. This stop element thus defines the extended position of the movable component and consequently the maximum achievable volume of the underwater body. This configuration eliminates the need to monitor the inflow of fluid into the cavity and to control or regulate the amount of fluid trapped in order to achieve a desired deployed position of the moveable component and hence a desired volume of the underwater body. It is sufficient to introduce at least a predetermined quantity of fluid into the cavity and to allow it to harden there. The stop element limits the movement of the movable component even when the entire quantity of fluid is directed into the cavity. This refinement further reduces the number of actively moving components required and/or sensors of the underwater body.
In einer Fortbildung dieser Ausgestaltung lässt sich das Anschlagelement in einer Position relativ zur Hülle fixieren, wobei diese Position aus mehreren möglichen Positionen ausgewählt wird. Den Vorgang, das Anschlagelement in einer ausgewählten Position zu fixieren, lässt sich vor dem Einsatz des Unterwasserkörpers durchführen. Indem eine bestimmte Position ausgewählt wird und das Anschlagelement in dieser ausgewählten Position fixiert wird, lässt sich ein Volumen von mehreren möglichen Volumina des Unterwasserkörpers mit dem beweglichen Bestandteil in der ausgefahrenen Position erzielen. Diese Ausgestaltung führt zu einem besonders einfachen Mechanismus, um ein gewünschtes Volumen zu erzielen, und erspart einen ansteuerbaren Stellantrieb, welcher den beweglichen Bestandteil in einer gewünschten Position hält, sowie einen Fluid-Sensor. Die Ausgestaltungen mit dem Anschlagelement und mit einem Stellantrieb oder dem Fluid-Sensor lassen sich auch miteinander kombinieren.In a further development of this embodiment, the stop element can be fixed in one position relative to the cover, with this position being selected from a number of possible positions. The process of fixing the stop element in a selected position can be carried out before the underwater body is used. By a specific position is selected and the stop element is fixed in this selected position, a volume of several possible Achieve volumes of the underwater body with the moveable component in the deployed position. This configuration leads to a particularly simple mechanism for achieving a desired volume and saves a controllable actuator, which holds the movable component in a desired position, and a fluid sensor. The configurations with the stop element and with an actuator or the fluid sensor can also be combined with one another.
In einer Ausgestaltung wird der bewegliche Bestandteil in die ausgefahrene Position verbracht, nachdem der Unterwasserkörper beispielsweise aus einem Luftfahrzeug oder einem Überwasserfahrzeug abgeworfen wurde und anschließend eine vorgegebene Zeitspanne verstrichen ist. In einer Ausgestaltung aktiviert der Unterwasserkörper automatisch das Expansionsmittel und löst dadurch automatisch den Schritt aus, Fluid in den Hohlraum zu leiten, und zwar als Reaktion auf die Detektion eines Ereignisses. An Bord des Unterwasserkörpers ist ein Sensor vorhanden, welcher dieses Ereignis automatisch detektiert. Das Ereignis kann beispielsweise sein, dass der Unterwasserkörper sich im Wasser befindet oder dass der Unterwasserkörper sich in einer Wassertiefe befindet, die größer oder gleich einer vorgegebenen Wassertiefe ist. Der Sensor misst beispielsweise den Druck des umgebenden Wassers. Möglich ist, dass das Expansionsmittel aktiviert wird, nachdem der Sensor das Ereignis detektiert hat und eine vorgegebene Zeitspanne verstrichen ist. Möglich ist auch, dass ein Zeitschalter aktiviert wird und das Ereignis detektiert, dass seit der Aktivierung des Zeitschalters eine vorgegebene Zeitspanne verstrichen ist. Die Detektion dieses Ereignisses löst den Schritt aus, das Expansionsmittel zu aktivieren.In one embodiment, the moveable component is brought into the extended position after the underwater body has been jettisoned, for example from an aircraft or a surface water vehicle, and a predetermined period of time has then elapsed. In one embodiment, the underwater body automatically activates the expansion means, thereby automatically triggering the step of directing fluid into the cavity, in response to the detection of an event. A sensor is present on board the underwater body, which automatically detects this event. The event can be, for example, that the underwater body is in the water or that the underwater body is at a water depth that is greater than or equal to a predetermined water depth. For example, the sensor measures the pressure of the surrounding water. It is possible that the expansion means is activated after the sensor has detected the event and a predetermined period of time has elapsed. It is also possible that a timer is activated and the event detects that a predetermined period of time has elapsed since the activation of the timer. Detection of this event triggers the step of activating the expansion agent.
Die Ausgestaltung mit dem Sensor erleichtert es, die Volumen-Vergrößerung so durchzuführen, dass der Unterwasserkörper mit dem vergrößerten Volumen auf einer bestimmten Wassertiefe gehalten wird. Falls der Unterwasserkörper selber die aktuelle Wassertiefe messen kann, so braucht keine Zeitspanne vorgegeben zu werden, und der richtige Zeitpunkt zu Volumen-Vergrößerung hängt in geringerem Umfange von Umgebungsbedingungen wie Wasserströmungen und Wassertemperatur und Salzgehalt ab.The configuration with the sensor makes it easier to carry out the volume increase in such a way that the underwater body with the increased volume is kept at a specific water depth. If the underwater body itself can measure the current water depth, then no time period needs to be specified, and the right time to increase the volume depends to a lesser extent on environmental conditions such as water currents and water temperature and salinity.
In einer Ausgestaltung ist der bewegliche Bestandteil ein starres Bauteil oder besitzt wenigstens eine starre Außenhülle. Dadurch verformt sich der bewegliche Bestandteil nur unwesentlich, wenn der Unterwasserkörper unter Wasser dem Wasserdruck ausgesetzt ist. Der Unterwasserkörper behält seine hydrodynamische Form im Wesentlichen auch bei unterschiedlichen Tauchtiefen bei.In one embodiment, the movable component is a rigid component or has at least one rigid outer shell. As a result, the movable component deforms only insignificantly when the underwater body is exposed to the water pressure under water. The underwater body essentially retains its hydrodynamic shape even at different diving depths.
In einer anderen Ausgestaltung besitzt der bewegliche Bestandteil eine flexible Außenhülle, beispielsweise nach Art eines Ballons oder eines Windsacks. Diese Ausgestaltung ermöglicht es, den flexiblen Bestandteil mit wenig Platz zu lagern, beispielsweise im Inneren der Hülle, solange der flexible Bestandteil im eingezogenen Zustand bleiben soll. Um den beweglichen Bestandteil in die ausgefahrene Position zu verbringen, wird das Fluid in den beweglichen Bestandteil geleitet. Das eingeleitete Fluid dehnt die flexible Außenhülle, vergrößert dadurch das Volumen des beweglichen Bestandteils und härtet dann im vergrößerten beweglichen Bestandteil aus. Beispielsweise bläst das Fluid die flexible Außenhülle auf und härtet dann in der aufgeblasenen Außenhülle aus.In another embodiment, the movable component has a flexible outer shell, for example in the manner of a balloon or a windsock. This configuration makes it possible to store the flexible component with little space, for example inside the cover, as long as the flexible component is to remain in the retracted state. In order to bring the movable component into the extended position, the fluid is directed into the movable component. The introduced fluid expands the flexible outer shell, thereby increasing the volume of the moveable component, and then solidifies in the enlarged moveable component. For example, the fluid inflates the flexible outer shell and then hardens within the inflated outer shell.
Der Unterwasserkörper ist dazu ausgestaltet, unter Wasser eingesetzt zu werden, und kann einen eigenen Antrieb aufweisen oder von einem anderen Fahrzeug durchs Wasser geschleppt werden. Der Unterwasserkörper kann für zivile und / oder für militärische Zwecke ausgestaltet sein und kann Sensoren und / oder Aktoren umfassen.The underwater body is designed to be deployed underwater and may be self-propelled or towed through the water by another vehicle. The underwater body can be designed for civil and/or military purposes and can include sensors and/or actuators.
Der Unterwasserkörper kann in einer Ausgestaltung autonom, d.h. ohne Befehl von außen, operieren. Beispielsweise ist der Unterwasserkörper ein unbemanntes autonomes Unterwasserfahrzeug (AUV, autonomous underwater vehicle) oder auch ein bemanntes Unterseeboot. Der Unterwasserkörper löst automatisch den Schritt aus, dass das Expansionsmittel das Fluid in den Hohlraum leitet.In one embodiment, the underwater body can operate autonomously, i.e. without external commands. For example, the underwater body is an autonomous underwater vehicle (AUV) or a manned submarine. The underwater body automatically triggers the step of the expansion means directing the fluid into the cavity.
In einer anderen Ausgestaltung ist der Unterwasserkörper dazu ausgestaltet, Stellbefehle von einer räumlich entfernten Plattform zu erhalten, beispielsweise von einem Überwasserschiff oder einem Luftfahrzeug. Der Unterwasserkörper ist beispielsweise ein ferngesteuertes unbemanntes Unterwasserfahrzeug (ROV, remotely operated vehicle), ein Unterwasserroboter, ein Unterwassergleiter oder ein Unterwasserlaufkörper, beispielsweise ein Torpedo, das über ein Glasfaserkabel gesteuert wird. Ein solcher Stellbefehl bewirkt beispielsweise, dass das Expansionsmittel das Fluid in den Hohlraum leitet. Die Stellbefehle werden drahtlos, insbesondere per Unterwasser-Kommunikation, oder über ein Kabel von der räumlich entfernten Plattform an den Unterwasserkörper geleitet.In another embodiment, the underwater body is designed to receive adjustment commands from a spatially distant platform, for example from a surface ship or an aircraft. The underwater body is for example, a remotely operated unmanned underwater vehicle (ROV), an underwater robot, an underwater glider, or an underwater vehicle, such as a torpedo, controlled via a fiber optic cable. Such a command causes, for example, that the expansion means directs the fluid into the cavity. The adjustment commands are transmitted wirelessly, in particular via underwater communication, or via a cable from the remote platform to the underwater body.
In einer möglichen Anwendung wird der Unterwasserkörper aus einem Luftfahrzeug, beispielsweise einem Helikopter oder einem Flugzeug, abgeworfen und fällt ins Wasser. Das Luftfahrzeug transportiert den Unterwasserkörper zu einem gewünschten Einsatzort. In einer anderen möglichen Anwendung wird der Unterwasserkörper von einer Plattform im Wasser, beispielsweise von einem Überwasserschiff oder einer stationären Plattform im Wasser, ins Wasser abgeworfen. Der bewegliche Bestandteil ist in der eingezogenen Position, während der Unterwasserkörper vom Luftfahrzeug oder Wasserfahrzeug transportiert wird, so dass der Unterwasserkörper beim Transport das kleinstmögliche Volumen aufweist. Der abgeworfene Unterwasserkörper sinkt im Wasser. Nachdem der Unterwasserkörper vollständig im Wasser ist und beispielsweise eine vorgegebene Wassertiefe erreicht hat, wird der bewegliche Bestandteil in die ausgefahrene Position verbracht, und das Volumen des Unterwasserkörpers im Wasser wird vergrößert, so dass auch der Auftrieb, der auf den Unterwasserkörper wirkt, vergrößert wird.In one possible application, the underwater body is dropped from an aircraft, for example a helicopter or an airplane, and falls into the water. The aircraft transports the underwater body to a desired location. In another possible application, the underwater body is launched into the water from a platform in the water, for example from a surface ship or a stationary platform in the water. The moveable component is in the stowed position while the underwater body is being transported by the aircraft or watercraft so that the underwater body has the smallest possible volume during transport. The discarded underwater body sinks in the water. After the underwater body is completely in the water and has reached a predetermined water depth, for example, the movable component is brought into the extended position and the volume of the underwater body in the water is increased, so that the buoyancy acting on the underwater body is also increased.
In einer Ausgestaltung hat der Unterwasserkörper nunmehr ein solches Volumen, dass das Gewicht des verdrängten Wassers annähernd gleich dem Gewicht des Unterwasserkörpers ist und der Unterwasserkörper annähernd im Wasser schwebt. In einer anderen Ausgestaltung ist das Gewicht des verdrängten Wassers größer als das Gewicht des Unterwasserkörpers, so dass der Unterwasserkörper wieder an die Wasseroberfläche steigt und eingesammelt werden kann.In one embodiment, the underwater body now has such a volume that the weight of the displaced water is approximately equal to the weight of the underwater body and the underwater body is approximately floating in the water. In another embodiment, the weight of the displaced water is greater than the weight of the underwater body, so that the underwater body rises to the water surface again and can be collected.
Nachfolgend ist der erfindungsgemäße Unterwasserkörper anhand dreier in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
-
Fig. 1 eine stark schematische Schnittdarstellung eines Unterwasserkörpers mit einer Klapphülle; -
Fig. 2 eine stark schematische Schnittdarstellung eines Unterwasserkörpers mit einem verschiebbaren Hüllensegment im vorderen Bereich des Unterwasserkörpers; -
Fig. 3 eine stark schematische Schnittdarstellung eines Unterwasserkörpers mit einem herausschiebbaren Hüllensegment und einen daran angeordneten Propellerantrieb.
-
1 a highly schematic sectional view of an underwater body with a folding cover; -
2 a highly schematic sectional view of an underwater body with a sliding shell segment in the front area of the underwater body; -
3 a highly schematic sectional view of an underwater body with a sheath segment that can be pushed out and a propeller drive arranged thereon.
Die drei Figuren zeigen einen Unterwasserkörper 101, 201, 301, der in eine Fahrtrichtung von links nach rechts fährt.The three figures show an
In
Weiterhin umfasst das Expansionsmittel eine Komponente, welche den Montageschaum 121 in den Kartuschen 113 bis 119 in flüssigem oder schaumförmigem Zustand hält und damit verhindert, dass der Montageschaum 121 bereits in einer Kartusche 113 bis 119 aushärtet, was ungewollt ist. Am Heck weist der Unterwasserkörper 101 einen Propellerantrieb 105 auf.Furthermore, the expansion means includes a component which keeps the mounting
Während der Unterwasserkörper 101 beispielsweise in einem Luftfahrzeug transportiert wird, ist die Klapphülle 107 in einer Transport-Position, in der die Klappe 107 direkt an der Hülle 103 des Unterwasserkörpers anliegt. Mittels einer nicht gezeigten Sollbruchhalterung ist die Klapphülle 107 in dieser angeklappten Position arretiert. Über den geplanten Einsatzort wird der Unterwasserkörper 101 aus dem nicht gezeigten Luftfahrzeug ins Meer oder ein sonstiges Gewässer abgeworfen und taucht ins Wasser ein.While the
Der Unterwasserkörper 101 wird automatisch aus der Transport-Position in eine Fahrt-Position überführt, wenn ein vorgegebenes Ereignis eingetreten ist.
Beim Übergang von der Transport-Position in die Fahrt-Position werden folgende Schritte durchgeführt: Der Stellmotor 111 gibt die Drehgelenke 109 frei. Die vier Montageschaum-Kartuschen 113, 115, 117 und 119 werden aktiviert. Beispielsweise wird jeweils eine Öffnung in einer Kartusche 113 bis 119 geöffnet. Dadurch wird Montageschaum 121 aus den Montageschaum-Kartuschen 113, 115, 117 und 119 freigesetzt, beispielsweise weil der flüssigem Montageschaum 121 in der Kartusche 113 bis 119 unter Überdruck stand. Die Freisetzung des Montageschaums 121 bewirkt, dass die Sollbruchhalterung bricht und die Arretierung dadurch gelöst wird. Der freigesetzte Montageschaum 121 drückt gegen die Klappe 107. Außerdem verschwenkt der Stellmotor 111 die Klapphülle 107 weg von der Hülle 103 des Unterwasserkörpers 101. Durch diese beiden miteinander kombinierten Effekte wird die Klappe 107 von der Hülle 103 weg bewegt und auf ihre maximale Position ausgeklappt. Zwischen der ausgeklappten Klapphülle 107 und der Hülle 103 wird ein Hohlraum gebildet. Dieser Hohlraum wird mit Montageschaum 121 ausgefüllt. Der Montageschaum 121 härtet aus und arretiert dadurch dauerhaft die Klapphülle 107. Die Klapphülle 107 hat nunmehr die Form eines Kegelstumpfs, welche die Hülle 103 umgibt. Der Durchmesser der Klapphülle 107 vergrößert sich in eine Richtung auf das Heck des Unterwasserkörpers 101, so dass weiterhin eine günstige hydrodynamische Form erzielt wird.The following steps are carried out during the transition from the transport position to the driving position: The
Weil die Klapphülle 107 dauerhaft in der maximalen Position gehalten wird, wird das Volumen des Unterwasserkörpers 101 dauerhaft vergrößert. Möglich ist auch, dass die Klapphülle 107 nur bis zu einer Zwischenposition ausgeschwenkt wird und der Montageschaum 121 die Klapphülle 107 in dieser Zwischenposition hält. In einer Ausgestaltung wird vorab in einem Steuerprogramm eingestellt, in welche Position die Klapphülle 107 ausgeklappt und dort arretiert werden soll. Diese Position kann von einer gewünschten Wassertiefe und / oder von der Wassertemperatur abhängen. In einer anderen Ausgestaltung begrenzt ein Anschlagelement (nicht gezeigt) die mögliche Bewegung der Klapphülle 107 weg von der Hülle 103. In einer bevorzugten Ausführungsform lässt sich dieses Anschlagelement in einer von mehreren möglichen Positionen fixieren, so dass ein ausgewähltes von mehreren möglichen Volumina des Unterwasserkörpers 101 erzielt wird.Because the
In einer Abwandlung ist jede Klapphülle 107 mit jeweils einem Federelement verbunden. Dieses Federelement ist bestrebt, die Klapphülle 107 in der Transport-Position zu halten, also in der Position, an der die Klapphülle 107 an der Hülle 103 des Unterwasserkörpers 101 anliegt. Der freigesetzte Montageschaum 121 verschwenkt die Klapphülle 107 gegen die Federkraft dieses Federelements von der Hülle 103 weg. Die Position, welche die ausgeschwenkte Klapphülle 107 erreicht, hängt einerseits von der Federkraft und andererseits von der Menge des freigesetzten Montageschaums 121 ab. Mindestens einer dieser beiden Parameter lässt sich abhängig von einer gewünschten Wassertiefe und / oder der Wassertemperatur einstellen.In a modification, each
In der Transport-Position ist das zweite, verschiebbare Hüllensegment 225 über das dritte Hüllensegment 227 geschoben, beispielsweise teleskopartig, so dass das zweite Hüllensegment 225 teilweise mit dem dritten Hüllensegment 227 überlappt. Das zweite Hüllensegment 225 liegt teilweise an dem ersten Hüllensegment 223 an. Somit weist der Unterwasserkörper 201 eine kompakte Form mit der kleinstmöglichen Länge und dem geringstmöglichen Volumen auf. Vorzugsweise ist zwischen dem zweiten Hüllensegment 225 und dem dritten Hüllensegment 227 eine flexible Dichtung angeordnet. Zwischen dem zweiten Hüllensegment 225 und dem ersten Hüllensegment 223 ist bevorzugt ebenfalls eine flexible Dichtung angeordnet. Diese flexiblen Dichtungen behalten ihre dichtende Wirkung auch bei einer Bewegung des zweiten Hüllensegments 225 bei.In the transport position, the second,
Sobald das oben beschriebene Ereignis eingetreten ist, wird der Unterwasserkörper 201 automatisch in eine Fahrt-Position überführt.
In einer Ausgestaltung ist das erste Segment 223 fest mit dem zweiten Hüllensegment 225 verbunden und wird ebenfalls vom dritten Hüllensegment 227 weg verschoben. In einer anderen Ausgestaltung ist der Durchmesser des zweiten Hüllensegments 225 größer als der Durchmesser des ersten Hüllensegments 223. Dadurch wird das Volumen des Unterwasserkörpers 201 auch dann vergrößert, wenn das erste Hüllensegment 223 fest mit dem dritten Hüllensegment 227 verbunden ist.In one embodiment, the
In beiden Ausgestaltungen härtet der ausgetretene Montageschaum 221 in dem erzeugten Hohlraum aus und fixiert dadurch das verschiebbare zweite Hüllensegment 225 relativ zum dritten Hüllensegment 227. Um welchen Betrag das Volumen vergrößert wird, hängt von der Menge des freigesetzten Montageschaums 221 ab, welche sich einstellen lässt. In einer Ausgestaltung begrenzen der Linearmotor 231 und / oder ein nicht gezeigtes Anschlagelement die mögliche Bewegung des zweiten Hüllensegments 225 weg vom dritten Hüllensegment 227 und legen dadurch den Betrag der Volumen-Vergrößerung fest.In both configurations, the exiting
In
Wenn der Unterwasserkörper 301 in der Transport-Position ist, so ist das fünfte Hüllensegment 333 in das vierte Hüllensegment 329 eingeschoben. Ein nicht gezeigter Arretierungskeil arretiert das fünfte Hüllensegment 333 in dieser Position. Der Propellerantrieb 305 liegt direkt am heckseitigen Ende des vierten Hüllensegments 329 an.When the
In einer Ausgestaltung schiebt zusätzlich der optionale Linearmotor 331 das fünfte Hüllensegment 333 weg vom vierten Hüllensegment 329. Möglich ist, dass zusätzlich ein Gas, beispielsweise Druckluft, in das fünfte Hüllensegment 333 eingeleitet wird. In einer Ausgestaltung begrenzt der Linearmotor 331 und / oder ein nicht gezeigtes Antriebselement die lineare Bewegung des fünften Hüllensegments 333 weg vom vierten Hüllensegment 329. Wiederum lässt sich der Betrag der Volumen-Vergrößerung einstellen, indem die Menge des freigesetzten Montageschaums 321 und / oder die Strecke, über den der Linearmotor 331 das fünfte Hüllensegment 333 verschiebt, entsprechend eingestellt wird oder indem das Anschlagelement entsprechend fixiert wird.
Claims (15)
- An underwater body (101, 201, 301) having- a shell (103, 203, 303),- a movable component (107, 225, 333),- an expansion means (111, 113, 115, 117, 119, 213, 215, 231, 313, 315, 331) and- a hollow space,wherein the movable component (107, 225, 333) is movable- relative to the shell (103, 203, 303) from a retracted into an extended position and- is operatively connected to the hollow space,wherein the volume of the underwater body (101, 201, 301) with the movable component (107, 225, 333) in the extended position is greater compared to the volume which the underwater body (101, 201, 301) comprises with the movable component (107, 225, 333) in the retracted position, andwherein the expansion means (111, 113, 115, 117, 119, 213, 215, 231, 313, 315, 331) is designed for the purpose of- conducting a fluid (121, 221, 321) into the hollow space and,- as a result, of moving the movable component (107, 225, 333) into the extended position,wherein
the underwater body (101, 201, 301) is designed such that- the fluid (121, 221, 321) in the hollow space hardens and- the hardened fluid (121, 221, 321) holds the movable component (107, 225, 333) in the hollow space in the extended position;.characterized in thatthe hollow space is connected to the movable component (107, 225, 333) via a piston cylinder unit andthe hollow space is formed in a chamber of the piston cylinder unit such that the expansion means conducts the liquid fluid into the chamber as to displace a piston of the piston-cylinder unit. - The underwater body (101, 201, 301) as claimed in claim 1,
characterized in that
the movable component (107, 225, 333) surrounds the hollow space fully or at least in part. - The underwater body (101, 201, 301) as claimed in one of the preceding claims,characterized in thatthe movable component (107, 225, 333) includes a flat element (107),wherein the flat element (107) is mounted so as to be pivotable on the outside of the shell (103, 203, 303) andwherein the hollow space is formed between the flat element (107) and the shell (103, 203, 303).
- The underwater body (101, 201, 301) as claimed in one of the preceding claims,characterized in thatthe movable component (107, 225, 333) surrounds the hollow space fully and comprises a flexible outer shell,wherein the introduction of fluid (121, 221, 321) into the hollow space causes the volume of the space surrounded by the flexible outer shell to be increased.
- The underwater body (101, 201, 301) as claimed in one of the preceding claims,characterized in thatthe shell (103, 203, 303) extends along a longitudinal axis andthe movable component (107, 225, 333) is displaceable along the longitudinal axis relative to the shell (103, 203, 303),wherein the length of the underwater body (101, 201, 301) with the movable component (107, 225, 333) is greater in the extended position than the length with the movable component (107, 225, 333) in the retracted position.
- The underwater body (101, 201, 301) as claimed in claim 5,characterized in thatthe underwater body (101, 201, 301) is designed for the purpose of being moved through the water in a direction of travel,wherein the movable component (107, 225, 333) is arranged at the stern of the shell (103, 203, 303).
- The underwater body (101, 201, 301) as claimed in one of the preceding claims,characterized in thatthe fluid (121, 221, 321) is an assembly foam andthe expansion means (111, 113, 115, 117, 119, 213, 215, 231, 313, 315, 331) includes at least one container (113, 115, 117, 119, 213, 215, 313, 315) with the assembly foam,wherein the assembly foam is designed such that it hardens outside the container (113, 115, 117, 119, 213, 215, 313, 315).
- The underwater body (101, 201, 301) as claimed in one of the preceding claims,characterized in thatthe expansion means (111, 113, 115, 117, 119, 213, 215, 231, 313, 315, 331) additionally includes an actuating drive (111, 231, 331),which is designed for the purpose of moving the movable component (107, 225, 333) into the extended position.
- The underwater body (101, 201, 301) as claimed in one of the preceding claims,characterized in thatthe underwater body (101, 201, 301) includes a locking unit,wherein the locking unit locks the movable component (107, 225, 333) in a locking state andthe locking unit enables the movable component (107, 225, 333) to move relative to the shell (103, 203, 303) in a release state.
- The underwater body (101, 201, 301) as claimed in claim 9,
characterized in that
the locking unit locks the movable component (107, 225, 333) in the retracted position in the locking state. - The underwater body (101, 201, 301) as claimed in one of the preceding claims,characterized in thatthe underwater body (101, 201, 301) includes a fluid sensor which is designed for the purpose of measuring a measurement for the amount of fluid (121, 221, 321) conducted into the hollow space andthe expansion means (111, 113, 115, 117, 119, 213, 215, 231, 313, 315, 331) is designed for the purpose of terminating the introduction of fluid (121, 221, 321) into the hollow space when a predefined amount of fluid (121, 221, 321) is conducted into the hollow space.
- The underwater body (101, 201, 301) as claimed in one of the preceding claims,characterized in thatthe underwater body (101, 201, 301) includes a stop element,wherein the stop element delimits the movement of the movable component (107, 225, 333) into the extended position,particularly, wherein
the stop element is fixable in one of multiple possible positions. - The underwater body (101, 201, 301) as claimed in one of the preceding claims,characterized in thatthe underwater body (101, 201, 301) includes a sensor which is designed for detecting at least one of the events where- the underwater body (101, 201, 301) is situated in the water or- the underwater body (101, 201, 301) has reached a predefined water depth in the water andthe underwater body (101, 201, 301) is designed for the purpose of activating the expansion means (111, 113, 115, 117, 119, 213, 215, 231, 313, 315, 331) automatically as a reaction to the detection of the event.
- A method for operating an underwater body according to one of the preceding claims 1-13 (101, 201, 301),wherein the underwater body (101, 201, 301) includes- a shell (103, 203, 303),- a movable component (107, 225, 333),- an expansion means (111, 113, 115, 117, 119, 213, 215, 231, 313, 315, 331) and- a hollow space,wherein the movable component (107, 225, 333) is movable- relative to the shell (103, 203, 303) from a retracted into an extended position and- is operatively connected to the hollow space,wherein the method includes the steps where- the expansion means (111, 113, 115, 117, 119, 213, 215, 231, 313, 315, 331) conducts a fluid (121, 221, 321) into the hollow space,- the movable component (107, 225, 333) is moved from the retracted into the extended position as a result of the introduction of the fluid (121, 221, 321) and- as a result, the volume of the underwater body (101, 201, 301) is increased,characterized in thatthe fluid (121, 221, 321) in the hollow space hardens andthe hardened fluid (121, 221, 321) holds the movable component (107, 225, 333) in the extended position in the hollow space.
- The method as claimed in claim 14,characterized in thatthe underwater body (101, 201, 301) with the movable component (107, 225, 333) in is transported in the retracted position outside the water to a site of use,the underwater body (101, 201, 301) is exposed in the water,the underwater body (101, 201, 301) sinks down in the water andthe step where the expansion means (111, 113, 115, 117, 119, 213, 215, 231, 313, 315, 331) conducts the fluid (121, 221, 321) into the hollow space is triggered whilst the underwater body (101, 201, 301) sinks down in the water or floats in the water.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017115601.1A DE102017115601A1 (en) | 2017-07-12 | 2017-07-12 | Underwater body for increasing buoyancy after introduction into a body of water |
PCT/EP2018/068489 WO2019011831A1 (en) | 2017-07-12 | 2018-07-09 | Underwater body having a variable volume and method for operating such an underwater body |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3652062A1 EP3652062A1 (en) | 2020-05-20 |
EP3652062B1 true EP3652062B1 (en) | 2022-09-14 |
Family
ID=62873341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18739512.4A Active EP3652062B1 (en) | 2017-07-12 | 2018-07-09 | Underwater body having a variable volume and method for operating such an underwater body |
Country Status (4)
Country | Link |
---|---|
US (1) | US11046403B2 (en) |
EP (1) | EP3652062B1 (en) |
DE (1) | DE102017115601A1 (en) |
WO (1) | WO2019011831A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11343944B2 (en) * | 2017-12-01 | 2022-05-24 | Raytheon Company | Deep-water submersible system |
SE544604C2 (en) * | 2021-01-21 | 2022-09-20 | Saab Ab | Nose arrangement and method for deploying a nose arrangement of an underwater vehicle |
CN114248896B (en) * | 2021-12-30 | 2023-05-05 | 哈尔滨工程大学 | AUV multistage fishing net preventing system and method |
CN115071927B (en) * | 2022-06-29 | 2023-12-05 | 江苏科技大学 | High-reliability robot propulsion system suitable for underwater recovery task |
CN115817773B (en) * | 2023-01-04 | 2024-09-03 | 北京先驱高技术开发有限责任公司 | Buoyancy balancing mechanism for underwater robot |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR653846A (en) * | 1928-05-04 | 1929-03-28 | Internally controlled refloating device for submersibles | |
DE836603C (en) * | 1949-12-15 | 1952-05-23 | Johann Becker | Small submarine |
US3616775A (en) | 1969-07-14 | 1971-11-02 | Upjohn Co | Emergency buoyancy generating apparatus |
US4271552A (en) | 1979-07-06 | 1981-06-09 | Presearch Incorporated | Torpedo floatation device |
KR100281717B1 (en) * | 1998-11-13 | 2001-03-02 | 김종수 | Buoyancy control device of underwater equipment |
US6254445B1 (en) | 2000-06-12 | 2001-07-03 | The United States Of America As Represented By The Secretary Of The Navy | Inflatable chemical foam injected buoy |
FR2830837A1 (en) * | 2001-10-15 | 2003-04-18 | Alain Fernand Eugene Navelier | Buoyancy balloons for self-propelled underwater mine-disposable craft are designed to raise craft to surface with ballast weight on inflation |
DE10206273A1 (en) * | 2002-02-15 | 2003-08-28 | Ulf-Peter Pestel | Buoyancy body for diving and water sports equipment comprises a closed outer skin which accommodates a hard support element taking up given mechanical and hydromechanical loading |
US6923105B1 (en) * | 2003-10-06 | 2005-08-02 | The United States Of America As Represented By The Secretary Of The Navy | Gun-armed countermeasure |
US7250568B1 (en) | 2006-06-30 | 2007-07-31 | The United States Of America As Represented By The Secretary Of The Navy | Underwater vehicle deceleration and positive buoyancy assembly |
US8448592B2 (en) * | 2007-10-30 | 2013-05-28 | Ocean Server Technology, Inc. | External rescue and recovery devices and methods for underwater vehicles |
FR2943615A1 (en) * | 2009-03-24 | 2010-10-01 | Eric Jean | Float for engine of e.g. flat car, has fuselage comprising longitudinal and displacement axes that comprise respective inclination angles, where displacement axis is formed between entered position and leaving position |
-
2017
- 2017-07-12 DE DE102017115601.1A patent/DE102017115601A1/en not_active Withdrawn
-
2018
- 2018-07-09 US US16/628,704 patent/US11046403B2/en active Active
- 2018-07-09 EP EP18739512.4A patent/EP3652062B1/en active Active
- 2018-07-09 WO PCT/EP2018/068489 patent/WO2019011831A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
US11046403B2 (en) | 2021-06-29 |
US20200189705A1 (en) | 2020-06-18 |
WO2019011831A1 (en) | 2019-01-17 |
EP3652062A1 (en) | 2020-05-20 |
DE102017115601A1 (en) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3652062B1 (en) | Underwater body having a variable volume and method for operating such an underwater body | |
EP1798145B1 (en) | Submarine | |
DE102017216112A1 (en) | Dropping system and dropping method with retractable luffing jib | |
EP3947140B1 (en) | Manoeuvrable measurement body for determining measurement data having malfunction module | |
DE102008024815B3 (en) | Trimming device for e.g. autonomous underwater vehicle, in oil and gas industry, has bellow trimming unit with two bellows, where bellows are formed from wall made of flexible material for changing volumes of bellows | |
DE2245791A1 (en) | UNDERWATER VEHICLE WITH AUTONOMOUS ENERGY SOURCE | |
EP1457419A1 (en) | Submarine | |
EP1816069A2 (en) | Submarine and Submarine rescue device | |
EP3180241B1 (en) | Launching device and submarine vehicle | |
EP1950521B1 (en) | Method for storing and deploying submersibles in a submarine | |
EP3631343B1 (en) | Underwater transport container for combat divers | |
DE102015014602B3 (en) | Flight recorder device | |
DE102017128319A1 (en) | Buoy to assist navigation and / or communication of a submarine | |
DE102023103889B3 (en) | Safe routing of a cable on a submarine | |
EP3652063A1 (en) | Underwater vehicle, which swivels a drive upon immersion into a body of water | |
EP4051978B1 (en) | Weapon tube | |
DE3900572C2 (en) | ||
EP4359295A1 (en) | Delivery system for inflatable boats for a submarine, in particular for covert operations | |
DE102018008418B4 (en) | Data storage device for fast location and localization of the data storage element for aircraft | |
EP1617169B1 (en) | Depth control device for a float connected to a bobbin | |
EP2319756B1 (en) | Activation device for an inflation device for inflating inflatable buoyant bodies | |
DE2316761C3 (en) | Underwater work vehicle | |
DE102004062126A1 (en) | Unmanned underwater vehicle | |
DE2908826A1 (en) | Torpedo tubes in submarine - are fitted in enlarged central section of pressure hull with end slides for inserting torpedoes | |
DE10122822A1 (en) | Remote control for steering kite and other earth-bound flight instruments by means of remote control system using radio-, optic-, or sound signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220603 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018010636 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1518553 Country of ref document: AT Kind code of ref document: T Effective date: 20221015 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230116 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230114 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018010636 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
26N | No opposition filed |
Effective date: 20230615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230709 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230709 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1518553 Country of ref document: AT Kind code of ref document: T Effective date: 20230709 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240725 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 7 |