EP3630597A1 - Collaborative system of sub-aquatic vehicles for following submerged linear elements and method implementing this system - Google Patents

Collaborative system of sub-aquatic vehicles for following submerged linear elements and method implementing this system

Info

Publication number
EP3630597A1
EP3630597A1 EP18726489.0A EP18726489A EP3630597A1 EP 3630597 A1 EP3630597 A1 EP 3630597A1 EP 18726489 A EP18726489 A EP 18726489A EP 3630597 A1 EP3630597 A1 EP 3630597A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
linear element
magnetic field
underwater
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18726489.0A
Other languages
German (de)
French (fr)
Inventor
Herv RICHER DE FORGES
Thierry Grousset
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kopadia
Original Assignee
Kopadia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kopadia filed Critical Kopadia
Publication of EP3630597A1 publication Critical patent/EP3630597A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/85Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using magnetographic methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3817Positioning of seismic devices

Definitions

  • the present invention generally relates to a collaborative system for underwater vehicles for tracking linear elements such as pipelines, electrical cables, optical fibers or anchor chains, preferably autonomous and not using references. positioning on the surface of the water.
  • the invention also has for one object a method implementing this collaborative system.
  • pipelines The oil industry has traditionally used remotely operated, remotely controlled submarine vehicles to inspect pipelines that carry oil and gas from wells in the seabed, commonly referred to as pipelines. These pipelines are usually laid on the seabed.
  • the objective of these underwater vehicles is to detect pipeline defects such as corrosion, cracks, nicks, openings or displacements, or to monitor the condition of elements associated with pipelines such as their anodes and valves. or their quills. It is checked whether the anodes are present or the degree of corrosion thereof. Corrosion defects can lead to serious damage to pipelines, such as rupture, and therefore possible damage to the environment and significant financial losses as it is necessary to repair or even repair them. to replace them, resulting in a cessation of production.
  • linear elements are, for example, electrically conductive copper or aluminum cables, or optical fibers surrounded by metal armor and their repeaters powered by an electric cable, for transmitting information in the form of signals. electric.
  • These seabed power cables are also used in other industries, such as the marine wind turbine industry, to export energy.
  • US patent application 2016/0231281 describes an example of a submarine vehicle for the inspection of pipelines.
  • a vehicle commonly called ROV (Remotely Operated Vehicle)
  • ROV Remote Operated Vehicle
  • This vehicle is directly placed on the pipeline to be inspected and moves along it by means of wheels 18, as can be seen in Figure 1 of this patent application.
  • wheels allow, in particular, to follow the contours of the pipeline when it has non-rectilinear areas such as turns or spokes.
  • This type of vehicle needs to be in contact with the pipeline in order to follow the contours.
  • an underwater vehicle which is no longer in contact with the linear metal element to be inspected.
  • This type of vehicle has a great flexibility of use because it can be launched from a ship and recovered by the latter.
  • Such a vehicle is described in the patent application WO 2016/178045.
  • the disadvantage of this type of vehicle is that it is not completely autonomous since it follows a predetermined path to follow the contours of the pipeline to be inspected, which implies to know perfectly the geometry and its location on the seabed.
  • it is complicated to know in real time the exact position of pipelines because they are constantly moving. In fact, because of the tide phenomenon, the sea currents or the internal pressure, the pipelines have tendency to move.
  • the objective of the present invention is therefore to improve underwater vehicle inspection systems of linear elements such as pipelines, cables, anchor chains, electrical or telecommunication cables.
  • the invention particularly relates to a collaborative system of underwater vehicles adapted to follow an immersed linear element capable of varying or producing a magnetic field comprising at least a first underwater vehicle for monitoring the position of the linear element, a second underwater vehicle comprising at least a first system able to indicate its position and at least a first measurement means of said magnetic field capable of indicating a first measured angle between the vertical and a first direction of said magnetic field, a third vehicle underwater device comprising at least a second system able to indicate its position and at least a second means for measuring said magnetic field capable of indicating a second angle measured between the vertical and a second direction of said magnetic field, the first underwater vehicle being located vertically or behind the second and third v underwater vehicles, at least one of said vehicles subaqueous devices comprising means for calculating said position of said linear element and the first underwater vehicle being able to use the position of said linear element in order to follow it.
  • the collaborative system according to the invention may have one or more additional characteristics among the following:
  • At least one of the underwater vehicles is autonomous.
  • the calculation means is located on the first underwater vehicle.
  • At least one means for measuring said magnetic field is a magnetometer-gradiometer.
  • the collaborative system further comprises at least one additional underwater vehicle comprising an optical sensor.
  • the subject of the invention is also a collaborative system for underwater vehicles adapted to follow a linear element capable of varying or producing a magnetic field comprising at least a first underwater vehicle for monitoring the position of the linear element, a second underwater vehicle comprising at least a first measuring means capable of indicating its position and at least a first measuring means capable of measuring a first amplitude of said magnetic field, a third underwater vehicle comprising at least a second system capable of indicating its position and at least at least one second measuring means capable of measuring a second amplitude of said magnetic field, the first underwater vehicle being located vertically or behind the second and third underwater vehicles, at least one of said underwater vehicles comprising means for calculating said position of the linear element and the first veh underwater icule being adapted to use the position of said linear element in order to follow it.
  • the invention also relates to a method for tracking a linear element, said method comprising the following steps: 1) implementing a collaborative system of underwater vehicles according to any one of claims 1 to 6;
  • the linear element is a pipeline.
  • At least one of the underwater vehicles comprises induction means inducing an electric current in the linear element.
  • the induction means comprises at least one coil.
  • FIG. 1 is a schematic view in which a collaborative system of underwater vehicles is implemented according to an exemplary embodiment of the invention
  • FIG. 2 is a schematic diagram of the measurement system implemented in an exemplary embodiment of the invention.
  • FIG. 1 is a schematic view of another example of a collaborative system according to the invention, wherein a plurality of underwater vehicles is implemented.
  • Figure 1 a collaborative system of underwater vehicles 10 according to one embodiment of the invention.
  • a linear element 1 to be inspected is placed on a seabed 2.
  • This linear element 1 may be, for example, a pipeline for conveying gas or crude oil from a petroleum platform.
  • the pipeline is made of steel.
  • the invention can be applied to any other material capable of varying a magnetic field or producing a magnetic field. It may be, for example, ferromagnetic materials or cables crossed by an electric current.
  • a first underwater vehicle 13 is shown schematically in FIG. 1.
  • the first underwater vehicle 13, as well as all the other underwater vehicles used in the various embodiments of the invention, may be autonomous and thus capable of inspect the linear element 1 without assistance from the surface, contrary to what is done for a ROV.
  • the first vehicle 13, as well as all the other underwater vehicles described hereinafter comprise a body in which a propulsion system is integrated (not shown).
  • the propulsion system includes one or more propellers and a motor to provide mechanical energy.
  • the propulsion system comprises one or more turbines.
  • the engine is possibly controlled by a computer.
  • the first vehicle 13 may also include an Inertial Measurement Unit (IMU) configured to guide the vehicle 13 to a desired position.
  • the IMU may also include accelerometers, gyroscopes, and other motion sensors.
  • the IMU calculates its own position and velocity based on information from its motion sensors and / or transducers.
  • the first vehicle 13 may also include a compass, an altimeter, for measuring its altitude, or a pressure sensor for measuring its depth.
  • the first vehicle 13 may also include a system for avoiding obstacles, a system for wireless communication, for example via Wi-Fi, and a High Frequency modem system, acoustic or optical, to determine its position relative to another underwater vehicle.
  • the first vehicle 13 also includes fins, transverse thrusters, side and / or vertical to guide it to a desired position. These fins can be used in combination with the propulsion system.
  • the first vehicle 13 also includes a flotation system so as to control its depth relative to the surface of the water.
  • the first vehicle 13 may include an antenna and an associated low frequency acoustic system for communicating with a ship at long range. This acoustic system can be an acoustic modem capable of receiving the acoustic waves and transforming them into electrical signals and vice versa.
  • the acoustic system includes an Ultra-Short Baseline System (USBL) or a Long Baseline Acoustic Positioning System (LBL).
  • a complete USBL system includes a transceiver, which is installed on a ship or other underwater vehicle, and a transponder on the first vehicle 13.
  • the computer is used to calculate a position from the distances measured by the vehicle. transmitter receiver. For example, an acoustic pulse is transmitted by the transceiver and is detected by the transponder, which itself responds with its own acoustic pulse. This return pulse is detected by the transceiver on the ship or other underwater vehicle. The time between the transmission of the initial acoustic pulse and the detection of the response is measured by the USBL system and converted to a distance.
  • the USBL system calculates the distance and the angle from the transceiver to the first vehicle 13.
  • the angles are measured by the transceiver which comprises a set of transducers.
  • the transceiver comprises, for example, at least three separate transducers at most 30 cm.
  • An LBL system uses beacons placed on the seabed having a known position.
  • the first vehicle 13 may take a number of forms, for example a submarine shape having a substantially cylindrical or ellipsoidal cross section.
  • the body of the first vehicle 13 is carbon composite, glass or a non-electrically conductive material.
  • the first vehicle 13 comprises a buoyancy system that can include two chambers intended to be filled by the surrounding water, or emptied thereof, to control the depth of the first vehicle 13.
  • the first vehicle 13 comprises a motor for rotating the propellers to produce a thrust.
  • the propellers receive water via a duct formed in the body of the first vehicle 13. They can also be disposed outside the vehicle 13.
  • the duct has an opening for the entry of water and an opening allowing the expulsion of water. These openings may be located on the front, the rear or the sides of the body of the first vehicle 13.
  • the body of the first vehicle 13 may also include ducts or turbines to control its rotational movements and / or translation. It is also possible to see in FIG. 1 a second underwater vehicle 11, preferably an autonomous vehicle, and a third underwater vehicle 12, preferably also autonomous, called respectively the second vehicle 11 and the third vehicle 12.
  • the second and third vehicles have the same characteristics than those previously seen for the first vehicle 13.
  • the second vehicle 11 is positioned on one side of the pipeline and the third vehicle 12 is positioned opposite this side so that the pipeline 1 is between the second vehicle 11 and the third vehicle 12.
  • the longitudinal axes of the second and third vehicles 11,12 are substantially parallel to the direction of the pipeline 1 between the second and third vehicles 11,12.
  • Each of the second and third vehicles 11, 12 comprises at least one means for measuring the magnetic field (not shown), for example a three-axis magnetometer.
  • Each magnetic field measuring means measures the direction of the magnetic field.
  • Figure 2 is an illustration of the configuration implementing the second vehicle 11 and the third vehicle 12 for this measurement.
  • Underwater vehicles position relative to each other by means of a positioning and acoustic communication network comprising at least one relative positioning means of high precision, of the order of a few centimeters, with a communication range of less than 200 meters and a high data transfer rate, of about 100 bytes per second, thus allowing a comparison at high frequency, that is to say several times per second, data from the sensors installed on each vehicle, such as depth sensors or means for measuring the magnetic field.
  • the surface of the water 20, the seabed 2 and the pipeline 1 can be seen in a partially buried position. Also visible are the second vehicle 11 and the third vehicle 12 positioned on either side of the pipeline 1.
  • the second vehicle 11 is located at a first depth 21 and a first position XI, Y1, ZI with respect to the surface of the water 20 and the third vehicle 12 is located at a second depth 22 and a second position X2, Y2, Z2 with respect to the surface of the water 20.
  • These depths and positions are determined by means of depth sensors conventionally used in the field, such as light sonar, IMU, GPS or USBL system described above, but an absolute positioning of the vehicles is not necessary, a relative positioning of the vehicles between them is sufficient. Absolute positioning can be useful when, for example, you want to maintain the position map of a pipeline.
  • the second vehicle 11 includes a first magnetometer 28 indicating the direction of the pipeline 1 and the third vehicle 12 has a second magnetometer 29 indicating the direction of the pipeline 1.
  • the pipeline 1 varies the Earth's magnetic field thus allowing the first and second magnetometers to determine the direction. More specifically, the first magnetometer 28 indicates a first angle 26 measured between the vertical and a first direction 30 and the second magnetometer 29 indicates a second angle 27 measured between the vertical and a second direction 31. Moreover, the second and third vehicles 11 , 12 are spaced apart by a distance 23. The distance 23 is determined by the various positioning means, seen previously, which are installed on each underwater vehicle. Performing a trigonometry calculation involving the first angle 26, the second angle 27 and the positions of the second vehicle 11 and the third vehicle 12 it is then possible to accurately determine the position of the pipeline 1. The pipeline is at the intersection of the first direction 30 and in the second direction 31.
  • This position is transmitted to the vehicle 13, called measuring vehicle, which adapts its path, in depth and also in a plane horizontal with respect to the surface of the water, according to this position in order to follow precisely the pipeline to perform an inspection, for example by camera.
  • the images are stored in the computer of the vehicle 13 or else sent directly by acoustic waves, WI-FI, RF, GSM or Iridium to a ship so that they are analyzed in real time.
  • the second vehicle 11 and the third vehicle 12 are at the same depth.
  • the second vehicle 11 comprises at least one scalar magnetometer 28 'measuring a first amplitude of the magnetic field and the third vehicle 12 comprises at least one scalar magnetometer 29' measuring a second amplitude of the magnetic field.
  • Pipeline 1 is vertical to the centroid of measured amplitudes. It has been described a configuration implementing magnetometers, but it is also possible to mount the magnetometers 28,29, or any other magnetic field measuring means, such as a coil-type inductive system.
  • each vehicle Preferably and in order to increase the measurement accuracy, it can be installed on each vehicle at least three magnetometers, operating in a two-by-two gradiometer: a first magnetometer at the end of a first fin and a second at the end a second fin and finally a third magnetometer located approximately in the middle of the underwater vehicle. It is also possible to install them transversely or longitudinally with respect to the body of the vehicle. To date, an embodiment of the invention has been described making it possible to inspect a linear element that varies the earth's magnetic field or produces a magnetic field, such as for example a pipeline, a pipe or even an electric cable powered by electricity.
  • At least one of the second and third vehicles 11, 12 further comprises a system of coils for inducing an electric current in the linear element 1 so that there is induced a magnetic field measurable by the first and second magnetometers 28.29.
  • This embodiment is particularly interesting when it is necessary to inspect electrical cables that may possibly be broken, but it can also be used to inspect an anchor chain, a small pipe, an optical fiber surrounded by metallic armor or repeaters linked to an optical fiber.
  • the arrangement between the first vehicle 13, the second vehicle 11 and the third vehicle 12 is the same as that shown in Figures 1 and 2, except that the second vehicle 11 and / or the third vehicle 12 and / or the first vehicle 13 and / or a fourth vehicle comprises a system of coils adapted to generate an electric current in the linear element 1.
  • FIG. 3 Another embodiment of the present invention.
  • This collaborative system 31 comprises a first vehicle 32, called scout, comprising an optical sensor, such as a camera, in order to detect the visible parts of the linear element 33, for example a pipeline, and thus to determine its trajectory.
  • a first vehicle 32 comprising an optical sensor, such as a camera
  • the first vehicle 32 does not provide information about its trajectory.
  • a second vehicle 34 comprising an acoustic sensor, such as a sediment sounder, or a multibeam probe to determine whether the linear element 33 is buried.
  • a multibeam probe has multiple beams to simultaneously measure the depth according to several directions.
  • the first vehicle 32 may include a sediment sounder instead of the optical sensor or a multibeam probe or any combination of these three sensors.
  • a third vehicle 35 comprising a first magnetometer and a fourth vehicle 36 comprising a second magnetometer in a configuration identical to that described above and as shown in FIGS. Figures 1 and 2.
  • the information from the first vehicle 32, the third vehicle 35 and the fourth vehicle 36 are transmitted to the second vehicle 34 which merges and processes them to precisely determine the position of the linear element 33.
  • This information is then transmitted to a fifth vehicle 37, called measurer.
  • the vehicle 37 is positioned relative to the first vehicle 32, the second vehicle 34, the third vehicle 35 and the fourth vehicle 36.
  • the fifth vehicle 37 transmits the information transmitted to it and the data acquired by itself to a sixth vehicle 38 and a seventh vehicle 39 each including, for example, side sonars for inspecting the sides or below the linear element 33.
  • a sixth vehicle 38 and a seventh vehicle 39 each including, for example, side sonars for inspecting the sides or below the linear element 33.
  • this inspection below it will determine if it is correctly placed on the seabed and not between two dunes . Indeed, this configuration induces constraints in the pipeline thus generating fatigue problems.
  • the information from the second vehicle 34 is transmitted directly to the sixth and seventh vehicles 38,39 without passing through the fifth vehicle 37.
  • the information collected by the fifth vehicle 37 is transmitted to the sixth and seventh vehicles 38,39 and processed directly by them.
  • the sixth and seventh vehicles 38, 39 are slaves of the fifth vehicle 37 and follow exactly the same trajectory as the latter.
  • At least one of the underwater vehicles may comprise one or more sensors or devices such as Hydrocarbon detectors or meters, in the case of pipeline inspection missions, lateral sonar, multibeam sonar, video cameras or profile meters or any other system for determining geometry, surface condition and the physicochemical parameters of the environment of the linear element (1, 33).
  • sensors or devices such as Hydrocarbon detectors or meters, in the case of pipeline inspection missions, lateral sonar, multibeam sonar, video cameras or profile meters or any other system for determining geometry, surface condition and the physicochemical parameters of the environment of the linear element (1, 33).

Abstract

The present invention relates to a collaborative system of sub-aquatic vehicles (10) able to follow a submerged linear element (1, 33) capable of varying or of producing a magnetic field, comprising at least a first sub-aquatic vehicle (13, 37, 38, 39) intended for following the position of the linear element (1, 33), a second sub-aquatic vehicle (11, 35) comprising at least a first system able to indicate its position and at least a first means (28) of measuring said magnetic field able to indicate a first angle (26) measured between the vertical and a first direction (30) of said magnetic field, a third sub-aquatic vehicle (12, 36) comprising at least a second system able to indicate its position and at least a second means (29) of measuring said magnetic field able to indicate a second angle (27) measured between the vertical and a second direction (31) of said magnetic field, the first sub-aquatic vehicle (13, 37, 38, 39) being situated vertically or to the rear of the second and third sub-aquatic vehicles (11, 35, 12, 36), at least one of said sub-aquatic vehicles (13, 37, 38, 39, 11, 12) comprising a means of calculating said position of said linear element (1, 33) and the first sub-aquatic vehicle (13, 37, 38, 39) being able to use the position of said linear element (1, 33) in order to follow it.

Description

Système collaboratif de véhicules subaquatiques de suivi d'éléments linéaires immergés et procédé mettant en œuvre ce système  Collaborative system for underwater vehicles for monitoring immersed linear elements and method implementing this system
La présente invention concerne d'une manière générale un système collaboratif de véhicules subaquatiques de suivi d'éléments linéaires tels que des pipelines, des câbles électriques, des fibres optiques ou des chaînes d'ancrage, de préférence autonomes et n'utilisant pas de références de positionnement à la surface de l'eau. L'invention a également pour un objet un procédé mettant en œuvre ce système collaboratif. The present invention generally relates to a collaborative system for underwater vehicles for tracking linear elements such as pipelines, electrical cables, optical fibers or anchor chains, preferably autonomous and not using references. positioning on the surface of the water. The invention also has for one object a method implementing this collaborative system.
L'industrie pétrolière utilise traditionnellement des véhicules sous- marins reliés à un navire et pilotés à distance afin d'inspecter les conduites permettant l'acheminement du pétrole et du gaz provenant de puits situés dans les fonds marins, appelées plus communément pipelines. Ces pipelines sont en général posés sur le fond marin. Ces véhicules sous-marins ont pour objectif de détecter des défauts sur les pipelines tels que la corrosion, les fissures, les entailles, les ouvertures ou leurs déplacements ou de surveiller l'état d'éléments associés aux pipelines tels que leurs anodes, leurs vannes ou leurs piquages. Il est vérifié si les anodes sont bien présentes ou le degré de corrosion de celles-ci. Les défauts dus à la corrosion peuvent entraîner de graves dommages aux pipelines, tels qu'une rupture, et par conséquent de possibles dommages à l'environnement et des pertes financières importantes étant donné qu'il est nécessaire d'intervenir pour les réparer ou même de les remplacer, entraînant un arrêt de la production. Une autre industrie met également en œuvre des éléments linéaires posés sur le fond marin, il s'agit de l'industrie des télécommunications. Ces éléments linéaires sont, par exemple, des câbles conducteurs d'électricité, en cuivre ou en aluminium, ou des fibres optiques entourées d'une armure métallique ainsi que leurs répétiteurs alimentés par un câble électrique, permettant de transmettre des informations sous forme de signaux électriques. Ces câbles électriques posés sur les fonds marins sont également utilisés dans d'autres industries, telles que l'industrie des éoliennes marines afin d'exporter l'énergie. The oil industry has traditionally used remotely operated, remotely controlled submarine vehicles to inspect pipelines that carry oil and gas from wells in the seabed, commonly referred to as pipelines. These pipelines are usually laid on the seabed. The objective of these underwater vehicles is to detect pipeline defects such as corrosion, cracks, nicks, openings or displacements, or to monitor the condition of elements associated with pipelines such as their anodes and valves. or their quills. It is checked whether the anodes are present or the degree of corrosion thereof. Corrosion defects can lead to serious damage to pipelines, such as rupture, and therefore possible damage to the environment and significant financial losses as it is necessary to repair or even repair them. to replace them, resulting in a cessation of production. Another industry is also implementing linear elements on the seabed, which is the telecommunications industry. These linear elements are, for example, electrically conductive copper or aluminum cables, or optical fibers surrounded by metal armor and their repeaters powered by an electric cable, for transmitting information in the form of signals. electric. These seabed power cables are also used in other industries, such as the marine wind turbine industry, to export energy.
Il est ainsi primordial de mettre en œuvre, de manière préventive, des méthodes d'inspection d'éléments linéaires métalliques efficaces afin de limiter au minimum ces risques. La demande de brevet US 2016/0231281 décrit un exemple de véhicule sous-marin permettant l'inspection des pipelines. Il y est décrit un véhicule, communément appelé ROV (Remotely Operated Vehicle), c'est-à-dire un véhicule contrôlé à distance et relié à un navire par un câble. Ce véhicule est directement posé sur le pipeline à inspecter et se déplace le long de celui-ci au moyen de roulettes 18, comme on peut le voir sur la figure 1 de cette demande de brevet. Ces roulettes permettent, notamment, de suivre les contours du pipeline lorsque celui-ci présente des zones non rectilignes telles que des virages ou des rayons. Ce type de véhicule nécessite d'être en contact avec le pipeline afin de pouvoir en suivre les contours. L'inconvénient majeur d'un ROV est qu'il doit être surveillé en permanence, ce qui implique une supervision humaine. Il est ainsi nécessaire de mettre en place un navire dédié ainsi qu'une équipe si l'on souhaite inspecter de manière continue, 24 heures sur 24, un pipeline. Ces moyens représentent un coût considérable. En outre, lorsque les conditions météorologiques sont mauvaises, en cas de tempête par exemple, il n'est plus possible d'utiliser le ROV pendant une période pouvant aller jusqu'à plusieurs jours. L'inspection à l'aide d'un tel véhicule prend également beaucoup de temps étant donné que la vitesse du navire, auquel il est relié, est relativement faible, à savoir moins de 1 mètre par seconde. It is therefore essential to implement, in a preventive way, methods of inspecting effective linear metal elements to minimize these risks. US patent application 2016/0231281 describes an example of a submarine vehicle for the inspection of pipelines. There is described a vehicle, commonly called ROV (Remotely Operated Vehicle), that is to say a vehicle remotely controlled and connected to a ship by a cable. This vehicle is directly placed on the pipeline to be inspected and moves along it by means of wheels 18, as can be seen in Figure 1 of this patent application. These wheels allow, in particular, to follow the contours of the pipeline when it has non-rectilinear areas such as turns or spokes. This type of vehicle needs to be in contact with the pipeline in order to follow the contours. The major disadvantage of an ROV is that it must be constantly monitored, which implies human supervision. It is therefore necessary to set up a dedicated vessel and a team if it is desired to inspect a pipeline continuously 24 hours a day. These means represent a considerable cost. In addition, when the weather conditions are bad, in case of storm for example, it is no longer possible to use the ROV for a period of up to several days. Inspection with such a vehicle also takes a long time since the speed of the ship to which it is connected is relatively small, ie less than 1 meter per second.
Afin de diminuer le temps d'inspection, il est employé un véhicule sous-marin qui n'est plus en contact avec l'élément linéaire métallique à inspecter. Ce type de véhicule présente une grande souplesse d'utilisation car il peut être mis à l'eau à partir d'un navire et récupéré par ce dernier. Un tel véhicule est décrit dans la demande de brevet WO 2016/178045. L'inconvénient de ce type de véhicule est qu'il n'est pas complètement autonome étant donné qu'il suit un trajet prédéterminé afin de suivre les contours du pipeline à inspecter, ce qui implique d'en connaître parfaitement la géométrie ainsi que son emplacement sur le fond marin. Actuellement, il est compliqué de connaître en temps réel la position exacte des pipelines car ils sont perpétuellement en mouvement. En effet, en raison du phénomène de marée, des courants marins ou de la pression interne, les pipelines ont tendance à se mouvoir. Cela nécessite des relevés de positions fréquents à l'aide, par exemple, d'un navire équipé d'un sondeur multifaisceaux et le maintien d'une base de données à jour ce qui est extrêmement contraignant et complexe. Par ailleurs, avant chaque intervention, il est nécessaire de programmer le véhicule afin qu'il ait en mémoire la géométrie du pipeline à contrôler. Il est également possible de piloter le véhicule à distance, à partir de la surface, en utilisant une connexion sans fil, mais cette solution présente l'inconvénient qu'il faut mobiliser une équipe en charge du pilotage du véhicule. En outre, une connexion sans fil présente un temps de latence relativement important. En effet, si le véhicule évolue à des profondeurs importantes, par exemple de l'ordre de 1500 mètres, le temps pour que le signal arrive au navire et revienne vers le véhicule est de l'ordre de 5 à 10 secondes. Dans de tels cas, le véhicule se perd et il est alors nécessaire que le véhicule remonte à la surface et soit reprogrammé avec une nouvelle trajectoire. Par ailleurs, certains véhicules sont programmés afin d'effectuer des parcours en S, perpendiculaires à leur trajectoire, afin de tenter de retrouver le pipeline. Ces opérations prennent du temps et induisent un coût supplémentaire. En outre, certaines zones du pipeline ne sont pas contrôlées. . Ces divers problèmes ont été partiellement résolus par l'invention décrite dans le brevet US 9,511,831. Il y est décrit un véhicule sous-marin d'inspection autonome mettant en œuvre un système de lasers et de sonars multifaisceaux ayant pour but de guider le véhicule le long du pipeline. Ce véhicule ne nécessite pas de contrôle à distance par une équipe localisée sur un navire ou sur terre. Ces systèmes permettent de détecter le degré de courbure des conduites. Il est également connu la possibilité de mettre en œuvre des caméras permettant de déterminer la géométrie des conduites, la demande de brevet US 2012/0048171 décrit un tel exemple. L'inconvénient de ces véhicules équipés de tels systèmes est qu'ils ne peuvent pas suivre des conduites recouvertes par du sable ou des concrétions marines. Elles deviennent alors invisibles et les véhicules sous-marins perdent la conduite à inspecter. Il est alors nécessaire de les récupérer et de poursuivre l'inspection manuellement, ce qui induit des coûts importants, comme déjà mentionné précédemment. Afin de résoudre ces problèmes, il est connu de l'art antérieur d'utiliser un véhicule sous-marin équipé de magnétomètres. Ces magnétomètres vont permettre la détection d'un élément linéaire métallique devenu invisible du fait d'un recouvrement, par du sable par exemple, et parcouru par un courant électrique. Les magnétomètres sont installés de part et d'autre du véhicule sous-marin. L'inconvénient de cette solution est que le risque de collision entre le véhicule sous-marin et l'élément à inspecter est important. Lorsque le champ magnétique émanant de l'élément à inspecter est faible, le véhicule sous-marin doit se rapprocher de celui-ci afin d'effectuer l'inspection de manière satisfaisante. Par conséquent, le risque de collision augmente. Par ailleurs, cette configuration magnétométrique ne permet pas de déterminer précisément la position de l'élément linéaire, une incertitude importante subsiste toujours. Ainsi, certaines parties ne sont pas inspectées. Il est alors nécessaire de relancer une mission d'inspection. In order to reduce the inspection time, an underwater vehicle is used which is no longer in contact with the linear metal element to be inspected. This type of vehicle has a great flexibility of use because it can be launched from a ship and recovered by the latter. Such a vehicle is described in the patent application WO 2016/178045. The disadvantage of this type of vehicle is that it is not completely autonomous since it follows a predetermined path to follow the contours of the pipeline to be inspected, which implies to know perfectly the geometry and its location on the seabed. Currently, it is complicated to know in real time the exact position of pipelines because they are constantly moving. In fact, because of the tide phenomenon, the sea currents or the internal pressure, the pipelines have tendency to move. This requires frequent position readings using, for example, a vessel equipped with a multibeam echosounder and the maintenance of an up-to-date database which is extremely restrictive and complex. Moreover, before each intervention, it is necessary to program the vehicle so that it has in memory the geometry of the pipeline to be controlled. It is also possible to control the vehicle remotely, from the surface, using a wireless connection, but this solution has the disadvantage that it is necessary to mobilize a team in charge of driving the vehicle. In addition, a wireless connection has a relatively large latency. Indeed, if the vehicle is moving at significant depths, for example of the order of 1500 meters, the time for the signal to arrive at the ship and return to the vehicle is of the order of 5 to 10 seconds. In such cases, the vehicle is lost and it is then necessary that the vehicle rises to the surface and is reprogrammed with a new trajectory. In addition, certain vehicles are programmed to make S-shaped courses, perpendicular to their trajectory, in an attempt to find the pipeline. These operations are time consuming and involve additional cost. In addition, some areas of the pipeline are not controlled. . These various problems have been partially solved by the invention described in US Pat. No. 9,511,831. It describes an autonomous underwater inspection vehicle using a laser and multibeam sonar system to guide the vehicle along the pipeline. This vehicle does not require remote control by a team located on a ship or on land. These systems make it possible to detect the degree of curvature of the pipes. It is also known the possibility of implementing cameras for determining the geometry of the pipes, the US patent application 2012/0048171 describes such an example. The disadvantage of these vehicles equipped with such systems is that they can not follow pipes covered by sand or marine concretions. They become invisible and underwater vehicles lose the conduct to inspect. It is then necessary to recover them and continue the inspection manually, which entails significant costs, as already mentioned above. In order to solve these problems, it is known from the prior art to use a submarine vehicle equipped with magnetometers. These magnetometers will allow the detection of a metallic linear element become invisible because of a covering, by sand for example, and traversed by an electric current. The magnetometers are installed on both sides of the underwater vehicle. The disadvantage of this solution is that the risk of collision between the underwater vehicle and the item to be inspected is important. When the magnetic field emanating from the element to be inspected is weak, the underwater vehicle must approach it to perform the inspection satisfactorily. As a result, the risk of collision increases. Moreover, this magnetometric configuration does not make it possible to precisely determine the position of the linear element, an important uncertainty still remains. Thus, some parts are not inspected. It is then necessary to relaunch an inspection mission.
L'objectif de la présente invention est donc d'améliorer les systèmes d'inspection par véhicules subaquatiques d'éléments linéaires tels que des pipelines, des câbles, des chaînes d'ancrage, des câbles électriques ou de télécommunications. The objective of the present invention is therefore to improve underwater vehicle inspection systems of linear elements such as pipelines, cables, anchor chains, electrical or telecommunication cables.
Pour ce faire, l'invention a notamment pour objet un système collaboratif de véhicules subaquatiques apte à suivre un élément linéaire immergé capable de faire varier ou de produire un champ magnétique comprenant au moins un premier véhicule subaquatique destiné au suivi de la position de l'élément linéaire, un deuxième véhicule subaquatique comprenant au moins un premier système apte à indiquer sa position et au moins un premier moyen de mesure dudit champ magnétique apte à indiquer un premier angle mesuré entre la verticale et une première direction dudit champ magnétique, un troisième véhicule subaquatique comprenant au moins un deuxième système apte à indiquer sa position et au moins un deuxième moyen de mesure dudit champ magnétique apte à indiquer un deuxième angle mesuré entre la verticale et une deuxième direction dudit champ magnétique, le premier véhicule subaquatique étant situé à la verticale ou en arrière des deuxième et troisième véhicules subaquatiques, au moins un desdits véhicules subaquatiques comportant un moyen de calcul de ladite position dudit élément linéaire et le premier véhicule subaquatique étant apte à utiliser la position dudit élément linéaire afin de le suivre. To do this, the invention particularly relates to a collaborative system of underwater vehicles adapted to follow an immersed linear element capable of varying or producing a magnetic field comprising at least a first underwater vehicle for monitoring the position of the linear element, a second underwater vehicle comprising at least a first system able to indicate its position and at least a first measurement means of said magnetic field capable of indicating a first measured angle between the vertical and a first direction of said magnetic field, a third vehicle underwater device comprising at least a second system able to indicate its position and at least a second means for measuring said magnetic field capable of indicating a second angle measured between the vertical and a second direction of said magnetic field, the first underwater vehicle being located vertically or behind the second and third v underwater vehicles, at least one of said vehicles subaqueous devices comprising means for calculating said position of said linear element and the first underwater vehicle being able to use the position of said linear element in order to follow it.
Outre les caractéristiques principales mentionnées au paragraphe précédent, le système collaboratif selon l'invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes:  In addition to the main features mentioned in the preceding paragraph, the collaborative system according to the invention may have one or more additional characteristics among the following:
De préférence, au moins un des véhicules subaquatiques est autonome.  Preferably, at least one of the underwater vehicles is autonomous.
De préférence, le moyen de calcul est situé sur le premier véhicule subaquatique.  Preferably, the calculation means is located on the first underwater vehicle.
De préférence, au moins un moyen de mesure dudit champ magnétique est un magnétomètre-gradiomètre.  Preferably, at least one means for measuring said magnetic field is a magnetometer-gradiometer.
De préférence, le système collaboratif comporte en outre au moins un véhicule subaquatique supplémentaire comportant un capteur optique.  Preferably, the collaborative system further comprises at least one additional underwater vehicle comprising an optical sensor.
L'invention a également pour objet système un collaboratif de véhicules subaquatiques apte à suivre un élément linéaire capable de faire varier ou de produire un champ magnétique comprenant au moins un premier véhicule subaquatique destiné au suivi de la position de l'élément linéaire, un deuxième véhicule subaquatique comprenant au moins un premier moyen de mesure apte à indiquer sa position et au moins un premier moyen de mesure apte à mesurer une première amplitude dudit champ magnétique, un troisième véhicule subaquatique comprenant au moins un deuxième système apte à indiquer sa position et au moins un deuxième moyen de mesure apte à mesurer une deuxième amplitude dudit champ magnétique, le premier véhicule subaquatique étant situé à la verticale ou en arrière des deuxième et troisième véhicules subaquatiques, au moins un desdits véhicules subaquatiques comportant un moyen de calcul de ladite position de l'élément linéaire et le premier véhicule subaquatique étant apte à utiliser la position dudit élément linéaire afin de le suivre.  The subject of the invention is also a collaborative system for underwater vehicles adapted to follow a linear element capable of varying or producing a magnetic field comprising at least a first underwater vehicle for monitoring the position of the linear element, a second underwater vehicle comprising at least a first measuring means capable of indicating its position and at least a first measuring means capable of measuring a first amplitude of said magnetic field, a third underwater vehicle comprising at least a second system capable of indicating its position and at least at least one second measuring means capable of measuring a second amplitude of said magnetic field, the first underwater vehicle being located vertically or behind the second and third underwater vehicles, at least one of said underwater vehicles comprising means for calculating said position of the linear element and the first veh underwater icule being adapted to use the position of said linear element in order to follow it.
L'invention a également pour objet un procédé de suivi d'un élément linéaire, ledit procédé comprenant les étapes suivantes: 1) mettre en œuvre un système collaboratif de véhicules subaquatiques selon l'une quelconque des revendications 1 à 6; The invention also relates to a method for tracking a linear element, said method comprising the following steps: 1) implementing a collaborative system of underwater vehicles according to any one of claims 1 to 6;
2) calculer la position dudit élément linéaire en se basant sur ladite position du deuxième véhicule subaquatique, ladite position du troisième véhicule subaquatique, la mesure dudit premier angle ou de la première amplitude et la mesure dudit deuxième angle ou de la deuxième amplitude;  2) calculating the position of said linear element based on said second underwater vehicle position, said third underwater vehicle position, said first angle or amplitude measurement, and said second angle or second amplitude measurement;
3) utiliser la position calculée afin de suivre l'élément linéaire au moyen du au moins premier véhicule subaquatique.  3) use the calculated position to follow the linear element by means of the at least first underwater vehicle.
Le procédé selon l'invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes: The method according to the invention may have one or more additional characteristics among the following:
De préférence, l'élément linéaire est un pipeline.  Preferably, the linear element is a pipeline.
De préférence, au moins un des véhicules subaquatiques comporte un moyen d'induction induisant un courant électrique dans l'élément linéaire. De préférence, le moyen d'induction comprend au moins une bobine.  Preferably, at least one of the underwater vehicles comprises induction means inducing an electric current in the linear element. Preferably, the induction means comprises at least one coil.
L'invention sera mieux comprise à la lecture de la description qui suit, faite en référence aux figures annexées, dans lesquelles : The invention will be better understood on reading the description which follows, made with reference to the appended figures, in which:
- la figure 1 est une vue schématique dans laquelle un système collaboratif de véhicules subaquatiques est mis en œuvre selon un exemple de réalisation de l'invention;  - Figure 1 is a schematic view in which a collaborative system of underwater vehicles is implemented according to an exemplary embodiment of the invention;
- la figure 2 est un schéma de principe du système de mesure mis en œuvre dans un exemple de réalisation de l'invention;  FIG. 2 is a schematic diagram of the measurement system implemented in an exemplary embodiment of the invention;
- la figure 3 est une vue schématique d'un autre exemple de système collaboratif, selon l'invention, dans lequel une pluralité de véhicules subaquatiques est mise en œuvre. Il est représenté sur la figure 1 un système collaboratif de véhicules subaquatiques 10 selon un mode de réalisation de l'invention. Un élément linéaire 1 à inspecter est posé sur un fond marin 2. Cet élément linéaire 1 peut être, par exemple, un pipeline permettant d'acheminer du gaz ou du pétrole brut provenant d'une plateforme pétrolière. Dans cet exemple de réalisation, le pipeline est en acier. L'invention peut s'appliquer à tout autre matériau capable de faire varier un champ magnétique ou de produire un champ magnétique. Il peut s'agir, par exemple, de matériaux ferromagnétiques ou de câbles traversés par un courant électrique. Un premier véhicule subaquatique 13 est représenté de manière schématique sur la figure 1. Le premier véhicule subaquatique 13, ainsi que tous les autres véhicules subaquatiques mis en œuvre dans les divers modes de réalisation de l'invention, peut être autonome et ainsi capable d'inspecter l'élément linéaire 1 sans assistance provenant de la surface, contrairement à ce qui est fait pour un ROV. Afin de se mouvoir, le premier véhicule 13, ainsi que tous les autres véhicules subaquatiques décrits ci-après, comprennent un corps dans lequel un système de propulsion est intégré (non représenté). Le système de propulsion comprend une ou plusieurs hélices et un moteur afin de leur fournir de l'énergie mécanique. De manière alternative, le système de propulsion comprend une ou plusieurs turbines. Le moteur est éventuellement contrôlé par un ordinateur. Le premier véhicule 13 peut comprendre également une unité de mesure inertielle (Inertial Measurement Unit, IMU) configurée de manière à guider le véhicule 13 vers une position souhaitée. L'IMU peut comprendre également des accéléromètres, des gyroscopes et d'autres capteurs de mouvement. Il est fourni initialement à l'IMU la position actuelle du véhicule 13 ainsi que sa vitesse. Cette information provient d'une autre source, par exemple, un opérateur, un GPS ou un autre IMU localisé sur un navire ou sur un autre véhicule subaquatique. Ensuite, l'IMU calcule sa propre position et sa vitesse en se basant sur les informations provenant de ses capteurs de mouvement et/ou de transducteurs. Le premier véhicule 13 peut également comporter un compas, un altimètre, pour mesurer son altitude, ou un capteur de pression pour mesurer sa profondeur. Par ailleurs, le premier véhicule 13 peut également comprendre un système pour éviter les obstacles, un système de communication sans fil, par exemple par Wi-Fi, et un système de modem Haute Fréquence, acoustique ou optique, afin de déterminer son positionnement par rapport à un autre véhicule subaquatique. Le premier véhicule 13 comporte également des ailerons, des propulseurs transversaux, latéraux et/ ou verticaux afin de le guider jusqu'à une position souhaitée. Ces ailerons peuvent être utilisés en combinaison avec le système de propulsion. Le premier véhicule 13 comporte également un système de flottaison de manière à contrôler sa profondeur par rapport à la surface de l'eau. En outre, le premier véhicule 13 peut comprendre une antenne et un système acoustique basse fréquence associé afin de communiquer à longue distance avec un navire. Ce système acoustique peut être un modem acoustique apte à recevoir les ondes acoustiques et à les transformer en signaux électriques et vice versa. De manière alternative, ou en complément, le système acoustique comprend un système Ultra-Short Baseline (USBL) ou un système Long baseline acoustic positioning (LBL). Ces systèmes mettent en œuvre un procédé de positionnement sous-marin acoustique. Un système USBL complet comprend un émetteur-récepteur, qui est installé sur un navire ou sur un autre véhicule subaquatique, et un transpondeur sur le premier véhicule 13. L'ordinateur est utilisé afin de calculer une position à partir des distances mesurées par l'émetteur-récepteur. Par exemple, une impulsion acoustique est transmise par l'émetteur-récepteur et est détectée par le transpondeur, qui lui-même répond avec sa propre impulsion acoustique. Cette impulsion de retour est détectée par l'émetteur-récepteur sur le navire ou sur un autre véhicule subaquatique. Le temps entre la transmission de l'impulsion acoustique initiale et la détection de la réponse est mesuré par le système USBL et converti en une distance. Afin de calculer la position du premier véhicule 13, le système USBL calcule la distance et l'angle à partir de l'émetteur-récepteur jusqu'au premier véhicule 13. Les angles sont mesurés par l'émetteur-récepteur qui comprend un ensemble de transducteurs. L'émetteur-récepteur comporte, par exemple, au moins trois transducteurs séparés au plus de 30 cm. Un système LBL utilise des balises posées sur le fond de mer ayant une position connue. Le premier véhicule 13 peut prendre plusieurs formes, par exemple une forme de sous-marin ayant une section transversale sensiblement cylindrique ou ellipsoïdale. De préférence, le corps du premier véhicule 13 est en composite carbone, en verre ou dans un matériau non conducteur d'électricité. Le premier véhicule 13 comporte un système de flottabilité pouvant comprendre deux chambres destinées à être remplies par l'eau environnante, ou vidées de celle-ci, afin de contrôler la profondeur du premier véhicule 13. Par ailleurs, comme vu précédemment, le premier véhicule 13 comporte un moteur destiné à faire tourner les hélices permettant de produire une poussée. Les hélices reçoivent de l'eau via un conduit formé dans le corps du premier véhicule 13. Elles peuvent être également disposées à l'extérieur du véhicule 13. Le conduit comporte une ouverture permettant l'entrée de l'eau et une ouverture permettant l'expulsion de l'eau. Ces ouvertures peuvent être localisées sur l'avant, l'arrière ou les côtés du corps du premier véhicule 13. Le corps du premier véhicule 13 peut également comporter des conduits ou turbines afin de contrôler ses mouvements de rotation et/ou translation. On peut également apercevoir sur la figure 1, un deuxième véhicule subaquatique 11, de préférence autonome, et un troisième véhicule subaquatique 12, de préférence également autonome, appelés respectivement deuxième véhicule 11 et troisième véhicule 12. Les deuxième et troisième véhicules ont les mêmes caractéristiques que celles vues précédemment pour le premier véhicule 13. Le deuxième véhicule 11 est positionné d'un côté du pipeline et le troisième véhicule 12 est positionné à l'opposé de ce côté de manière à ce que le pipeline 1 se situe entre le deuxième véhicule 11 et le troisième véhicule 12. Par ailleurs, et de préférence, les axes longitudinaux des deuxième et troisième véhicules 11,12 sont sensiblement parallèles à la direction du pipeline 1 se situant entre les deuxième et troisième véhicules 11,12. Chacun des deuxième et troisième véhicules 11,12 comporte au moins un moyen de mesure du champ magnétique (non représenté), par exemple un magnétomètre trois axes. Chaque moyen de mesure du champ magnétique mesure la direction de celui-ci. La figure 2 est une illustration de la configuration mettant en œuvre le deuxième véhicule 11 et le troisième véhicule 12 permettant cette mesure. Les véhicules subaquatiques se positionnent les uns par rapport aux autres à l'aide d'un réseau de positionnement et de communication acoustique comportant au moins un moyen de positionnement relatif de grande précision, de l'ordre de quelques centimètres, d'une portée de communication inférieure à 200 mètres et d'un taux de transfert de données élevé, d'environ 100 bytes par seconde, permettant ainsi une comparaison à haute fréquence, c'est-à-dire plusieurs fois par seconde, des données provenant des capteurs installés sur chaque véhicule, tels que les capteurs de profondeur ou les moyens de mesure du champ magnétique. Sur la figure 2, on aperçoit la surface de l'eau 20, le fond de mer 2 ainsi que le pipeline 1 dans une position partiellement ensouillée. On aperçoit également le deuxième véhicule 11 et le troisième véhicule 12 positionnés de part et d'autre du pipeline 1. Le deuxième véhicule 11 est situé à une première profondeur 21 et une première position XI, Yl, ZI par rapport à la surface de l'eau 20 et le troisième véhicule 12 est situé à une deuxième profondeur 22 et une deuxième position X2,Y2,Z2 par rapport à la surface de l'eau 20. Ces profondeurs et positions sont déterminées grâce à des capteurs de profondeur utilisés classiquement dans le domaine, tels que des sonars légers, l'IMU, le GPS ou le système USBL décrits précédemment, mais un positionnement absolu des véhicules n'est pas nécessaire, un positionnement relatif des véhicules entre eux est suffisant. Un positionnement absolu peut être utile lorsqu'on veut, par exemple, tenir à jour la carte des positions d'un pipeline. Le deuxième véhicule 11 comporte un premier magnétomètre 28 indiquant la direction du pipeline 1 et le troisième véhicule 12 comporte un deuxième magnétomètre 29 indiquant la direction du pipeline 1. En effet, le pipeline 1 fait varier le champ magnétique terrestre permettant ainsi aux premier et deuxième magnétomètres d'en déterminer la direction. Plus précisément, le premier magnétomètre 28 indique un premier angle 26 mesuré entre la verticale et une première direction 30 et le deuxième magnétomètre 29 indique un deuxième angle 27 mesuré entre la verticale et une deuxième direction 31. Par ailleurs, les deuxième et troisième véhicules 11, 12 sont écartés d'une distance 23. La distance 23 est déterminée grâce aux divers moyens de positionnement, vus précédemment, qui sont installés sur chaque véhicule subaquatique. En effectuant un calcul de trigonométrie faisant intervenir le premier angle 26, le deuxième angle 27 et les positions du deuxième véhicule 11 et du troisième véhicule 12 il est alors possible de déterminer précisément la position du pipeline 1. Le pipeline se situe à l'intersection de la première direction 30 et de la deuxième direction 31. Cette position est transmise au véhicule 13, appelé véhicule mesureur, qui adapte son trajet, en profondeur et également dans un plan horizontal par rapport à la surface de l'eau, en fonction de cette position afin de suivre précisément le pipeline pour effectuer une inspection, par exemple par caméra. Les images sont stockées dans l'ordinateur du véhicule 13 ou sinon envoyées directement par ondes acoustiques, WI-FI, RF, GSM ou Iridium vers un navire afin qu'elles soient analysées en temps réel. Dans un autre mode de réalisation de l'invention, il est possible de remplacer les magnétomètres directifs 28,29 décrits précédemment par des magnétomètres scalaires 28', 29' montés en gradiomètre. Dans ce mode de réalisation, le deuxième véhicule 11 et le troisième véhicule 12 se situent à la même profondeur. Le deuxième véhicule 11 comprend au moins un magnétomètre scalaire 28' mesurant une première amplitude du champ magnétique et le troisième véhicule 12 comprend au moins un magnétomètre scalaire 29' mesurant une deuxième amplitude du champ magnétique. Le pipeline 1 se situe à la verticale du barycentre des amplitudes mesurées. Il a été décrit une configuration mettant en œuvre des magnétomètres, mais il est également possible de monter en gradiomètre les magnétomètres 28,29, ou tout autre moyen de mesure de champ magnétique, tel qu'un système inductif de type bobine. De préférence et afin d'augmenter la précision de mesure, il peut être installé sur chaque véhicule au moins trois magnétomètres, fonctionnant en gradiomètre deux à deux: un premier magnétomètre à l'extrémité d'un premier aileron et un second à l'extrémité d'un deuxième aileron et finalement un troisième magnétomètre approximativement situé au milieu du véhicule subaquatique. Il est également possible de les installer transversalement ou longitudinalement par rapport au corps du véhicule. Il a été décrit jusqu'à maintenant un mode de réalisation de l'invention permettant d'inspecter un élément linéaire faisant varier le champ magnétique terrestre ou produisant un champ magnétique, comme par exemple un pipeline, une conduite ou même un câble électrique alimenté en électricité. En revanche, lorsque l'élément linéaire est de petites dimensions, ou si celui-ci est un câble électrique non alimenté, son magnétisme est faible, voire nul, le mode de réalisation précédemment décrit ne fonctionne plus correctement. Un autre mode de réalisation de l'invention permet de résoudre ce problème. Au moins l'un des deuxième et troisième véhicules 11,12 comporte en outre un système de bobines permettant d'induire un courant électrique dans l'élément linéaire 1 afin qu'il y soit induit un champ magnétique mesurable par les premier et deuxième magnétomètres 28,29. Ce mode de réalisation est particulièrement intéressant lorsque qu'on est amené à inspecter des câbles électriques pouvant être éventuellement rompus, mais il peut également être mis en œuvre pour inspecter une chaîne d'ancrage, un tuyau de faibles dimensions, une fibre optique entourée d'une armure métallique ou des répétiteurs liés à une fibre optique. Dans ce cas, étant donné que le câble électrique est rompu, il n'est plus traversé par un courant électrique et par conséquent aucun champ magnétique n'est généré. L'arrangement entre le premier véhicule 13, le deuxième véhicule 11 et le troisième véhicule 12 est le même que celui montré sur les figures 1 et 2, hormis que le deuxième véhicule 11 et/ou le troisième véhicule 12 et/ou le premier véhicule 13 et/ou un quatrième véhicule comporte un système de bobines apte à générer un courant électrique dans l'élément linéaire 1. - Figure 3 is a schematic view of another example of a collaborative system according to the invention, wherein a plurality of underwater vehicles is implemented. It is shown in Figure 1 a collaborative system of underwater vehicles 10 according to one embodiment of the invention. A linear element 1 to be inspected is placed on a seabed 2. This linear element 1 may be, for example, a pipeline for conveying gas or crude oil from a petroleum platform. In this embodiment, the pipeline is made of steel. The invention can be applied to any other material capable of varying a magnetic field or producing a magnetic field. It may be, for example, ferromagnetic materials or cables crossed by an electric current. A first underwater vehicle 13 is shown schematically in FIG. 1. The first underwater vehicle 13, as well as all the other underwater vehicles used in the various embodiments of the invention, may be autonomous and thus capable of inspect the linear element 1 without assistance from the surface, contrary to what is done for a ROV. In order to move, the first vehicle 13, as well as all the other underwater vehicles described hereinafter, comprise a body in which a propulsion system is integrated (not shown). The propulsion system includes one or more propellers and a motor to provide mechanical energy. Alternatively, the propulsion system comprises one or more turbines. The engine is possibly controlled by a computer. The first vehicle 13 may also include an Inertial Measurement Unit (IMU) configured to guide the vehicle 13 to a desired position. The IMU may also include accelerometers, gyroscopes, and other motion sensors. It is initially supplied to the IMU the current position of the vehicle 13 as well as its speed. This information comes from another source, for example, an operator, GPS or other IMU located on a ship or other underwater vehicle. Next, the IMU calculates its own position and velocity based on information from its motion sensors and / or transducers. The first vehicle 13 may also include a compass, an altimeter, for measuring its altitude, or a pressure sensor for measuring its depth. Moreover, the first vehicle 13 may also include a system for avoiding obstacles, a system for wireless communication, for example via Wi-Fi, and a High Frequency modem system, acoustic or optical, to determine its position relative to another underwater vehicle. The first vehicle 13 also includes fins, transverse thrusters, side and / or vertical to guide it to a desired position. These fins can be used in combination with the propulsion system. The first vehicle 13 also includes a flotation system so as to control its depth relative to the surface of the water. In addition, the first vehicle 13 may include an antenna and an associated low frequency acoustic system for communicating with a ship at long range. This acoustic system can be an acoustic modem capable of receiving the acoustic waves and transforming them into electrical signals and vice versa. Alternatively, or in addition, the acoustic system includes an Ultra-Short Baseline System (USBL) or a Long Baseline Acoustic Positioning System (LBL). These systems implement an acoustic underwater positioning method. A complete USBL system includes a transceiver, which is installed on a ship or other underwater vehicle, and a transponder on the first vehicle 13. The computer is used to calculate a position from the distances measured by the vehicle. transmitter receiver. For example, an acoustic pulse is transmitted by the transceiver and is detected by the transponder, which itself responds with its own acoustic pulse. This return pulse is detected by the transceiver on the ship or other underwater vehicle. The time between the transmission of the initial acoustic pulse and the detection of the response is measured by the USBL system and converted to a distance. In order to calculate the position of the first vehicle 13, the USBL system calculates the distance and the angle from the transceiver to the first vehicle 13. The angles are measured by the transceiver which comprises a set of transducers. The transceiver comprises, for example, at least three separate transducers at most 30 cm. An LBL system uses beacons placed on the seabed having a known position. The first vehicle 13 may take a number of forms, for example a submarine shape having a substantially cylindrical or ellipsoidal cross section. Preferably, the body of the first vehicle 13 is carbon composite, glass or a non-electrically conductive material. The first vehicle 13 comprises a buoyancy system that can include two chambers intended to be filled by the surrounding water, or emptied thereof, to control the depth of the first vehicle 13. Moreover, as seen previously, the first vehicle 13 comprises a motor for rotating the propellers to produce a thrust. The propellers receive water via a duct formed in the body of the first vehicle 13. They can also be disposed outside the vehicle 13. The duct has an opening for the entry of water and an opening allowing the expulsion of water. These openings may be located on the front, the rear or the sides of the body of the first vehicle 13. The body of the first vehicle 13 may also include ducts or turbines to control its rotational movements and / or translation. It is also possible to see in FIG. 1 a second underwater vehicle 11, preferably an autonomous vehicle, and a third underwater vehicle 12, preferably also autonomous, called respectively the second vehicle 11 and the third vehicle 12. The second and third vehicles have the same characteristics than those previously seen for the first vehicle 13. The second vehicle 11 is positioned on one side of the pipeline and the third vehicle 12 is positioned opposite this side so that the pipeline 1 is between the second vehicle 11 and the third vehicle 12. Furthermore, and preferably, the longitudinal axes of the second and third vehicles 11,12 are substantially parallel to the direction of the pipeline 1 between the second and third vehicles 11,12. Each of the second and third vehicles 11, 12 comprises at least one means for measuring the magnetic field (not shown), for example a three-axis magnetometer. Each magnetic field measuring means measures the direction of the magnetic field. Figure 2 is an illustration of the configuration implementing the second vehicle 11 and the third vehicle 12 for this measurement. Underwater vehicles position relative to each other by means of a positioning and acoustic communication network comprising at least one relative positioning means of high precision, of the order of a few centimeters, with a communication range of less than 200 meters and a high data transfer rate, of about 100 bytes per second, thus allowing a comparison at high frequency, that is to say several times per second, data from the sensors installed on each vehicle, such as depth sensors or means for measuring the magnetic field. In FIG. 2, the surface of the water 20, the seabed 2 and the pipeline 1 can be seen in a partially buried position. Also visible are the second vehicle 11 and the third vehicle 12 positioned on either side of the pipeline 1. The second vehicle 11 is located at a first depth 21 and a first position XI, Y1, ZI with respect to the surface of the water 20 and the third vehicle 12 is located at a second depth 22 and a second position X2, Y2, Z2 with respect to the surface of the water 20. These depths and positions are determined by means of depth sensors conventionally used in the field, such as light sonar, IMU, GPS or USBL system described above, but an absolute positioning of the vehicles is not necessary, a relative positioning of the vehicles between them is sufficient. Absolute positioning can be useful when, for example, you want to maintain the position map of a pipeline. The second vehicle 11 includes a first magnetometer 28 indicating the direction of the pipeline 1 and the third vehicle 12 has a second magnetometer 29 indicating the direction of the pipeline 1. In fact, the pipeline 1 varies the Earth's magnetic field thus allowing the first and second magnetometers to determine the direction. More specifically, the first magnetometer 28 indicates a first angle 26 measured between the vertical and a first direction 30 and the second magnetometer 29 indicates a second angle 27 measured between the vertical and a second direction 31. Moreover, the second and third vehicles 11 , 12 are spaced apart by a distance 23. The distance 23 is determined by the various positioning means, seen previously, which are installed on each underwater vehicle. Performing a trigonometry calculation involving the first angle 26, the second angle 27 and the positions of the second vehicle 11 and the third vehicle 12 it is then possible to accurately determine the position of the pipeline 1. The pipeline is at the intersection of the first direction 30 and in the second direction 31. This position is transmitted to the vehicle 13, called measuring vehicle, which adapts its path, in depth and also in a plane horizontal with respect to the surface of the water, according to this position in order to follow precisely the pipeline to perform an inspection, for example by camera. The images are stored in the computer of the vehicle 13 or else sent directly by acoustic waves, WI-FI, RF, GSM or Iridium to a ship so that they are analyzed in real time. In another embodiment of the invention, it is possible to replace the directional magnetometers 28, 29 previously described by scalar magnetometers 28 ', 29' mounted in a gradiometer. In this embodiment, the second vehicle 11 and the third vehicle 12 are at the same depth. The second vehicle 11 comprises at least one scalar magnetometer 28 'measuring a first amplitude of the magnetic field and the third vehicle 12 comprises at least one scalar magnetometer 29' measuring a second amplitude of the magnetic field. Pipeline 1 is vertical to the centroid of measured amplitudes. It has been described a configuration implementing magnetometers, but it is also possible to mount the magnetometers 28,29, or any other magnetic field measuring means, such as a coil-type inductive system. Preferably and in order to increase the measurement accuracy, it can be installed on each vehicle at least three magnetometers, operating in a two-by-two gradiometer: a first magnetometer at the end of a first fin and a second at the end a second fin and finally a third magnetometer located approximately in the middle of the underwater vehicle. It is also possible to install them transversely or longitudinally with respect to the body of the vehicle. To date, an embodiment of the invention has been described making it possible to inspect a linear element that varies the earth's magnetic field or produces a magnetic field, such as for example a pipeline, a pipe or even an electric cable powered by electricity. On the other hand, when the linear element is of small dimensions, or if it is a non-powered electrical cable, its magnetism is weak, or even zero, the embodiment previously described no longer functions correctly. Another embodiment of the invention solves this problem. At least one of the second and third vehicles 11, 12 further comprises a system of coils for inducing an electric current in the linear element 1 so that there is induced a magnetic field measurable by the first and second magnetometers 28.29. This embodiment is particularly interesting when it is necessary to inspect electrical cables that may possibly be broken, but it can also be used to inspect an anchor chain, a small pipe, an optical fiber surrounded by metallic armor or repeaters linked to an optical fiber. In this case, since the electric cable is broken, it is no longer traversed by an electric current and therefore no magnetic field is generated. The arrangement between the first vehicle 13, the second vehicle 11 and the third vehicle 12 is the same as that shown in Figures 1 and 2, except that the second vehicle 11 and / or the third vehicle 12 and / or the first vehicle 13 and / or a fourth vehicle comprises a system of coils adapted to generate an electric current in the linear element 1.
Il est montré sur la figure 3 un autre mode de réalisation de la présente invention. Il est représenté un système collaboratif de véhicules subaquatiques 31, de préférence autonomes. Ce système collaboratif 31 comprend un premier véhicule 32, appelé éclaireur, comportant un capteur optique, tel qu'une caméra, afin de détecter les parties visibles de l'élément linéaire 33, par un exemple un pipeline, et ainsi déterminer sa trajectoire. Pour les cas où l'élément linéaire 33 n'est pas visible, car il recouvert de sable par exemple, le premier véhicule 32 ne fournit pas d'informations quant à sa trajectoire. Pour de tels cas, et afin d'améliorer le positionnement du système collaboratif 31, un deuxième véhicule 34 comportant un capteur acoustique, tel qu'un sondeur de sédiments, ou une sonde multifaisceaux permet de déterminer si l'élément linéaire 33 est ensouillé. Une sonde multifaisceaux comporte plusieurs faisceaux afin de mesurer simultanément la profondeur selon plusieurs directions. Dans un autre mode de réalisation, le premier véhicule 32 peut comporter un sondeur de sédiments à la place du capteur optique ou une sonde multifaisceaux ou une combinaison quelconque de ces trois capteurs. Afin de déterminer la position de l'élément linéaire 33 recouvert, il est mis également en œuvre un troisième véhicule 35 comprenant un premier magnétomètre et un quatrième véhicule 36 comportant un deuxième magnétomètre dans une configuration identique à celle décrite précédemment et telle que représentée sur les figures 1 et 2. Les informations provenant du premier véhicule 32, du troisième véhicule 35 et du quatrième véhicule 36 sont transmises au deuxième véhicule 34 qui les fusionne et les traite afin de déterminer précisément la position de l'élément linéaire 33. Ces informations sont ensuite transmises à un cinquième véhicule 37, appelé mesureur. Le véhicule 37 se positionne par rapport au premier véhicule 32, au deuxième véhicule 34, au troisième véhicule 35 et au quatrième véhicule 36. Il est chargé d'effectuer l'inspection de l'élément linéaire 33 au moyen, par exemple, d'une sonde multifaisceaux. Le cinquième véhicule 37 transmet ensuite les informations qui lui ont été transmises ainsi que les données acquises par lui-même à un sixième véhicule 38 et un septième véhicule 39 comportant chacun, par exemple, des sonars latéraux afin d'inspecter les côtés ou au-dessous de l'élément linéaire 33. Pour le cas où l'élément linéaire 33 est un pipeline, cette inspection au-dessous de celui-ci va permettre de déterminer s'il est correctement posé sur le fond de mer et non entre deux dunes. En effet, cette configuration induit des contraintes dans le pipeline générant ainsi des problèmes de fatigue. Dans une autre configuration du système collaboratif 31, les informations provenant du deuxième véhicule 34 sont transmises directement aux sixième et septième véhicules 38,39 sans passer par le cinquième véhicule 37. Les informations recueillies par le cinquième véhicule 37 sont transmises aux sixième et septième véhicules 38,39 et traitées directement par eux. Dans un autre mode de réalisation, les sixième et septième véhicules 38,39 sont esclaves du cinquième véhicule 37 et suivent exactement la même trajectoire que ce dernier. It is shown in Figure 3 another embodiment of the present invention. There is shown a collaborative system of underwater vehicles 31, preferably autonomous. This collaborative system 31 comprises a first vehicle 32, called scout, comprising an optical sensor, such as a camera, in order to detect the visible parts of the linear element 33, for example a pipeline, and thus to determine its trajectory. For cases where the linear element 33 is not visible because it covered with sand for example, the first vehicle 32 does not provide information about its trajectory. For such cases, and to improve the positioning of the collaborative system 31, a second vehicle 34 comprising an acoustic sensor, such as a sediment sounder, or a multibeam probe to determine whether the linear element 33 is buried. A multibeam probe has multiple beams to simultaneously measure the depth according to several directions. In another embodiment, the first vehicle 32 may include a sediment sounder instead of the optical sensor or a multibeam probe or any combination of these three sensors. In order to determine the position of the linear element 33 covered, it is also implemented a third vehicle 35 comprising a first magnetometer and a fourth vehicle 36 comprising a second magnetometer in a configuration identical to that described above and as shown in FIGS. Figures 1 and 2. The information from the first vehicle 32, the third vehicle 35 and the fourth vehicle 36 are transmitted to the second vehicle 34 which merges and processes them to precisely determine the position of the linear element 33. This information is then transmitted to a fifth vehicle 37, called measurer. The vehicle 37 is positioned relative to the first vehicle 32, the second vehicle 34, the third vehicle 35 and the fourth vehicle 36. It is responsible for performing the inspection of the linear element 33 by means, for example, of a multibeam probe. The fifth vehicle 37 then transmits the information transmitted to it and the data acquired by itself to a sixth vehicle 38 and a seventh vehicle 39 each including, for example, side sonars for inspecting the sides or below the linear element 33. For the case where the linear element 33 is a pipeline, this inspection below it will determine if it is correctly placed on the seabed and not between two dunes . Indeed, this configuration induces constraints in the pipeline thus generating fatigue problems. In another configuration of the collaborative system 31, the information from the second vehicle 34 is transmitted directly to the sixth and seventh vehicles 38,39 without passing through the fifth vehicle 37. The information collected by the fifth vehicle 37 is transmitted to the sixth and seventh vehicles 38,39 and processed directly by them. In another embodiment, the sixth and seventh vehicles 38, 39 are slaves of the fifth vehicle 37 and follow exactly the same trajectory as the latter.
Dans tous les modes de réalisation, au moins un des véhicules subaquatiques peut comporter un ou plusieurs capteurs ou dispositifs tels que des détecteurs ou mesureurs d'hydrocarbures, dans le cas de missions d'inspection de pipelines, des sonars latéraux, des sonars multifaisceaux, des caméras vidéos ou des mesureurs de profil ou tout autre système permettant de déterminer la géométrie, l'état de surface et les paramètres physicochimiques de l'environnement de l'élément linéaire (1, 33). In all embodiments, at least one of the underwater vehicles may comprise one or more sensors or devices such as Hydrocarbon detectors or meters, in the case of pipeline inspection missions, lateral sonar, multibeam sonar, video cameras or profile meters or any other system for determining geometry, surface condition and the physicochemical parameters of the environment of the linear element (1, 33).

Claims

REVENDICATIONS
Système collaboratif de véhicules subaquatiques (10, 31) apte à suivre un élément linéaire (1, 33) immergé, ledit élément linéaire (1, 33) étant capable de faire varier ou de produire un champ magnétique, comprenant au moins un premier véhicule subaquatique (13, 37, 38, 39) destiné au suivi de la position de l'élément linéaire(l, 33), un deuxième véhicule subaquatique (11, 35) comprenant au moins un premier système apte à indiquer sa position et au moins un premier moyen de mesure (28) dudit champ magnétique apte à indiquer un premier angle (26) mesuré entre la verticale et une première direction (30) dudit champ magnétique ou apte à mesurer une première amplitude dudit champ magnétique, un troisième véhicule subaquatique (12, 36) comprenant au moins un deuxième système apte à indiquer sa position et au moins un deuxième moyen de mesure (29) dudit champ magnétique apte à indiquer un deuxième angle (27) mesuré entre la verticale et une deuxième direction (31) dudit champ magnétique ou apte à mesurer une deuxième amplitude dudit champ magnétique, le premier véhicule subaquatique (13, 37, 38, 39) étant situé à la verticale ou en arrière des deuxième et troisième véhicules subaquatiques (11, 35, 12, 36), au moins un desdits véhicules subaquatiques (13, 37, 38, 39, 11, 12) comportant un moyen de calcul de ladite position dudit élément linéaire (1, 33) et le premier véhicule subaquatique (13, 37, 38, 39) étant apte à utiliser la position dudit élément linéaire (1, 33) afin de le suivre. Collaborative system of underwater vehicles (10, 31) adapted to follow a linear element (1, 33) immersed, said linear element (1, 33) being capable of varying or producing a magnetic field, comprising at least a first underwater vehicle (13, 37, 38, 39) for monitoring the position of the linear element (1, 33), a second underwater vehicle (11, 35) comprising at least a first system able to indicate its position and at least one first measuring means (28) of said magnetic field capable of indicating a first angle (26) measured between the vertical and a first direction (30) of said magnetic field or capable of measuring a first amplitude of said magnetic field, a third underwater vehicle (12) , 36) comprising at least a second system capable of indicating its position and at least a second measuring means (29) of said magnetic field capable of indicating a second angle (27) measured between the vertical and a second di rection (31) of said magnetic field or adapted to measure a second amplitude of said magnetic field, the first underwater vehicle (13, 37, 38, 39) being located vertically or behind the second and third underwater vehicles (11, 35, 12, 36), at least one of said underwater vehicles (13, 37, 38, 39, 11, 12) including means for calculating said position of said linear element (1, 33) and the first underwater vehicle (13, 37, 38, 39) being adapted to use the position of said linear element (1, 33) in order to follow it.
Système collaboratif (10) selon la revendication 1, caractérisé en ce qu'au moins un des véhicules subaquatiques (13, 37, 38, 39, 11, 12) est autonome.  Collaborative system (10) according to claim 1, characterized in that at least one of the underwater vehicles (13, 37, 38, 39, 11, 12) is autonomous.
Système collaboratif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen de calcul est situé sur le premier véhicule subaquatique (13, 37, 38, 39). Système collaboratif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un moyen de mesure (28, 29) dudit champ magnétique est un magnétomètre-gradiomètre. Collaborative system (10) according to any one of the preceding claims, characterized in that the calculation means is located on the first underwater vehicle (13, 37, 38, 39). Collaborative system (10) according to any one of the preceding claims, characterized in that at least one measuring means (28, 29) of said magnetic field is a magnetometer-gradiometer.
Système collaboratif (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte en outre au moins un véhicule subaquatique (32) supplémentaire comportant un capteur optique.  Collaborative system (10) according to any one of the preceding claims, characterized in that it further comprises at least one additional underwater vehicle (32) comprising an optical sensor.
Procédé de suivi d'un élément linéaire (1, 33), ledit procédé comprenant les étapes suivantes :  A method of tracking a linear element (1, 33), said method comprising the steps of:
1) mettre en œuvre un système collaboratif de véhicules subaquatiques (10, 31) selon l'une quelconque des revendications 1 à 5 ;  1) implementing a collaborative system of underwater vehicles (10, 31) according to any one of claims 1 to 5;
2) calculer la position dudit élément linéaire (1, 33) en se basant sur ladite position du deuxième véhicule subaquatique (11, 35), ladite position du troisième véhicule subaquatique (12, 36), la mesure dudit premier angle (26) ou de la première amplitude et la mesure dudit deuxième angle (27) ou de la deuxième amplitude;  2) calculating the position of said linear element (1, 33) based on said position of the second underwater vehicle (11, 35), said position of said third underwater vehicle (12, 36), measuring said first angle (26) or the first amplitude and the measurement of said second angle (27) or the second amplitude;
3) utiliser la position calculée afin de suivre l'élément linéaire (1, 33) au moyen du au moins premier véhicule subaquatique (13, 37, 38, 39).  3) using the calculated position to follow the linear element (1, 33) by means of the at least first underwater vehicle (13, 37, 38, 39).
Procédé selon la revendication 6, caractérisé en ce que l'élément linéaire (1, 33) est un pipeline.  Process according to Claim 6, characterized in that the linear element (1, 33) is a pipeline.
Procédé selon la revendication 6, caractérisé en ce qu'au moins un des véhicules subaquatiques (11, 12, 35, 36) comporte un moyen d'induction induisant un courant électrique dans l'élément linéaire (1, 33).  Method according to claim 6, characterized in that at least one of the underwater vehicles (11, 12, 35, 36) comprises induction means inducing an electric current in the linear element (1, 33).
9. Procédé selon la revendication 8, caractérisé en ce que le moyen d'induction comprend au moins une bobine. 9. The method of claim 8, characterized in that the induction means comprises at least one coil.
EP18726489.0A 2017-06-02 2018-05-29 Collaborative system of sub-aquatic vehicles for following submerged linear elements and method implementing this system Withdrawn EP3630597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1754905A FR3066996B1 (en) 2017-06-02 2017-06-02 COLLABORATIVE SYSTEM OF UNDERWATER VEHICLES FOR MONITORING SUBMERGED LINEAR ELEMENTS AND METHOD FOR IMPLEMENTING THIS SYSTEM
PCT/EP2018/064119 WO2018219975A1 (en) 2017-06-02 2018-05-29 Collaborative system of sub-aquatic vehicles for following submerged linear elements and method implementing this system

Publications (1)

Publication Number Publication Date
EP3630597A1 true EP3630597A1 (en) 2020-04-08

Family

ID=59930467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18726489.0A Withdrawn EP3630597A1 (en) 2017-06-02 2018-05-29 Collaborative system of sub-aquatic vehicles for following submerged linear elements and method implementing this system

Country Status (3)

Country Link
EP (1) EP3630597A1 (en)
FR (1) FR3066996B1 (en)
WO (1) WO2018219975A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426085A (en) * 2022-02-11 2022-05-03 中国人民解放军海军特色医学中心 Intelligent diving following robot, following system and following method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095756B (en) * 2019-05-21 2023-01-03 中国科学院深海科学与工程研究所 Underwater target speed calculation method based on underwater acoustic positioning system
CN112243194A (en) * 2020-10-13 2021-01-19 上海正阳电子有限公司 Self-dive type mobile sensor device, control method, computer device, and storage medium
NO347366B1 (en) * 2021-10-14 2023-10-02 Argeo Robotics As A system for tracking a subsea object

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894450A (en) * 1997-04-15 1999-04-13 Massachusetts Institute Of Technology Mobile underwater arrays
DE102010035898B3 (en) 2010-08-31 2012-02-16 Atlas Elektronik Gmbh Unmanned underwater vehicle and method of operating an unmanned underwater vehicle
PL2452868T3 (en) * 2010-11-11 2013-05-31 Atlas Elektronik Gmbh Unmanned underwater vehicle and method for recovering such vehicle
JP5806568B2 (en) 2011-09-26 2015-11-10 川崎重工業株式会社 Underwater mobile inspection equipment and underwater inspection equipment
US9746444B2 (en) * 2012-10-27 2017-08-29 Valerian Goroshevskiy Autonomous pipeline inspection using magnetic tomography
US20170074664A1 (en) * 2014-03-05 2017-03-16 C&C Technologies, Inc. Underwater Inspection System Using An Autonomous Underwater Vehicle ("AUV") In Combination With A Laser Micro Bathymetry Unit (Triangulation Laser) and High Definition Camera
US10578583B2 (en) 2014-09-26 2020-03-03 Delta Subsea, Llc Systems, apparatus, and methods for inspecting submerged surfaces
AU2015393902B2 (en) 2015-05-05 2019-02-14 Total Sa Underwater vehicle for inspection of a subsea structure in a body of water and related method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426085A (en) * 2022-02-11 2022-05-03 中国人民解放军海军特色医学中心 Intelligent diving following robot, following system and following method
CN114426085B (en) * 2022-02-11 2022-11-08 中国人民解放军海军特色医学中心 Intelligent diving following robot, following system and following method

Also Published As

Publication number Publication date
FR3066996A1 (en) 2018-12-07
FR3066996B1 (en) 2022-07-01
WO2018219975A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
EP3630597A1 (en) Collaborative system of sub-aquatic vehicles for following submerged linear elements and method implementing this system
Yang et al. Seafloor geodetic network establishment and key technologies
US20140165898A1 (en) Unmanned Underwater Vehicle and Method for Localizing and Examining An Object Arranged At The Bottom Of A Body Of Water and System Having the Unmanned Underwater Vehicle
CN103412198B (en) The three-dimensional spatial distribution characteristic measuring device of boats and ships protection electric field and measuring method
CN105066917A (en) Miniature pipeline geographic information system measuring apparatus and measuring method thereof
PT2635875T (en) An integrity monitoring system and a method of monitoring integrity of a stationary structure
Shemer et al. Estimates of currents in the nearshore ocean region using interferometric synthetic aperture radar
US20170074664A1 (en) Underwater Inspection System Using An Autonomous Underwater Vehicle ("AUV") In Combination With A Laser Micro Bathymetry Unit (Triangulation Laser) and High Definition Camera
Clare et al. Lessons learned from the monitoring of turbidity currents and guidance for future platform designs
US20140321238A1 (en) Remotely operated modular positioning vehicle and method
EP1828802B1 (en) Device for autonomously determining absolute geographic coordinates of a mobile changing with regard to immersion
EP0133408B1 (en) System for determining the course of a marine structure
Cao et al. Experimental research on submarine cable monitoring method based on MEMS sensor
CN107462891B (en) Three-point type deep sea submerged buoy positioning method
FR2574560A1 (en) SYSTEM USING ONE OR MORE REMOTE CONTROLLED VESSELS FOR THE CONDUCT OF MARINE OPERATIONS
US20150226554A1 (en) Seismic streamer shape correction using derived compensated magnetic fields
FR2958412A1 (en) METHOD FOR DETERMINING THE RELATIVE POSITION OF TWO DETECTORS AT THE BOTTOM OF THE SEA
FR3015052A1 (en)
US8086408B1 (en) Method for positioning a wire using sensor information
EP0597014B1 (en) Portable station for the measurement and adjustment of the magnetic signature of a naval vessel
FR2921954A1 (en) Artificial concrete block installation assisting system for constructing e.g. artificial breakwater, has storage unit storing three-dimensional representation of block and displaying block on screen from position and orientation coordinates
WO2012104519A1 (en) Device and method for detecting thermal leaks of a structure
WO2011124813A2 (en) Method of determining the position of a detector disposed at the bottom of the sea
US20240111031A1 (en) Laser inspection and measurement systems and methods
Khan et al. Cutting-edge marine seismic technologies—Some novel approaches to acquiring 3D seismic data in a complex marine environment

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210120

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KOPADIA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220727