EP3638409B1 - Method and mixing device for controlling the introduction of a pulverulent material into a liquid for a batch mixing method - Google Patents
Method and mixing device for controlling the introduction of a pulverulent material into a liquid for a batch mixing method Download PDFInfo
- Publication number
- EP3638409B1 EP3638409B1 EP18718686.1A EP18718686A EP3638409B1 EP 3638409 B1 EP3638409 B1 EP 3638409B1 EP 18718686 A EP18718686 A EP 18718686A EP 3638409 B1 EP3638409 B1 EP 3638409B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- time
- dependent
- current consumption
- duration
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 80
- 239000007788 liquid Substances 0.000 title claims description 68
- 239000000463 material Substances 0.000 title claims 19
- 230000036962 time dependent Effects 0.000 claims description 111
- 238000010008 shearing Methods 0.000 claims description 29
- 238000003756 stirring Methods 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 230000001419 dependent effect Effects 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 10
- 238000004904 shortening Methods 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 description 77
- QDZOEBFLNHCSSF-PFFBOGFISA-N (2S)-2-[[(2R)-2-[[(2S)-1-[(2S)-6-amino-2-[[(2S)-1-[(2R)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-N-[(2R)-1-[[(2S)-1-[[(2R)-1-[[(2S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]pentanediamide Chemical compound C([C@@H](C(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CCCNC(N)=N)C1=CC=CC=C1 QDZOEBFLNHCSSF-PFFBOGFISA-N 0.000 description 12
- 102100024304 Protachykinin-1 Human genes 0.000 description 12
- 101800003906 Substance P Proteins 0.000 description 12
- 238000005054 agglomeration Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000010923 batch production Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- WHBHBVVOGNECLV-OBQKJFGGSA-N 11-deoxycortisol Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 WHBHBVVOGNECLV-OBQKJFGGSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- CWWARWOPSKGELM-SARDKLJWSA-N methyl (2s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-2-[[(2s)-5-amino-2-[[(2s)-5-amino-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s)-1-[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-5 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)OC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 CWWARWOPSKGELM-SARDKLJWSA-N 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/51—Methods thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/53—Mixing liquids with solids using driven stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/59—Mixing systems, i.e. flow charts or diagrams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/50—Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/23—Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by the orientation or disposition of the rotor axis
- B01F27/232—Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by the orientation or disposition of the rotor axis with two or more rotation axes
- B01F27/2321—Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by the orientation or disposition of the rotor axis with two or more rotation axes having different inclinations, e.g. non parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/60—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
- B01F27/61—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis about an inclined axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/90—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/21—Measuring
- B01F35/212—Measuring of the driving system data, e.g. torque, speed or power data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/22—Control or regulation
- B01F35/2201—Control or regulation characterised by the type of control technique used
- B01F35/2209—Controlling the mixing process as a whole, i.e. involving a complete monitoring and controlling of the mixing process during the whole mixing cycle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/22—Control or regulation
- B01F35/221—Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
- B01F35/2216—Time, i.e. duration, of at least one parameter during the operation
- B01F35/22162—Time of feeding of at least one of the components to be mixed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/71755—Feed mechanisms characterised by the means for feeding the components to the mixer using means for feeding components in a pulsating or intermittent manner
Definitions
- the invention relates to a method for controlling the introduction of a pulverulent substance into a liquid consisting of at least one component for a batch mixing process according to the preamble of claim 1, in which the introduction and treatment of the pulverulent substance quasi under the reaction kinetic conditions of a residence time behavior of a discontinuous working homogeneous reaction vessel takes place as well as a mixing device for carrying out the process.
- mixer technology With a view to the introduction of a powdery substance into a liquid and its uniform distribution and, if necessary, dissolution in the liquid, mixer technology knows mixing processes that are operated intermittently (so-called batch process) or continuously (so-called inline process).
- the mixing of liquid and powdery substance is carried out kinetically in a so-called discontinuously operated reaction vessel (mixing vessel).
- a certain amount of liquid is placed in the mixing container and powdery substance is added until a desired or systematically predetermined dry substance concentration of the powdery substance is present in the liquid.
- Powdered substance and liquid are preferably continuously stirred and / or mixed to form a mixed product and the mixed product is homogenized with the aim of uniformly distributing the powdery substance.
- the powdery substance can be fed in continuously or discontinuously.
- the mixing of liquid and powdery substance is carried out kinetically in a so-called continuously operated reaction vessel (mixing vessel).
- mixing vessel a so-called continuously operated reaction vessel
- the mixing tank powdery substance the latter either continuously or discontinuously, is supplied and a mixed product corresponding to the supplied amounts of liquid and powdery substance is continuously discharged from the mixing container.
- Stirring and / or mixing or shearing and homogenizing ensure, according to the theoretical postulate, that the mixed product has the same composition (eg dry matter concentration) at every point and that no temperature differences occur.
- the dry matter concentration in the discharged mixed product remains unchanged over the duration of the mixing process.
- the present invention deals exclusively with mixing processes which are operated in the batch process and here in all possible forms.
- a related mixing process and the associated mixing device were made known to the public, for example, at the following Internet link: "http://www.gea.com/de/products/High-Shear-Batch-Mixer.jsp”.
- the above-mentioned mixing devices preferably also include so-called vacuum mixers, which have a mixing container with a stirring and / or shearing and homogenizing device.
- the free surface of the liquid, which in the mixing container can, for example, have a free fill level with a height of between 0.4 and 4 m, is subject to a negative pressure corresponding to this height range compared to atmospheric pressure of, for example, 0.2 to 0.8 bar, so that the Liquid can on the one hand be freed from gas components more easily during the mixing process and on the other hand has a negative pressure compared to atmospheric pressure in the bottom area of the mixing container under all operating conditions.
- the powdery substance is introduced into the mixing container via an opening in the container wall below the free fill level.
- This opening continues in a tubular inlet connection in the direction of the outside of the mixing container, to which a pipeline leading, for example, to a powder storage container is connected.
- the inlet nozzle and thus the pipeline are designed to be shut off via an inlet valve that controls the supply of the powdery substance, so that on the one hand the mixing device is closed off from its surroundings via this path and on the other hand a quantity of the powdery substance presented in the powder storage container if the liquid is required due to the prevailing Pressure ratios can be fed automatically.
- a related mixing device with a preferably discontinuous supply of the powdery substance is in the document DE 10 2015 016 766 A1 described, the latter being generic.
- a discontinuous supply of the powdery substance as for example in the DE 10 2015 016 766 A is disclosed, has the advantage that the supply always takes place via the fully open position of the inlet valve designed as a lift valve and thereby the risk of clogging of the inlet valve is minimized.
- more or less large amounts of the powdery substance are introduced into the liquid in bursts, so that there is basically the risk that there is corresponding agglomeration of the powdery substance, which is caused by the stirring and / or shearing and homogenizing -The device must be completely dissolved until the subsequent entry of powdery substance, whereby at the same time a largely uniform distribution of the powdery substance is to be aimed for.
- the object of the present invention is to develop a generic method for controlling the introduction of a powdery substance into a liquid consisting of at least one component for a batch mixing process and an associated mixing device for carrying out the process in such a way that the above-mentioned disadvantages of the prior art be eliminated.
- this object is achieved by a method having the features of claim 1.
- the object is also achieved by a mixing device for performing the method with the features of independent claim 9.
- An advantageous embodiment of the mixing device is the subject of dependent claim 10.
- the invention is based on a known method for controlling the introduction of a powdery substance into a liquid consisting of at least one component for a batch mixing process
- component being understood to mean here can usually be discrete liquids that are separate from one another and that can also be fed to the mixing process separately from one another.
- the batch mixing process is typically used for medium to high viscosity mixed products with a medium to high dry matter concentration in the end and also for mixing processes with several liquid components that require little or no further processing in the downstream process.
- the powdery substance is introduced and treated, viewed from a reaction kinetic point of view, under the conditions of a residence time behavior of a discontinuously operating homogeneous reaction vessel.
- the method is characterized in a manner known per se such that a quantity of liquid is provided and the powdery substance is fed discontinuously into this liquid and the liquid and the powdery substance are continuously stirred and / or mixed to form a mixed product and the mixed product is homogenized.
- the powdery substance is fed in until a time-dependent course of a dry matter concentration of the powdery substance in the mixed product has grown to a predetermined end value.
- the inventive solution concept consists in the method that a recipe of the mixed product at least with regard to the predetermined final value associated time-dependent course of a dry matter concentration and the reaction conditions are each given in the form of default data. Furthermore, it is provided that the discontinuous supply of the powdery substance takes place in a manner known per se in pulses by a time sequence of metering pulses.
- the reaction conditions provide that the powdery substance is sucked in by a negative pressure (vacuum) in the head space of the mixing container compared to atmospheric pressure.
- the metering pulses are each characterized by a mass flow of the powdery substance ⁇ P , a duration of the metering pulse ⁇ t1 and a time interval between adjacent metering pulses ⁇ t2.
- a significant technical control feature is that a time-dependent current consumption I (t) is determined, which is proportional to the stirring and / or shearing and homogenizing power required for a temporarily present mixed product.
- I (t) is determined, which is proportional to the stirring and / or shearing and homogenizing power required for a temporarily present mixed product.
- the latter always occurs in the form of approximately one Gaussian normal distribution when a defined amount of powdery substance is introduced into the mixing process or the mixing container and treated in pulses.
- the time-dependent current consumption I (t) decays, namely to a time-dependent course of a reference current consumption I o (t) , which is characteristic of the stirring and / or shearing and homogenizing power to be provided on the homogenized mixed product under the conditions of the assigned time-dependent course of a dry matter concentration (c (t)).
- the related time-dependent course of the reference current consumption I o (t) is stored in the specification data and can be drawn from there, and it is dependent on the recipe of the mixed product and the reaction conditions for the mixing process.
- the duration of the dosing pulse ⁇ t1 for the subsequent dosing pulse is shortened in the first case and lengthened in the second case.
- This technical control measure with a variable duration-time interval ratio V requires the control to be able to shorten or lengthen the duration of the metering pulse ⁇ t1 with an unchanging time interval between adjacent metering pulses ⁇ t2 or to adequately lengthen the time interval between adjacent metering pulses ⁇ t2 with the same duration of the metering pulse ⁇ t1 or shorten it.
- the control-technical measure according to the invention thus essentially consists in both refinements of the method in that the duration of the metering pulse ⁇ t1 and the time interval between adjacent metering pulses ⁇ t2 are selected in such a way that at the respective end of the time interval between adjacent metering pulses ⁇ t2 the time-dependent determined current consumption I (t) for Stirring and / or shearing and homogenizing the temporarily present mixed product approximates the time-dependent course of a reference current consumption I o (t), which is required for the relevant treatment of the homogenized mixed product, within the scope of a practically relevant permissible tolerance.
- the mass flow of the pulverulent substance is constant over the duration of the metering pulse. This is ensured in particular by the fact that a controllable opening for the supply of the powdery substance only assumes either a fully open position or a closed position.
- another embodiment of the method provides that the shortening or lengthening of the duration of the metering pulse occurs when a current corridor determined by a permissible current excess or a permissible current shortfall due to an upwardly deviating current consumption or a current consumption deviating downwards is left.
- the permissible current excess and the permissible current shortfall are each determined by a percentage of the assigned time-dependent course of a reference current consumption.
- the degree of shortening or lengthening of the duration of the metering pulse is determined as a function of the degree of deviation of the time-dependent current consumption from the assigned course of a reference current consumption.
- another embodiment of the method provides that the control of the introduction of the powdery substance into the at least one liquid is based on further recipe-dependent default data from previous experience Mixing processes are obtained and stored, with these default data a mixing or solution temperature, a pressure above the liquid column from which a reaction pressure results, speeds of devices for stirring and / or shearing and homogenizing and a permissible current exceedance dependent on the assigned time-dependent course of a reference current consumption and are a permissible current shortfall.
- a further embodiment of the method provides that the target-oriented recipe-dependent control parameters, and the duration of the dosing pulse and the time interval between adjacent dosing pulses can be saved and used for subsequent controls of the same recipes.
- a mixing device for carrying out the method consists in a manner known per se of a mixing container which has an inlet connection for supplying a liquid, an outlet connection for discharging a mixed product and a stirring device and / or a shearing and homogenizing device.
- An inlet valve with a valve closing member is arranged on the mixing container. The inlet valve can be adjusted with the valve closing element either between completely closed (closed position) or completely open (open position). A powdery substance is introduced into the liquid with the inlet valve, the valve closing element being able to be moved into the closed or open position with a control device assigned to the inlet valve.
- the control device of the mixing device provides recipe-dependent specification data and recipe-dependent control parameters in the form of the duration of the metering pulse and the time interval between adjacent metering pulses. Furthermore, according to the invention, the control device has at least one signal pickup designed as a measuring device, which detects a time-dependent current consumption of the stirring device and / or the shearing and homogenizing device. Equipped with these properties, the control device controls the closed or open position of the valve closing element as a function of the time-dependent power consumption and in relation to the specified data and the control parameters.
- an advantageous embodiment provides that the valve closing member is designed, at least in its powder-loaded area, as a cylindrical rod of the same diameter on which the same diameter a valve plate is formed.
- the valve closing member with its valve disk is largely moved out of the fully developed flow of the powdery substance due to this embodiment, so that on the one hand it does not represent a flow obstacle and on the other hand there is a seat seal that is accommodated in the valve disk the vicinity of the wall of a valve housing and thus outside the fully developed flow area of the pipe flow and is therefore only affected by the stagnant flow close to the wall in this edge area.
- a mixing device 1000 has, inter alia, a mixing container 100 which consists of a preferably cylindrical container jacket 100.1, an upper container base 100.2 and a lower container base 100.3.
- the lower container base 100.3 preferably tapers downwards, mostly in the shape of a cone or in the form of a circular cone, and has an outlet connection 100.4 for a mixed product M at the lower end.
- a liquid F in an amount of liquid m F is placed in the mixing container 100 via an inlet connection 100 standing mixing device 1000 (eg vacuum mixer) a pressure above the liquid column p, a negative pressure compared to atmospheric pressure, prevails.
- An inlet valve 20 is arranged on the container jacket 100.1 or the lower container base 100.3.
- the inlet valve 20 is used for the discontinuous supply of a powdery substance P with a mass flow of powdery substance ⁇ P , which is fed via a feed line 18, into the liquid F or into the mixed product M.
- the inlet valve 20 is assigned a control device 30, which has a control head housing 14 of the inlet valve 20 communicates via a signal line 22 and, if necessary, the inlet valve 20 is transferred into its open or closed position.
- a stirring device 24 driven by a first drive motor 40 at a rather low first speed n1, preferably arranged centrally and acting mechanically, which preferably extends down into the area of the lower container bottom 100.3.
- the required stirring effect can also be achieved or supported by fluid mechanical means, for example by pumping the liquid F or the mixed product M through a circulation line (not shown) with preferably tangential entry of the liquid F or the mixed product M into the mixing container 100.
- a shearing and homogenizing device 26 driven by a second drive motor 50 with a rather high second speed n2 is preferably provided in the lower region of the lower container bottom 100.3 and preferably eccentrically in this. This preferably sucks in the liquid F or the mixed product M on the one hand from above and on the other hand ejects it in a ring-shaped manner in the area of the lower container bottom 100.3 close to the wall in such a way that a circulation flow directed from the outside inward is preferably formed in the mixing container 100.
- liquid F and powdery substance P or the mixed product M resulting therefrom are mechanically mixed very intensively and preferably homogenized in the process.
- the inlet valve 20 is designed as a lift valve ( Figure 2 ).
- a valve housing 2 it has a valve seat 2a and a valve disk cooperating with it 8a, which is formed on a valve closing member 8.
- the valve closing member 8 receives a seat seal 10, which in the closed position of the inlet valve 20, in cooperation with the valve seat 2a, effects the seal.
- the valve seat 2a has a seat opening 2b through which the powdery substance P supplied from the supply line 18 via a pipe connection 2c is introduced into the liquid F ( Figure 1 ).
- valve closing member 8 It is preferably a spring / piston drive acted upon by pressure medium, a return spring 12 usually moving the valve closing member 8 into its closed position when the drive housing 6 is not acted upon by pressure medium, preferably compressed air.
- a valve rod 8b which engages the valve plate 8a of the valve closing element 8 and is guided through the drive housing 6 and into the control head housing 14, serves on the drive side for the axial guidance of the valve closing element 8.
- the valve closing element 8 is at least in its powder-loaded area as a cylindrical rod of the same diameter formed on which the valve disk 8a is formed with the same diameter.
- valve closing member 8 moving with it its end valve disk 8a and the associated seat seal 10 can be withdrawn as far as possible from the area of the valve housing 2 through which there is a full flow.
- the control device 30 has at least one signal pickup 16.
- the at least one signal pick-up 16 is a measuring device, for example for mixing parameters, such as the pressure above the liquid column p in the mixing container 100, a mixing or solution temperature T of the liquid F, a dry matter concentration c or a time-dependent curve of a dry matter concentration c (t ), Speeds n1, n2 and a time-dependent current consumption I (t) of the stirring and / or shearing and homogenizing device 24, 26.
- the signal pickup 16 is in Figure 1 shown by way of example for the time-dependent current consumption I (t) of the second drive motor 50 of the shearing and homogenizing device 26.
- additional or alternatively further measuring devices can be provided which determine the other mixing parameters.
- the introduction and treatment of the pulverulent substance P takes place quasi under the reaction kinetic conditions of a residence time behavior of a discontinuously operating homogeneous reaction vessel.
- the method is characterized in a manner known per se in such a way that a quantity of liquid m F is placed in the mixing container 100 (supply via the inlet connection 100.5) and the powdery substance P of this liquid F via the inlet valve 20 with the flow of powdery substance ⁇ P , which is in In the most general case, a time-dependent mass flow of powdery substance ⁇ P (t) can be supplied discontinuously.
- the liquid F and the powdery substance P are continuously stirred and / or mixed to form a mixed product M and the mixed product M is homogenized.
- the pulverulent substance P is supplied until the time-dependent course of a dry substance concentration c (t) of the pulverulent substance P in the mixed product M has grown to a predetermined end value c E.
- a recipe of the mixed product M is assigned at least with regard to the predetermined end value c E time-dependent course of a dry matter concentration c (t) and the reaction conditions are each given in the form of default data D.
- the discontinuous supply of the powdery substance P takes place over a period of time t in pulses by a time sequence of metering pulses i ( Figures 3 and 4 ), which are each characterized by the mass flow of the powdery substance ⁇ P , a duration of the dosing pulse ⁇ t1 and a time interval between adjacent dosing pulses ⁇ t2.
- Time-dependent current consumption I (t) plotted over the corresponding period t is determined or measured.
- the latter is proportional to a stirring and / or shearing and homogenizing power required for a mixing product M * temporarily present in the mixing container 100 immediately after the dosing pulse i ( Figure 1 ), which is to be applied by the stirring and / or shearing and homogenizing device 24, 26.
- time-dependent current consumption I (t) is similar to a Gaussian normal distribution curve, it increases with the intermittent flow of powdery substance ⁇ P , reaches a maximum, and then after dissolution of the powdery substance P, i.e. with a homogenized mixed product that is then reached M to gradually decrease to a time-dependent current consumption I (t) required for this homogenized mixed product M.
- this typical behavior is used for control purposes in that a time-dependent course of a reference current consumption I o (t) is used from the default data D, which is characteristic of the stirring and / or shearing and homogenizing power to be provided on the homogenized mixed product M.
- the related course of a reference current consumption I o (t) is stored in the specification data D, and it is dependent on the recipe of the mixed product M and the reaction conditions for the mixing process.
- the duration of the dosing pulse ⁇ t1 for the subsequent dosing pulse is shortened in the first case and lengthened in the second case.
- the tolerance consists of a specification of a permissible current exceedance ⁇ I1 and a permissible current undercurrent ⁇ I2 ( Figure 3 ).
- the shortening or lengthening of the duration of the dosing pulse ⁇ t1 occurs when a current corridor determined by the permissible current exceedance ⁇ I1 or the permissible current undercurrent ⁇ I2 due to the time-dependent current consumption I * (t), I ** (t) deviating upwards or downwards. is left.
- the permissible current excess and the permissible current shortfall ⁇ I1, ⁇ I2 are preferably each determined by a percentage of the associated time-dependent course of a reference current consumption I o (t).
- the amount of shortening or lengthening of the duration of the metering pulse ⁇ t1 is preferably determined as a function of the amount of deviation of the time-dependent current consumption I (t) from the assigned time-dependent course of a reference current consumption I o (t).
- the permissible current excess ⁇ I1 and permissible current shortfall ⁇ I2 ultimately determined by the respective formulation of the mixed product M can be part of the specification data D for the mixing process.
- recipe-dependent control parameters S namely the duration of the dosing pulse ⁇ t1 and the time interval between adjacent dosing pulses ⁇ t2, are stored and used for subsequent controls of the same recipes.
- the control device 30 of the mixing device 100 is set up according to the invention so that it can provide the recipe-dependent default data D and the recipe-dependent control parameters S in the form of the duration of the metering pulse ⁇ t1 and the time interval between adjacent metering pulses ⁇ t2.
- the control device 30 also has at least the signal pick-up 16 designed as a measuring device ( Figure 1 ), which records the time-dependent current consumption I (t) of the stirring device 24 and / or the shearing and homogenizing device 26 ( Figures 3, 4 ).
- the control device 30 controls the closed or open position of the valve closing element 8 ( Figure 2 ) as a function of the time-dependent current consumption I (t) and in relation to the default data D and the control parameters S.
- the method results in the time-dependent course of a dry matter concentration c (t), which according to plan ends in the specified end value c E , with the time-dependent course of a dry matter concentration c (t) without saturation character (approximately linear time-dependent course; see Figures 3 to 5 ) or the time-dependent course of a dry matter concentration with saturation character (degressive time-dependent course; see Figure 6 ) is to be distinguished.
- the time-dependent course of a dry matter concentration c (t) ending in the predetermined end value c E is defined by the sequence of specific metering pulses i, ie clearly defined by the duration of the metering pulse ⁇ t1 and the time interval between adjacent metering pulses ⁇ t2.
- the duration of the metering pulse ⁇ t1 is shortened according to the invention with a constant duration-time interval ratio V (as shown in FIG Figure 4 in contrast to Figure 3 is shown qualitatively as an example) or extended.
- This technical control measure with a Fixed time-duration-time interval ratio V inevitably leads in the same ratio to a corresponding shortening or lengthening of the time interval between adjacent metering pulses ⁇ t2, based on the subsequent metering pulse i.
- the mass flow of powdery substance ⁇ P is introduced into an existing almost unchangeable volume of the mixed product V M (V M ⁇ constant) in the time period t of the entire mixing process with an almost unchangeable fill level N in the mixing container 100, with a density ⁇ M of the mixed product M increasing, namely according to the time-dependent course of a dry matter concentration c (t), which grows to the predetermined end value c E.
- a related course describes a successful mixing process, which on the one hand protects the mixed product M and on the other hand is designed to be energy-efficient. It does not require any control measures in the sense explained above. Only when deviations from the permissible current excess or current shortfall ⁇ I1, ⁇ I2 occur, do the control mechanisms, as used in the first method in connection with the Figures 3 and 4 have been described.
- control measures with a variable duration-time interval ratio V require the control device 30 to be able to shorten or lengthen the duration of the metering pulse ⁇ t1 with an unchanging time interval between adjacent metering pulses ⁇ t2 or to adequately adjust the time interval between adjacent metering pulses ⁇ t2 with the same duration of the metering pulse ⁇ t1 lengthen or shorten.
- the control measures according to the invention therefore essentially consist in both refinements of the method in that the duration of the metering pulse ⁇ t1 and the time interval between adjacent metering pulses ⁇ t2 are selected in such a way that at the respective end of the time interval between adjacent metering pulses ⁇ t2 the time-dependent determined current consumption I (t) for Stirring and / or shearing and homogenizing the temporarily present mixed product M * approximates the time-dependent course of a reference current consumption I o (t), which is required for the relevant treatment of the homogenized mixed product M, within the scope of a practically relevant permissible tolerance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Accessories For Mixers (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Steuerung der Einbringung eines pulverförmigen Stoffes in eine aus wenigstens einer Komponente bestehende Flüssigkeit für ein Batch-Mischverfahren nach dem Oberbegriff des Anspruchs 1, bei dem die Einbringung und Behandlung des pulverförmigen Stoffes quasi unter den reaktionskinetischen Bedingungen eines Verweilzeitverhaltens eines diskontinuierlich arbeitenden homogenen Reaktionskessels erfolgt sowie eine Mischvorrichtung zur Durchführung des Verfahrens.The invention relates to a method for controlling the introduction of a pulverulent substance into a liquid consisting of at least one component for a batch mixing process according to the preamble of
Die Mischertechnologie kennt mit Blick auf die Einbringung eines pulverförmigen Stoffes in eine Flüssigkeit und dessen Gleichverteilung und ggf. Auflösung in der Flüssigkeit Mischverfahren, die absatzweise (sog. Batch-Verfahren) oder kontinuierlich (sog. Inline-Verfahren) betrieben werden.With a view to the introduction of a powdery substance into a liquid and its uniform distribution and, if necessary, dissolution in the liquid, mixer technology knows mixing processes that are operated intermittently (so-called batch process) or continuously (so-called inline process).
Beim Batch-Verfahren wird das Mischen von Flüssigkeit und pulverförmigem Stoff reaktionskinetisch in einem sogenannten diskontinuierlich betriebenen Reaktionskessel (Mischbehälter) durchgeführt. Eine bestimmte Menge Flüssigkeit wird in dem Mischbehälter vorgelegt und es wird so lange pulverförmiger Stoff zugeführt, bis eine gewünschte bzw. planmäßig vorgegebene Trockenstoff-Konzentration des pulverförmigen Stoffes in der Flüssigkeit vorliegt. Pulverförmiger Stoff und Flüssigkeit werden dabei vorzugsweise fortwährend gerührt und/oder zu einem Mischprodukt gemischt und das Mischprodukt wird mit dem Ziel einer Gleichverteilung des pulverförmigen Stoffes homogenisiert. Die Zufuhr des pulverförmigen Stoffes kann dabei kontinuierlich oder diskontinuierlich erfolgen.In the batch process, the mixing of liquid and powdery substance is carried out kinetically in a so-called discontinuously operated reaction vessel (mixing vessel). A certain amount of liquid is placed in the mixing container and powdery substance is added until a desired or systematically predetermined dry substance concentration of the powdery substance is present in the liquid. Powdered substance and liquid are preferably continuously stirred and / or mixed to form a mixed product and the mixed product is homogenized with the aim of uniformly distributing the powdery substance. The powdery substance can be fed in continuously or discontinuously.
Beim Inline-Verfahren wird das Mischen von Flüssigkeit und pulverförmigem Stoff reaktionskinetisch in einem sogenannten kontinuierlich betriebenen Reaktionskessel (Mischbehälter) durchgeführt. Es wird dem Mischbehälter stetig Flüssigkeit und pulverförmiger Stoff, letzterer entweder kontinuierlich oder diskontinuierlich, zugeführt und es wird aus dem Mischbehälter ein Mischprodukt entsprechend den zugeführten Mengen an Flüssigkeit und pulverförmigem Stoff kontinuierlich abgeführt. Rühren und/oder Mischen bzw. Scheren und Homogenisieren sorgen dafür, so ist das theoretische Postulat, dass das Mischprodukt an jeder Stelle die gleiche Zusammensetzung (z.B. Trockenstoff-Konzentration) hat und keine Temperaturunterschiede auftreten. Die Trockenstoff-Konzentration im abgeführten Mischprodukt bleibt, über die Dauer des Mischprozesses gesehen, unverändert konstant.In the inline process, the mixing of liquid and powdery substance is carried out kinetically in a so-called continuously operated reaction vessel (mixing vessel). There is steady liquid and the mixing tank powdery substance, the latter either continuously or discontinuously, is supplied and a mixed product corresponding to the supplied amounts of liquid and powdery substance is continuously discharged from the mixing container. Stirring and / or mixing or shearing and homogenizing ensure, according to the theoretical postulate, that the mixed product has the same composition (eg dry matter concentration) at every point and that no temperature differences occur. The dry matter concentration in the discharged mixed product remains unchanged over the duration of the mixing process.
Die vorliegende Erfindung befasst sich ausschließlich mit Mischverfahren, die im Batch-Verfahren und hier in allen möglichen Ausprägungen betrieben werden. Ein diesbezügliches Mischverfahren und die zugeordnete Mischvorrichtung wurde der Öffentlichkeit beispielweise unter folgendem Internet-Link bekannt gemacht: "http://www.gea.com/de/products/High-Shear-Batch-Mixer.jsp". The present invention deals exclusively with mixing processes which are operated in the batch process and here in all possible forms. A related mixing process and the associated mixing device were made known to the public, for example, at the following Internet link: "http://www.gea.com/de/products/High-Shear-Batch-Mixer.jsp".
Die vorstehend erwähnten Mischvorrichtungen umfassen bevorzugt auch sogenannte Vakuummischer, die einen Mischbehälter mit einer Rühr- und/oder Scher- und Homogenisier-Einrichtung aufweisen. Die freie Oberfläche der Flüssigkeit, die in dem Mischbehälter beispielsweise ein freies Füllstandsniveau mit einer Höhe zwischen 0,4 bis 4 m aufweisen kann, unterliegt dabei einem diesem Höhenbereich entsprechend zugeordneten Unterdruck gegenüber Atmosphärendruck von beispielsweise 0,2 bis 0,8 bar, damit die Flüssigkeit einerseits beim Mischprozess leichter von Gasbestandteilen befreit werden kann und andererseits im Bodenbereich des Mischbehälters unter allen Betriebsbedingungen einen Unterdruck gegenüber Atmosphärendruck aufweist. Die Einleitung des pulverförmigen Stoffes in den Mischbehälter erfolgt über eine Öffnung in der Behälterwandung unterhalb des freien Füllstandsniveaus. Diese Öffnung setzt sich in einem rohrförmigen Eintrittsstutzen in Richtung der Außenseite des Mischbehälters fort, an den eine beispielsweise zu einem Pulvervorratsbehälter führende Rohrleitung angeschlossen ist. Der Eintrittsstutzen und damit die Rohrleitung sind über ein die Zufuhr des pulverförmigen Stoffes steuerndes Einlaufventil absperrbar ausgebildet, damit einerseits die Mischvorrichtung über diesen Weg gegenüber ihrer Umgebung abgeschlossen und andererseits eine im Pulvervorratsbehälter vorgelegte Menge des pulverförmigen Stoffes im Bedarfsfalle der Flüssigkeit aufgrund der herrschenden Druckverhältnisse selbsttätig zugeführt werden kann. Eine diesbezügliche Mischvorrichtung mit einer vorzugsweise diskontinuierlichen Zufuhr des pulverförmigen Stoffes ist in der Druckschrift
Eine diskontinuierliche Zufuhr des pulverförmigen Stoffes, wie sie beispielsweise in der
Erschwerend kommt im Mischprozess hinzu, dass das Verweilzeitverhalten eines diskontinuierlich betriebenen Reaktionskessels bzw. Mischbehälters zwar theoretisch an jeder Stelle eine gleiche Zusammensetzung des Mischprodukts postuliert, dass es praktisch jedoch, verstärkt durch die betriebsbedingte diskontinuierliche Zufuhr des pulverförmigen Stoffes, zu inhomogen verteilten Zusammenballungen des pulverförmigen Stoffes kommen kann, die sich bis zur nächsten Zufuhr des pulverförmigen Stoffes nicht an allen Stellen des Mischbehälters vollständig aufgelöst haben. Dadurch besteht die Gefahr einer Blockierung des Mischbehälters wegen zu hoher Trockenstoff-Konzentration.What makes the mixing process even more difficult is that the residence time behavior of a discontinuously operated reaction vessel or mixing vessel theoretically postulates the same composition of the mixed product at every point, but in practice, reinforced by the operational discontinuous supply of the powdery substance, it leads to inhomogeneously distributed agglomerations of the powdery substance can occur that have not completely dissolved at all points of the mixing container by the next supply of the powdery substance. As a result, there is a risk of the mixing container becoming blocked due to an excessively high concentration of dry matter.
Es kann daher zum einen nicht ausgeschlossen werden, dass sich mehr oder weniger große Zusammenballungen nicht vollständig auflösen und im Mischprodukt nachhaltig existent sind. Durch die vorstehend beschriebenen Inhomogenitäten des pulverförmigen Stoffes in dem Mischprodukt besteht in diesem zum anderen die Gefahr eines mikrobiologischen Wachstums (Keimwachstum), das insbesondere dann, wenn der Mischbehälter beheizt ist, unter diesen thermischen Bedingungen befördert wird. Darüber hinaus kommt es unter den letztgenannten Bedingungen verstärkt zur Belagbildung (sogenanntes Produkt-Fouling) an den beheizten Wandungen des Mischbehälters, die einerseits den Wärmeübergang behindert und andererseits die Standzeit des Mischbehälters bis zum nächstfälligen Reinigungszyklus verkürzt.On the one hand, therefore, it cannot be ruled out that more or less large agglomerations do not completely dissolve and are sustainable in the mixed product. Due to the above-described inhomogeneities of the powdery substance in the mixed product, there is on the other hand the risk of microbiological growth (germ growth), which is conveyed under these thermal conditions, especially when the mixing container is heated. In addition, the latter conditions lead to increased deposits (so-called product fouling) on the heated walls of the mixing container, which on the one hand hinders the transfer of heat and on the other hand shortens the service life of the mixing container until the next cleaning cycle.
Da es bislang an zielführenden Steuerungsmechanismen fehlt, um Inhomogenitäten hinsichtlich der Verteilung und des Auflösungsgrades von Zusammenballungen des pulverförmigen Stoffes und unverhältnismäßig große Schwankungen der Zufuhr des pulverförmigen Stoffes zu vermeiden und eine Blockierung der Mischvorrichtung wegen zu hoher Trockenstoff-Konzentration im Mischbehälter zu verhindern, wird bislang, um vermeintlich auf der sicheren Seite zu agieren, bei Mischvorrichtungen der in Rede stehenden Art das Rühren und/oder Scheren und Homogenisieren des temporär vorliegenden Mischprodukts über die gesamte Zeitdauer des Mischprozesses intensiver betrieben, als dies über weite Zeitabschnitte erforderlich ist. Diese zu intensive Behandlung kann sich einerseits produktschädigend auswirken und ist andererseits nicht energieeffizient.Since until now there has been a lack of targeted control mechanisms to avoid inhomogeneities with regard to the distribution and degree of dissolution of agglomerations of the powdery substance and disproportionately large fluctuations in the supply of the powdery substance and to prevent the mixing device from being blocked due to excessive dry substance concentration in the mixing container, so far In order to act supposedly on the safe side, with mixing devices of the type in question, the stirring and / or shearing and homogenizing of the temporarily present mixed product is operated more intensively over the entire duration of the mixing process than is necessary over long periods of time. On the one hand, this too intensive treatment can have a damaging effect on the product and, on the other hand, it is not energy-efficient.
Es ist Aufgabe der vorliegenden Erfindung, ein gattungsgemäßes Verfahren zur Steuerung der Einbringung eines pulverförmigen Stoffe in eine aus wenigstens einer Komponente bestehende Flüssigkeit für ein Batch-Mischverfahren und eine zugeordnete Mischvorrichtung zur Durchführung des Verfahrens derart weiterzubilden, dass die vorstehend angegebenen Nachteile des Standes der Technik beseitigt werden.The object of the present invention is to develop a generic method for controlling the introduction of a powdery substance into a liquid consisting of at least one component for a batch mixing process and an associated mixing device for carrying out the process in such a way that the above-mentioned disadvantages of the prior art be eliminated.
Diese Aufgabe wird in verfahrenstechnischer Hinsicht durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Ferner wird die Aufgabe in vorrichtungstechnischer Hinsicht durch eine Mischvorrichtung zur Durchführung des Verfahrens mit den Merkmalen des Nebenanspruchs 9 gelöst. Eine vorteilhafte Ausgestaltung der Mischvorrichtung ist Gegenstand des Unteranspruchs 10.From a procedural point of view, this object is achieved by a method having the features of
Die Erfindung geht mit Blick auf ein erfindungsgemäßes Verfahren aus von einem bekannten Verfahren zur Steuerung der Einbringung eines pulverförmigen Stoffes in eine aus wenigstens einer Komponente bestehende Flüssigkeit für ein Batch-Mischverfahren, wobei die Begrifflichkeit "Komponente" so zu verstehen ist, dass es sich hierbei in der Regel um diskrete, voneinander getrennte Flüssigkeiten handeln kann, die auch voneinander getrennt dem Mischprozess zugeführt werden können. Das Batch-Mischverfahren wird typischerweise angewendet für mittel- bis hochviskose Mischprodukte mit im Endergebnis mittelhoher bis hoher Trockenstoff-Konzentration und auch für Mischverfahren mit mehreren Flüssigkeitskomponenten, die keine oder nur geringe Weiterverarbeitung im nachgeschalteten Prozess benötigen. Dabei erfolgt die Einbringung und Behandlung des pulverförmigen Stoffes, reaktionskinetisch betrachtet, quasi unter den Bedingungen eines Verweilzeitverhaltens eines diskontinuierlich arbeitenden homogenen Reaktionskessels.With a view to a method according to the invention, the invention is based on a known method for controlling the introduction of a powdery substance into a liquid consisting of at least one component for a batch mixing process, the term "component" being understood to mean here can usually be discrete liquids that are separate from one another and that can also be fed to the mixing process separately from one another. The batch mixing process is typically used for medium to high viscosity mixed products with a medium to high dry matter concentration in the end and also for mixing processes with several liquid components that require little or no further processing in the downstream process. In this case, the powdery substance is introduced and treated, viewed from a reaction kinetic point of view, under the conditions of a residence time behavior of a discontinuously operating homogeneous reaction vessel.
Das Verfahren zeichnet in an sich bekannter Weise dergestalt aus, dass eine Menge Flüssigkeit vorgelegt und der pulverförmige Stoff diskontinuierlich in diese Flüssigkeit zugeführt wird und die Flüssigkeit und der pulverförmige Stoff fortwährend gerührt und/oder zu einem Mischprodukt gemischt werden und das Mischprodukt homogenisiert wird. Der pulverförmige Stoff wird so lange zugeführt, bis ein zeitabhängiger Verlauf einer Trockenstoff-Konzentration des pulverförmigen Stoffes im Mischprodukt auf einen vorgegebenen Endwert aufgewachsen ist.The method is characterized in a manner known per se such that a quantity of liquid is provided and the powdery substance is fed discontinuously into this liquid and the liquid and the powdery substance are continuously stirred and / or mixed to form a mixed product and the mixed product is homogenized. The powdery substance is fed in until a time-dependent course of a dry matter concentration of the powdery substance in the mixed product has grown to a predetermined end value.
Der erfinderische Lösungsgedanke besteht beim Verfahren darin, dass eine Rezeptur des Mischproduktes wenigstens hinsichtlich des dem vorgegebenen Endwert zugeordneten zeitabhängigen Verlaufs einer Trockenstoff-Konzentration und die Reaktionsbedingungen jeweils in Form von Vorgabedaten vorgegeben sind. Weiterhin ist vorgesehen, dass die diskontinuierliche Zufuhr des pulverförmigen Stoffes in an sich bekannter Weise impulsweise durch eine zeitliche Abfolge von Dosierimpulsen erfolgt. Die Reaktionsbedingen sehen diesbezüglich in einer bevorzugten Ausgestaltung vor, dass der pulverförmige Stoff durch einen Unterdruck (Vakuum) im Kopfraum des Mischbehälters gegenüber Atmosphärendruck angesaugt wird. Die Dosierimpulse sind jeweils durch einen Mengenstrom des pulverförmigen Stoffes ṁP, eine Zeitdauer des Dosierimpulses Δt1 und einen Zeitabstand benachbarter Dosierimpulse Δt2 charakterisiert.The inventive solution concept consists in the method that a recipe of the mixed product at least with regard to the predetermined final value associated time-dependent course of a dry matter concentration and the reaction conditions are each given in the form of default data. Furthermore, it is provided that the discontinuous supply of the powdery substance takes place in a manner known per se in pulses by a time sequence of metering pulses. In a preferred embodiment, the reaction conditions provide that the powdery substance is sucked in by a negative pressure (vacuum) in the head space of the mixing container compared to atmospheric pressure. The metering pulses are each characterized by a mass flow of the powdery substance ṁ P , a duration of the metering pulse Δt1 and a time interval between adjacent metering pulses Δt2.
Durch das Verfahren ergibt sich ein zeitabhängiger Verlauf einer Trockenstoff-Konzentration c(t), der planmäßig in dem vorgegebenen Endwert endet, wobei zwischen dem Verlauf einer Trockenstoff-Konzentration ohne Sättigungscharakter (näherungsweise linearer Verlauf) oder mit Sättigungscharakter (degressiver Verlauf) zu unterscheiden ist.
- Bei dem Verlauf ohne Sättigungscharakter lassen sich im Rahmen der Aufnahmekapazität oder der Löslichkeitsgrenze der Flüssigkeit in gleichen Zeitabständen gleiche Mengen pulverförmiger Stoff dosieren, sodass sich bei vollständiger Homogenisierung des Mischprodukts ein zeitabhängiger näherungsweise linear ansteigender Verlauf einer Trockenstoff-Konzentration einstellt.
- Bei dem Verlauf mit Sättigungscharakter lassen sich im Rahmen der Aufnahmekapazität oder der Löslichkeitsgrenze der Flüssigkeit in gleichen Zeitabständen nur stetig abnehmende Mengen pulverförmiger Stoff dosieren, sodass sich bei vollständiger Homogenisierung des Mischprodukts ein zeitabhängiger degressiv ansteigender Verlauf einer Trockenstoff-Konzentration einstellt.
- In the case of the course without the character of saturation, within the framework of the absorption capacity or the solubility limit of the liquid, the same amounts of powdery substance can be dosed at the same time intervals, so that when the mixed product is completely homogenized, a time-dependent, approximately linearly increasing course of a dry matter concentration is established.
- In the case of the course with a saturation character, only steadily decreasing amounts of powdery substance can be dosed at the same time intervals within the framework of the absorption capacity or the solubility limit of the liquid, so that a time-dependent degressively increasing course of a dry matter concentration occurs when the mixed product is completely homogenized.
Ein signifikantes steuerungstechnisches Merkmal besteht darin, dass eine zeitabhängige Stromaufnahme I(t) ermittelt wird, die proportional zu einer für ein temporär vorliegendes Mischprodukt erforderlichen Rühr- und/oder Scher- und Homogenisier-Leistung ist. Letztere tritt immer dann in Form näherungsweise einer Gauß'schen Normalverteilung auf, wenn eine definierte Menge pulverförmiger Stoff impulsweise in den Mischprozess bzw. den Mischbehälter eingebracht und behandelt wird.A significant technical control feature is that a time-dependent current consumption I (t) is determined, which is proportional to the stirring and / or shearing and homogenizing power required for a temporarily present mixed product. The latter always occurs in the form of approximately one Gaussian normal distribution when a defined amount of powdery substance is introduced into the mixing process or the mixing container and treated in pulses.
Sobald sich der pulverförmige Stoff in der aufnehmenden Flüssigkeit oder in dem aufnehmenden Mischprodukt gleichverteilt, d.h. möglichst homogen verteilt und ggf. dabei aufgelöst hat, klingt die zeitabhängige Stromaufnahme I(t) ab, und zwar auf einen zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t), der charakteristisch ist für die am homogenisierten Mischprodukt unter den Bedingungen des zugeordneten zeitabhängigen Verlaufs einer Trockenstoff-Konzentration (c(t)) zu erbringende Rühr- und/oder Scher- und Homogenisier-Leistung. Der diesbezügliche zeitabhängige Verlauf der Referenzstromaufnahme Io(t) ist in den Vorgabedaten hinterlegt und kann von dort herangesogen werden, und er ist abhängig von der Rezeptur des Mischproduktes und den Reaktionsbedingungen für den Mischprozess.As soon as the powdery substance is evenly distributed in the absorbing liquid or in the absorbing mixed product, i.e. it has been distributed as homogeneously as possible and possibly dissolved, the time-dependent current consumption I (t) decays, namely to a time-dependent course of a reference current consumption I o (t) , which is characteristic of the stirring and / or shearing and homogenizing power to be provided on the homogenized mixed product under the conditions of the assigned time-dependent course of a dry matter concentration (c (t)). The related time-dependent course of the reference current consumption I o (t) is stored in the specification data and can be drawn from there, and it is dependent on the recipe of the mixed product and the reaction conditions for the mixing process.
Am Ende des Zeitabstandes benachbarter Dosierimpulse Δt2 und bei Abweichung der zeitabhängigen Stromaufnahme I(t) von dem jeweils zugeordneten Wert im zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t) um mehr als eine vorgegebene Toleranz, wobei eine Abweichung entweder nach oben oder nach unten vorliegen kann, wird die Zeitdauer des Dosierimpulses Δt1 für den nachfolgenden Dosierimpuls im ersten Fall verkürzt und im zweiten Fall verlängert.At the end of the time interval between adjacent metering pulses Δt2 and when the time-dependent current consumption I (t) deviates from the respective assigned value in the time-dependent course of a reference current consumption I o (t) by more than a specified tolerance, with a deviation either upwards or downwards , the duration of the dosing pulse Δt1 for the subsequent dosing pulse is shortened in the first case and lengthened in the second case.
Für zeitabhängige Verläufe einer Trockenstoff-Konzentration c(t) ohne Sättigungscharakter sieht eine erste Ausgestaltung des Verfahrens vor, dass diese Verläufe jeweils durch ein festes Zeitdauer-Zeitabstand-Verhältnis V zwischen der Zeitdauer des Dosierimpulses Δt1 und dem zugeordneten Zeitabstand benachbarter Dosierimpulse Δt2 definiert sind (V = Δt1/Δt2 = konstant).For time-dependent curves of a dry matter concentration c (t) without the character of saturation, a first embodiment of the method provides that these curves are each defined by a fixed duration-time interval ratio V between the duration of the metering pulse Δt1 and the assigned time interval between adjacent metering pulses Δt2 ( V = Δt1 / Δt2 = constant).
Der jeweilige Verlauf einer Trockenstoff-Konzentration c(t) ist über die Zeit t ansteigend, weil der fortlaufend impulsweise dosierte Mengenstrom des pulverförmigen Stoffes ṁP, der im allgemeinsten Falle ein zeitabhängiger Mengenstrom pulverförmiger Stoff ṁP(t) ist, über die gesamte Zeitdauer t des Mischprozesses gesehen, konstant ist (ṁP = konstant). Der Mengenstrom pulverförmiger Stoff ṁP wird in der Zeitdauer t vielfach, und zwar (t/Δt2)-mal, bei annähernd unveränderlichem Füllstandsniveau im Mischbehälter in eine unveränderliche Menge Flüssigkeit mF des vorliegenden Mischprodukts eingebracht, wobei sich der zeitabhängige Verlauf einer Trockenstoff-Konzentration c(t) nach Gleichung (1), wie folgt, darstellt:
Diese steuerungstechnische Maßnahme mit einem festen Zeitdauer-Zeitabstand-Verhältnis V (V = Δt1/Δt2 = konstant) führt zwangsläufig im gleichen Verhältnis zu einer entsprechenden Verkürzung oder Verlängerung des Zeitabstandes benachbarter Dosierimpulse Δt2, bezogen auf den nachfolgenden Dosierimpuls.This technical control measure with a fixed duration-time interval ratio V (V = Δt1 / Δt2 = constant) inevitably leads in the same ratio to a corresponding shortening or lengthening of the time interval between adjacent metering pulses Δt2, based on the subsequent metering pulse.
Für zeitabhängige Verläufe der Trockenstoff-Konzentration c(t) mit Sättigungscharakter sieht eine zweite Ausgestaltung des Verfahrens vor, dass diese Verläufe durch ein variables Zeitdauer-Zeitabstand-Verhältnis V zwischen der Zeitdauer des Dosierimpulses Δt1 und dem zugeordneten Zeitabstand benachbarter Dosierimpulse Δt2 definiert sind (V = Δt1/Δt2 ≠ konstant), wobei
- bei Abweichung der zeitabhängigen Stromaufnahme I(t) von dem jeweils zugeordneten Wert im zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t) um mehr als die vorgegebene Toleranz nach oben das Zeitdauer-Zeitabstand-Verhältnis V verkleinert und
- bei Abweichung der zeitabhängigen Stromaufnahme I(t) von dem jeweils zugeordneten Wert im zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t) um mehr als die vorgegebene Toleranz nach unten das Zeitdauer-Zeitabstand-Verhältnis V vergrößert wird.
- if the time-dependent current consumption I (t) deviates from the respectively assigned value in the time-dependent course of a reference current consumption I o (t) by more than the specified tolerance upwards, the duration-time interval ratio V is reduced and
- if the time-dependent current consumption I (t) deviates from the respective assigned value in the time-dependent course of a reference current consumption I o (t) the time duration / time interval ratio V is increased downwards by more than the specified tolerance.
Der jeweilige Verlauf einer Trockenstoff-Konzentration c(t) ist über die Zeit t degressiv ansteigend, weil der fortlaufend impulsweise dosierte Mengenstrom des pulverförmigen Stoffes ṁP, über die gesamte Zeitdauer t des Mischprozesses gesehen, zwar konstant ist (ṁP = konstant), die Zeitdauer des Dosierimpulses Δt1 jedoch stetig abnimmt und somit eine stetig abnehmende Menge pulverförmiger Stoff eindosiert wird. Der Mengenstrom pulverförmiger Stoff ṁP wird in der Zeitdauer t bei annähernd unveränderlichem Füllstandsniveau im Mischbehälter in ein vorliegendes nahezu unveränderliches Volumen des Mischprodukts VM eingebracht (VM ≈ konstant), wobei eine Dichte ρM des Mischprodukts entsprechend dem zeitabhängigen Verlauf einer Trockenstoff-Konzentration c(t) zunimmt und letztere sich nach Gleichung (2) mit einer zweiten Proportionalitätskonstante
Diese steuerungstechnische Maßnahme mit einem variablen Zeitdauer-Zeitabstand-Verhältnis V erfordert von der Steuerung die Möglichkeit, die Zeitdauer des Dosierimpulses Δt1 bei unveränderlichem Zeitabstand benachbarter Dosierimpulse Δt2 zu verkürzen oder zu verlängern oder bei unveränderter Zeitdauer des Dosierimpulses Δt1 den Zeitabstand benachbarter Dosierimpulse Δt2 adäquat zu verlängern oder zu verkürzen.This technical control measure with a variable duration-time interval ratio V requires the control to be able to shorten or lengthen the duration of the metering pulse Δt1 with an unchanging time interval between adjacent metering pulses Δt2 or to adequately lengthen the time interval between adjacent metering pulses Δt2 with the same duration of the metering pulse Δt1 or shorten it.
Die erfindungsgemäße steuerungstechnische Maßnahme besteht im Kern somit bei beiden Ausgestaltungen des Verfahrens darin, dass die Zeitdauer des Dosierimpulses Δt1 und der Zeitabstand benachbarter Dosierimpulse Δt2 so gewählt werden, dass sich am jeweiligen Ende des Zeitabstandes benachbarter Dosierimpulse Δt2 die zeitabhängig ermittelte Stromaufnahme I(t) zum Rühren und/oder Scheren und Homogenisieren des temporär vorliegenden Mischproduktes an den zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t), der zur diesbezüglichen Behandlung des homogenisierten Mischprodukts erforderlich ist, im Rahmen einer praxisrelevanten zulässigen Toleranz annähert.The control-technical measure according to the invention thus essentially consists in both refinements of the method in that the duration of the metering pulse Δt1 and the time interval between adjacent metering pulses Δt2 are selected in such a way that at the respective end of the time interval between adjacent metering pulses Δt2 the time-dependent determined current consumption I (t) for Stirring and / or shearing and homogenizing the temporarily present mixed product approximates the time-dependent course of a reference current consumption I o (t), which is required for the relevant treatment of the homogenized mixed product, within the scope of a practically relevant permissible tolerance.
Um die Dosierung des pulverförmigen Stoffes möglichst störungsfrei zu gestalten, wird für das Verfahren vorgeschlagen, dass der Mengenstrom des pulverförmigen Stoffes über die Zeitdauer des Dosierimpulses konstant ist. Dies wird insbesondere dadurch sichergestellt, dass eine steuerbare Öffnung für die Zufuhr des pulverförmigen Stoffes nur entweder eine volle Offenstellung oder eine Schließstellung einnimmt.In order to make the metering of the pulverulent substance as trouble-free as possible, it is proposed for the method that the mass flow of the pulverulent substance is constant over the duration of the metering pulse. This is ensured in particular by the fact that a controllable opening for the supply of the powdery substance only assumes either a fully open position or a closed position.
Um die Steuerung des Mischprozesses möglichst handhabbar zu machen, sieht eine andere Ausgestaltung des Verfahrens vor, dass die Verkürzung oder die Verlängerung der Zeitdauer des Dosierimpulses dann erfolgt, wenn ein durch eine zulässige Stromüberschreitung oder eine zulässige Stromunterschreitung jeweils bestimmter Stromkorridor durch eine nach oben abweichende Stromaufnahme oder eine nach unten abweichende Stromaufnahme verlassen wird. Dabei sind die zulässige Stromüberschreitung und die zulässige Stromunterschreitung jeweils durch einen prozentualen Anteil von dem zugeordneten zeitabhängigen Verlauf einer Referenzstromaufnahme bestimmt. Damit die Steuerung diesbezüglich möglichst feinfühlig arbeitet, wird weiterhin vorgeschlagen, dass das Maß der Verkürzung oder der Verlängerung der Zeitdauer des Dosierimpulses in Abhängigkeit von dem Maß der Abweichung der zeitabhängigen Stromaufnahme von dem zugeordneten Verlauf einer Referenzstromaufnahme bestimmt ist.In order to make the control of the mixing process as manageable as possible, another embodiment of the method provides that the shortening or lengthening of the duration of the metering pulse occurs when a current corridor determined by a permissible current excess or a permissible current shortfall due to an upwardly deviating current consumption or a current consumption deviating downwards is left. The permissible current excess and the permissible current shortfall are each determined by a percentage of the assigned time-dependent course of a reference current consumption. In order for the control to work as sensitively as possible in this regard, it is further proposed that the degree of shortening or lengthening of the duration of the metering pulse is determined as a function of the degree of deviation of the time-dependent current consumption from the assigned course of a reference current consumption.
Um die im Praxisbetrieb für eine bestimmte Rezeptur gewonnenen Betriebsdaten für nachfolgende Mischprozesse mit gleicher Rezeptur nutzbar zu machen, sieht eine andere Ausgestaltung des Verfahrens vor, dass die der Steuerung der Einbringung des pulverförmigen Stoffes in die wenigstens eine Flüssigkeit zugrunde liegenden weiteren rezepturabhängigen Vorgabedaten aus Erfahrungswerten früherer Mischprozesse gewonnen und gespeichert werden, wobei diese Vorgabedaten eine Misch- oder Lösungstemperatur, ein Druck oberhalb der Flüssigkeitssäule, aus dem ein Reaktionsdruck resultiert, Drehzahlen von Einrichtungen zum Rühren und/oder Scheren und Homogenisieren und eine von dem zugeordneten zeitabhängigen Verlauf einer Referenzstromaufnahme abhängige zulässige Stromüberschreitung und eine zulässige Stromunterschreitung sind.In order to make the operating data obtained in practice for a specific recipe usable for subsequent mixing processes with the same recipe, another embodiment of the method provides that the control of the introduction of the powdery substance into the at least one liquid is based on further recipe-dependent default data from previous experience Mixing processes are obtained and stored, with these default data a mixing or solution temperature, a pressure above the liquid column from which a reaction pressure results, speeds of devices for stirring and / or shearing and homogenizing and a permissible current exceedance dependent on the assigned time-dependent course of a reference current consumption and are a permissible current shortfall.
Um die im Praxisbetrieb für eine bestimmte Rezeptur gewonnenen Betriebsdaten für nachfolgende Mischprozesse mit gleicher Rezeptur nutzbar zu machen, sieht eine weitere Ausgestaltung des Verfahrens vor, dass die im Verlauf der Steuerung der Einbringung des pulverförmigen Stoffes in die wenigstens eine Flüssigkeit gewonnenen zielführenden rezepturabhängigen Steuerungsparameter, und zwar die Zeitdauer des Dosierimpulses und der Zeitabstand benachbarter Dosierimpulse, gespeichert und für nachfolgende Steuerungen gleicher Rezepturen herangezogen werden.In order to make the operating data obtained in practice for a specific recipe usable for subsequent mixing processes with the same recipe, a further embodiment of the method provides that the target-oriented recipe-dependent control parameters, and the duration of the dosing pulse and the time interval between adjacent dosing pulses can be saved and used for subsequent controls of the same recipes.
Eine Mischvorrichtung zur Durchführung des Verfahrens besteht in an sich bekannter Weise aus einem Mischbehälter, der einen Zulaufanschluss zur Zufuhr für eine Flüssigkeit, einen Auslaufstutzen zur Abfuhr für ein Mischprodukt und eine Rühreinrichtung und/oder eine Scher- und Homogenisier-Einrichtung aufweist. An dem Mischbehälter ist ein Einlaufventil mit einem Ventilschließglied angeordnet. Das Einlaufventil ist mit dem Ventilschließglied entweder zwischen vollständig geschlossen (Schließstellung) oder vollständig geöffnet (Offenstellung) einstellbar. Ein pulverförmiger Stoff wird mit dem Einlaufventil in die Flüssigkeit eingebracht, wobei mit einer dem Einlaufventil zugeordneten Steuereinrichtung das Ventilschließglied in die Schließ- oder in die Offenstellung überführbar ist.A mixing device for carrying out the method consists in a manner known per se of a mixing container which has an inlet connection for supplying a liquid, an outlet connection for discharging a mixed product and a stirring device and / or a shearing and homogenizing device. An inlet valve with a valve closing member is arranged on the mixing container. The inlet valve can be adjusted with the valve closing element either between completely closed (closed position) or completely open (open position). A powdery substance is introduced into the liquid with the inlet valve, the valve closing element being able to be moved into the closed or open position with a control device assigned to the inlet valve.
Erfindungsgemäß stellt die Steuereinrichtung der Mischvorrichtung rezepturabhängige Vorgabedaten und rezepturabhängige Steuerungsparameter in Gestalt der Zeitdauer des Dosierimpulses und des Zeitabstandes benachbarter Dosierimpulse bereit. Weiterhin weist die Steuereinrichtung erfindungsgemäß wenigstens einen als Messeinrichtung ausgebildeten Signalaufnehmer auf, der eine zeitabhängige Stromaufnahme der Rühreinrichtung und/oder der Scher- und Homogenisier-Einrichtung erfasst. Mit diesen Eigenschaften ausgestattet steuert die Steuereinrichtung die Schließ- oder die Offenstellung des Ventilschließgliedes in Abhängigkeit von der zeitabhängigen Stromaufnahme und in Relation zu den Vorgabedaten und den Steuerungsparametern an.According to the invention, the control device of the mixing device provides recipe-dependent specification data and recipe-dependent control parameters in the form of the duration of the metering pulse and the time interval between adjacent metering pulses. Furthermore, according to the invention, the control device has at least one signal pickup designed as a measuring device, which detects a time-dependent current consumption of the stirring device and / or the shearing and homogenizing device. Equipped with these properties, the control device controls the closed or open position of the valve closing element as a function of the time-dependent power consumption and in relation to the specified data and the control parameters.
Um das als Hubventil ausgebildete Einlaufventil, das den pulverförmigen Stoff ausschließlich in seiner vollen Offenstellung zuführt und somit die Verstopfungsanfälligkeit von vornherein minimiert, noch weiter diesbezüglich zu optimieren und zum Beispiel Tot- und Hohlräume im pulverbeaufschlagten Bereich des Ventilgehäuses des Einlaufventils zu vermeiden, sieht eine vorteilhafte Ausführungsform vor, dass das Ventilschließglied zumindest in seinem pulverbeaufschlagten Bereich als durchmessergleiche zylindrische Stange ausgebildet ist, an der durchmessergleich ein Ventilteller angeformt ist. Wenn sich das Einlaufventil in seiner vollen Offenstellung befindet, ist das Ventilschließglied mit seinem Ventilteller aufgrund dieser Ausführungsform weitestgehend aus der voll ausgebildeten Strömung des pulverförmigen Stoffes herausgefahren, sodass es einerseits kein Strömungshindernis darstellt und andererseits liegt eine Sitzdichtung, die in dem Ventilteller Aufnahme findet, in der Nähe der Wandung eines Ventilgehäuses und damit außerhalb des voll ausgebildeten Strömungsbereichs der Rohrströmung und wird dadurch allenfalls nur von der wandnahen, stagnierenden Strömung in diesem Randbereich tangiert.Around the inlet valve, designed as a lift valve, which only feeds the powdery substance in its fully open position and thus the susceptibility to clogging Minimized from the start, to be further optimized in this regard and, for example, to avoid dead spaces and cavities in the powder-loaded area of the valve housing of the inlet valve, an advantageous embodiment provides that the valve closing member is designed, at least in its powder-loaded area, as a cylindrical rod of the same diameter on which the same diameter a valve plate is formed. When the inlet valve is in its fully open position, the valve closing member with its valve disk is largely moved out of the fully developed flow of the powdery substance due to this embodiment, so that on the one hand it does not represent a flow obstacle and on the other hand there is a seat seal that is accommodated in the valve disk the vicinity of the wall of a valve housing and thus outside the fully developed flow area of the pipe flow and is therefore only affected by the stagnant flow close to the wall in this edge area.
Eine eingehendere Darstellung der Erfindung ergibt sich aus der folgenden Beschreibung und den beigefügten Figuren der Zeichnung sowie aus den Ansprüchen. Während die Erfindung in den verschiedensten Ausgestaltungen eines Verfahrens zur Steuerung der Einbringung eines pulverförmigen Stoffes in eine aus wenigstens einer Komponente bestehenden Flüssigkeit für ein Batch-Mischverfahren realisiert ist, werden in der Zeichnung ein bevorzugtes Verfahren sowie eine Mischvorrichtung zur Durchführung des Verfahrens beschrieben. Es zeigen
Figur 1- in schematischer Darstellung eine Mischvorrichtung für ein Batch-Mischverfahren;
Figur 2- in perspektivischer Darstellung und im Halbschnitt ein Einlaufventil zur Zuführung des pulverförmigen Stoffes in eine Mischvorrichtung gemäß
Figur 1 ohne ein Steuerkopfgehäuse; Figur 3- in einer qualitativen Darstellung für das Verfahren und zur grundsätzlichen Darstellung der erfindungsgemäßen Steuerungsmerkmale eine zeitabhängige Stromaufnahme I(t) für eine Abfolge von Dosierimpulsen mit einer konstanten Zeitdauer des Dosierimpulses Δt1 und mit einem Zeitabstand benachbarter Dosierimpulse Δt2, wobei ein zeitabhängiger Verlauf einer Trockenstoff-Konzentration c(t) ohne Sättigungscharakter zugrunde gelegt ist;
Figur 4- in einer qualitativen Darstellung für das Verfahren eine zeitabhängige Stromaufnahme I(t) für eine Abfolge von Dosierimpulsen mit einer konstanten Zeitdauer des Dosierimpulses Δt1/2 und mit einem Zeitabstand benachbarter Dosierimpulse Δt2/2, wobei der zeitabhängiger Verlauf einer Trockenstoff-Konzentration c(t) gemäß
Figur 3 - Figur 5
- in einer qualitativen Darstellung für das Verfahren eine zeitabhängige Stromaufnahme I(t) für eine größere Abfolge von Dosierimpulsen mit einer konstanten Zeitdauer des Dosierimpulses Δt1 und mit einem konstanten Zeitabstand benachbarter Dosierimpulse Δt2 zur Realisierung eines zeitabhängigen näherungsweise linear ansteigenden Verlaufs einer Trockenstoff-Konzentration (ohne Sättigungscharakter)
entsprechend den Figuren 3 und 4 und Figur 6- in einer qualitativen Darstellung für das Verfahren eine zeitabhängige Stromaufnahme I(t) für eine Abfolge von Dosierimpulsen mit einer stetig abnehmenden Zeitdauer des Dosierimpulses Δt1 und mit einem konstanten Zeitabstand benachbarter Dosierimpulse Δt2 zur Realisierung eines zeitabhängigen degressiven Verlaufs einer Trockenstoff-Konzentration (mit Sättigungscharakter).
- Figure 1
- a schematic representation of a mixing device for a batch mixing process;
- Figure 2
- in a perspective view and in half-section, an inlet valve for feeding the powdery substance into a mixing device according to FIG
Figure 1 without a control head housing; - Figure 3
- in a qualitative representation for the method and for the basic representation of the control features according to the invention, a time-dependent current consumption I (t) for a sequence of metering pulses with a constant duration of the dosing pulse Δt1 and with a time interval between adjacent dosing pulses Δt2, a time-dependent course of a dry matter concentration c (t) without saturation character being used as a basis;
- Figure 4
- In a qualitative representation for the method, a time-dependent current consumption I (t) for a sequence of metering pulses with a constant duration of the metering pulse Δt1 / 2 and with a time interval between adjacent metering pulses Δt2 / 2, the time-dependent course of a dry matter concentration c (t) according to
Figure 3 is based on; - Figure 5
- In a qualitative representation for the method, a time-dependent current consumption I (t) for a larger sequence of metering pulses with a constant duration of the metering pulse Δt1 and with a constant time interval between adjacent metering pulses Δt2 to achieve a time-dependent, approximately linearly increasing course of a dry matter concentration (without saturation character ) according to the
Figures 3 and 4 and - Figure 6
- In a qualitative representation for the method, a time-dependent current consumption I (t) for a sequence of metering pulses with a steadily decreasing duration of the metering pulse Δt1 and with a constant time interval between adjacent metering pulses Δt2 to achieve a time-dependent degressive course of a dry matter concentration (with a saturation character).
Eine Mischvorrichtung 1000 weist unter anderem einen Mischbehälter 100 auf, der aus einem vorzugsweise zylindrischen Behältermantel 100.1, einem oberen Behälterboden 100.2 und einem unteren Behälterboden 100.3 besteht. Der untere Behälterboden 100.3 verjüngt sich vorzugsweise nach unten, meist kegelförmig oder in Form eines Kreiskegels, und weist am unteren Ende einen Auslaufstutzen 100.4 für ein Mischprodukt M auf. In dem Mischbehälter 100 wird über einen Zulaufanschluss 100.5 eine Flüssigkeit F in einer Menge Flüssigkeit mF vorgelegt, die ein freies Füllstandsniveau N ausbildet, über dem im Regelfall bei der in Rede stehenden Mischvorrichtung 1000 (z.B. Vakuummischer) ein Druck oberhalb der Flüssigkeitssäule p, ein Unterdruck gegenüber Atmosphärendruck, herrscht.A
An dem Behältermantel 100.1 oder dem unteren Behälterboden 100.3 ist ein Einlaufventil 20 angeordnet. Das Einlaufventil 20 dient der diskontinuierlichen Zufuhr eines pulverförmigen Stoffes P mit einem Mengenstrom pulverförmiger Stoff ṁP, der über eine Zuführleitung 18 zugeführt wird, in die Flüssigkeit F oder in das Mischprodukt M. Dem Einlaufventil 20 ist eine Steuereinrichtung 30 zugeordnet, die mit einem Steuerkopfgehäuse 14 des Einlaufventils 20 über eine Signalleitung 22 kommuniziert und das Einlaufventil 20 bedarfsweise in seine Offen- oder Schließstellung überführt. Im Mischbehälter 100 befindet sich eine über einen ersten Antriebsmotor 40 mit einer eher niedrigen ersten Drehzahl n1 angetriebene Rühreinrichtung 24, vorzugsweise zentral angeordnet und mechanisch wirkend, die vorzugsweise bis in den Bereich des unteren Behälterbodens 100.3 hinabreicht. Die erforderliche Rührwirkung kann auch durch strömungsmechanische Mittel, beispielsweise durch Umpumpen der Flüssigkeit F oder des Mischprodukts M über eine nicht dargestellte Kreislaufleitung mit vorzugsweise tangentialem Eintritt der Flüssigkeit F oder des Mischprodukts M in den Mischbehälter 100, erreicht oder unterstützt werden.An
Alternativ oder additiv zur Rühreinrichtung 24 ist vorzugsweise im unteren Bereich des unteren Behälterbodens 100.3 und vorzugsweise außermittig in diesem eine über einen zweiten Antriebsmotor 50 mit einer eher hohen zweiten Drehzahl n2 angetriebene Scher- und Homogenisier-Einrichtung 26 vorgesehen. Diese saugt die Flüssigkeit F oder das Mischprodukt M vorzugsweise einerseits von oben an und wirft diese andererseits ringförmig im wandnahen Bereich des unteren Behälterbodens 100.3 derart aus, dass sich vorzugsweise eine von außen nach innen gerichtete Zirkulationsströmung im Mischbehälter 100 ausbildet. Beim Durchgang durch die Scher- und Homogenisier-Einrichtung 26 werden Flüssigkeit F und pulverförmiger Stoff P oder das daraus resultierende Mischprodukt M sehr intensiv mechanisch gemischt und vorzugsweise dabei homogenisiert.As an alternative or in addition to the stirring
Das Einlaufventil 20 ist als Hubventil ausgebildet (
Die oberhalb der Anschlussstelle des Einlaufventils 20, die vorzugsweise unmittelbar in der Wandung des Mischbehälters 100 angeordnet ist, anstehende Flüssigkeit F bildet mit ihrer Flüssigkeitssäule eine Höhe h aus (
Die Steuereinrichtung 30 (
Die Einbringung und Behandlung des pulverförmigen Stoffes P erfolgt quasi unter den reaktionskinetischen Bedingungen eines Verweilzeitverhaltens eines diskontinuierlich arbeitenden homogenen Reaktionskessels. Das Verfahren zeichnet in an sich bekannter Weise dergestalt aus, dass eine Menge Flüssigkeit mF im Mischbehälter 100 vorgelegt (Zufuhr über den Zulaufanschluss 100.5) und der pulverförmige Stoff P dieser Flüssigkeit F über das Einlaufventil 20 mit dem Mengenstrom pulverförmiger Stoff ṁP, der im allgemeinsten Falle ein zeitabhängiger Mengenstrom pulverförmiger Stoff ṁP(t) sein kann, diskontinuierlich zugeführt werden. Die Flüssigkeit F und der pulverförmige Stoff P werden fortwährend gerührt und/oder zu einem Mischprodukt M gemischt und das Mischprodukt M wird homogenisiert. Der pulverförmige Stoff P wird so lange zugeführt, bis der zeitabhängige Verlauf einer Trockenstoff-Konzentration c(t) des pulverförmigen Stoffes P im Mischprodukt M auf einen vorgegebenen Endwert cE aufgewachsen ist.The introduction and treatment of the pulverulent substance P takes place quasi under the reaction kinetic conditions of a residence time behavior of a discontinuously operating homogeneous reaction vessel. The method is characterized in a manner known per se in such a way that a quantity of liquid m F is placed in the mixing container 100 (supply via the inlet connection 100.5) and the powdery substance P of this liquid F via the
Bei dem in Rede stehenden Mischverfahren sind eine Rezeptur des Mischproduktes M wenigstens hinsichtlich des dem vorgegebenen Endwert cE zugeordneten zeitabhängigen Verlaufs einer Trockenstoff-Konzentration c(t) und die Reaktionsbedingungen jeweils in Form von Vorgabedaten D vorgegeben.In the mixing process in question, a recipe of the mixed product M is assigned at least with regard to the predetermined end value c E time-dependent course of a dry matter concentration c (t) and the reaction conditions are each given in the form of default data D.
Die diskontinuierliche Zufuhr des pulverförmigen Stoffes P erfolgt über eine Zeitdauer t impulsweise durch eine zeitliche Abfolge von Dosierimpulsen i (
Für die Zeitdauer des Dosierimpulses Δt1 gemäß
Dieses typische Verhalten wird erfindungsgemäß steuerungstechnisch genutzt, indem aus den Vorgabedaten D ein zeitabhängiger Verlauf einer Referenzstromaufnahme Io(t) herangezogen wird, der charakteristisch ist für die am homogenisierten Mischprodukt M zu erbringende Rühr- und/oder Scher- und Homogenisier-Leistung.According to the invention, this typical behavior is used for control purposes in that a time-dependent course of a reference current consumption I o (t) is used from the default data D, which is characteristic of the stirring and / or shearing and homogenizing power to be provided on the homogenized mixed product M.
Wenn der Zeitabstand benachbarter Dosierimpulse Δt2 nicht ausreicht, um eine dosierte Menge pulverförmiger Stoff mP = ṁP Δt1 aufzulösen, einzumischen und zu homogenisieren, wird eine zeitabhängige nach oben abweichende Stromaufnahme I*(t) gemessen, sodass bei diesem Zustand des temporär vorliegenden Mischprodukts M* am Ende des Zeitabstandes benachbarter Dosierimpulse Δt2 ein erneuter Dosierimpuls i noch nicht angezeigt ist. Wird unter vergleichbaren Bedingungen eine zeitabhängige nach unten abweichende Stromaufnahme I**(t) ermittelt, dann kann dies ein Indiz dafür sein, dass die durch den Zeitabstand benachbarter Dosierimpulse Δt2 auch definierte Rühr- und/oder Scher- und Homogenisier-Phase übermäßig lang bemessen ist oder dass keine dieser Phase adäquate Menge pulverförmiger Stoff mP dosiert wurde.If the time interval between adjacent metering pulses Δt2 is not sufficient to dissolve, mix in and homogenize a metered amount of powdery substance m P = ṁ P Δt1, a time-dependent, upwardly deviating current consumption I * (t) is measured, so that in this state of the temporarily present mixed product M * at the end of the time interval between adjacent dosing pulses Δt2 a new dosing pulse i is not yet displayed. If, under comparable conditions, a time-dependent, downwardly deviating current consumption I ** (t) is determined, this can be an indication that the stirring and / or shearing and homogenizing phase, which is also defined by the time interval between adjacent metering pulses Δt2, is excessively long is or that no adequate amount of powdery substance m P was dosed in this phase.
Sobald sich der pulverförmige Stoff P in der aufnehmenden Flüssigkeit F oder in dem aufnehmenden Mischprodukt M gleichverteilt, d.h. möglichst homogen verteilt und ggf. dabei aufgelöst hat, klingt die zeitabhängige Stromaufnahme I(t) ab, und zwar auf den zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t), der charakteristisch ist für die am homogenisierten Mischprodukt M unter den Bedingungen des zugeordneten zeitabhängigen Verlaufs der Trockenstoff-Konzentration c(t) zu erbringende Rühr- und/oder Scher- und Homogenisier-Leistung (siehe Figuren 3 bis 5: annähernd linearer zeitabhängiger Verlauf einer Referenzstromaufnahme Io(t);
Am Ende des Zeitabstandes benachbarter Dosierimpulse Δt2 und bei Abweichung der zeitabhängigen Stromaufnahme I(t) von dem jeweils zugeordneten Wert im zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t) um mehr als eine vorgegebene Toleranz, wobei eine Abweichung entweder nach oben oder nach unten vorliegen kann (siehe
Der Fall der Verkürzung ist in
Die Verkürzung oder die Verlängerung der Zeitdauer des Dosierimpulses Δt1 erfolgt dann, wenn ein durch die zulässige Stromüberschreitung ΔI1 oder die zulässige Stromunterschreitung ΔI2 jeweils bestimmter Stromkorridor durch die zeitabhängige nach oben oder nach unten abweichende Stromaufnahme I*(t), I**(t) verlassen wird. Die zulässige Stromüberschreitung und die zulässige Stromunterschreitung ΔI1, ΔI2 sind vorzugsweise jeweils durch einen prozentualen Anteil von dem zugeordneten zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t) bestimmt. Weiterhin ist vorzugsweise das Maß der Verkürzung oder der Verlängerung der Zeitdauer des Dosierimpulses Δt1 in Abhängigkeit von dem Maß der Abweichung der zeitabhängigen Stromaufnahme I(t) von dem zugeordneten zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t) bestimmt. Die letztlich durch die jeweilige Rezeptur des Mischprodukts M bestimmte zulässige Stromüberschreitung ΔI1 und zulässige Stromunterschreitung ΔI2 können Bestandteil der Vorgabedaten D für den Mischprozess sein.The shortening or lengthening of the duration of the dosing pulse Δt1 occurs when a current corridor determined by the permissible current exceedance ΔI1 or the permissible current undercurrent ΔI2 due to the time-dependent current consumption I * (t), I ** (t) deviating upwards or downwards. is left. The permissible current excess and the permissible current shortfall ΔI1, ΔI2 are preferably each determined by a percentage of the associated time-dependent course of a reference current consumption I o (t). Furthermore, the amount of shortening or lengthening of the duration of the metering pulse Δt1 is preferably determined as a function of the amount of deviation of the time-dependent current consumption I (t) from the assigned time-dependent course of a reference current consumption I o (t). The permissible current excess ΔI1 and permissible current shortfall ΔI2 ultimately determined by the respective formulation of the mixed product M can be part of the specification data D for the mixing process.
Im Verlauf der Steuerung der Einbringung des pulverförmigen Stoffes P in die wenigstens eine Flüssigkeit F gewonnene zielführende rezepturabhängige Steuerungsparameter S, nämlich die Zeitdauer des Dosierimpulses Δt1 und der Zeitabstand benachbarter Dosierimpulse Δt2, werden gespeichert und für nachfolgende Steuerungen gleicher Rezepturen herangezogen.In the course of controlling the introduction of the powdery substance P into the at least one liquid F, targeted, recipe-dependent control parameters S, namely the duration of the dosing pulse Δt1 and the time interval between adjacent dosing pulses Δt2, are stored and used for subsequent controls of the same recipes.
Die Steuereinrichtung 30 der Mischvorrichtung 100 ist erfindungsgemäß so eingerichtet, dass diese die rezepturabhängigen Vorgabedaten D sowie die rezepturabhängigen Steuerungsparameter S in Gestalt der Zeitdauer des Dosierimpulses Δt1 und des Zeitabstandes benachbarter Dosierimpulse Δt2 bereitstellen kann. Die Steuereinrichtung 30 weist weiterhin wenigstens den als Messeinrichtung ausgebildeten Signalaufnehmer 16 auf (
Durch das Verfahren ergibt sich der zeitabhängige Verlauf einer Trockenstoff-Konzentration c(t), der planmäßig in dem vorgegebenen Endwert cE endet, wobei zwischen dem zeitabhängigen Verlauf einer Trockenstoff-Konzentration c(t) ohne Sättigungscharakter (näherungsweise linearer zeitabhängiger Verlauf; siehe
Für den zeitabhängigen Verlauf einer Trockenstoff-Konzentration c(t) ohne Sättigungscharakter, beginnend bei c(t = 0) = 0 für die reine Flüssigkeit F (
Für den zeitabhängigen Verlauf einer Trockenstoff-Konzentration c(t) mit Sättigungscharakter (
- bei Abweichung der zeitabhängigen Stromaufnahme I(t) von dem jeweils zugeordneten Wert im zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t) um mehr als die vorgegebene Toleranz nach oben das Zeitdauer-Zeitabstand-Verhältnis V verkleinert und
- bei Abweichung der zeitabhängigen Stromaufnahme I(t) von dem jeweils zugeordneten Wert im zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t) um mehr als die vorgegebene Toleranz nach unten das Zeitdauer-Zeitabstand-Verhältnis V vergrößert wird.
- if the time-dependent current consumption I (t) deviates from the respectively assigned value in the time-dependent course of a reference current consumption I o (t) by more than the specified tolerance upwards, the duration-time interval ratio V is reduced and
- if the time-dependent current consumption I (t) deviates from the respectively assigned value in the time-dependent course of a reference current consumption I o (t), the time-duration-time-interval ratio V is increased by more than the specified tolerance.
Der jeweilige Verlauf einer Trockenstoff-Konzentration c(t) ist über die Zeitdauer t, beginnend bei c(t = 0) = 0 für die reine Flüssigkeit F (
Diese steuerungstechnischen Maßnahmen mit einem variablen Zeitdauer-Zeitabstand-Verhältnis V erfordern von der Steuereinrichtung 30 die Fähigkeit, die Zeitdauer des Dosierimpulses Δt1 bei unveränderlichem Zeitabstand benachbarter Dosierimpulse Δt2 zu verkürzen oder zu verlängern oder bei unveränderter Zeitdauer des Dosierimpulses Δt1 den Zeitabstand benachbarter Dosierimpulse Δt2 adäquat zu verlängern oder zu verkürzen.These control measures with a variable duration-time interval ratio V require the
Die erfindungsgemäßen steuerungstechnischen Maßnahmen bestehen im Kern somit bei beiden Ausgestaltungen des Verfahrens darin, dass die Zeitdauer des Dosierimpulses Δt1 und der Zeitabstand benachbarter Dosierimpulse Δt2 so gewählt werden, dass sich am jeweiligen Ende des Zeitabstandes benachbarter Dosierimpulse Δt2 die zeitabhängig ermittelte Stromaufnahme I(t) zum Rühren und/oder Scheren und Homogenisieren des temporär vorliegenden Mischproduktes M* an den zeitabhängigen Verlauf einer Referenzstromaufnahme Io(t), der zur diesbezüglichen Behandlung des homogenisierten Mischprodukts M erforderlich ist, im Rahmen einer praxisrelevanten zulässigen Toleranz annähert.The control measures according to the invention therefore essentially consist in both refinements of the method in that the duration of the metering pulse Δt1 and the time interval between adjacent metering pulses Δt2 are selected in such a way that at the respective end of the time interval between adjacent metering pulses Δt2 the time-dependent determined current consumption I (t) for Stirring and / or shearing and homogenizing the temporarily present mixed product M * approximates the time-dependent course of a reference current consumption I o (t), which is required for the relevant treatment of the homogenized mixed product M, within the scope of a practically relevant permissible tolerance.
- 10001000
- MischvorrichtungMixing device
- 100100
- MischbehälterMixing tank
- 100.1100.1
- BehältermantelContainer jacket
- 100.2100.2
- oberer Behälterbodenupper container bottom
- 100.3100.3
- unterer Behälterboden (konisch; kegelförmig)lower container bottom (conical; conical)
- 100.4100.4
- AuslaufstutzenOutlet nozzle
- 100.5100.5
- ZulaufanschlussInlet connection
- 2020th
- EinlaufventilInlet valve
- 3030th
- SteuereinrichtungControl device
- 4040
- erster Antriebsmotorfirst drive motor
- 5050
- zweiter Antriebsmotorsecond drive motor
- 22
- VentilgehäuseValve body
- 2a2a
- VentilsitzValve seat
- 2b2 B
- SitzöffnungSeat opening
- 2c2c
- RohranschlussPipe connection
- 44th
- LaternengehäuseLantern housing
- 66th
- AntriebsgehäuseDrive housing
- 88th
- VentilschließgliedValve closing member
- 8a8a
- VentiltellerValve disc
- 8b8b
- VentilstangeValve stem
- 1010
- SitzdichtungSeat seal
- 1212th
- RückstellfederReturn spring
- 1414th
- SteuerkopfgehäuseControl head housing
- 1616
- SignalaufnehmerSignal pickup
- 1818th
- ZuführleitungFeed line
- 2222nd
- SignalleitungSignal line
- 2424
- RühreinrichtungStirring device
- 2626th
- Scher- und Homogenisier-EinrichtungShearing and homogenizing device
- DD.
- VorgabedatenDefault data
- FF.
- Flüssigkeitliquid
- IoIo
- Anfangswert einer Referenzstromaufnahme (für das homogenisierte Mischprodukt M; I0(t =0) = I0)Initial value of a reference current consumption (for the homogenized mixed product M; I 0 (t = 0) = I 0 )
- Io(t)Io (t)
- zeitabhängiger Verlauf einer Referenzstromaufnahmetime-dependent course of a reference current consumption
- I(t)I (t)
- zeitabhängige Stromaufnahme (für das temporär vorliegende Mischprodukt M*)Time-dependent power consumption (for the temporarily present mixed product M *)
- I*(t)I * (t)
- zeitabhängige nach oben abweichende Stromaufnahmetime-dependent current consumption deviating upwards
- I**(t)I ** (t)
- zeitabhängige nach unten abweichende Stromaufnahmetime-dependent current consumption deviating downwards
- ΔI1ΔI1
- zulässige Stromüberschreitungpermissible current excess
- ΔI2ΔI2
- zulässige Stromunterschreitungpermissible current shortfall
- MM.
- MischproduktMixed product
- M*M *
- temporär vorliegendes Mischprodukttemporarily available mixed product
- NN
- FüllstandsniveauLevel
- PP.
- pulverförmiger Stoffpowdery substance
- SS.
- SteuerungsparameterControl parameters
- TT
- Misch- oder LösungstemperaturMixing or dissolving temperature
- VV
- Zeitdauer-Zeitabstand-Verhältnis (V = Δt1/Δt2)Duration-time interval ratio (V = Δt1 / Δt2)
- VMVM
- Volumen des MischproduktsVolume of the mixed product
- ρMρM
- Dichte des MischproduktsDensity of the mixed product
- cc
- Trockenstoff-KonzentrationDry matter concentration
- c(t)c (t)
- zeitabhängiger Verlauf einer Trockenstoff-KonzentrationTime-dependent course of a dry matter concentration
- cEcE
- vorgegebener Endwert (des zeitabhängigen Verlaufs)specified end value (of the time-dependent course)
- hH
- Höhe der FlüssigkeitssäuleHeight of the liquid column
- ii
- DosierimpulsDosing pulse
- k1k1
-
erste Proportionalitätskonstante
proportionality - k2k2
-
zweite Proportionalitätskonstante
proportionality
- mFmF
- Menge FlüssigkeitAmount of liquid
- mPmP
- Menge pulverförmiger StoffAmount of powdery substance
- ṁPṁP
- Mengenstrom pulverförmiger StoffMass flow of powdery substance
- ṁP(t)ṁP (t)
- zeitabhängiger Mengenstrom pulverförmiger StoffTime-dependent mass flow of powdery substance
- n1n1
- erste Drehzahlfirst speed
- n2n2
- zweite Drehzahlsecond speed
- pp
- Druck oberhalb der FlüssigkeitssäulePressure above the liquid column
- tt
- Zeit (allgemein) oder Zeitdauer des MischprozessesTime (general) or duration of the mixing process
- Δt1Δt1
- Zeitdauer des DosierimpulsesDuration of the dosing pulse
- Δt2Δt2
- Zeitabstand benachbarter DosierimpulseTime interval between adjacent dosing pulses
Claims (10)
- A method for controlling the introduction of a pulverulent material (P) into a liquid (F) consisting of at least one component for a batch mixing method,• in which the introduction and treatment of the pulverulent material (P) takes place under the conditions of a dwell time behavior of a discontinuously working homogenous reaction tank such that∘ an amount of liquid (mF) is presented and the pulverulent material (P) is discontinuously fed into this liquid (F),∘ the liquid (F) and the pulverulent material (P) are constantly stirred and/or mixed to form a mixed product (M) and the mixed product (M) is homogenized, and∘ the pulverulent material (P) is fed in until a time-dependent progression of a dry material concentration (c(t)) of the pulverulent material (P) in the mixed product (M) has grown to a specified end value (cE),characterized in that• a formulation of the mixed product (M), at least regarding the time-dependent progression of a dry material concentration (c(t)) associated with the specified end value (cE), and the reaction conditions are each specified in the form of default data (D),• the discontinuous feeding of the pulverulent material (P) takes place in a pulsed manner by a chronological sequence of metering pulses (i) which are each characterized by a volume flow of the pulverulent material (ṁP), a duration of the metering pulse (Δt1), and a time interval between neighboring metering pulses (Δt2),• the time-dependent progression of a dry material concentration (c(t)) ending in the specified end value (cE) is defined by the sequence of clearly defined metering impulses (i),• a time-dependent current consumption (I(t)) is ascertained which is proportional to a mixing and/or shearing and homogenizing power required for a temporarily present mixed product (M*),• a time-dependent progression of a reference current consumption (Io(t)) is used from the default data (D) which is characteristic of the stirring and/or shearing and homogenizing power to be delivered to the homogenized mixed product (M) under the conditions of the associated time-dependent progression of a dry material concentration (c(t)), and• at the end of the time interval between neighboring metering pulses (Δt2) and when the time-dependent current consumption (I(t)) deviates from the respectively associated value in the time-dependent progression of a reference current consumption (Io(t)) by more than a specified tolerance, either higher or lower, the duration of the metering pulse (Δt1) for the following metering pulse (i) is shortened in the first case and extended in the second case.
- The method according to claim 1,
characterized in that
time-dependent progressions of a dry material concentration (c(t)) without saturation are defined by a fixed duration-to-time interval ratio (V) between the duration of the metering pulse (Δt1) and the associated time interval between neighboring metering pulses (Δt2) (V = Δt1/Δt2 = constant). - The method according to claim 1,
characterized in that
time-dependent progressions of a dry material concentration (c(t)) with saturation are defined by a variable duration-to-time interval ratio (V) between the duration of the metering impulse (Δt1) and the associated time interval between neighboring metering pulses (Δt2) (V = Δt1/Δt2), wherein• when the time-dependent current consumption (I(t)) deviates from the respective associated value in the time-dependent progression of a reference current consumption (Io(t)) by more than the specified upper tolerance, the duration-to-time interval ratio (V) is reduced, and• when the time-dependent current consumption (I(t)) deviates from the respective associated values in the time-dependent progression of a reference current consumption (Io(t)) by more than the specified lower tolerance, the duration-to-time interval ratio (V) is increased. - The method according to one of the preceding claims,
characterized in that
the volume flow of the pulverulent material (ṁP) over the duration of the metering pulse (Δt1) is constant. - The method according to one of the preceding claims,
characterized in that
the shortening or the extending of the duration of the metering pulse (Δt1) takes place when a current corridor, determined by a permissible current excess (ΔI1) or a permissible current undershoot (ΔI2), respectively, is departed from by a current consumption that deviates upwards (I*(t)) or a current consumption that deviates downwards (I**(t)), wherein the permissible current excess and the permissible current undershoot (ΔI1, ΔI2) are each determined by a percentage of the associated time-dependent progression of a reference current consumption (Io(t)). - The method according to one of the preceding claims,
characterized in that
the measure of the shortening or the extending of the duration of the metering pulses (Δt1) is determined depending on the measure of the deviation of the time-dependent current consumption (I(t), I*(t), I**(t)) from the associated time-dependent progression of a reference current consumption (Io(t)). - The method according to one of the preceding claims,
characterized in that
the further formulation-dependent default data (D) on which the control of the introduction of the pulverulent material (P) into the at least one liquid (F) is based are obtained and saved from empirical values from earlier mixing processes, wherein these default data (D) are• a mixing or solution temperature (T),• a pressure above the liquid column (p),• rotational speeds (n1, n2) of apparatuses for stirring and/or shearing and homogenizing, and• a permissible current excess (ΔI1) and a permissible current undershoot (ΔI2) dependent on the associated progression of a reference current consumption (Io(t)). - The method according to one of the preceding claims,
characterized in that
the expedient formulation-dependent control parameters (S) obtained over the course of controlling the introduction of the pulverulent material (P) into the at least one liquid (F), i.e.• duration of the metering pulse (Δt1) and• time interval between neighboring metering pulses (Δt2),are saved and used for following controls of identical formulations. - A mixing device for performing the method according to claim 1, with a mixing container (100) that has an intake connection (100.5) for feeding in for a liquid (F), an outlet spigot (100.4) for discharge for a mixed product (M), and a stirring apparatus (24) and/or a shearing and homogenizing apparatus (26), with an inlet valve (20) arranged on the mixing container (100) with a valve closing member (8), with the valve closing member (8) with which the inlet valve (20) can be adjusted either between fully closed (closed position) or fully open (open position), with the inlet valve (20) through which a pulverulent material (P) is introduced into the liquid (F), with a control apparatus (30) associated with the inlet valve (20) with which the valve closing member (8) can be transitioned to the closed or the open position,
characterized in that• the control apparatus (30) provides formulation-dependent default data (D) and formulation-dependent control parameters (S) in the form of the duration of the metering pulse (Δt1) and the time interval between neighboring metering pulses (Δt2),• the control apparatus (30) has at least one sensor (16) formed as a measuring apparatus that detects a time-dependent current consumption (I(t)) of the stirring apparatus (24) and/or the shearing and homogenizing apparatus (26), and• the control apparatus (30) controls the closed and open position of the valve closing member (8) depending on the time-dependent current consumption (I(t)) and in relation to the default data (D) and the control parameters (S). - The mixing device according to claim 9,
characterized in that
the valve closing member (8) is formed, at least in its region that is in contact with powder, as a cylindrical rod with a constant diameter on which a valve disk (8a) is formed with a constant diameter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL18718686T PL3638409T3 (en) | 2017-06-13 | 2018-04-03 | Method and mixing device for controlling the introduction of a pulverulent material into a liquid for a batch mixing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017005573.4A DE102017005573B3 (en) | 2017-06-13 | 2017-06-13 | Method and mixing device for controlling the introduction of a powdery substance into a liquid for an in-line mixing process |
DE102017005574.2A DE102017005574B3 (en) | 2017-06-13 | 2017-06-13 | Method and mixing device for controlling the introduction of a powdered substance into a liquid for a batch mixing process |
PCT/EP2018/000147 WO2018228713A1 (en) | 2017-06-13 | 2018-04-03 | Method and mixing device for controlling the introduction of a pulverulent material into a liquid for a batch mixing method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3638409A1 EP3638409A1 (en) | 2020-04-22 |
EP3638409B1 true EP3638409B1 (en) | 2021-08-04 |
Family
ID=62025767
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18718687.9A Active EP3638411B1 (en) | 2017-06-13 | 2018-04-03 | Method and mixing device for controlling the introduction of a pulverulent material into a liquid for an inline mixing method |
EP18718686.1A Active EP3638409B1 (en) | 2017-06-13 | 2018-04-03 | Method and mixing device for controlling the introduction of a pulverulent material into a liquid for a batch mixing method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18718687.9A Active EP3638411B1 (en) | 2017-06-13 | 2018-04-03 | Method and mixing device for controlling the introduction of a pulverulent material into a liquid for an inline mixing method |
Country Status (6)
Country | Link |
---|---|
EP (2) | EP3638411B1 (en) |
JP (1) | JP6952802B2 (en) |
AU (2) | AU2018285478B2 (en) |
DK (2) | DK3638411T3 (en) |
PL (2) | PL3638411T3 (en) |
WO (2) | WO2018228714A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112708787B (en) * | 2021-03-26 | 2021-06-18 | 北京亿晟科技有限公司 | Mixing and stirring system based on lanthanum cerium rare earth processing production |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3425667A (en) | 1967-03-31 | 1969-02-04 | Inst Lacke & Farben | Method and apparatus for making paints |
DE10345161A1 (en) * | 2003-09-29 | 2005-05-04 | Bvg Bauer Verfahrenstechnik | Process and assembly to prepare paper or carton coating slurry by mixing dry chalk and china clay powder with liquid in a continual process |
DE102015016766B4 (en) | 2015-11-23 | 2023-04-13 | Gea Tds Gmbh | Inlet valve, mixing device and control method for introducing a powdered substance into a liquid |
-
2018
- 2018-04-03 AU AU2018285478A patent/AU2018285478B2/en active Active
- 2018-04-03 WO PCT/EP2018/000148 patent/WO2018228714A1/en unknown
- 2018-04-03 JP JP2019566814A patent/JP6952802B2/en active Active
- 2018-04-03 WO PCT/EP2018/000147 patent/WO2018228713A1/en unknown
- 2018-04-03 AU AU2018285004A patent/AU2018285004B2/en active Active
- 2018-04-03 DK DK18718687.9T patent/DK3638411T3/en active
- 2018-04-03 PL PL18718687T patent/PL3638411T3/en unknown
- 2018-04-03 PL PL18718686T patent/PL3638409T3/en unknown
- 2018-04-03 EP EP18718687.9A patent/EP3638411B1/en active Active
- 2018-04-03 DK DK18718686.1T patent/DK3638409T3/en active
- 2018-04-03 EP EP18718686.1A patent/EP3638409B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
AU2018285004B2 (en) | 2020-11-12 |
DK3638409T3 (en) | 2021-11-01 |
DK3638411T3 (en) | 2021-11-01 |
AU2018285478B2 (en) | 2020-12-10 |
AU2018285004A1 (en) | 2019-12-12 |
AU2018285478A1 (en) | 2019-11-21 |
NZ758627A (en) | 2020-10-30 |
PL3638409T3 (en) | 2022-01-31 |
JP2020523188A (en) | 2020-08-06 |
EP3638411B1 (en) | 2021-08-04 |
NZ759145A (en) | 2020-11-27 |
PL3638411T3 (en) | 2022-01-31 |
EP3638409A1 (en) | 2020-04-22 |
WO2018228714A1 (en) | 2018-12-20 |
EP3638411A1 (en) | 2020-04-22 |
JP6952802B2 (en) | 2021-10-20 |
WO2018228713A1 (en) | 2018-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3167712B1 (en) | Spray device for spraying liquids, and method for the spraying of a liquid | |
DE102014117734A1 (en) | Apparatus and method for loading a liquid with a gas | |
EP0570335B1 (en) | Device and process for mixing a pulverulent solid component to a liquid material | |
DE3414747A1 (en) | STERILIZING AND WASTE DEVICE AND METHOD | |
EP3638409B1 (en) | Method and mixing device for controlling the introduction of a pulverulent material into a liquid for a batch mixing method | |
DE102017005573B3 (en) | Method and mixing device for controlling the introduction of a powdery substance into a liquid for an in-line mixing process | |
EP0175252A2 (en) | Method and apparatus for preparing a fluid foaming reaction mixture from fluid components stored in reservoirs | |
DE102017005574B3 (en) | Method and mixing device for controlling the introduction of a powdered substance into a liquid for a batch mixing process | |
EP0019052B1 (en) | Apparatus of taking samples of semifluid plastics from a container | |
EP3405280B1 (en) | Device and method for producing a ready-to-use solution from a concentrate | |
EP3015162B1 (en) | Method and conveyor device for removing a liquid substance mixture from a container | |
EP1197260B1 (en) | Apparatus for homogenizing flowable materials | |
CH590076A5 (en) | Granular solids prodn. esp. sugar dissolved without clumping - by continuous flow through two mixing vessels with partial recycling | |
EP3593897A1 (en) | Liquefaction chamber in an arrangement for mixing viscosity index improvers into base oils, as well as assembly and method for mixing viscosity index improvers into base oils | |
DE4138518C2 (en) | Method and device for treating a flowable base material | |
WO2023117640A1 (en) | Method for metering a foamed or foamable plastic in a preferably discontinuous manner with a direct gas loading process | |
DE102018124657A1 (en) | LIQUID OUTPUT DEVICE FOR A VEHICLE WASHING SYSTEM AND METHOD FOR THEIR OPERATION | |
DE202014105235U1 (en) | Conveying device for taking a liquid mixture of substances from a container | |
DE102018124656A1 (en) | LIQUID OUTPUT DEVICE FOR A VEHICLE WASHING SYSTEM AND METHOD FOR THEIR OPERATION | |
DE2538080B2 (en) | DEVICE FOR CONTINUOUS RADIATION TREATMENT OF FLUID AND MIXABLE SUBSTANCES | |
EP1164214A2 (en) | Method and device for dyeing textile materials | |
NZ759145B2 (en) | Method and mixing device for controlling the introduction of a pulverulent material into a liquid for an inline mixing method | |
DE2263752A1 (en) | DEVICE AND METHOD FOR STABILIZING WASTE MATERIAL | |
DD139524A1 (en) | DEVICE FOR BEGINNING HIGH VISCOSTER NEWTONSCHER OR NON-NEWTONSCHER FLUIDS | |
DE20017135U1 (en) | Device for supplying water drinkings with a vaccine liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191021 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210301 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1416395 Country of ref document: AT Kind code of ref document: T Effective date: 20210815 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018006424 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20211028 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502018006424 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B01F0003120000 Ipc: B01F0023500000 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211206 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211105 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502018006424 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018006424 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20220430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220501 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220501 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220403 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180403 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240322 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240430 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240425 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240423 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |