EP3641058B1 - Switched multi-band antenna and radiofrequency device comprising such an antenna - Google Patents

Switched multi-band antenna and radiofrequency device comprising such an antenna Download PDF

Info

Publication number
EP3641058B1
EP3641058B1 EP19203054.2A EP19203054A EP3641058B1 EP 3641058 B1 EP3641058 B1 EP 3641058B1 EP 19203054 A EP19203054 A EP 19203054A EP 3641058 B1 EP3641058 B1 EP 3641058B1
Authority
EP
European Patent Office
Prior art keywords
antenna
switching means
radio frequency
frequency
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19203054.2A
Other languages
German (de)
French (fr)
Other versions
EP3641058A1 (en
Inventor
Serge Robin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somfy Activites SA
Original Assignee
Somfy Activites SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somfy Activites SA filed Critical Somfy Activites SA
Publication of EP3641058A1 publication Critical patent/EP3641058A1/en
Application granted granted Critical
Publication of EP3641058B1 publication Critical patent/EP3641058B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/14Length of element or elements adjustable

Definitions

  • the present invention relates to the field of radio frequency antenna devices.
  • the present invention relates more particularly to a multiband switched radiofrequency antenna and an associated radiofrequency device.
  • the invention can find its application, for example, in the field of home automation and/or building automation for buildings for residential, commercial or industrial use and/or the field of connected objects. It can also find a use in the field of connected objects also called Internet of Things (or IOT for Internet Of Things according to the Anglo-Saxon terminology).
  • Internet of Things or IOT for Internet Of Things according to the Anglo-Saxon terminology.
  • a first solution consists in installing in the electronic equipment a dedicated radio frequency antenna for each frequency used by said electronic equipment. This solution thus makes it possible to have antennas with optimized performance for each frequency of use.
  • the space occupied by the various antennas is significant, due to the number of antennas and the size of each antenna. Furthermore, in order to avoid any interference problems between each antenna and between each antenna and the electronic circuits, it is necessary to provide a certain space between the antennas and/or the electronic circuits. This contributes to increasing the size of the printed circuit board on which the electronic circuit of the electronic equipment is located. This is detrimental when it is desired to produce electronic equipment of reduced size. This solution also makes it necessary to design as many antennas as there are operating frequencies of the electronic equipment, which has the consequence of increasing the cost of designing the electronic equipment.
  • An antenna may comprise three strands separated by two switches, without excluding the risk of radiation from harmonics of a frequency used with this antenna or the fact that part of the radiation from a first strand is coupled onto a second strand of the antenna.
  • Another solution is to use a multiband antenna configured to cover the different frequency bands used by electrical equipment.
  • This solution makes it possible to reduce the space occupied by the antenna device.
  • the performance of this type of antenna is never optimal for each working frequency. Indeed, a compromise is generally made so that the antenna can cover the different frequencies or frequency bands. This compromise is generally made to the detriment of the performance and the consumption of the antenna.
  • the multiband antenna therefore has average performance at the different working frequencies.
  • This type of antenna is generally not acceptable in the context of autonomous equipment for which maximum transmission and/or reception powers are generally sought for minimum energy consumption.
  • the configuration of the antenna does not make it possible to pool the same radio frequency access of the antenna.
  • a switched dual-band antenna is also known, making it possible to transmit and/or receive according to two different frequencies.
  • the figure 1 represents an exemplary embodiment of such a radiofrequency antenna 1 known from the prior art.
  • Antenna 1 comprises an antenna body 2 and switching means 13. Antenna 1 is configured to radiate and/or pick up radiofrequency signals on first and second operating frequencies.
  • the antenna body 2 is formed of a first 11 and a second strand 12 of the antenna.
  • the switching means 13 is arranged between the first 11 and the second strand 12 of the antenna.
  • the switching means 13 is configured to electrically separate the two antenna strands 11, 12 in a first so-called "open" mode of operation and to electrically connect the two antenna strands 11, 12 in a second so-called "open” mode of operation. firm".
  • the first antenna strand has a length adapted to a first frequency of use of the antenna 1.
  • the antenna 1 when the switching device is in its first mode of operation (open position), the antenna 1 is adapted to radiate or picking up a radio frequency signal at the first frequency.
  • the second antenna strand 12 In the first mode of operation, the second antenna strand 12 is left floating, that is to say in open circuit at each of its ends.
  • the length of the antenna body formed by the two antenna strands has a length adapted to a second frequency.
  • the antenna 1 when the switching device is in its second mode of operation (closed position), the antenna 1 is capable of radiating or picking up a radiofrequency signal according to the first operating frequency of the antenna 1.
  • the antenna also comprises a terminal radiofrequency port 15 configured to be electrically connected to a radiofrequency module (not shown).
  • this scenario can occur when an antenna is configured to cover a first band of frequencies centered around 900 MHz and a second band of frequencies centered around 1.8 GHz. If the value of the second frequency is equal to twice the value of the first frequency, when the switching device 13 of the antenna 1 is open, the body of the antenna is divided into two antenna strands of equal length . The problem is that the second antenna strand 12, left floating, absorbs part of the radiation from the first antenna strand, which is then lost for transmission.
  • a second problem comes from the fact that the second antenna strand 12 is also tuned to the second order harmonic of the first operating frequency.
  • the radiofrequency module associated with the antenna 1 emits a radiofrequency signal according to the second frequency.
  • the switching means 13 is in its so-called open operating mode.
  • the radio frequency access terminal 15 of the antenna 1 is therefore connected to the radio frequency module and the other end of the first antenna strand 11 is open circuit.
  • the second antenna strand 12 is left floating, that is to say the two ends of the second antenna strand 12 have an open circuit.
  • the transmitter of the radio frequency module transmits a radio frequency signal at the second frequency
  • the radio frequency signal is transmitted to the antenna 1 via the radio frequency access terminal 15.
  • the transmitter also generates harmonics of the second frequency which are considered as interference signals.
  • the radiofrequency module generally comprises at least one filter circuit arranged to prevent the transmission of harmonics to the radiofrequency antenna and therefore their radiation. However, part of the harmonics is radiated outside the radiofrequency module.
  • the second antenna strand 12 is also tuned to the second harmonic of the operating frequency.
  • the second antenna strand is also tuned to all higher octaves. The harmonics of the first frequency radiated by the transmitter and unfiltered are thus radiated by the second antenna strand 12 left floating and disturb the environment.
  • This phenomenon is encountered in particular with autonomous radio frequency devices, for example powered by batteries, whose transmitter is sized to have minimum consumption and to radiate maximum power.
  • the transmitter therefore has a high efficiency and therefore generates a lot of harmonics.
  • An object of the invention is in particular to correct all or part of the aforementioned drawbacks by proposing a multiband antenna having optimal performance at each of the frequencies or each of the operating frequency bands, including for frequency bands double one of the other.
  • the subject of the invention is a switched multiband antenna comprising an antenna body defining at least two antenna strands, as well as at least one first switching means arranged between the first and the second antenna strands , the first switching means being configured to separate the two antenna strands in a first operating mode and to electrically connect the two antenna strands in a second operating mode, the antenna being configured to radiate and/or pick up radio frequency signals on at least a first and a second operating frequency, the ratio of the value of the second operating frequency to the value of the first operating frequency being substantially equal to an integer power of two.
  • the antenna comprises at least one second switching means, while the first and second switching means are configured to be actuated simultaneously and in an analogous manner.
  • the second switch means is disposed on the second antenna strand and configured to separate the second antenna strand into two antenna sub-strands in a first mode of operation and to electrically connect the two antenna sub-strands in a second mode of operation.
  • the length of the first antenna sub-strand is different by a fraction of an integer power of two of the wavelength associated with the first operating frequency.
  • the antenna is tuned to the first operating frequency, when the first and second switching means are in the first operating mode, and tuned to the second operating frequency, when the first and second switching means are in the second operating mode.
  • the switched multiband radio frequency antenna operates in an optimized manner at different frequencies.
  • the invention relates to a multiband radiofrequency device comprising a radiofrequency module and a multiband radiofrequency antenna as described previously, the antenna being electrically connected to the radiofrequency module and the radiofrequency module being configured to transmit and/or receive signals radio frequencies according to at least a first and a second frequency, the ratio of the value of the second operating frequency to the value of the first operating frequency being substantially equal to an integer power of two.
  • the radio frequency device further comprises a control module configured to control the first and second switching means simultaneously and in an analogous manner.
  • An object of the invention is a multiband switched radiofrequency antenna configured to radiate and/or pick up radiofrequency signals on at least a first and a second frequency.
  • frequency denotes both an operating frequency of the antenna and the central frequency of the frequency band on which the antenna operates.
  • An antenna is said to be tuned to a predetermined operating frequency when the length of the antenna is equal to the wavelength associated with the predetermined frequency divided by an integer power of two.
  • the length of the antenna is substantially equal to a quarter of the wavelength associated with the operating frequency of the antenna.
  • the figure 2 represents a first embodiment of a switched radiofrequency, multifrequency or multiband antenna 101 .
  • the switched antenna 101 is configured to radiate and/or pick up radio frequency signals on at least a first and a second operating frequency.
  • the value of the second operating frequency is substantially equal to twice the value of the first operating frequency.
  • the first frequency is, for example, equal to 433 MHz or 2.45 GHz and the second frequency respectively equal to 868 MHz or 5 GHz.
  • the ratio of the value of the second frequency to that of the first operating frequency is substantially equal to an integer power of two, other than two.
  • the switched multiband radiofrequency antenna 101 comprises an antenna body 102 and at least a first switching device 113 and a second switching device 114.
  • the antenna body 102 comprises at least a first and a second antenna strands 111, 112.
  • Antenna 1 comprises a single radiofrequency access terminal 115.
  • the radiofrequency access terminal 115 is configured to be electrically connected to a radiofrequency module.
  • the radiofrequency access terminal 115 is configured to pass the radiofrequency signals to be radiated and the radiofrequency signals received by the antenna 1.
  • the first switching means 113 is arranged between the first antenna strand 111 and the second antenna strand 112.
  • the first switching means is configured to electrically separate the two antenna strands in a first operating mode called “open "and to electrically connect the two antenna strands in a second so-called “ closed " mode of operation.
  • a second switching means 114 is arranged on the second antenna strand 112.
  • the second switching means 114 is configured to electrically separate the second antenna strand into two antenna sub-strands 1121 and 1122 in a first so-called "open” mode of operation and to electrically connect the two antenna sub-strands in a second so-called “closed” operating mode.
  • the first and second switching means 113 and 114 are configured to be actuated simultaneously and analogously.
  • the two switching means are actuated in a "closed” or “open” mode simultaneously and are always together in the "closed” mode or in the "open” mode.
  • the length of the antenna is dimensioned so that the antenna 1 is tuned to the first operating frequency when the first and second switching means 113 and 114 are both in the closed operating mode.
  • the length of the first antenna strand 111 is dimensioned so that the antenna 101 is tuned to the second operating frequency when the first and second switching means 113 and 114 are both in the open operating mode.
  • the second switching means 114 is arranged, between the first and second antenna sub-strands 1121 and 1122, at a location other than the center of the second antenna strand 112. According to a particular embodiment, the length of the first antenna sub-strand 1121 is substantially equal to one third of the length of the second antenna strand 1122.
  • the length of the first antenna sub-strand 1121 is dimensioned so that it is not equal to a fraction an integer power of two of the wavelength associated with the first operating frequency.
  • the fact of separating the second antenna strand 112 into two antenna sub-strands 1121 and 1122, so that the length of the first sub-strand 121 is not equal to a fraction of an entire power of two of the wavelength associated with the first frequency, makes it possible to prevent one of the two sub-strands 1121, 1122 from being tuned to an octave of the first frequency. Thus this avoids the radiation of harmonics of the first frequency.
  • This type of cutting of the second antenna strand 112 also makes it possible to prevent part of the radiation from the first antenna strand 111 from coupling onto the second antenna strand 112.
  • the switched antenna 101 comprises as many switching means 113 or 114 as there are operating frequencies.
  • the first and second switching means 113 and 114 are mechanical devices. It may be, for example, for each of them, a jumper, a breakable means, a fuse or any other mechanical device making it possible to separate, respectively connect, electrically two strands or two sub- antenna strands with each other and/or an antenna strand with an antenna sub-strand.
  • the first and second switching means 113 and 114 are electronic switching devices.
  • an electronic switching device can be a diode such as a diode, PIN (for " Positive Intrinsic Negative diode " according to the English terminology), a transistor, a micro electromechanical system (or MEMS for " Micro Electro Mechanical System “ according to the Anglo-Saxon terminology) or any other equivalent switching device.
  • the first and second switching means 113 and 114 are simultaneously and analogously controlled by at least one control module comprising one or more microprocessors, processors or any other equivalent means programmed in a timely manner.
  • control module comprising one or more microprocessors, processors or any other equivalent means programmed in a timely manner.
  • controlled in an analogous manner it is meant that, when they are actuated to pass from one operating mode to the other, the two switching means pass from the open operating mode to the closed operating mode, or vice versa, so that they are always both in the same mode of operation.
  • control module comprises a memory area, for example, arranged to record a computer program comprising control instructions for electronic switching means 113 and 114.
  • the multiband antenna 101 can be of any shape. It can be, for example, a rectilinear antenna, as represented on the picture 3 , an elbow antenna, a meander antenna, a spiral antenna as shown in the figure 2 or any other type of antenna.
  • the antenna is a wire antenna or a printed antenna.
  • the antenna 1 is a planar antenna.
  • the antenna is printed on a printed circuit board. At least one face of the printed circuit board can be completely or partially metallized, in order to form a ground plane.
  • Another object of the invention is a multi-frequency or multi-band radio frequency device, as represented in the picture 3 .
  • the radiofrequency device 30 comprises a switched radiofrequency antenna 101, in accordance with a second embodiment of the invention and a radiofrequency module 20.
  • the antenna 101 of the second embodiment is similar to that of the first embodiment and comprises the same parts 102 to 114, except that it is straight.
  • the radio frequency antenna 101 is electrically connected to the radio frequency module 20 via its single radio frequency access terminal 115.
  • the radiofrequency module is configured to transmit and/or receive radiofrequency messages according to at least a first and a second frequency.
  • the ratio of the value of the second operating frequency to the value of the first operating frequency is substantially equal to an integer power of two.
  • the radiofrequency module 2 comprises various elements known to those skilled in the art, in order to transmit and/or receive radiofrequency signals on a radiofrequency output, respectively an input, of the radiofrequency module. It can be a transmitter and/or a receiver, filter circuits, a High Frequency amplifier-demodulator circuit, one or more microcontrollers or processors and/or any other equivalent means programmed in a timely manner.
  • the radio frequency device 30 comprises at least one control module 31 configured to control at least two switching means 113 and 114 of the antenna 101 simultaneously.
  • the antenna 101 of the first embodiment of the figure 2 can be used within the radiofrequency device of the figure 3 .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

La présente invention concerne le domaine des dispositifs antennaires radiofréquences. La présente invention concerne plus particulièrement une antenne radiofréquence commutée multibandes et un dispositif radiofréquence associé.The present invention relates to the field of radio frequency antenna devices. The present invention relates more particularly to a multiband switched radiofrequency antenna and an associated radiofrequency device.

L'invention peut trouver son application, par exemple, le domaine de la domotique et/ou de l'immotique pour bâtiment à usage résidentiel, commercial ou industriel et/ou le domaine des objets connectés. Elle peut également trouver une utilisation dans le domaine des objets connectés également appelé internet des objets (ou IOT pour Internet Of Things selon la terminologie anglo saxonne).The invention can find its application, for example, in the field of home automation and/or building automation for buildings for residential, commercial or industrial use and/or the field of connected objects. It can also find a use in the field of connected objects also called Internet of Things (or IOT for Internet Of Things according to the Anglo-Saxon terminology).

Il existe aujourd'hui une pluralité de protocoles de communication dans le domaine domotique et/ou dans le domaine des objets connectés. Il existe également un grand nombre de fréquences ou bandes de fréquences utilisables dans ces domaines techniques. La multiplication des bandes de fréquences utilisables et le besoin d'interopérabilité conduisent à réaliser des équipements électroniques capables de communiquer suivant différentes fréquences et/ou selon différents protocoles de communication. Cela conduit à concevoir des architectures d'antennes qui puissent fonctionner efficacement sur différentes bandes de fréquences.Today there are a plurality of communication protocols in the home automation field and/or in the field of connected objects. There are also a large number of frequencies or frequency bands that can be used in these technical fields. The multiplication of usable frequency bands and the need for interoperability lead to the production of electronic equipment capable of communicating according to different frequencies and/or according to different communication protocols. This leads to the design of antenna architectures that can operate efficiently on different frequency bands.

Une première solution consiste à implanter dans l'équipement électronique une antenne radiofréquence dédiée pour chaque fréquence utilisée par ledit équipement électronique. Cette solution permet ainsi de disposer d'antennes aux performances optimisées pour chaque fréquence d'utilisation.A first solution consists in installing in the electronic equipment a dedicated radio frequency antenna for each frequency used by said electronic equipment. This solution thus makes it possible to have antennas with optimized performance for each frequency of use.

Cependant l'espace occupé par les différentes antennes est important, du fait du nombre d'antennes et de la taille de chaque antenne. De plus, afin d'éviter tous problèmes d'interférences entre chaque antenne et entre chaque antenne et les circuits électroniques il est nécessaire de prévoir un certain espace entre les antennes et/ou les circuits électroniques. Cela contribue à augmenter la taille de la carte de circuit imprimé sur laquelle est implanté le circuit électronique de l'équipement électronique. Cela est dommageable lorsque l'on souhaite réaliser des équipements électroniques de taille réduite. Cette solution oblige également à concevoir autant d'antennes que de fréquences de fonctionnement de l'équipement électronique, ce qui a pour conséquence d'augmenter le coût de conception de l'équipement électronique.However, the space occupied by the various antennas is significant, due to the number of antennas and the size of each antenna. Furthermore, in order to avoid any interference problems between each antenna and between each antenna and the electronic circuits, it is necessary to provide a certain space between the antennas and/or the electronic circuits. This contributes to increasing the size of the printed circuit board on which the electronic circuit of the electronic equipment is located. This is detrimental when it is desired to produce electronic equipment of reduced size. This solution also makes it necessary to design as many antennas as there are operating frequencies of the electronic equipment, which has the consequence of increasing the cost of designing the electronic equipment.

L'article de Songnan Yang et al intitulé « Frequency-reconfigurable antennas for multiradio wireless plateforms » et publié dans IEEE MICROWAVE MAGAZINE (vol 9, n°1, 1 février 2009 ) étudie l'opportunité d'utiliser des antennes reconfigurables en fréquence, en alternative aux antennes multibandes. Une antenne peut comprendre trois brins séparés par deux interrupteurs, sans exclure un risque de rayonnement d'harmoniques d'une fréquence utilisée avec cette antenne ou le fait qu'une partie du rayonnement d'un premier brin vienne se coupler sur un deuxième brin de l'antenne.The article of Songnan Yang et al entitled “Frequency-reconfigurable antennas for multiradio wireless platforms” and published in IEEE MICROWAVE MAGAZINE (vol 9, n°1, February 1, 2009 ) is studying the advisability of using frequency-reconfigurable antennas, as an alternative to multiband antennas. An antenna may comprise three strands separated by two switches, without excluding the risk of radiation from harmonics of a frequency used with this antenna or the fact that part of the radiation from a first strand is coupled onto a second strand of the antenna.

Une autre solution consiste à utiliser une antenne multibandes configurée pour couvrir les différentes bandes de fréquences utilisées par l'équipement électrique. Cette solution permet de réduire la place occupée par le dispositif antennaire. Cependant la performance de ce type d'antenne n'est jamais optimale pour chaque fréquence de travail. En effet, un compromis est généralement effectué afin que l'antenne puisse couvrir les différentes fréquences ou bandes de fréquences. Ce compromis est généralement fait au détriment de la performance et de la consommation de l'antenne. L'antenne multibandes possède donc des performances moyennes aux différentes fréquences de travail. Ce type d'antenne n'est généralement pas acceptable dans le cadre d'équipements autonomes pour lesquels on recherche généralement des puissances d'émission et/ou de réception maximales pour une consommation d'énergie minimale. De plus, dans certains modes de réalisation la configuration de l'antenne ne permet pas de mutualiser le même accès radiofréquence de l'antenne.Another solution is to use a multiband antenna configured to cover the different frequency bands used by electrical equipment. This solution makes it possible to reduce the space occupied by the antenna device. However, the performance of this type of antenna is never optimal for each working frequency. Indeed, a compromise is generally made so that the antenna can cover the different frequencies or frequency bands. This compromise is generally made to the detriment of the performance and the consumption of the antenna. The multiband antenna therefore has average performance at the different working frequencies. This type of antenna is generally not acceptable in the context of autonomous equipment for which maximum transmission and/or reception powers are generally sought for minimum energy consumption. Moreover, in certain embodiments the configuration of the antenna does not make it possible to pool the same radio frequency access of the antenna.

Il est également connu une antenne bibandes commutée permettant d'émettre et/ou recevoir suivant deux fréquences différentes. La figure 1 représente un exemple de mode de réalisation d'une telle antenne 1 radiofréquence connue de l'art antérieur.A switched dual-band antenna is also known, making it possible to transmit and/or receive according to two different frequencies. The figure 1 represents an exemplary embodiment of such a radiofrequency antenna 1 known from the prior art.

L'antenne 1 comprend un corps d'antenne 2 et un moyen de commutation 13. L'antenne 1 est configurée pour rayonner et/ou capter des signaux radiofréquences sur une première et une deuxième fréquences de fonctionnement. Le corps d'antenne 2 est formé d'un premier 11 et un deuxième brin 12 d'antenne. Le moyen de commutation 13 est disposé entre le premier 11 et le deuxième brin 12 d'antenne. Le moyen de commutation 13 est configuré pour séparer électriquement les deux brins 11, 12 d'antenne dans un premier mode de fonctionnement dit "ouvert" et pour connecter électriquement les deux brins 11, 12 d'antenne dans un deuxième mode de fonctionnement dit "fermé". Le premier brin d'antenne a une longueur adaptée à une première fréquence d'utilisation de l'antenne 1. Ainsi, lorsque le dispositif de commutation est dans son premier mode de fonctionnement (position ouverte), l'antenne 1 est adaptée pour rayonner ou capter un signal radiofréquence à la première fréquence. Dans le premier mode de fonctionnement, le deuxième brin 12 d'antenne est laissé flottant c'est-à-dire en circuit ouvert à chacune de ses extrémités. Lorsque le dispositif de commutation 13 est dans son deuxième mode de fonctionnement, la longueur du corps d'antenne formé par les deux brins d'antenne a une longueur adaptée à une deuxième fréquence. Ainsi lorsque le dispositif de commutation est dans son deuxième mode de fonctionnement (position fermée), l'antenne 1 est apte à rayonner ou capter un signal radiofréquence selon la première fréquence de fonctionnement de l'antenne 1. L'antenne comprend également une borne accès radiofréquence 15 configurée pour être connectée électriquement à un module radiofréquence (non représenté).Antenna 1 comprises an antenna body 2 and switching means 13. Antenna 1 is configured to radiate and/or pick up radiofrequency signals on first and second operating frequencies. The antenna body 2 is formed of a first 11 and a second strand 12 of the antenna. The switching means 13 is arranged between the first 11 and the second strand 12 of the antenna. The switching means 13 is configured to electrically separate the two antenna strands 11, 12 in a first so-called "open" mode of operation and to electrically connect the two antenna strands 11, 12 in a second so-called "open" mode of operation. firm". The first antenna strand has a length adapted to a first frequency of use of the antenna 1. Thus, when the switching device is in its first mode of operation (open position), the antenna 1 is adapted to radiate or picking up a radio frequency signal at the first frequency. In the first mode of operation, the second antenna strand 12 is left floating, that is to say in open circuit at each of its ends. When the device switching 13 is in its second mode of operation, the length of the antenna body formed by the two antenna strands has a length adapted to a second frequency. Thus when the switching device is in its second mode of operation (closed position), the antenna 1 is capable of radiating or picking up a radiofrequency signal according to the first operating frequency of the antenna 1. The antenna also comprises a terminal radiofrequency port 15 configured to be electrically connected to a radiofrequency module (not shown).

Un problème se pose lorsqu'un rapport égal à une puissance entière de deux existe entre la valeur des première et deuxième fréquences de fonctionnement. A titre d'exemple, ce cas de figure peut se produire lorsqu'une antenne est configurée pour couvrir une première bande de fréquences centrées autour de 900 MHz et une deuxième bande de fréquences centrées autour de 1,8 GHz. Si la valeur de la deuxième fréquence est égale au double de la valeur de la première fréquence, lorsque le dispositif de commutation 13 de l'antenne 1 est ouvert, le corps de l'antenne est divisé en deux brins d'antenne de longueur égale. Le problème est que le deuxième brin 12 d'antenne, laissé flottant, absorbe une partie du rayonnement du premier brin d'antenne, qui est alors perdu pour la transmission.A problem arises when a ratio equal to an integer power of two exists between the value of the first and second operating frequencies. By way of example, this scenario can occur when an antenna is configured to cover a first band of frequencies centered around 900 MHz and a second band of frequencies centered around 1.8 GHz. If the value of the second frequency is equal to twice the value of the first frequency, when the switching device 13 of the antenna 1 is open, the body of the antenna is divided into two antenna strands of equal length . The problem is that the second antenna strand 12, left floating, absorbs part of the radiation from the first antenna strand, which is then lost for transmission.

Un deuxième problème vient du fait que le deuxième brin d'antenne 12 est également accordé sur l'harmonique de rang deux de la première fréquence de fonctionnement.A second problem comes from the fact that the second antenna strand 12 is also tuned to the second order harmonic of the first operating frequency.

On suppose que le module radiofréquence associé à l'antenne 1 émet un signal radiofréquence selon la deuxième fréquence. A cet effet, le moyen de commutation 13 est dans son mode de fonctionnement dit ouvert. La borne d'accès radiofréquence 15 de l'antenne 1 est donc connectée au module radiofréquence et l'autre extrémité du premier brin d'antenne 11 est en circuit ouvert. Le deuxième brin 12 d'antenne est laissé flottant, c'est-à-dire les deux extrémités du deuxième brin 12 d'antenne présentent un circuit ouvert.It is assumed that the radiofrequency module associated with the antenna 1 emits a radiofrequency signal according to the second frequency. For this purpose, the switching means 13 is in its so-called open operating mode. The radio frequency access terminal 15 of the antenna 1 is therefore connected to the radio frequency module and the other end of the first antenna strand 11 is open circuit. The second antenna strand 12 is left floating, that is to say the two ends of the second antenna strand 12 have an open circuit.

Lorsque l'émetteur du module radiofréquence émet un signal radiofréquence à la deuxième fréquence, le signal radiofréquence est transmis à l'antenne 1 via la borne d'accès radiofréquence 15. En plus des signaux radiofréquences à la deuxième fréquence, l'émetteur génère également des harmoniques de la deuxième fréquence qui sont considérés comme des signaux parasites. Le module radiofréquence comprend généralement au moins un circuit de filtrage agencé pour empêcher la transmission des harmoniques à l'antenne radiofréquence et donc leur rayonnement. Cependant une partie des harmoniques est rayonnée à l'extérieur du module radiofréquence. Comme énoncé précédemment, du fait de l'existence d'un rapport deux entre la valeur des première et deuxième fréquences de fonctionnement, le deuxième brin 12 d'antenne est également accordé sur l'harmonique de rang deux de la fréquence de fonctionnement. Le deuxième brin d'antenne est également accordé sur toutes les octaves supérieures. Les harmoniques de la première fréquence rayonnées par l'émetteur et non filtrées sont ainsi rayonnées par le deuxième brin 12 d'antenne laissé flottant et viennent perturber l'environnement.When the transmitter of the radio frequency module transmits a radio frequency signal at the second frequency, the radio frequency signal is transmitted to the antenna 1 via the radio frequency access terminal 15. In addition to the radio frequency signals at the second frequency, the transmitter also generates harmonics of the second frequency which are considered as interference signals. The radiofrequency module generally comprises at least one filter circuit arranged to prevent the transmission of harmonics to the radiofrequency antenna and therefore their radiation. However, part of the harmonics is radiated outside the radiofrequency module. As stated previously, due to the existence of a ratio of two between the value of the first and second operating frequencies, the second antenna strand 12 is also tuned to the second harmonic of the operating frequency. The second antenna strand is also tuned to all higher octaves. The harmonics of the first frequency radiated by the transmitter and unfiltered are thus radiated by the second antenna strand 12 left floating and disturb the environment.

Ce phénomène se rencontre notamment avec les dispositifs radiofréquences autonomes, par exemple alimentés par piles, dont l'émetteur est dimensionné pour avoir une consommation minimale et pour rayonner un maximum de puissance. L'émetteur possède donc un fort rendement et génère donc beaucoup d'harmoniques.This phenomenon is encountered in particular with autonomous radio frequency devices, for example powered by batteries, whose transmitter is sized to have minimum consumption and to radiate maximum power. The transmitter therefore has a high efficiency and therefore generates a lot of harmonics.

Un but de l'invention est notamment de corriger tout ou partie des inconvénients précités en proposant une antenne multibandes présentant des performances optimales à chacune des fréquences ou chacune des bandes de fréquences de fonctionnement, y compris pour des bandes de fréquences double l'une de l'autre.An object of the invention is in particular to correct all or part of the aforementioned drawbacks by proposing a multiband antenna having optimal performance at each of the frequencies or each of the operating frequency bands, including for frequency bands double one of the other.

A cet effet, l'invention a pour objet une antenne multibandes commutée comprenant un corps d'antenne définissant au moins deux brins d'antenne, ainsi qu'au moins un premier moyen de commutation disposé entre les premier et le deuxième brins d'antenne, le premier moyen de commutation étant configuré pour séparer les deux brins d'antenne dans un premier mode de fonctionnement et pour connecter électriquement les deux brins d'antennes dans un deuxième mode de fonctionnement, l'antenne étant configurée pour rayonner et/ou capter des signaux radiofréquences sur au moins une première et une deuxième fréquences de fonctionnement, le rapport de la valeur de la deuxième fréquence de fonctionnement sur la valeur de la première fréquence de fonctionnement étant sensiblement égal à une puissance entière de deux. Conformément à l'invention, l'antenne comprend au moins un deuxième moyen de commutation, alors que les premier et deuxième moyens de commutation sont configurés pour être actionnés de façon simultanée et de façon analogue. Le deuxième moyen de commutation est disposé sur le deuxième brin d'antenne et configuré pour séparer le deuxième brin d'antenne en deux sous-brins d'antenne dans un premier mode de fonctionnement et pour connecter électriquement les deux sous-brins d'antennes dans un deuxième mode de fonctionnement. La longueur du premier sous-brin d'antenne est différente d'une fraction d'une puissance entière de deux de la longueur d'onde associée à la première fréquence de fonctionnement. L'antenne est accordée sur la première fréquence de fonctionnement, lorsque les premier et deuxième moyens de commutation sont dans le premier mode de fonctionnement, et accordée sur la deuxième fréquence de fonctionnement, lorsque les premier et deuxième moyens de commutation sont dans le deuxième mode de fonctionnement.To this end, the subject of the invention is a switched multiband antenna comprising an antenna body defining at least two antenna strands, as well as at least one first switching means arranged between the first and the second antenna strands , the first switching means being configured to separate the two antenna strands in a first operating mode and to electrically connect the two antenna strands in a second operating mode, the antenna being configured to radiate and/or pick up radio frequency signals on at least a first and a second operating frequency, the ratio of the value of the second operating frequency to the value of the first operating frequency being substantially equal to an integer power of two. According to the invention, the antenna comprises at least one second switching means, while the first and second switching means are configured to be actuated simultaneously and in an analogous manner. The second switch means is disposed on the second antenna strand and configured to separate the second antenna strand into two antenna sub-strands in a first mode of operation and to electrically connect the two antenna sub-strands in a second mode of operation. The length of the first antenna sub-strand is different by a fraction of an integer power of two of the wavelength associated with the first operating frequency. The antenna is tuned to the first operating frequency, when the first and second switching means are in the first operating mode, and tuned to the second operating frequency, when the first and second switching means are in the second operating mode.

Grâce à l'invention, l'antenne radiofréquence multibandes commutée fonctionne de façon optimisée à différentes fréquences.Thanks to the invention, the switched multiband radio frequency antenna operates in an optimized manner at different frequencies.

De façon avantageuse, une telle antenne peut incorporer une ou plusieurs des caractéristiques suivantes, prises selon toute combinaison techniquement admissible :

  • L'antenne comprend autant de moyens de commutation que de fréquences de fonctionnement.
  • L'antenne comprend une borne d'accès radiofréquence unique configurée pour faire transiter des signaux radiofréquences à rayonner par l'antenne et/ou des signaux radiofréquences reçus par l'antenne.
  • Dans l'antenne, au moins un moyen de commutation est un moyen mécanique.
  • Dans l'antenne, au moins un moyen de commutation est un moyen électronique.
  • L'antenne est une antenne de type planaire.
  • L'antenne est une antenne imprimée.
  • Le deuxième moyen de commutation est disposé, entre un premier et deuxième brins d'antenne, dans un emplacement autre que le centre du deuxième brin d'antenne.
Advantageously, such an antenna can incorporate one or more of the following characteristics, taken in any technically permissible combination:
  • The antenna comprises as many switching means as there are operating frequencies.
  • The antenna comprises a single radiofrequency access terminal configured to pass radiofrequency signals to be radiated by the antenna and/or radiofrequency signals received by the antenna.
  • In the antenna, at least one switching means is a mechanical means.
  • In the antenna, at least one switching means is an electronic means.
  • The antenna is a planar type antenna.
  • The antenna is a printed antenna.
  • The second switching means is disposed between a first and second antenna strands in a location other than the center of the second antenna strand.

Selon un autre aspect, l'invention concerne un dispositif radiofréquence multibandes comprenant un module radiofréquence et une antenne radiofréquence multibandes telle que décrite précédemment, l'antenne étant connectée électriquement au module radiofréquence et le module radiofréquence étant configuré pour émettre et/ou recevoir des signaux radiofréquences selon au moins une première et une deuxième fréquences, le rapport de la valeur de la deuxième fréquence de fonctionnement sur la valeur de la première fréquence de fonctionnement étant sensiblement égale à une puissance entière de deux.According to another aspect, the invention relates to a multiband radiofrequency device comprising a radiofrequency module and a multiband radiofrequency antenna as described previously, the antenna being electrically connected to the radiofrequency module and the radiofrequency module being configured to transmit and/or receive signals radio frequencies according to at least a first and a second frequency, the ratio of the value of the second operating frequency to the value of the first operating frequency being substantially equal to an integer power of two.

Avantageusement, le dispositif radiofréquence comprend, en outre, un module de commande configuré pour commander les premier et deuxième moyens de commutation de façon simultanée et de façon analogue.Advantageously, the radio frequency device further comprises a control module configured to control the first and second switching means simultaneously and in an analogous manner.

D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après, donnée à titre illustratif et non limitatif, et faite en référence aux dessins annexés, sur lesquels :

  • La figure 1, précédemment décrite, représente un exemple de mode de réalisation d'une antenne bibandes connue de l'art antérieur ;
  • La figure 2 représente un exemple de mode de réalisation d'une antenne multibandes commutée selon l'invention ;
  • La figure 3 représente un exemple de mode de réalisation d'un équipement radiofréquence selon l'invention.
Other features and advantages of the present invention will appear more clearly on reading the description below, given by way of non-limiting illustration, and made with reference to the appended drawings, in which:
  • The figure 1 , previously described, represents an exemplary embodiment of a dual-band antenna known from the prior art;
  • The picture 2 represents an exemplary embodiment of a switched multiband antenna according to the invention;
  • The picture 3 represents an exemplary embodiment of radio frequency equipment according to the invention.

Un objet de l'invention est une antenne radiofréquence commutée multibandes configurée pour rayonner et/ou capter des signaux radiofréquences sur au moins une première et une deuxième fréquences.An object of the invention is a multiband switched radiofrequency antenna configured to radiate and/or pick up radiofrequency signals on at least a first and a second frequency.

Dans la suite de cette description, les différentes fréquences d'utilisation de l'antenne, en émission ou en réception, sont appelées fréquences de fonctionnement.In the rest of this description, the different frequencies of use of the antenna, in transmission or in reception, are called operating frequencies.

De même, le terme "fréquence" désigne aussi bien une fréquence de fonctionnement de l'antenne que la fréquence centrale de la bande de fréquence sur laquelle l'antenne fonctionne.Similarly, the term "frequency" denotes both an operating frequency of the antenna and the central frequency of the frequency band on which the antenna operates.

Une antenne est dite accordée sur une fréquence de fonctionnement prédéterminée lorsque la longueur de l'antenne est égale à la longueur d'onde associée à la fréquence prédéterminée divisée par une puissance entière de deux. Suivant un mode de réalisation, la longueur de l'antenne est sensiblement égale au quart de la longueur d'onde associée à la fréquence de fonctionnement de l'antenne.An antenna is said to be tuned to a predetermined operating frequency when the length of the antenna is equal to the wavelength associated with the predetermined frequency divided by an integer power of two. According to one embodiment, the length of the antenna is substantially equal to a quarter of the wavelength associated with the operating frequency of the antenna.

Pour plus de clarté, l'invention est décrite ci-après à travers des exemples d'antennes bifréquences ou bibandes. Bien entendu ces exemples ne sont nullement limitatifs et peuvent être généralisés à des configurations dans lesquelles l'antenne est accordée à un nombre de fréquence strictement supérieur à deux.For greater clarity, the invention is described below through examples of dual-frequency or dual-band antennas. Of course, these examples are in no way limiting and can be generalized to configurations in which the antenna is tuned to a number of frequencies strictly greater than two.

La figure 2 représente un premier mode de réalisation d'une antenne 101 radiofréquence, multifréquences ou multibandes, commutée. L'antenne commutée 101 est configurée pour rayonner et/ou capter des signaux radiofréquences sur au moins une première et une deuxième fréquences de fonctionnement.The figure 2 represents a first embodiment of a switched radiofrequency, multifrequency or multiband antenna 101 . The switched antenna 101 is configured to radiate and/or pick up radio frequency signals on at least a first and a second operating frequency.

Suivant un mode de réalisation, la valeur de la deuxième fréquence de fonctionnement est sensiblement égale au double de la valeur de la première fréquence de fonctionnement. La première fréquence est, par exemple, égale à 433 MHz ou 2,45 GHz et la deuxième fréquence respectivement égale à 868 MHz ou 5 GHz.According to one embodiment, the value of the second operating frequency is substantially equal to twice the value of the first operating frequency. The first frequency is, for example, equal to 433 MHz or 2.45 GHz and the second frequency respectively equal to 868 MHz or 5 GHz.

Suivant un autre mode de réalisation, le rapport de la valeur de la deuxième fréquence sur celle de la première fréquence de fonctionnement est sensiblement égale à une puissance entière de deux, autre que deux.According to another embodiment, the ratio of the value of the second frequency to that of the first operating frequency is substantially equal to an integer power of two, other than two.

L'antenne radiofréquence multibandes commutée 101 comprend un corps d'antenne 102 et au moins un premier dispositif de commutation 113 et un deuxième dispositif de commutation 114. Le corps d'antenne 102 comprend au moins un premier et un deuxième brins 111, 112 d'antenne.The switched multiband radiofrequency antenna 101 comprises an antenna body 102 and at least a first switching device 113 and a second switching device 114. The antenna body 102 comprises at least a first and a second antenna strands 111, 112.

L'antenne 1 comprend une borne accès radiofréquence 115 unique. La borne d'accès radiofréquence 115 est configurée pour être connectée électriquement à un module radiofréquence. La borne d'accès radiofréquence 115 est configurée pour faire transiter les signaux radiofréquences à rayonner et les signaux radiofréquences reçus par l'antenne 1.Antenna 1 comprises a single radiofrequency access terminal 115. The radiofrequency access terminal 115 is configured to be electrically connected to a radiofrequency module. The radiofrequency access terminal 115 is configured to pass the radiofrequency signals to be radiated and the radiofrequency signals received by the antenna 1.

Le premier moyen de commutation 113 est disposé entre le premier brin d'antenne 111 et le deuxième brin d'antenne 112. Le premier moyen de commutation est configuré pour séparer électriquement les deux brins d'antenne dans un premier mode de fonctionnement dit "ouvert" et pour connecter électriquement les deux brins d'antenne dans un deuxième mode de fonctionnement dit «fermé».The first switching means 113 is arranged between the first antenna strand 111 and the second antenna strand 112. The first switching means is configured to electrically separate the two antenna strands in a first operating mode called "open "and to electrically connect the two antenna strands in a second so-called " closed " mode of operation.

Un deuxième moyen de commutation 114 est disposé sur le deuxième brin 112 d'antenne. Le deuxième moyen de commutation 114 est configuré pour séparer électriquement le deuxième brin d'antenne en deux sous-brins d'antenne 1121 et 1122 dans un premier mode de fonctionnement dit « ouvert » et pour connecter électriquement les deux sous-brins d'antennes dans un deuxième mode de fonctionnement dit « fermé ».A second switching means 114 is arranged on the second antenna strand 112. The second switching means 114 is configured to electrically separate the second antenna strand into two antenna sub-strands 1121 and 1122 in a first so-called "open" mode of operation and to electrically connect the two antenna sub-strands in a second so-called “closed” operating mode.

Les premier et deuxième moyens de commutation 113 et 114 sont configurés pour être actionnés de façon simultanée et de façon analogue. Ainsi, les deux moyens de commutation sont actionnés dans un mode « fermé » ou « ouvert » de façon simultanée et se trouvent toujours ensemble dans le mode « fermé » ou dans le mode « ouvert ».The first and second switching means 113 and 114 are configured to be actuated simultaneously and analogously. Thus, the two switching means are actuated in a "closed" or "open" mode simultaneously and are always together in the "closed" mode or in the "open" mode.

La longueur de l'antenne est dimensionnée de sorte que l'antenne 1 soit accordée sur la première fréquence de fonctionnement lorsque les premier et deuxième moyens de commutation 113 et 114 sont tous les deux dans le mode de fonctionnement fermé.The length of the antenna is dimensioned so that the antenna 1 is tuned to the first operating frequency when the first and second switching means 113 and 114 are both in the closed operating mode.

La longueur du premier brin 111 d'antenne est dimensionnée de sorte que l'antenne 101 soit accordée sur la deuxième fréquence de fonctionnement lorsque les premier et deuxième moyens de commutation 113 et 114 sont tous les deux dans le mode de fonctionnement ouvert.The length of the first antenna strand 111 is dimensioned so that the antenna 101 is tuned to the second operating frequency when the first and second switching means 113 and 114 are both in the open operating mode.

Le deuxième moyen de commutation 114 est disposé, entre les premier et deuxième sous-brins d'antenne 1121 et 1122, en un emplacement autre que le centre du deuxième brin d'antenne 112. Suivant un mode de réalisation particulier, la longueur du premier sous-brin d'antenne 1121 est sensiblement égale au tiers de la longueur du deuxième brin d'antenne 1122.The second switching means 114 is arranged, between the first and second antenna sub-strands 1121 and 1122, at a location other than the center of the second antenna strand 112. According to a particular embodiment, the length of the first antenna sub-strand 1121 is substantially equal to one third of the length of the second antenna strand 1122.

Suivant un mode de réalisation général, la longueur du premier sous-brin d'antenne 1121 est dimensionnée de sorte qu'elle ne soit pas égale à une fraction d'une puissance entière de deux de la longueur d'onde associée à la première fréquence de fonctionnement.According to a general embodiment, the length of the first antenna sub-strand 1121 is dimensioned so that it is not equal to a fraction an integer power of two of the wavelength associated with the first operating frequency.

De façon avantageuse, le fait de séparer le deuxième brin d'antenne 112 en deux sous-brins d'antenne 1121 et 1122, de sorte que la longueur du premier sous-brin 121 ne soit pas égale à une fraction d'une puissance entière de deux de la longueur d'onde associée à la première fréquence, permet d'éviter qu'un des deux sous-brins 1121, 1122 ne soit accordé sur une octave de la première fréquence. Ainsi cela évite le rayonnement d'harmoniques de la première fréquence. Ce type de découpage du deuxième brin 112 d'antenne permet également d'éviter qu'une partie du rayonnement du premier brin d'antenne 111 vienne se coupler sur le deuxième brin d'antenne 112.Advantageously, the fact of separating the second antenna strand 112 into two antenna sub-strands 1121 and 1122, so that the length of the first sub-strand 121 is not equal to a fraction of an entire power of two of the wavelength associated with the first frequency, makes it possible to prevent one of the two sub-strands 1121, 1122 from being tuned to an octave of the first frequency. Thus this avoids the radiation of harmonics of the first frequency. This type of cutting of the second antenna strand 112 also makes it possible to prevent part of the radiation from the first antenna strand 111 from coupling onto the second antenna strand 112.

L'antenne commutée 101 selon l'invention comprend autant de moyens de commutation 113 ou 114 que de fréquences de fonctionnement.The switched antenna 101 according to the invention comprises as many switching means 113 or 114 as there are operating frequencies.

Suivant un mode de réalisation, le premier et le deuxième moyens de commutation 113 et 114 sont des dispositifs mécaniques. Il peut s'agir, par exemple, pour chacun d'entre eux, d'un cavalier, d'un moyen sécable, d'un fusible ou tout autre dispositif mécanique permettant de séparer, respectivement connecter, électriquement deux brins ou deux sous-brins d'antenne entre eux et/ou un brin d'antenne avec un sous-brin d'antenne.According to one embodiment, the first and second switching means 113 and 114 are mechanical devices. It may be, for example, for each of them, a jumper, a breakable means, a fuse or any other mechanical device making it possible to separate, respectively connect, electrically two strands or two sub- antenna strands with each other and/or an antenna strand with an antenna sub-strand.

Suivant une variante de réalisation, le premier et le deuxième moyens de commutation 113 et 114 sont des dispositifs de commutation électronique. Selon l'invention, un dispositif de commutation électronique peut être une diode comme une diode, PIN (pour « Positive Intrinsic Negative diode » selon la terminologie anglo saxonne), un transistor, un microsystème électromécanique (ou MEMS pour « Micro Electro Mechanical System » selon la terminologie anglo saxonne) ou tout autre dispositif de commutation équivalent.According to a variant embodiment, the first and second switching means 113 and 114 are electronic switching devices. According to the invention, an electronic switching device can be a diode such as a diode, PIN (for " Positive Intrinsic Negative diode " according to the English terminology), a transistor, a micro electromechanical system (or MEMS for " Micro Electro Mechanical System " according to the Anglo-Saxon terminology) or any other equivalent switching device.

Suivant un mode de réalisation, le premier et le deuxième moyens de commutation 113 et 114 sont commandés simultanément et de façon analogue par au moins un module de commande comprenant un ou plusieurs microprocesseurs, processeurs ou tous autres moyens équivalents programmés de façon opportune. Par « commandés de façon analogue », on entend que, lorsqu'ils sont actionnés pour passer d'un mode de fonctionnement à l'autre, les deux moyens de commutation passent du mode de fonctionnement ouvert au mode de fonctionnement fermé, ou réciproquement, de sorte qu'ils sont toujours tous les deux dans le même mode de fonctionnement.According to one embodiment, the first and second switching means 113 and 114 are simultaneously and analogously controlled by at least one control module comprising one or more microprocessors, processors or any other equivalent means programmed in a timely manner. By “controlled in an analogous manner”, it is meant that, when they are actuated to pass from one operating mode to the other, the two switching means pass from the open operating mode to the closed operating mode, or vice versa, so that they are always both in the same mode of operation.

Suivant un mode de réalisation, le module de commande comprend une zone mémoire, par exemple, agencée pour enregistrer un programme informatique comprenant des instructions de commande de moyens de commutation 113 et 114 électroniques.According to one embodiment, the control module comprises a memory area, for example, arranged to record a computer program comprising control instructions for electronic switching means 113 and 114.

L'antenne multibandes 101 selon l'invention peut être de forme quelconque. Il peut s'agir, par exemple, d'une antenne rectiligne, comme représenté sur la figure 3, d'une antenne coudée, d'une antenne à méandres, d'une antenne spirale comme représenté sur la figure 2 ou tout autre type d'antenne.The multiband antenna 101 according to the invention can be of any shape. It can be, for example, a rectilinear antenna, as represented on the picture 3 , an elbow antenna, a meander antenna, a spiral antenna as shown in the figure 2 or any other type of antenna.

Suivant un mode de réalisation, l'antenne est une antenne filaire ou une antenne imprimée.According to one embodiment, the antenna is a wire antenna or a printed antenna.

Suivant un mode de réalisation, l'antenne 1 est une antenne planaire.According to one embodiment, the antenna 1 is a planar antenna.

Suivant un mode de réalisation, l'antenne est imprimée sur une carte de circuit imprimé. Au moins une face de la carte de circuit imprimé peut être entièrement ou partiellement métallisée, afin de former un plan de masse.According to one embodiment, the antenna is printed on a printed circuit board. At least one face of the printed circuit board can be completely or partially metallized, in order to form a ground plane.

Un autre objet de l'invention est un dispositif radiofréquence multifréquences ou multibandes, tel que représenté sur la figure 3.Another object of the invention is a multi-frequency or multi-band radio frequency device, as represented in the picture 3 .

En référence à la figure 3, le dispositif radiofréquence 30 comprend une antenne 101 radiofréquence commutée, conforme à un deuxième mode de réalisation de l'invention et un module radiofréquence 20. L'antenne 101 du deuxième mode de réalisation est analogue à celle du premier mode de réalisation et comprend les mêmes parties 102 à 114, sauf qu'elle est rectiligne. L'antenne radiofréquence 101 est connectée électriquement au module radiofréquence 20 par l'intermédiaire de sa borne d'accès radiofréquence 115 unique.With reference to the picture 3 , the radiofrequency device 30 comprises a switched radiofrequency antenna 101, in accordance with a second embodiment of the invention and a radiofrequency module 20. The antenna 101 of the second embodiment is similar to that of the first embodiment and comprises the same parts 102 to 114, except that it is straight. The radio frequency antenna 101 is electrically connected to the radio frequency module 20 via its single radio frequency access terminal 115.

Le module radiofréquence est configuré pour émettre et/ou recevoir des messages radiofréquences selon au moins une première et une deuxième fréquences. Le rapport de la valeur de la deuxième fréquence de fonctionnement sur la valeur de la première fréquence de fonctionnement est sensiblement égal à une puissance entière de deux. Le module radiofréquence 2 comprend différents éléments connus de l'homme du métier, afin d'émettre et/ou recevoir des signaux radiofréquences sur une sortie radiofréquence, respectivement une entrée, du module radiofréquence. Il peut s'agir d'un émetteur et/ou d'un récepteur, de circuits de filtrage, d'un circuit Haute Fréquence amplificateur-démodulateur, un ou plusieurs microcontrôleurs ou processeurs et/ou tous autres moyens équivalents programmés de façon opportune.The radiofrequency module is configured to transmit and/or receive radiofrequency messages according to at least a first and a second frequency. The ratio of the value of the second operating frequency to the value of the first operating frequency is substantially equal to an integer power of two. The radiofrequency module 2 comprises various elements known to those skilled in the art, in order to transmit and/or receive radiofrequency signals on a radiofrequency output, respectively an input, of the radiofrequency module. It can be a transmitter and/or a receiver, filter circuits, a High Frequency amplifier-demodulator circuit, one or more microcontrollers or processors and/or any other equivalent means programmed in a timely manner.

Suivant un mode de réalisation, le dispositif radiofréquence 30 comprend au moins un module de commande 31 configuré pour commander au moins deux moyens de commutation 113 et 114 de l'antenne 101 de façon simultanée.According to one embodiment, the radio frequency device 30 comprises at least one control module 31 configured to control at least two switching means 113 and 114 of the antenna 101 simultaneously.

L'antenne 101 du premier mode de réalisation de la figure 2 peut être utilisée au sein du dispositif radiofréquence de la figure 3.The antenna 101 of the first embodiment of the figure 2 can be used within the radiofrequency device of the figure 3 .

Les différents modes de mise en oeuvre, différents modes de réalisation et variantes définis ci-dessus peuvent être combinés afin de générer de nouveaux modes de mise en oeuvre et de nouveaux modes de réalisation de l'invention.The various modes of implementation, various embodiments and variants defined above can be combined in order to generate new modes of implementation and new embodiments of the invention.

Claims (10)

  1. A switched multiband radio frequency antenna (101) comprising an antenna body (102) defining at least two antenna strands (111, 112), and at least one first switching means (113) disposed between the first and second antenna strands, the first switching means (113) being configured to separate the two antenna strands (111, 112) in a first operating mode and to electrically connect the two antenna strands in a second operating mode, the antenna (101) being configured to radiate and/or receive radio frequency signals at at least a first and a second operating frequency, the ratio of the value of the second operating frequency to the value of the first operating frequency being substantially equal to an integral power of two, wherein
    - the antenna comprises at least one second switching means (114),
    - the first and second switching means (113, 114) are configured to be operated simultaneously and in a like manner,
    - the second switching means (114) is arranged on the second antenna strand (112),
    - the second switching means (114) is configured to separate the second antenna strand (112) into two antenna sub-strands (1121, 1122) in a first operating mode and to electrically connect the two antenna sub-strands in a second operating mode,
    - the length of the first antenna sub-strand (1121) is different from a fraction of an integral power of two of the wavelength associated with the first operating frequency,
    - the antenna (101) is tuned to the first operating frequency when the first and second switching means (113, 114) are in the first operating mode and
    - the antenna is tuned to the second operating frequency when the first and second switching means (113, 114) are in the second operating mode.
  2. The antenna (101) according to the preceding claim comprising as many switching means (113, 114) as operating frequencies.
  3. The antenna (101) according to any of the preceding, claims comprising a single radio frequency access terminal (115), the radio frequency access terminal (115) being configured to convey radio frequency signals to be radiated by the antenna (101) and/or radio frequency signals received by the antenna (101).
  4. The antenna (101) according to any of the preceding claims wherein at least one switching means (113, 114) is a mechanical means.
  5. The antenna (101) according to one of the claims 1 to 3, wherein at least one switching means (113, 114) is an electronic means.
  6. The antenna (101) according to any of the preceding claims, wherein the antenna is a planar antenna.
  7. The antenna (101) according to the preceding claim, wherein the antenna is a printed antenna.
  8. The antenna according to any of the preceding claims wherein the second switching means (114) is disposed between a first and second antenna strand (1121, 1122), at a location other than the centre of the second antenna strand (112).
  9. A multiband radio frequency device (30) comprising a radio frequency module (20) and a multiband radio frequency antenna (101) according to one of the preceding claims, the antenna (101) being electrically connected to the radio frequency module and the radio frequency module being configured to transmit and/or receive radio frequency signals according to at least a first and a second frequency, the ratio of the value of the second operating frequency to the value of the first operating frequency being substantially equal to an integral power of two.
  10. The radio frequency device according to claim 9, further comprising a control module (31) configured to control the first and second switching means (113, 114) simultaneously and in a like manner.
EP19203054.2A 2018-10-15 2019-10-14 Switched multi-band antenna and radiofrequency device comprising such an antenna Active EP3641058B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1859524A FR3087301B1 (en) 2018-10-15 2018-10-15 SWITCHED MULTI-BAND ANTENNA AND RADIO FREQUENCY DEVICE COMPRISING SUCH ANTENNA

Publications (2)

Publication Number Publication Date
EP3641058A1 EP3641058A1 (en) 2020-04-22
EP3641058B1 true EP3641058B1 (en) 2022-10-05

Family

ID=65494351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19203054.2A Active EP3641058B1 (en) 2018-10-15 2019-10-14 Switched multi-band antenna and radiofrequency device comprising such an antenna

Country Status (2)

Country Link
EP (1) EP3641058B1 (en)
FR (1) FR3087301B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696929B2 (en) * 2007-11-09 2010-04-13 Alcatel-Lucent Usa Inc. Tunable microstrip devices
JP2012256999A (en) * 2011-06-08 2012-12-27 Panasonic Corp Antenna device

Also Published As

Publication number Publication date
EP3641058A1 (en) 2020-04-22
FR3087301B1 (en) 2022-03-11
FR3087301A1 (en) 2020-04-17

Similar Documents

Publication Publication Date Title
EP3146593B1 (en) Antenna system for reducing the electromagnetic coupling between antennas
EP2569824B1 (en) Circularly polarized antenna having broadband characteristics
AU2006268632B2 (en) Multi-band antenna for satellite positioning system
US20070249313A1 (en) Multi-band antenna
FR2969832A1 (en) RADIATION CELL WITH TWO PHASE STATES FOR TRANSMITTER NETWORK
EP1407512A1 (en) Antenna
EP0457880A1 (en) Airborne iff antenna with switchable multiple diagrams.
WO2002054538A1 (en) Multiband antenna for mobile appliances
EP3641058B1 (en) Switched multi-band antenna and radiofrequency device comprising such an antenna
FR2760132A1 (en) ANTENNA SUPPLIED BY SIDE-BY-SIDE COILS FOR A PORTABLE RADIO SET
EP1922783B1 (en) Compact multiband antenna
FR2873236A1 (en) BROADBAND OMNIDIRECTIONAL RADIANT DEVICE
EP0934608B1 (en) Antenna system for portable radiotelephone station
EP2879233A1 (en) Built-in meander radio antenna
EP2404348A1 (en) Method for producing an antenna, operating in a given frequency band, from a dual-band antenna
FR2767237A1 (en) ANTENNA CIRCUIT HAVING AN ADAPTER CIRCUIT AND METHOD FOR PRODUCING THE SAME
FR2831734A1 (en) DEVICE FOR RECEIVING AND / OR TRANSMITTING RADIATION DIVERSITY ELECTROMAGNETIC SIGNALS
EP2879234B1 (en) Electronic apparatus with radio antenna folded in a housing
FR3013909A1 (en) CORNET, ELEMENTARY ANTENNA, ANTENNA STRUCTURE AND TELECOMMUNICATION METHOD THEREOF
EP1548877B1 (en) Multi-band antenna with planar radiating surfaces and portable phone comprising such an antenna
FR3096514A1 (en) printed circuit comprising several excitation antennas and a parasitic antenna, and method of manufacturing the printed circuit.
EP2246932B1 (en) RF receiving/transmitting device for a domestic apparatus powered by an electrical network
EP0169124B1 (en) Balanced amplifier stage arrangement for microwaves
EP4167378A1 (en) Insulated radio frequency antenna device
EP1538696A1 (en) Dualband cell phone with omnidirectional radiation pattern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200925

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211201

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1523338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019020232

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1523338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019020232

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

26N No opposition filed

Effective date: 20230706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230926

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230911

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231011

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005