EP3642467A1 - Method for the model-based open-loop and closed-loop control of an internal combustion engine - Google Patents
Method for the model-based open-loop and closed-loop control of an internal combustion engineInfo
- Publication number
- EP3642467A1 EP3642467A1 EP18732291.2A EP18732291A EP3642467A1 EP 3642467 A1 EP3642467 A1 EP 3642467A1 EP 18732291 A EP18732291 A EP 18732291A EP 3642467 A1 EP3642467 A1 EP 3642467A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- optimizer
- quality measure
- gas path
- model
- injection system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000002347 injection Methods 0.000 claims abstract description 45
- 239000007924 injection Substances 0.000 claims abstract description 45
- 238000005259 measurement Methods 0.000 abstract 3
- 230000004913 activation Effects 0.000 abstract 2
- 239000007789 gas Substances 0.000 description 38
- 230000001276 controlling effect Effects 0.000 description 8
- 238000013400 design of experiment Methods 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 230000015654 memory Effects 0.000 description 5
- 238000005457 optimization Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1406—Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1402—Adaptive control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/401—Controlling injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1412—Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/143—Controller structures or design the control loop including a non-linear model or compensator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0402—Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0602—Fuel pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D41/3836—Controlling the fuel pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D41/3836—Controlling the fuel pressure
- F02D41/3845—Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
Definitions
- the invention relates to a method for model-based control and regulation of a
- Combustion model Injection system setpoint values for controlling the injection system actuators and via a gas path model Gas path setpoint values for controlling the gas path actuators are calculated.
- Calculated internal combustion engine for example, the start of injection and a required rail pressure. These characteristics / maps are fitted with data at the manufacturer of the internal combustion engine on a test bench. The multiplicity of these characteristic curves / maps and the correlation of the
- DE 10 2006 004 516 B3 describes a Bayes network with probability tables for determining an injection quantity
- US 2011/0172897 A1 describes a method for adapting the start of injection and injection quantity via combustion models by means of neural networks.
- Critical here is that only trained data are mapped, which must be learned only at a test bench run.
- a model-based control method for the gas path of an internal combustion engine is known.
- the gas path includes both the air side and the exhaust side together with an exhaust gas recirculation.
- a first step of the process is from the
- Measured variables of the gas path for example, the charge air temperature or the NOx concentration, the current operating situation of the internal combustion engine detected.
- a quality measure within a prediction horizon is then likewise calculated from the measured variables via a physical model of the gas path. From the quality measure and the operating situation turn then in a third step the
- Control signals for the actuators of the gas path set refers exclusively to the gas path and is based on a linearized gas path model. Due to the linearization a loss of information is unavoidable.
- the invention is therefore based on the object to develop a method for model-based control and regulation of the entire engine at high quality.
- the method is that depending on a desired torque on a
- Combustion model Injection system setpoint values for controlling the injection system actuators and via a gas path model Gaspath setpoints for controlling the gas path actuators are calculated and that an optimizer calculates a quality measure as a function of the injection system setpoints and the gas path setpoints. Furthermore, the method consists in the optimizer minimizing the quality measure by changing the injection system setpoint values and gas path setpoint values within a prediction horizon and setting the injection system setpoint values and gas path setpoint values as relevant for setting the operating point of the internal combustion engine by the optimizer on the basis of the minimized quality measure become.
- the minimized quality measure is calculated by the optimizer calculating a first quality measure at a first point in time, forecasting a second quality measure within the prediction horizon at a second time, and then a deviation of the two
- Quality measures is determined. If the deviation is smaller than a limit value, then the optimizer sets the second quality measure as a minimized quality measure.
- the limit value analysis is a termination criterion insofar as further minimization would not lead to any more precise adaptation. Instead of the limit value analysis, a predefinable number of
- Recalculations are set as abort criterion.
- a setpoint rail pressure value for a subordinate rail pressure control loop and immediately an injection start and an injection end for controlling an injector are then specified by the optimizer as an injection system setpoint.
- the optimizer indirectly then the gas path setpoints, for example, a lambda setpoint for a subordinate lambda control loop and an EGR setpoint for a
- Both the combustion model and the gas path model map the system behavior of the internal combustion engine as mathematical equations. These are determined once based on a reference internal combustion engine at a test bench run, the so-called DoE test bench run (DoE: Design of Experiments) or from simulation experiments. Since, for example, different emission targets for one and the same type of engine can be displayed, the coordination effort is significantly reduced. A distinction between a stationary and a transient operation, for example, in a load application in the
- the target torque is set precisely while maintaining the emission limit value.
- the models are individually tunable, the models in the sum of the internal combustion engine. The previously required characteristics and maps can thus be omitted.
- FIG. 1 shows a system diagram
- FIG. 2 shows a model-based system diagram
- FIG. 3 is a program flowchart
- FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system.
- the common rail system includes the following mechanical
- a low-pressure pump 3 for conveying fuel from a fuel tank 2, a variable intake throttle 4 for influencing the flowing through
- Fuel volume flow a high-pressure pump 5 for conveying the fuel under pressure increase, a rail 6 for storing the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1.
- a high-pressure pump 5 for conveying the fuel under pressure increase
- a rail 6 for storing the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1.
- Common Railsystem be executed with individual memories, in which case, for example, in Injector 7 a single memory 8 is integrated as an additional buffer volume.
- Injector 7 a single memory 8 is integrated as an additional buffer volume.
- the illustrated gas path includes both the air supply and the exhaust gas removal.
- Intercooler 12 a throttle valve 13, a junction 14 for merging the charge air with the recirculated exhaust gas and the inlet valve 15.
- an EGR actuator 17 the turbine of the
- the operation of the internal combustion engine 1 is determined by an electronic control unit 10 (ECU).
- the electronic control unit 10 includes the usual components of a
- Microcomputer system such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM).
- I / O devices I / O devices
- buffers and memory devices EEPROM, RAM
- EEPROM electrically erasable programmable read-only memory
- FIG. 1 A setpoint torque M (SET), which is predetermined via an operator, the rail pressure pCR, which is measured by means of a rail pressure sensor 9, the engine speed nIST, the charge air pressure pLL, the charge air temperature TLL, the humidity phi of the charge air, the exhaust gas temperature TAbgas, the air-fuel ratio lambda, the NOx actual value, optionally the pressure pES of the individual memory 8 and a
- SET setpoint torque M
- SET setpoint torque M
- the rail pressure pCR which is measured by means of a rail pressure sensor 9
- the engine speed nIST the charge air pressure pLL
- the charge air temperature TLL the humidity phi of the charge air
- Control of the intake throttle 4 a signal ve to control the injectors 7 (start of injection / injection end), a control signal DK to control the throttle valve 13, a control signal AGR to control the EGR actuator 17, a control signal TBP to control the turbine bypass valve 18 and an output size OFF.
- the output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1,
- FIG. 2 shows a model-based system diagram.
- a combustion model 19 within the electronic control unit 10, a combustion model 19, a gas path model 20 and a Optimizer 21 is listed.
- Both the combustion model 19 and the gas path model 20 map the system behavior of the internal combustion engine as mathematical equations.
- the combustion model 19 statically maps the combustion processes.
- the gas path model 20 forms the dynamic behavior of the air duct and the
- Combustion model 19 includes single models, for example, for NOx and soot formation, exhaust gas temperature, exhaust gas mass flow, and peak pressure. These individual models in turn depend on the boundary conditions in the cylinder and the parameters of the injection.
- the combustion model 19 is determined in a reference internal combustion engine in a test bench run, the so-called DoE test bench run (DoE: Design of Experiments). The DoE test bed run becomes systematic
- the optimizer 21 evaluates the combustion model 19 with regard to the
- Target torque M SOLL
- the emission limit values for example the humidity phi of the charge air
- the environmental boundary conditions for example the humidity phi of the charge air
- the operating situation of the internal combustion engine is defined by the engine speed nIST, the charge air temperature TLL, the
- the function of the optimizer 21 is now to evaluate the injection system setpoints for controlling the injection system actuators and the gas path setpoints for controlling the gas path actuators.
- the optimizer 21 selects that solution in which a quality measure is minimized.
- the quality measure is calculated as the integral of the quadratic nominal-actual deviations within the prediction horizon. For example, in the form:
- w1, w2 and w3 denote a corresponding weighting factor.
- the nitrogen oxide emission results from the humidity phi of the charge air, the charge air temperature, the start of injection SB and the rail pressure pCR.
- the quality measure is minimized by calculating a first quality measure from the optimizer 21 at a first point in time, varying the injection system setpoint values and the gas path setpoints, and using this a second quality measure within the prediction horizon is forecasted. On the basis of the deviation of the two quality measures each other, the optimizer 21 determines a minimum quality measure and sets this as relevant for the
- the target rail pressure pCR (SL) is the reference variable for the subordinate rail pressure control loop 22.
- the manipulated variable of the rail pressure control loop 22 corresponds to the PWM signal for acting on the suction throttle.
- the injector (FIG. 1: 7) is acted upon directly by the start of injection SB and the injection end SE.
- the optimizer 21 indirectly determines the gas path setpoints. In the illustrated example, these are a lambda setpoint LAM (SL) and an EGR setpoint AGR (SL) for specification for the two subordinate control loops 23 and 24.
- the returned measured variables MESS are read in by the electronic control unit 10.
- the measured quantities MESS are to be understood as meaning directly measured physical quantities as well as auxiliary variables calculated therefrom.
- the actual lambda value LAM (ACTUAL) and the EGR actual value AGR (ACTUAL) are read in.
- FIG. 3 shows the method in a program flow chart.
- Initialization at S 1 is checked at S2 whether the starting process is completed. If this still runs, query result S2: no, branches back to point A. If the starting process has ended, then at S3 the setpoint torque M (DESIRED), which can be predetermined by the operator, and the NOx setpoint value NOx (SOLL) are read in. Following this, at S4 the operating situation of the
- the operating situation is defined by the measured variables, in particular by the engine speed nIST, the charge air temperature TLL, the charge air pressure pLL, the wet phi of the charge air, etc.
- the subroutine optimizer is called and the initial values, for example the injection start SB, are generated at S6.
- a first quality measure Jl is calculated using equation (1) at S7, and a running variable i is set to zero at S8. After that, the initial values are changed at S9 and calculated as new setpoint values for the manipulated variables.
- the run variable i is increased by one.
- a second quality measure J2 is then predicted for Si within the prediction horizon, for example for the next 8 seconds.
- the second quality measure J2 is subtracted from the first quality measure J1 and compared with a limit value GW.
- a limit value GW is checked about the difference of the two quality measures.
- the further progress of the quality measure is checked.
- the two threshold considerations are one
- Query result S12 no, it branches back to point C. Otherwise, at S13 the optimizer sets the second quality measure J2 as a minimum quality measure J (min). From the minimum quality measure J (min), the injection system setpoint values and the gas path setpoint values then result for the specification for the corresponding actuators. Following this, S 14 checks whether an engine stop has been initiated. If this is not the case, query result S14: no, branch back to point B. Otherwise, the program schedule is finished.
- FIG. 4 shows a time diagram.
- FIG. 4 comprises FIGS. 4A to 4D.
- Figure 4A shows the course of the nitrogen oxide emission NOx
- Figure 4B shows the course of the nitrogen oxide emission NOx
- the time range before to is the past.
- the prediction horizon for example 8s, corresponds to the time range t0 to t0 + tp.
- ts is a calculation time designated at which a new setpoint, for example, the injection start SB, is output from the electronic control unit.
- SOLL constant setpoint torque M
- the NOx target value course NOx (SL) in FIG. 4A is predetermined. From these initial values results a correspondingly large desired actual deviation dNOx, see FIG. 4A.
- the NOx actual value is calculated as a function of the measured air pressures in the air path and the start of injection SB. Using equation (1), the optimizer calculates a first quality measure J1 at time t0. The optimizer then calculates how a change in the start of injection SB, the desired lambda value, is calculated
- the optimizer determines the second quality measure J2 for each of the times shown. About the subtraction of the two quality measures and the
- EGR actuator exhaust gas recirculation
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
L'invention concerne un procédé pour la gestion et la régulation basées sur des modèles d'un moteur à combustion interne (1). En fonction d'un couple théorique, des valeurs théoriques du système d'injection pour l'activation de l'élément de réglage du système d'injection sont calculées au moyen d'un modèle de combustion (19), et des valeurs théoriques de trajet de gaz pour l'activation de l'élément de réglage du trajet de gaz sont calculées au moyen d'un modèle de trajet de gaz (20), une mesure de qualité est calculée par un optimiseur (21) en fonction des valeurs théoriques du système d'injection et des valeurs théoriques de trajet de gaz, la mesure de qualité est minimisée à l'intérieur d'un horizon de prédiction par l'optimiseur (21) en modifiant les valeurs théoriques du système d'injection et les valeurs théoriques de trajet de gaz, et les valeurs théoriques du système d'injection et les valeurs théoriques de trajet de gaz sont définies par l'optimiseur (21) au moyen de la mesure de qualité minimisée comme applicables pour ajuster le point de fonctionnement du moteur à combustion interne (1).The invention relates to a method for the model-based management and control of an internal combustion engine (1). In function of a theoretical torque, theoretical values of the injection system for the activation of the injection system control element are calculated by means of a combustion model (19), and theoretical values of gas path for activation of the gas path adjusting element are calculated by means of a gas path model (20), a quality measurement is calculated by an optimizer (21) as a function of the theoretical values of the injection system and the theoretical values of the gas path, the quality measurement is minimized within a prediction horizon by the optimizer (21) by modifying the theoretical values of the injection system and the values Theoretical gas path, and the theoretical values of the injection system and the theoretical gas path values are defined by the optimizer (21) by means of the minimized quality measurement as applicable to adjust the operating point of the engine at internal combustion (1).
Description
BESCHREIBUNG Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine DESCRIPTION Method for model-based control of an internal combustion engine
Die Erfindung betrifft ein Verfahren zur modellbasierten Steuerung und Regelung einer The invention relates to a method for model-based control and regulation of a
Brennkraftmaschine, bei dem in Abhängigkeit eines Soll- Moments über ein Internal combustion engine, in which, depending on a desired torque on a
Verbrennungsmodell Einspritzsystem-Sollwerte zur Ansteuerung der Einspritzsystem- Stellglieder und über ein Gaspfadmodell Gaspfad-Sollwerte zur Ansteuerung der Gaspfad- Stellglieder berechnet werden. Combustion model Injection system setpoint values for controlling the injection system actuators and via a gas path model Gas path setpoint values for controlling the gas path actuators are calculated.
Das Verhalten einer Brennkraftmaschine wird maßgeblich über ein Motorsteuergerät in The behavior of an internal combustion engine is governed by an engine control unit in
Abhängigkeit eines Leistungswunsches bestimmt. Hierzu sind in der Software des Dependence of a desired performance determined. These are in the software of the
Motorsteuergeräts entsprechende Kennlinien und Kennfelder appliziert. Über diese werden aus dem Leistungswunsch, zum Beispiel einem Soll-Moment, die Stellgrößen der Engine ECU applied corresponding characteristics and maps. From these, the desired values, for example a setpoint torque, become the manipulated variables of the
Brennkraftmaschine berechnet, zum Beispiel der Spritzbeginn und ein erforderlicher Raildruck. Mit Daten bestückt werden diese Kennlinien/Kennfelder beim Hersteller der Brennkraftmaschine auf einem Prüfstand. Die Vielzahl dieser Kennlinien/Kennfelder und die Korrelation der Calculated internal combustion engine, for example, the start of injection and a required rail pressure. These characteristics / maps are fitted with data at the manufacturer of the internal combustion engine on a test bench. The multiplicity of these characteristic curves / maps and the correlation of the
Kennlinien/Kennfelder untereinander verursachen allerdings einen hohen Abstimmungsaufwand. However, characteristic curves / maps with each other cause a high coordination effort.
In der Praxis wird daher versucht den Abstimmungsaufwand durch die Verwendung von mathematischen Modellen zu reduzieren. So beschreibt zum Beispiel die DE 10 2006 004 516 B3 ein Bayesnetz mit Wahrscheinlichkeitstabellen zur Festlegung einer Einspritzmenge und die US 2011/0172897 AI ein Verfahren zur Adaption des Spritzbeginns sowie Spritzmenge über Verbrennungsmodelle mittels neuronaler Netze. Kritisch ist hierbei, dass lediglich trainierten Daten abgebildet werden, die erst bei einem Prüfstandslauf gelernt werden müssen. In practice, it is therefore attempted to reduce the coordination effort by using mathematical models. For example, DE 10 2006 004 516 B3 describes a Bayes network with probability tables for determining an injection quantity, and US 2011/0172897 A1 describes a method for adapting the start of injection and injection quantity via combustion models by means of neural networks. Critical here is that only trained data are mapped, which must be learned only at a test bench run.
Aus der US 2016/0025020 AI ist ein modellbasiertes Regelverfahren für den Gaspfad einer Brennkraftmaschine bekannt. Der Gaspfad umfasst sowohl die Luftseite als auch die Abgasseite nebst einer Abgas-Rückführung. In einem ersten Schritt des Verfahrens wird aus den From US 2016/0025020 Al a model-based control method for the gas path of an internal combustion engine is known. The gas path includes both the air side and the exhaust side together with an exhaust gas recirculation. In a first step of the process is from the
Messgrößen des Gaspfads, zum Beispiel die Ladelufttemperatur oder die NOx-Konzentration, die aktuelle Betriebssituation der Brennkraftmaschine festgestellt. In einem zweiten Schritt wird dann ebenfalls aus den Messgrößen über ein physikalisches Modell des Gaspfads ein Gütemaß innerhalb eines Prädiktionshorizonts berechnet. Aus dem Gütemaß und der Betriebssituation wiederum werden dann in einem dritten Schritt die Measured variables of the gas path, for example, the charge air temperature or the NOx concentration, the current operating situation of the internal combustion engine detected. In a second step, a quality measure within a prediction horizon is then likewise calculated from the measured variables via a physical model of the gas path. From the quality measure and the operating situation turn then in a third step the
Ansteuersignale für die Stellglieder des Gaspfads festgelegt. Das angegebene Verfahren bezieht sich ausschließlich auf den Gaspfad und basiert auf einem linearisierten Gaspfadmodell. Durch die Linearisierung bedingt ist ein Informationsverlust unvermeidbar. Control signals for the actuators of the gas path set. The given procedure refers exclusively to the gas path and is based on a linearized gas path model. Due to the linearization a loss of information is unavoidable.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur modellbasierten Steuerung und Regelung der ganzen Brennkraftmaschine bei hoher Güte zu entwickeln. The invention is therefore based on the object to develop a method for model-based control and regulation of the entire engine at high quality.
Gelöst wird diese Aufgabe durch die Merkmale von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt. This object is achieved by the features of claim 1. The embodiments are shown in the subclaims.
Das Verfahren besteht darin, dass in Abhängigkeit eines Sollmoments über ein The method is that depending on a desired torque on a
Verbrennungsmodell Einspritzsystem-Sollwerte zur Ansteuerung der Einspritzsystem- Stellglieder und über ein Gaspfadmodell Gaspfad-Sollwerte zur Ansteuerung der Gaspfad- Stellglieder berechnet werden und dass von einem Optimierer ein Gütemaß in Abhängigkeit der Einspritzsystem-Sollwerte und der Gaspfad-Sollwerte berechnet wird. Ferner besteht das Verfahren darin, dass vom Optimierer das Gütemaß über Veränderung der Einspritzsystem- Sollwerte und Gaspfad-Sollwerte innerhalb eines Prädiktionshorizonts minimiert wird und vom Optimierer anhand des minimierten Gütemaßes die Einspritzsystem-Sollwerte und Gaspfad- Sollwerte als maßgeblich zur Einstellung des Betriebspunkts der Brennkraftmaschine gesetzt werden. Berechnet wird das minimierte Gütemaß indem vom Optimierer zu einem ersten Zeitpunkt ein erstes Gütemaß berechnet wird, zu einem zweiten Zeitpunkt ein zweites Gütemaß innerhalb des Prädiktionshorizonts prognostiziert wird und anschließend eine Abweichung der beiden Combustion model Injection system setpoint values for controlling the injection system actuators and via a gas path model Gaspath setpoints for controlling the gas path actuators are calculated and that an optimizer calculates a quality measure as a function of the injection system setpoints and the gas path setpoints. Furthermore, the method consists in the optimizer minimizing the quality measure by changing the injection system setpoint values and gas path setpoint values within a prediction horizon and setting the injection system setpoint values and gas path setpoint values as relevant for setting the operating point of the internal combustion engine by the optimizer on the basis of the minimized quality measure become. The minimized quality measure is calculated by the optimizer calculating a first quality measure at a first point in time, forecasting a second quality measure within the prediction horizon at a second time, and then a deviation of the two
Gütemaße bestimmt wird. Ist die Abweichung kleiner als ein Grenzwert, so wird vom Optimierer das zweite Gütemaß als minimiertes Gütemaß gesetzt. Die Grenzwertbetrachtung ist insofern ein Abbruchkriterium, da eine weitere Minimierung zu keiner noch präziseren Anpassung führen würde. Anstelle der Grenzwertbetrachtung kann auch eine vorgebbare Anzahl von Quality measures is determined. If the deviation is smaller than a limit value, then the optimizer sets the second quality measure as a minimized quality measure. The limit value analysis is a termination criterion insofar as further minimization would not lead to any more precise adaptation. Instead of the limit value analysis, a predefinable number of
Neuberechnungen als Abbruchkriterium gesetzt werden. Anhand des minimale Gütemaßes werden dann vom Optimierer als Einspritzsystem-Sollwert mittelbar ein Raildruck-Sollwert für einen unterlagerten Raildruck-Regelkreis und unmittelbar ein Spritzbeginn sowie ein Spritzende zur Ansteuerung eines Injektors vorgegeben. Ergänzend werden dann vom Optimierer mittelbar die Gaspfad-Sollwerte, zum Beispiel ein Lambda- Sollwert für einen unterlagerten Lambda-Regelkreis und ein AGR-Sollwert für einen Recalculations are set as abort criterion. On the basis of the minimum quality measure, a setpoint rail pressure value for a subordinate rail pressure control loop and immediately an injection start and an injection end for controlling an injector are then specified by the optimizer as an injection system setpoint. In addition, the optimizer indirectly then the gas path setpoints, for example, a lambda setpoint for a subordinate lambda control loop and an EGR setpoint for a
unterlagerten AGR-Regelkreis, vorgegeben. subordinate EGR control loop, specified.
Sowohl das Verbrennungsmodell als auch das Gaspfadmodell bilden das Systemverhalten der Brennkraftmaschine als mathematische Gleichungen ab. Bestimmt werden diese einmalig anhand einer Referenz-Brennkraftmaschine bei einem Prüfstandslauf, dem sogenannten DoE- Prüfstandslauf (DoE: Design of Experiments) oder aus Simulationsversuchen. Da zum Beispiel unterschiedliche Emissionsziele für ein und denselben Brennkraftmaschinentyp darstellbar sind, reduziert sich der Abstimmungsaufwand in entscheidendem Maße. Eine Unterscheidung in einen stationären und einen transienten Betrieb, zum Beispiel bei einer Lastaufschaltung im Both the combustion model and the gas path model map the system behavior of the internal combustion engine as mathematical equations. These are determined once based on a reference internal combustion engine at a test bench run, the so-called DoE test bench run (DoE: Design of Experiments) or from simulation experiments. Since, for example, different emission targets for one and the same type of engine can be displayed, the coordination effort is significantly reduced. A distinction between a stationary and a transient operation, for example, in a load application in the
Generatorbetrieb, ist nicht mehr erforderlich. Zudem wird das Sollmoment unter Einhaltung der Emissionsgrenzwert präzise eingestellt. Die Modelle sind einzeln abstimmbar, wobei die Modelle in der Summe die Brennkraftmaschine abbilden. Die bisher erforderlichen Kennlinien und Kennfelder können somit entfallen. Generator operation, is no longer required. In addition, the target torque is set precisely while maintaining the emission limit value. The models are individually tunable, the models in the sum of the internal combustion engine. The previously required characteristics and maps can thus be omitted.
In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen: In the figures, a preferred embodiment is shown. Show it:
Figur 1 ein Systemschaubild, FIG. 1 shows a system diagram,
Figur 2 ein modellbasiertes Systemschaubild, FIG. 2 shows a model-based system diagram,
Figur 3 einen Programm- Ablaufplan und Figure 3 is a program flowchart and
Figur 4 Zeitdiagramme Figure 4 timing diagrams
Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 mit einem Common-Railsystem. Das Common-Railsystem umfasst folgende mechanische FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system. The common rail system includes the following mechanical
Komponenten: eine Niederdruckpumpe 3 zur Förderung von Kraftstoff aus einem Kraftstofftank 2, eine veränderbare Saugdrossel 4 zur Beeinflussung des durchströmenden Components: a low-pressure pump 3 for conveying fuel from a fuel tank 2, a variable intake throttle 4 for influencing the flowing through
Kraftstoff- Volumenstroms, eine Hochdruckpumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung, ein Rail 6 zum Speichern des Kraftstoffs und Injektoren 7 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1. Optional kann das Fuel volume flow, a high-pressure pump 5 for conveying the fuel under pressure increase, a rail 6 for storing the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1. Optionally, the
Common-Railsystem auch mit Einzelspeichern ausgeführt sein, wobei dann zum Beispiel im Injektor 7 ein Einzelspeicher 8 als zusätzliches Puffervolumen integriert ist. Die weitere Common Railsystem be executed with individual memories, in which case, for example, in Injector 7 a single memory 8 is integrated as an additional buffer volume. The others
Funktionalität des Common-Railsystem wird als bekannt vorausgesetzt. Functionality of the common rail system is assumed to be known.
Der dargestellte Gaspfad umfasst sowohl die Luftzuführung als auch die Abgasabführung. The illustrated gas path includes both the air supply and the exhaust gas removal.
Angeordnet sind in der Luftzuführung der Verdichter eines Abgasturbo laders 11 , eine Arranged in the air supply to the compressor of a turbocharger loader 11, a
Ladeluftkühler 12, eine Drosselklappe 13, eine Einmündungsstelle 14 zur Zusammenführung der Ladeluft mit dem rückgeführten Abgas und das Einlassventil 15. In der Abgasführung angeordnet sind neben dem Auslassventil 16 ein AGR-Stellglied 17, die Turbine des Intercooler 12, a throttle valve 13, a junction 14 for merging the charge air with the recirculated exhaust gas and the inlet valve 15. In the exhaust system are arranged next to the exhaust valve 16, an EGR actuator 17, the turbine of the
Abgasturboladers 11 und ein Turbinen-Bypassventil 18. Exhaust gas turbocharger 11 and a turbine bypass valve 18th
Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät 10 (ECU) bestimmt. Das elektronische Steuergerät 10 beinhaltet die üblichen Bestandteile eines The operation of the internal combustion engine 1 is determined by an electronic control unit 10 (ECU). The electronic control unit 10 includes the usual components of a
Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten als Modelle appliziert. Über diese berechnet das elektronische Steuergerät 10 aus den Eingangsgrößen die Ausgangsgrößen. In der Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: Ein Sollmoment M(SOLL), welches über einen Bediener vorgegeben wird, der Raildruck pCR, der mittels eines Rail- Drucksensors 9 gemessen wird, die Motordrehzahl nIST, der Ladeluftdruck pLL, die Ladelufttemperatur TLL, die Feuchte phi der Ladeluft, die Abgastemperatur TAbgas, das Luft-Kraftstoffverhältnis Lambda, der NOx-Istwert, optional der Druck pES des Einzelspeichers 8 und eine Microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data are applied as models. About this calculates the electronic control unit 10 from the input variables, the output variables. The following input variables are shown by way of example in FIG. 1: A setpoint torque M (SET), which is predetermined via an operator, the rail pressure pCR, which is measured by means of a rail pressure sensor 9, the engine speed nIST, the charge air pressure pLL, the charge air temperature TLL, the humidity phi of the charge air, the exhaust gas temperature TAbgas, the air-fuel ratio lambda, the NOx actual value, optionally the pressure pES of the individual memory 8 and a
Eingangsgröße EIN. Unter der Eingangsgröße EIN sind die weiteren nicht dargestellten Input size ON. Under the input ON, the others are not shown
Sensorsignale zusammengefasst, beispielsweise die Kühlmitteltemperaturen. In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 10 dargestellt: ein Signal PWM zur Sensor signals summarized, for example, the coolant temperatures. In FIG. 1, the output variables of the electronic control unit 10 are shown as a signal PWM for
Ansteuerung der Saugdrossel 4, ein Signal ve zur Ansteuerung der Injektoren 7 (Spritzbeginn/ Spritzende), ein Stellsignal DK zur Ansteuerung der Drosselklappe 13, ein Stellsignal AGR zur Ansteuerung des AGR- Stellglieds 17, ein Stellsignal TBP zur Ansteuerung des Turbinen- Bypassventils 18 und eine Ausgangsgröße AUS. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1 , Control of the intake throttle 4, a signal ve to control the injectors 7 (start of injection / injection end), a control signal DK to control the throttle valve 13, a control signal AGR to control the EGR actuator 17, a control signal TBP to control the turbine bypass valve 18 and an output size OFF. The output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1,
beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung . For example, for a control signal for activating a second exhaust gas turbocharger in a register charging.
Die Figur 2 zeigt ein modellbasiertes Systemschaubild. Bei dieser Darstellung sind innerhalb des elektronischen Steuergeräts 10 ein Verbrennungsmodell 19, ein Gaspfadmodell 20 und ein Optimierer 21 aufgeführt. Sowohl das Verbrennungsmodell 19 als auch das Gaspfadmodell 20 bilden das Systemverhalten der Brennkraftmaschine als mathematische Gleichungen ab. Das Verbrennungsmodell 19 bildet statisch die Vorgänge bei der Verbrennung ab. Im Unterschied hierzu bildet das Gaspfadmodell 20 das dynamische Verhalten der Luftführung und der FIG. 2 shows a model-based system diagram. In this illustration, within the electronic control unit 10, a combustion model 19, a gas path model 20 and a Optimizer 21 is listed. Both the combustion model 19 and the gas path model 20 map the system behavior of the internal combustion engine as mathematical equations. The combustion model 19 statically maps the combustion processes. In contrast, the gas path model 20 forms the dynamic behavior of the air duct and the
Abgasführung ab. Das Verbrennungsmodell 19 beinhaltet Einzelmodelle zum Beispiel für die NOx- und Rußentstehung, für die Abgastemperatur, für den Abgasmassenstrom und für den Spitzendruck. Diese Einzelmodelle wiederum hängen ab von den Randbedingungen im Zylinder und den Parametern der Einspritzung. Bestimmt wird das Verbrennungsmodell 19 bei einer Referenz-Brennkraftmaschine in einem Prüfstandslauf, dem sogenannte DoE-Prüfstandslauf (DoE: Design of Experiments). Beim DoE-Prüfstandslauf werden systematisch Exhaust system from. Combustion model 19 includes single models, for example, for NOx and soot formation, exhaust gas temperature, exhaust gas mass flow, and peak pressure. These individual models in turn depend on the boundary conditions in the cylinder and the parameters of the injection. The combustion model 19 is determined in a reference internal combustion engine in a test bench run, the so-called DoE test bench run (DoE: Design of Experiments). The DoE test bed run becomes systematic
Betriebsparameter und Stellgröße mit dem Ziel variiert, das Gesamtverhalten der Operating parameters and manipulated variable with the goal varies, the overall behavior of the
Brennkraftmaschine in Abhängigkeit von motorischen Größen und Umweltrandbedingungen abzubilden. Der Optimierer 21 wertet das Verbrennungsmodell 19 aus und zwar hinsichtlich des Depict internal combustion engine depending on engine sizes and environmental conditions. The optimizer 21 evaluates the combustion model 19 with regard to the
Sollmoments M(SOLL), der Emissionsgrenzwerte, der Umweltrandbedingungen, zum Beispiel die Feuchte phi der Ladeluft, und der Betriebssituation der Brennkraftmaschine. Definiert wird die Betriebssituation durch die Motordrehzahl nIST, die Ladelufttemperatur TLL, den Target torque M (SOLL), the emission limit values, the environmental boundary conditions, for example the humidity phi of the charge air, and the operating situation of the internal combustion engine. The operating situation is defined by the engine speed nIST, the charge air temperature TLL, the
Ladeluftdruck pLL usw. Die Funktion des Optimierers 21 besteht nun darin die Einspritzsystem- Sollwerte zur Ansteuerung der Einspritzsystem- Stellglieder und die Gaspfad-Sollwerte zur Ansteuerung der Gaspfad-Stellglieder zu bewerten. Hierbei wählt der Optimierer 21 diejenige Lösung aus, bei der ein Gütemaß minimiert wird. Berechnet wird das Gütemaß als Integral der quadratischen Soll-Istabweichungen innerhalb des Prädiktionshorizonts. Beispielsweise in der Form: Charge air pressure pLL, etc. The function of the optimizer 21 is now to evaluate the injection system setpoints for controlling the injection system actuators and the gas path setpoints for controlling the gas path actuators. Here, the optimizer 21 selects that solution in which a quality measure is minimized. The quality measure is calculated as the integral of the quadratic nominal-actual deviations within the prediction horizon. For example, in the form:
(1) J = J [wl(NOx(SOLL)-NOx(IST)]2 + [w2(M(SOLL)-M(IST)]2 + [w3(....)] + · · · (1) J = J [wl (NOx (SOLL) -NOx (IST)] 2 + [w2 (M (SOLL) -M (IST)] 2 + [w3 (....)] + · · ·
Hierin bedeuten wl, w2 und w3 einen entsprechenden Gewichtungsfaktor. Bekanntermaßen ergeben sich die Stickoxidemission aus der Feuchte phi der Ladeluft, der Ladelufttemperatur, dem Spritzbeginn SB und dem Raildruck pCR. Here w1, w2 and w3 denote a corresponding weighting factor. As is known, the nitrogen oxide emission results from the humidity phi of the charge air, the charge air temperature, the start of injection SB and the rail pressure pCR.
Minimiert wird das Gütemaß, indem vom Optimierer 21 zu einem ersten Zeitpunkt ein erstes Gütemaß berechnet wird, die Einspritzsystem-Sollwerte sowie die Gaspfad-Sollwerte variiert werden und anhand dieser ein zweites Gütemaß innerhalb des Prädiktionshorizonts prognostiziert wird. Anhand der Abweichung der beiden Gütemaße zueinander legt dann der Optimierer 21 ein minimales Gütemaß fest und setzt dieses als maßgeblich für die The quality measure is minimized by calculating a first quality measure from the optimizer 21 at a first point in time, varying the injection system setpoint values and the gas path setpoints, and using this a second quality measure within the prediction horizon is forecasted. On the basis of the deviation of the two quality measures each other, the optimizer 21 determines a minimum quality measure and sets this as relevant for the
Brennkraftmaschine. Für das in der Figur dargestellte Beispiel sind dies für das Einspritzsystem der Soll-Raildruck pCR(SL) und der Spritzbeginn SB sowie das Spritzende SE. Der Soll- Raildruck pCR(SL) ist die Führungsgröße für den unterlagerten Raildruck-Regelkreis 22. Die Stellgröße des Raildruck-Regelkreises 22 entspricht dem PWM-Signal zu Beaufschlagung der Saugdrossel. Mit dem Spritzbeginn SB und dem Spritzende SE wird der Injektor (Fig. 1 : 7) unmittelbar beaufschlagt. Für den Gaspfad bestimmt der Optimierer 21 mittelbar die Gaspfad- Sollwerte. Bei dem dargestellten Beispiel sind dies ein Lamda-Sollwert LAM(SL) und ein AGR- Sollwert AGR(SL) zur Vorgabe für die beiden unterlagerten Regelkreise 23 und 24. Die rückgeführten Messgrößen MESS werden vom elektronischen Steuergerät 10 eingelesen. Unter den Messgrößen MESS sind sowohl unmittelbar gemessene physikalische Größen als auch daraus berechnete Hilfsgrößen zu verstehen. Bei dem dargestellten Beispiel werden der Lamda- Istwert LAM(IST) und der AGR-Istwert AGR(IST) eingelesen. Internal combustion engine. For the example shown in the figure, these are for the injection system the target rail pressure pCR (SL) and the injection start SB and the injection end SE. The desired rail pressure pCR (SL) is the reference variable for the subordinate rail pressure control loop 22. The manipulated variable of the rail pressure control loop 22 corresponds to the PWM signal for acting on the suction throttle. The injector (FIG. 1: 7) is acted upon directly by the start of injection SB and the injection end SE. For the gas path, the optimizer 21 indirectly determines the gas path setpoints. In the illustrated example, these are a lambda setpoint LAM (SL) and an EGR setpoint AGR (SL) for specification for the two subordinate control loops 23 and 24. The returned measured variables MESS are read in by the electronic control unit 10. The measured quantities MESS are to be understood as meaning directly measured physical quantities as well as auxiliary variables calculated therefrom. In the example shown, the actual lambda value LAM (ACTUAL) and the EGR actual value AGR (ACTUAL) are read in.
In der Figur 3 ist das Verfahren in einem Programm- Ablaufplan dargestellt. Nach der FIG. 3 shows the method in a program flow chart. After
Initialisierung bei S 1 wird bei S2 geprüft ob der Startvorgang beendet ist. Läuft dieser noch, Abfrageergebnis S2: nein, wird zum Punkt A zurückverzweigt. Ist der Startvorgang beendet, so wird bei S3 das vom Bediener vorgebbare Sollmoment M(SOLL) und der NOx-Sollwert NOx(SOLL) eingelesen. Im Anschluss daran wird bei S4 die Betriebssituation der Initialization at S 1 is checked at S2 whether the starting process is completed. If this still runs, query result S2: no, branches back to point A. If the starting process has ended, then at S3 the setpoint torque M (DESIRED), which can be predetermined by the operator, and the NOx setpoint value NOx (SOLL) are read in. Following this, at S4 the operating situation of the
Brennkraftmaschine erfasst. Definiert wird die Betriebssituation über die Messgrößen, insbesondere über die Motordrehzahl nIST, die Ladelufttemperatur TLL, den Ladeluftdruck pLL, die Feucht phi der Ladeluft usw. Bei S5 wird das Unterprogramm Optimierer aufgerufen und die Anfangswerte, zum Beispiel der Spritzbeginn SB, bei S6 erzeugt. Ein erstes Gütemaß Jl wird anhand der Gleichung (1) bei S7 berechnet und bei S8 eine Laufvariable i auf null gesetzt. Danach werden bei S9 die Anfangswerte verändert und als neue Sollwerte für die Stellgrößen berechnet. Bei S10 wird die Laufvariable i um eins erhöht. Anhand der neuen Sollwerte wird dann bei Si l ein zweites Gütemaß J2 innerhalb des Prädiktionshorizonts, zum Beispiel für die nächsten 8 Sekunden, prognostiziert. Bei S12 wiederum wird das zweite Gütemaß J2 vom ersten Gütemaß Jl subtrahiert und mit einem Grenzwert GW verglichen. Über die Differenzbildung der beiden Gütemaße wird der weitere Fortschritt des Gütemaßes abgeprüft. Alternativ wird anhand des Vergleichs der Laufvariablen i mit einem Grenzwert iGW geprüft, wie oft bereits eine Optimierung durchlaufen wurde. Die beiden Grenzwertbetrachtungen sind insofern ein Internal combustion engine detected. The operating situation is defined by the measured variables, in particular by the engine speed nIST, the charge air temperature TLL, the charge air pressure pLL, the wet phi of the charge air, etc. At S5, the subroutine optimizer is called and the initial values, for example the injection start SB, are generated at S6. A first quality measure Jl is calculated using equation (1) at S7, and a running variable i is set to zero at S8. After that, the initial values are changed at S9 and calculated as new setpoint values for the manipulated variables. At S10, the run variable i is increased by one. On the basis of the new setpoint values, a second quality measure J2 is then predicted for Si within the prediction horizon, for example for the next 8 seconds. At S12, in turn, the second quality measure J2 is subtracted from the first quality measure J1 and compared with a limit value GW. About the difference of the two quality measures the further progress of the quality measure is checked. Alternatively, it is checked on the basis of the comparison of the run variable i with a limit value iGW, how often an optimization has already been carried out. The two threshold considerations are one
Abbruchkriterium für eine weitere Optimierung. Ist eine weitere Optimierung möglich, Abfrageergebnis S12: nein, so wird zum Punkt C zurück verzweigt. Anderenfalls wird bei S13 vom Optimierer das zweite Gütemaß J2 als minimales Gütemaß J(min) gesetzt. Aus dem minimalen Gütemaß J(min) resultieren dann die Einspritzsystem-Sollwerte und die Gaspfad- Sollwerte zur Vorgabe für die entsprechenden Stellglieder. Im Anschluss daran wird bei S 14 geprüft ob ein Motorstopp initiiert wurde. Ist dies nicht der Fall, Abfrageergebnis S14: nein, wird zum Punkt B zurückverzweigt. Anderenfalls ist der Programm- Ablaufplan beendet. Abort criterion for further optimization. Is further optimization possible, Query result S12: no, it branches back to point C. Otherwise, at S13 the optimizer sets the second quality measure J2 as a minimum quality measure J (min). From the minimum quality measure J (min), the injection system setpoint values and the gas path setpoint values then result for the specification for the corresponding actuators. Following this, S 14 checks whether an engine stop has been initiated. If this is not the case, query result S14: no, branch back to point B. Otherwise, the program schedule is finished.
In der Figur 4 ist ein Zeitdiagram dargestellt. Die Figur 4 umfasst die Figuren 4A bis 4D. Hierbei zeigen die Figur 4A den Verlauf der Stickoxid-Emission NOx, Figur 4B FIG. 4 shows a time diagram. FIG. 4 comprises FIGS. 4A to 4D. Here, Figure 4A shows the course of the nitrogen oxide emission NOx, Figure 4B
den Spritzbeginn SB in Grad Kurbelwellenwinkel vor dem oberen Totpunkt (OT), Figur 4C den Verlauf des Lambda-Sollwerts LAM(SL) und Figur 4D den Soll-Raildruck pCR(SL). Der Zeitbereich vor tO entspricht der Vergangenheit. Der Prädiktionshorizont, zum Beispiel 8s, entspricht dem Zeitbereich tO bis tO+tp. Mit ts ist eine Berechnungszeit bezeichnet, bei der ein neuer Sollwert, zum Beispiel der Spritzbeginn SB, vom elektronischen Steuergerät ausgegeben wird. Bei dem dargestellten Beispiel wird von einem konstanten Sollmoment M(SOLL) ausgegangen. the start of injection SB in degrees crankshaft angle before top dead center (TDC), Figure 4C, the curve of the lambda setpoint LAM (SL) and Figure 4D, the target rail pressure pCR (SL). The time range before to is the past. The prediction horizon, for example 8s, corresponds to the time range t0 to t0 + tp. With ts is a calculation time designated at which a new setpoint, for example, the injection start SB, is output from the electronic control unit. In the example shown, a constant setpoint torque M (SOLL) is assumed.
Zum Zeitpunkt tO sind die Anfangswerte des Spritzbeginns SB=8°, der Lamda-Sollwert At the time t0, the initial values of the injection start SB = 8 °, the lambda set value
LAM(SL)=1.9 und der Soll-Raildruck pCR(SL)=1500 bar gesetzt. Der NOx-Sollwertverlauf NOx(SL) in der Figur 4A ist vorgegeben. Aus diesen Anfangswerten resultiert eine entsprechend große Soll-Istabweichung dNOx, siehe Figur 4A. Der NOx-Istwert wird in Abhängigkeit der gemessenen Luftdrücke im Luftpfad und des Spritzbeginns SB berechnet. Über die Gleichung (1) berechnet der Optimierer ein erstes Gütemaß Jl zum Zeitpunkt tO. Anschließend berechnet der Optimierer wie sich eine Veränderung des Spritzbeginns SB, des Lambda-Sollwerts LAM (SL) = 1.9 and setpoint rail pressure pCR (SL) = 1500 bar. The NOx target value course NOx (SL) in FIG. 4A is predetermined. From these initial values results a correspondingly large desired actual deviation dNOx, see FIG. 4A. The NOx actual value is calculated as a function of the measured air pressures in the air path and the start of injection SB. Using equation (1), the optimizer calculates a first quality measure J1 at time t0. The optimizer then calculates how a change in the start of injection SB, the desired lambda value, is calculated
LAM(SL) und des Soll-Raildrucks pCR(SL) innerhalb der Prädiktionshorizonts (tO+tP) auf die Soll-Istabweichung dNOx auswirken würde, beispielsweise indem der Soll-Raildruck sukzessive bis auf pCR(SL)=2000 bar erhöht wird. Der Optimierer ermittelt zu jedem der dargestellten Zeitpunkte das zweite Gütemaß J2. Über die Subtraktion der beiden Gütemaße und die LAM (SL) and the target rail pressure pCR (SL) within the prediction horizon (tO + tP) would affect the target actual deviation dNOx, for example, by the desired rail pressure is successively increased to pCR (SL) = 2000 bar. The optimizer determines the second quality measure J2 for each of the times shown. About the subtraction of the two quality measures and the
Grenzwertbetrachtung wird dann das Gütemaß minimiert, das heißt, es wird geprüft ob eine weitere Optimierung erfolgversprechend ist. Für das dargestellte Beispiel ermittelt der Limit value is then minimized the quality measure, that is, it is checked whether further optimization is promising. For the example shown, the
Optimierer ein minimales Gütemaß für den Zeitpunkt tO+4, was sich in der Figur 4A in der Annäherung des NOx-Istwerts NOx(IST) an den NOx-Sollwerts NOx(SL) wiederspiegelt. BEZUGSZEICHENLISTE Optimizer a minimum quality measure for the time tO + 4, which is reflected in the figure 4A in the approximation of the NOx actual value NOx (IST) to the NOx target value NOx (SL). LIST OF REFERENCE NUMBERS
1 Brennkraftmaschine 1 internal combustion engine
2 Kraftstofftank 2 fuel tank
3 Niederdruckpumpe 3 low pressure pump
4 Saugdrossel 4 suction throttle
5 Hochdruckpumpe 5 high pressure pump
6 Rail 6 rail
7 Injektor 7 injector
8 Einzelspeicher 8 individual memories
9 Rail-Drucksensor 9 rail pressure sensor
10 Elektronisches Steuergerät 10 electronic control unit
11 Abgasturbolader 11 exhaust gas turbocharger
12 Ladeluftkühler 12 intercooler
13 Drosselklappe 13 throttle
14 Einmündungsstelle 14 point of entry
15 Einlassventil 15 inlet valve
16 Auslassventil 16 exhaust valve
17 AGR-Stellglied (AGR: Abgasrückführung) 17 EGR actuator (EGR: exhaust gas recirculation)
18 Turbinen-Bypassventil 18 turbine bypass valve
19 Verbrennungsmodell 19 combustion model
20 Gaspfadmodell 20 gas path model
21 Optimierer 21 optimizers
22 Raildruck-Regelkreis 22 Rail pressure control loop
23 Lambda-Regelkreis 23 lambda control loop
24 AGR-Regelkreis 24 EGR control loop
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017005783.4A DE102017005783B4 (en) | 2017-06-20 | 2017-06-20 | Method for model-based control and regulation of an internal combustion engine |
PCT/EP2018/065457 WO2018234093A1 (en) | 2017-06-20 | 2018-06-12 | METHOD FOR CONTROL AND REGULATION BASED ON MODELS OF AN INTERNAL COMBUSTION ENGINE |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3642467A1 true EP3642467A1 (en) | 2020-04-29 |
Family
ID=62683185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18732291.2A Withdrawn EP3642467A1 (en) | 2017-06-20 | 2018-06-12 | Method for the model-based open-loop and closed-loop control of an internal combustion engine |
Country Status (5)
Country | Link |
---|---|
US (1) | US12188428B2 (en) |
EP (1) | EP3642467A1 (en) |
CN (1) | CN110741148B (en) |
DE (1) | DE102017005783B4 (en) |
WO (1) | WO2018234093A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018001727B4 (en) | 2018-03-05 | 2021-02-11 | Mtu Friedrichshafen Gmbh | Method for model-based control and regulation of an internal combustion engine |
DE102018006312B4 (en) | 2018-08-10 | 2021-11-25 | Mtu Friedrichshafen Gmbh | Method for model-based control and regulation of an internal combustion engine |
DE102018007647B4 (en) | 2018-09-27 | 2021-06-02 | Mtu Friedrichshafen Gmbh | Method for the model-based control and regulation of an internal combustion engine with an SCR catalytic converter |
DE102020001323A1 (en) * | 2020-02-28 | 2021-09-02 | Mtu Friedrichshafen Gmbh | Method for model-based control and regulation of an internal combustion engine |
DE102020003174B4 (en) | 2020-05-27 | 2022-03-24 | Mtu Friedrichshafen Gmbh | Method for model-based control and regulation of an internal combustion engine |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19741965C1 (en) * | 1997-09-23 | 1999-01-21 | Siemens Ag | Procedure for smooth running control |
US6714852B1 (en) * | 2000-02-11 | 2004-03-30 | Ford Global Technologies, Llc | Observer for engine crankshaft torque |
AT5646U1 (en) * | 2001-08-27 | 2002-09-25 | Avl List Gmbh | METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE |
DE10305878B4 (en) * | 2003-02-13 | 2015-04-30 | Robert Bosch Gmbh | Method for operating an internal combustion engine, control and / or regulating device for an internal combustion engine, computer program and electrical storage medium of an internal combustion engine |
CA2441686C (en) * | 2003-09-23 | 2004-12-21 | Westport Research Inc. | Method for controlling combustion in an internal combustion engine and predicting performance and emissions |
US7184877B1 (en) * | 2005-09-29 | 2007-02-27 | International Engine Intellectual Property Company, Llc | Model-based controller for auto-ignition optimization in a diesel engine |
DE102006004516B3 (en) | 2006-02-01 | 2007-03-08 | Mtu Friedrichshafen Gmbh | Bayes network for controlling and regulating internal combustion engine, has measuring variables that are assigned probabilities, and correction value that is calculated for correcting control variable of controller using correction table |
JP5006947B2 (en) | 2010-01-14 | 2012-08-22 | 本田技研工業株式会社 | Plant control equipment |
JP5635022B2 (en) * | 2012-02-10 | 2014-12-03 | 株式会社日本自動車部品総合研究所 | Fuel pressure waveform acquisition device |
US9228510B2 (en) * | 2012-08-22 | 2016-01-05 | Cummins Inc. | Engine control systems and methods |
US9732688B2 (en) | 2014-03-26 | 2017-08-15 | GM Global Technology Operations LLC | System and method for increasing the temperature of a catalyst when an engine is started using model predictive control |
DE102014209174A1 (en) * | 2014-05-15 | 2015-11-19 | Robert Bosch Gmbh | Method and device for controlling an air-fuel mixture for operating an internal combustion engine |
US9482169B2 (en) | 2014-07-23 | 2016-11-01 | Cummins Inc. | Optimization-based controls for diesel engine air-handling systems |
DE102014118125B3 (en) * | 2014-12-08 | 2016-05-04 | Avl Software And Functions Gmbh | Device and method for controlling an internal combustion engine for motor vehicles, in particular a diesel engine |
DE102015212709B4 (en) * | 2015-07-07 | 2020-03-05 | Mtu Friedrichshafen Gmbh | Method for operating an internal combustion engine, control device for an internal combustion engine and internal combustion engine |
DE102015225279B4 (en) * | 2015-12-15 | 2019-09-12 | Mtu Friedrichshafen Gmbh | Method and device for the predictive control and / or regulation of an internal combustion engine and internal combustion engine with the device for carrying out the method |
-
2017
- 2017-06-20 DE DE102017005783.4A patent/DE102017005783B4/en active Active
-
2018
- 2018-06-12 US US16/623,264 patent/US12188428B2/en active Active
- 2018-06-12 EP EP18732291.2A patent/EP3642467A1/en not_active Withdrawn
- 2018-06-12 WO PCT/EP2018/065457 patent/WO2018234093A1/en unknown
- 2018-06-12 CN CN201880041639.0A patent/CN110741148B/en active Active
Non-Patent Citations (1)
Title |
---|
ANONYMOUS: "Tolerances and Stopping Criteria - MATLAB & Simulink", 19 May 2017 (2017-05-19), pages 1 - 2, XP055962241, Retrieved from the Internet <URL:https://web.archive.org/web/20170519033007/http://www.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html> [retrieved on 20220919] * |
Also Published As
Publication number | Publication date |
---|---|
CN110741148A (en) | 2020-01-31 |
WO2018234093A1 (en) | 2018-12-27 |
DE102017005783B4 (en) | 2021-12-02 |
CN110741148B (en) | 2022-11-15 |
US12188428B2 (en) | 2025-01-07 |
US20230258144A1 (en) | 2023-08-17 |
DE102017005783A1 (en) | 2018-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102017009582B3 (en) | Method for model-based control and regulation of an internal combustion engine | |
EP3698032B1 (en) | Method for the model-based control and regulation of an internal combustion engine | |
EP3642467A1 (en) | Method for the model-based open-loop and closed-loop control of an internal combustion engine | |
WO2019170492A1 (en) | Method for the model-based control and regulation of an internal combustion engine | |
DE102015120096B4 (en) | Procedure for pilot control of turbochargers for reinforced engines with an EGR with multiple routes | |
DE102011013481A1 (en) | Method for determining temperature of gas in combustion chamber of e.g. diesel engine, for passenger car, involves determining temperature of gas based on total mass and pressure in chamber, rotation speed of engine and volume of chamber | |
DE102021107917A1 (en) | SYSTEM AND METHOD FOR INJECTING FUEL INTO AN ENGINE | |
EP1481153B1 (en) | Method for operation of an internal combustion engine | |
EP4158176B1 (en) | Method for the model-based open-loop and closed-loop control of an internal combustion engine | |
DE102018006312B4 (en) | Method for model-based control and regulation of an internal combustion engine | |
DE10303705B4 (en) | A method of operating a direct fuel injection internal combustion engine | |
DE102020208938A1 (en) | Method for operating a two-stage charging system, control device and a motor vehicle | |
WO2020064566A1 (en) | Method for the model-based open-loop and closed-loop control of an internal combustion engine with an scr catalytic converter | |
DE102017203445B3 (en) | Method and device for controlling an internal combustion engine charged by an exhaust gas turbocharger | |
WO2018046212A1 (en) | Method and device for controlling the residual gas mass remaining in the cylinder of an internal combustion engine after a gas exchange process and/or the purge air mass introduced into the exhaust manifold of the internal combustion engine during a gas exchange process | |
DE102018211694B3 (en) | Method for controlling an external exhaust gas recirculation of an engine | |
DE102019005996B4 (en) | Method for model-based control and regulation of an internal combustion engine | |
DE102009001644A1 (en) | Method and apparatus for correlating a cylinder charge and a maximum intake valve lift of an internal combustion engine | |
DE10025495A1 (en) | System for regulating IC engine with gas changing valves with variable control for variable adjustment of combustion air amount to be supplied with throttle operable independent of valves with regulating-control unit | |
DE102019113807B4 (en) | Method for operating an internal combustion engine | |
DE102017130719A1 (en) | Control device and control method for an internal combustion engine | |
DE102015214363A1 (en) | Method for processing sensor signals | |
DE102024107285A1 (en) | Control device and control method for internal combustion engine | |
DE102004004171A1 (en) | Method for operating an internal combustion engine with an exhaust gas turbocharger | |
DE102015216099A1 (en) | Method and device for operating an internal combustion engine with exhaust gas recirculation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROLLS-ROYCE SOLUTIONS GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220927 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20230412 |