EP3642941A1 - An electric machine - Google Patents
An electric machineInfo
- Publication number
- EP3642941A1 EP3642941A1 EP18722182.5A EP18722182A EP3642941A1 EP 3642941 A1 EP3642941 A1 EP 3642941A1 EP 18722182 A EP18722182 A EP 18722182A EP 3642941 A1 EP3642941 A1 EP 3642941A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bearing
- electric machine
- support body
- rotor assembly
- adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/161—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/026—Units comprising pumps and their driving means with a magnetic coupling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/043—Shafts
- F04D29/044—Arrangements for joining or assembling shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/10—Shaft sealings
- F04D29/12—Shaft sealings using sealing-rings
- F04D29/122—Shaft sealings using sealing-rings especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/266—Rotors specially for elastic fluids mounting compressor rotors on shafts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
- H02K5/173—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
- H02K5/1732—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/003—Couplings; Details of shafts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/08—Structural association with bearings
- H02K7/083—Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/50—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/60—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C27/00—Elastic or yielding bearings or bearing supports, for exclusively rotary movement
- F16C27/06—Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
- F16C27/066—Ball or roller bearings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/04—Balancing means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
- H02K7/16—Structural association with mechanical loads, e.g. with hand-held machine tools or fans for operation above the critical speed of vibration of the rotating parts
Definitions
- the present invention relates to an electric machine.
- electric machines such as brushless electric motors
- improvements may be desired in terms of size weight, manufacturing cost, efficiency, reliability and noise.
- This invention provides an electric machine comprising: a stator assembly; a rotor assembly; and a support body.
- the rotor assembly comprises a shaft to which is mounted a first bearing and a second bearing either side of a permanent magnet
- the support body comprises first and second bearing seats to which the bearings of the rotor assembly are mounted, wherein the first bearing is mounted to the first bearing seat by adhesive, and the second bearing is soft-mounted to the second bearing seat by an o-ring.
- the shaft may be driving a load mounted to one end of the shaft, and the second bearing may be closer to the load than the first bearing.
- the bearing that is closest to the load is soft mounted to the support body. Radial forces are most likely to be generated by the load attached to the shaft, and so it is beneficial for the bearing closest to the load to be able to absorb any radial forces caused by the load spinning during use so that it does not have a negative impact on the strength of the adhesive bond at the other bearing. Any axial forces are transferred along the rotor assembly, and are withstood by the bearing which is spaced further away from the load.
- the electric machine may be a compressor and the load may be an impeller.
- the impeller may be a mixed flow impeller.
- An annular groove may be provided in at least one of the outer surface of the second bearing and the bearing seat, and the o-ring is positioned in said annular groove.
- An annular groove may be provided in at least one of the outer surface of the first bearing, and the bearing seat, the annular groove providing a channel in which adhesive can be located.
- This channel can allow for a clean adhesive bond, and reduces the chance that adhesive will flow out from between the bearing and the bearing seat during assembly which would reduce the effectiveness of the adhesive bond. If adhesive was able to flow out, there is also the chance that it may enter into the bearing itself which would be extremely detrimental to the bearing and could stop it from functioning completely.
- the support body may comprise an elongate central part, and the first and second bearing seats may be positioned axially at opposite ends of the elongate central part such that the permanent magnet is positioned within the elongate central part of the support body.
- the elongate central part may support the stator assembly.
- Figure 1 shows an exploded perspective view of a compressor
- Figure 2 shows an exploded perspective view of a rotor assembly
- Figure 3 shows an assembled rotor assembly
- Figure 4 shows a cross section of a compressor
- Figure 1 shows an exploded perspective view of an electric machine 10 in the form of a compressor. Certain components, such as control electronics and an external housing, are not shown for clarity.
- the electric machine 10 includes a rotor assembly 12, a support body 14 and a stator assembly comprising four stator elements 16, 18, 20 and 22.
- the rotor assembly 12 is located within and mounted to the support body 14, and the stator elements are located in respective slots in the support body 14.
- the stator element 20 is located within slot 24 in the support body.
- the support body 14 may be a one-piece construction, for example moulded as a single object, and includes an impeller shroud 26 that covers the impeller as shown in Figure 4.
- the motor 10 also includes a diffuser 28.
- FIG. 2 shows an exploded perspective view of the rotor assembly 12.
- the rotor assembly 12 comprises a shaft 30 on which is mounted a rotor core permanent magnet 32, a first balancing ring 34 and a second balancing ring 36.
- a pair of bearings 38, 40 are mounted on the shaft 30 on either side of the core 32 and balancing rings 34, 36.
- An impeller is 42 is mounted at one end of the shaft 30, and a sensor magnet 44 is mounted at the other end.
- Figure 3 shows an assembled rotor assembly 12. Similar to Figure 2, the rotor assembly 12 comprises a shaft 30 on which is mounted a rotor core permanent magnet 32, and balancing rings 34, 36 positioned either side of the magnet 32. At one end of the magnet 32, fixed to the shaft 30 is a first bearing 40 with is provided with an annular groove or channel 41 on the outer circumferential surface thereof. The groove 41 provides a channel in which adhesive can be located. When the rotor assembly 12 is assembled into place within the support body 14, the first bearing 40 sits inside a bearing seat in the support body, and is fixed therein using adhesive.
- the channel 41 allows for a stronger bond to be achieved between the first bearing 41 and the bearing seat, and reduces the chance that adhesive will flow out from between the bearing and the bearing seat during assembly which would reduce the effectiveness of the adhesive bond. Furthermore, if adhesive was able to flow out, there would be a chance that adhesive may contaminate the bearing itself which would be extremely detrimental to the bearing and could stop it from functioning completely.
- Fixed to the shaft 30 at the opposite end of the magnet 32 is a second bearing 38.
- An o-ring 39 is placed around the second bearing 38.
- the second bearing is also is provided with an annular groove or channel (not shown) on the outer circumferential surface thereof.
- the o-ring 39 sits within this channel in order that the o-ring remains in a desired position on the bearing 38 and will not move around.
- the second bearing 38 sits inside a second bearing seat in the support body, and is soft mounted thereto by way of the o-ring 39.
- Figure 4 shows a cross-section of the assembled electric machine 10 through a plane that includes the axis of rotation of the rotor assembly 12.
- the stator elements 16, 20 are shown inserted into their respective slots in the support body 14, for example stator element 20 is inserted into slot 24.
- the bearings 38, 40 of the rotor assembly 12 are positioned within the support body 14 and mounted to bearing seats 50 and 52 respectively.
- bearing 38 is soft- mounted within bearing seat 50 by an o-ring
- bearing 40 is hard mounted to bearing seat 52 by adhesive.
- the first bearing 40 is positioned further away from the impeller 42 than the second bearing 38.
- the first bearing 40 is fixed to the bearing seat 52 by adhesive, and is able to withstand axial forces along the rotor that are generated by the impeller 42 during use.
- the second bearing 38 is positioned within the bearing seat 50 closest to the impeller 42. Because the second bearing 38 is only soft mounted within the bearing seat 50 by way of the o-ring, it is able to absorb any radial forces generated by the impeller 42 as it spins during use. If an adhesive bond had been used to fix bearing 38 to bearing seat 50, then it is possible that radial forces could have weakened the adhesive bond over time, reducing the life of the motor, and potentially resulting in a catastrophic failure of the electric machine 10.
- the soft mounting cannot withstand any axial forces generated along the rotor assembly by the impeller during use, which is why an adhesive bond is used to fix the other bearing 40 to the bearing seat 52, and the use of two different mounting methods for each of the bearings is so beneficial.
- annular channel provided in the outer surface of each of the bearings may be provided on the inner surface of the bearing seat of the support body instead.
- the embodiments shown and described herein are directed to a compressor with an impeller.
- the invention would be beneficial to other types of electric machine such as brushless electric motors used to drive loads other than impellers.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Motor Or Generator Frames (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1709839.3A GB2563617B (en) | 2017-06-20 | 2017-06-20 | An electric machine |
PCT/GB2018/051134 WO2018234739A1 (en) | 2017-06-20 | 2018-04-27 | An electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3642941A1 true EP3642941A1 (en) | 2020-04-29 |
Family
ID=59462335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18722182.5A Withdrawn EP3642941A1 (en) | 2017-06-20 | 2018-04-27 | An electric machine |
Country Status (8)
Country | Link |
---|---|
US (2) | US11300130B2 (en) |
EP (1) | EP3642941A1 (en) |
JP (1) | JP6689318B2 (en) |
KR (1) | KR102281734B1 (en) |
CN (2) | CN208623466U (en) |
GB (1) | GB2563617B (en) |
TW (1) | TW201906283A (en) |
WO (1) | WO2018234739A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017004272B3 (en) * | 2017-05-04 | 2018-06-28 | Doppstadt Familienholding Gmbh | Device for classifying classed goods |
GB2563617B (en) * | 2017-06-20 | 2020-04-08 | Dyson Technology Ltd | An electric machine |
GB2571554B (en) * | 2018-03-01 | 2020-09-30 | Dyson Technology Ltd | An electric motor |
KR102273754B1 (en) | 2019-06-14 | 2021-07-06 | 엘지전자 주식회사 | Motor assembly and manufacturing method thereof |
KR102512292B1 (en) | 2019-06-21 | 2023-03-22 | 엘지전자 주식회사 | Motor assembly and manufacturing method thereof |
KR102171452B1 (en) | 2019-06-21 | 2020-10-29 | 엘지전자 주식회사 | Motor assembly and manufacturing method thereof |
GB2586844B (en) * | 2019-09-05 | 2021-11-24 | Dyson Technology Ltd | A compressor |
CN113675983A (en) * | 2020-05-15 | 2021-11-19 | 广东威灵电机制造有限公司 | Rotating electrical machine and fan |
CN113675982A (en) * | 2020-05-15 | 2021-11-19 | 广东威灵电机制造有限公司 | Rotating electrical machine and fan |
CN113675984B (en) * | 2020-05-15 | 2022-08-26 | 广东威灵电机制造有限公司 | Rotating electrical machine and fan |
KR20220045434A (en) | 2020-10-05 | 2022-04-12 | 엘지전자 주식회사 | Motor |
US20240245190A1 (en) | 2023-01-19 | 2024-07-25 | Sharkninja Operating Llc | Identification of hair care appliance attachments |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2114670A (en) * | 1936-02-11 | 1938-04-19 | Fafnir Bearing Co | Pillow block |
US3701911A (en) * | 1971-05-20 | 1972-10-31 | Skf Ind Trading & Dev | Motor bearing support and cooling means |
US3807040A (en) * | 1972-04-21 | 1974-04-30 | Gen Electric | Method of assembling a dynamoelectric machine stator |
DE2315192B2 (en) * | 1973-03-27 | 1978-02-23 | Klein, Schanzlin & Becker Ag, 6710 Frankenthal | ELECTRIC MOTOR FOR USE IN HIGH OPERATING TEMPERATURES |
DE3122655C2 (en) * | 1981-06-06 | 1984-06-28 | Hans-Dieter 7121 Gemmrigheim Layh | Speed sensor device |
JPS6314018U (en) * | 1986-07-11 | 1988-01-29 | ||
US4801831A (en) * | 1987-02-02 | 1989-01-31 | Emerson Electric Co. | Electric motor stator support structure and method of manufacturing same |
US5228832A (en) * | 1990-03-14 | 1993-07-20 | Hitachi, Ltd. | Mixed flow compressor |
US5238336A (en) * | 1992-09-29 | 1993-08-24 | Sanders Thomas A | Hand held power dowel tool |
US5610461A (en) * | 1994-02-14 | 1997-03-11 | Emerson Electric Co. | Motor endshields |
US5904471A (en) * | 1996-12-20 | 1999-05-18 | Turbodyne Systems, Inc. | Cooling means for a motor-driven centrifugal air compressor |
JP3719557B2 (en) * | 1996-12-20 | 2005-11-24 | 多摩川精機株式会社 | Motor bearing holding structure |
JPH10246238A (en) * | 1997-03-06 | 1998-09-14 | Ntn Corp | Rolling bearing and its attaching structure |
JP2000023414A (en) * | 1998-07-03 | 2000-01-21 | Nippon Densan Corp | Spindle motor |
JP2000230564A (en) * | 1999-02-10 | 2000-08-22 | Nsk Ltd | Rotary shaft support structure |
US6700255B1 (en) | 1999-11-12 | 2004-03-02 | E. I. Du Pont De Nemours And Company | Bearing system with flexible bearing bracket |
US6664682B2 (en) * | 2001-02-28 | 2003-12-16 | Reliance Electric Technologies, Llc | Method and apparatus for securing a conduit box to a motor and motor incorporating same |
DE10208692A1 (en) * | 2001-08-28 | 2003-03-20 | Kaltenbach & Voigt | Medical or dental medical handpiece with a turned part mounted in a roller bearing |
GB2406146B (en) * | 2003-09-19 | 2006-12-06 | Dyson Ltd | A bearing assembly |
JP2005188527A (en) * | 2003-12-24 | 2005-07-14 | Koyo Seiko Co Ltd | Rolling bearing and motor device using the same |
JP2006017299A (en) * | 2004-06-01 | 2006-01-19 | Minebea Co Ltd | Hydrodynamic bearing and spindle motor with the same, and recording disk driving device |
DE102005010459A1 (en) | 2005-03-08 | 2006-09-14 | Vorwerk & Co. Interholding Gmbh | electric motor |
US7431512B2 (en) * | 2005-11-18 | 2008-10-07 | Hamilton Sundstrand Corporation | Compact lightweight bearing assembly |
JP5010482B2 (en) | 2005-12-27 | 2012-08-29 | 三菱重工業株式会社 | Planetary roller reducer |
US20070228847A1 (en) * | 2006-03-30 | 2007-10-04 | Korea Fluid Machinery Co., Ltd. | High speed electric motor |
NZ576965A (en) | 2006-10-24 | 2011-12-22 | Resmed Motor Technologies Inc | Brushless DC motor wherein the magnet and rotor are located in the bearing tube |
JP5468747B2 (en) * | 2007-06-05 | 2014-04-09 | レスメド・モーター・テクノロジーズ・インコーポレーテッド | Blower with bearing tube |
KR100903519B1 (en) * | 2007-09-18 | 2009-06-19 | 주식회사 아모텍 | IPM Motor and Vacuum Inhaling Apparatus Using the Same |
DE102007047644B4 (en) * | 2007-10-05 | 2010-12-09 | BSH Bosch und Siemens Hausgeräte GmbH | Rolling, rolling bearing assembly and machine, in particular electrical domestic appliance |
JP5064992B2 (en) | 2007-12-13 | 2012-10-31 | アスモ株式会社 | Brushless motor and manufacturing method thereof |
FR2926247A1 (en) | 2008-01-14 | 2009-07-17 | Corima Sa | Rear wheel hub for bicycle, has ball bearing forming elastic sliding pivot connection between rotational axle and cassette body via elastomer O-rings, and another ball bearing forming swivel connection between axle and cassette body |
GB2467966B (en) | 2009-02-24 | 2013-04-03 | Dyson Technology Ltd | Rotor assembly |
JP5519196B2 (en) * | 2009-06-24 | 2014-06-11 | サムスン電機ジャパンアドバンスドテクノロジー株式会社 | Disk drive |
NO333314B1 (en) * | 2009-07-03 | 2013-04-29 | Aker Subsea As | Turbo machine and impeller |
EP2459892A1 (en) * | 2009-07-30 | 2012-06-06 | Aktiebolaget SKF | Fixed-loose bearing arrangement |
BE1019030A5 (en) * | 2009-08-03 | 2012-01-10 | Atlas Copco Airpower Nv | TURBO COMPRESSOR SYSTEM. |
US8324769B2 (en) * | 2009-09-23 | 2012-12-04 | Rbc Manufacturing Corporation | Motor controller for an electric motor |
GB2489021B (en) * | 2011-03-16 | 2013-08-14 | Flybrid Automotive Ltd | High speed flywheel |
CN102684394B (en) * | 2011-03-17 | 2016-12-07 | 德昌电机(深圳)有限公司 | Motor sub-assembly |
CN202134992U (en) * | 2011-07-20 | 2012-02-01 | 宁波强生电机有限公司 | Bearing chamber structure for minisize motor |
GB2493975B (en) * | 2011-08-26 | 2015-02-11 | Dyson Technology Ltd | Turbomachine |
JP5919745B2 (en) | 2011-11-15 | 2016-05-18 | 株式会社島津製作所 | Vacuum pump |
GB2499042A (en) | 2012-02-06 | 2013-08-07 | Dyson Technology Ltd | A nozzle for a fan assembly |
CN102726820B (en) | 2012-07-13 | 2014-10-29 | 云南大学 | Energy-saving bulk curer with solar auxiliary heat supplying and waste heat recycling functions |
WO2014154287A1 (en) * | 2013-03-28 | 2014-10-02 | Aktiebolaget Skf | Bearing assembly and method for assembling and mounting said bearing assembly with a component supporting said bearing assembly |
GB2525543B (en) * | 2013-05-03 | 2016-01-06 | Dyson Technology Ltd | Compressor |
DE102014202279A1 (en) * | 2014-02-07 | 2015-08-13 | Bühler Motor GmbH | Electromotive drive |
DE102014204608A1 (en) * | 2014-03-12 | 2015-09-17 | BSH Hausgeräte GmbH | vacuum cleaner fan |
CN203770422U (en) * | 2014-03-31 | 2014-08-13 | 宁波慈兴轴承有限公司 | Axial shock absorption bearing with O-shaped ring on outer ring |
CN105449909B (en) | 2014-09-24 | 2020-01-31 | 雷勃美国公司 | Axial flux motor bearing mounting system and method |
GB2548505B (en) * | 2014-12-19 | 2020-09-23 | Skf Ab | Bearing ring |
US20160195130A1 (en) * | 2015-01-07 | 2016-07-07 | Schaeffler Technologies AG & Co. KG | Bearing assembly with integrated vibration damping |
US9819246B2 (en) * | 2015-01-13 | 2017-11-14 | Regal Beloit America, Inc. | Electrical machine and controller and methods of assembling the same |
TWI584561B (en) * | 2015-02-13 | 2017-05-21 | 周文三 | Motor with heat dissipation structure |
JP6514406B2 (en) * | 2015-09-04 | 2019-05-15 | ピアーブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングPierburg Pump Technology GmbH | Vehicle auxiliary equipment with an electric drive motor |
TWI582304B (en) * | 2015-10-20 | 2017-05-11 | 周文三 | Motor structure capable of dissipating heat therein |
US10302136B2 (en) * | 2015-11-04 | 2019-05-28 | Mitsubishi Electric Corporation | Motor and method for producing the same |
US10651698B2 (en) * | 2016-01-26 | 2020-05-12 | Mitsubishi Electric Corporation | Rotor of rotary electric machine, rotary electric machine, and rotor member of rotary electric machine |
KR101852114B1 (en) * | 2016-09-09 | 2018-04-25 | 엘지전자 주식회사 | Motor |
DE112017007210T5 (en) * | 2017-03-07 | 2019-12-05 | Mitsubishi Electric Corporation | Main electric motor for a vehicle |
US20180266440A1 (en) * | 2017-03-17 | 2018-09-20 | Nidec Corporation | Blower and vacuum cleaner |
JP6665344B2 (en) * | 2017-03-30 | 2020-03-13 | 三菱電機株式会社 | Vehicle electric motor |
CN110073120A (en) * | 2017-03-31 | 2019-07-30 | 株式会社Ihi | Bearing construction and motor compressor |
JP2018207576A (en) * | 2017-05-31 | 2018-12-27 | 日本電産株式会社 | Motor, blowing device and cleaner |
GB2563617B (en) | 2017-06-20 | 2020-04-08 | Dyson Technology Ltd | An electric machine |
-
2017
- 2017-06-20 GB GB1709839.3A patent/GB2563617B/en active Active
-
2018
- 2018-04-27 EP EP18722182.5A patent/EP3642941A1/en not_active Withdrawn
- 2018-04-27 KR KR1020207000735A patent/KR102281734B1/en active IP Right Grant
- 2018-04-27 WO PCT/GB2018/051134 patent/WO2018234739A1/en unknown
- 2018-06-04 CN CN201820859466.0U patent/CN208623466U/en active Active
- 2018-06-04 CN CN201810563626.1A patent/CN109104038A/en active Pending
- 2018-06-15 TW TW107120674A patent/TW201906283A/en unknown
- 2018-06-19 US US16/011,961 patent/US11300130B2/en active Active
- 2018-06-19 JP JP2018116269A patent/JP6689318B2/en active Active
-
2022
- 2022-03-08 US US17/689,646 patent/US12044242B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR102281734B1 (en) | 2021-07-27 |
US12044242B2 (en) | 2024-07-23 |
WO2018234739A1 (en) | 2018-12-27 |
GB2563617A (en) | 2018-12-26 |
CN208623466U (en) | 2019-03-19 |
US20180363669A1 (en) | 2018-12-20 |
TW201906283A (en) | 2019-02-01 |
US20220196023A1 (en) | 2022-06-23 |
CN109104038A (en) | 2018-12-28 |
US11300130B2 (en) | 2022-04-12 |
JP6689318B2 (en) | 2020-04-28 |
GB2563617B (en) | 2020-04-08 |
GB201709839D0 (en) | 2017-08-02 |
JP2019009984A (en) | 2019-01-17 |
KR20200014919A (en) | 2020-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12044242B2 (en) | Electric machine | |
JP6851446B2 (en) | Electric motor | |
JP7523958B2 (en) | Brushless motor | |
EP3642938A1 (en) | An electric motor | |
US20100148602A1 (en) | Oil retainer cooling assembly for an electric motor | |
CN113675982A (en) | Rotating electrical machine and fan | |
US12015322B2 (en) | Electric motor | |
JP7126913B2 (en) | Blower | |
CN113675985B (en) | Rotating electrical machine and fan | |
KR101113831B1 (en) | Turbo machine | |
CN113675983A (en) | Rotating electrical machine and fan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201113 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210324 |