EP3630404B1 - Vorrichtung und verfahren zum automatisierten nahtschweissen eines werkstücks, das eine basisplatte mit einem muster von hochstehenden profilen enthält - Google Patents

Vorrichtung und verfahren zum automatisierten nahtschweissen eines werkstücks, das eine basisplatte mit einem muster von hochstehenden profilen enthält Download PDF

Info

Publication number
EP3630404B1
EP3630404B1 EP18728558.0A EP18728558A EP3630404B1 EP 3630404 B1 EP3630404 B1 EP 3630404B1 EP 18728558 A EP18728558 A EP 18728558A EP 3630404 B1 EP3630404 B1 EP 3630404B1
Authority
EP
European Patent Office
Prior art keywords
welding
work piece
profiles
information
seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18728558.0A
Other languages
English (en)
French (fr)
Other versions
EP3630404C0 (de
EP3630404A1 (de
Inventor
Rasmus FAUDEL
Flemming Jorgensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inrotech Aps
Original Assignee
Inrotech Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inrotech Aps filed Critical Inrotech Aps
Publication of EP3630404A1 publication Critical patent/EP3630404A1/de
Application granted granted Critical
Publication of EP3630404C0 publication Critical patent/EP3630404C0/de
Publication of EP3630404B1 publication Critical patent/EP3630404B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0256Seam welding; Backing means; Inserts for rectilinear seams for welding ribs on plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1274Using non-contact, optical means, e.g. laser means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment

Definitions

  • the present invention relates to an apparatus for performing welding operations, in particular for use in the manufacturing of large size welded structures comprising a metal base plate with upstanding metal profiles, with weld seams where the metal base plate and the upstanding metal profiles abut against each other and normally also where the upstanding profiles abut against each other.
  • the general term in the shipbuilding industry for such a large size welded structure is a "panel".
  • Profiles as referred to herein may by way of example be flat plates, bars or bulb-, T- or L-profiles.
  • welding seam as used herein may preferably refer to a weld ex-tending along the length, normally the full length, of contact between the metal base plate and the respective upstanding elongated metal profiles and the length of contact between the upstanding profiles, in contrast to spot welds.
  • seam welding refers to the forming of a weld seam.
  • Robotic devices have attained widespread use in the manufacturing environment in both assembly processes and work processes.
  • Common types of robotic work processes include robotic welding, cutting, grinding, gluing and the like.
  • Vision systems are generally based on an optical camera which creates a 2D graphical picture or a number of pictures which are then merged into one global picture.
  • the aforementioned PEMA weld system creates a picture of a work piece comprising a base plate spot welded to upstanding profiles which are to be seam welded to the base plate using robotic arms with welding tools. Line drawings are in this case placed upon the picture by an operator, to indicate where seam welding is to be performed.
  • the PEMA weld system may be characterised as a semiautomatic solution as it still requires input from an experienced operator in terms of selecting the joints to be seam welded; it is so to say an advanced off-line programming system.
  • the present invention seeks to provide a more efficient and less labour demanding apparatus and method for automated seam welding of a work piece comprising a base plate with a pattern of upstanding profiles, using robotic devices with a welding tool.
  • An apparatus and a method of implementing the invention is defined in the independent claims.
  • Advantageous embodiments of the invention are defined in the dependent claims.
  • Applicant's apparatus is generally based on 3D scanning technology, such as involving one or more overhead laser scanners, performing in a first procedural step a global scanning of the work piece, such as by a laser beam or line being moved relative to the work piece, to create a global 3D topographical image of the work piece, which image may be based on triangulation.
  • a point cloud may then be created, where 3D coordinates are attached to each point of the point cloud.
  • the collected data representing the global 3D topography of the work piece is subsequently processed using a computer device to identify the type of the individual upstanding profiles.
  • This identification may be based on derived data representing the width or thickness of the individual profiles, such as on a profile specific width of any elongated upper ribs or flanges that are part of the individual profiles and that is determined from the global 3D topography data.
  • Derived data representing the height, measured from the base plate, of the individual profiles, also determined from the global 3D topography data may additionally assist in the identification of the individual profiles.
  • the profile identification allows for retrieval from a database of further information relating to seam welds to be subsequently formed.
  • ribs or flanges that are often there for profiles used in the manufacturing of large size welded structures, often prevent any direct determination based on the global 3D topography data of the position of the elongated contact lines, also referred to herein as "seam lines", between the base plate and the profiles, which contact lines extend below the ribs or flanges and, thus, are hidden from the overhead scanners.
  • the aforementioned profile identification is carried out by electronically referring to the database which contains geometrical information about the profiles used for the specific work piece.
  • This database or another database, preferably also contains pre-stored information about welding parameters, such as required seam weld length and welding leg length related to the connection between the base plate and each of the identified individual profiles. Data representing an approximated position, relative to some reference point, of the aforementioned contact lines between the profiles and the base plate may then also be created. On this basis a sequence of movements for each robotic device is planned using the computer device.
  • the stored information may be a collection of data in a more or less structured form, known as "a catalogue".
  • the robotic device has a distance sensor which may be an optical distance sensor. This distance sensor can be integrated with the welding tool, or non-integrated, then using a tool exchanger.
  • the robotic arm is moved, guided on the basis of the processed data representing the global 3D topography, to positions close to the ends of the identified, individual profiles and close to the approximated position of the aforementioned contact lines, in accordance with the planned sequence of movements.
  • the distance sensor is now used in a second procedural step for determining the aforementioned contact lines or exact position of the profile ends, i.e. where seam welding should start and stop, relative to the base plate or other fix point(s).
  • This position may be determined as a result of indications from the optical distance sensors representing location of a transverse profile, i.e. where one profile intersects another, such as positions relative to the position of the distance sensor.
  • a welding tool carried by the robotic arm is activated and the robotic arm is moved along the contact line as determined in the second procedural step.
  • Distance sensors as referred to may be optical sensors of the type manufactured by Leuze Electronic GmbH.
  • Fig. 1 generally shows a work shop area having a support base in the form of a shop floor 2 and an apparatus 1 including an overhead support in the form of a gantry 10 having two legs 20, 22 connected by a cross-beam 15 and having wheels or other structure allowing the gantry 10 to be moved in directions P across the shop floor 2.
  • a work piece or structure to be processed On the shop floor 2 is laid out a work piece or structure to be processed and generally designated reference numeral 100.
  • the structure 100 comprises a flat metal base plate 105 covering a portion of the shop floor 2 and having, purely by way of example, dimensions in the order of 14 m by 12 m.
  • a plurality of upwardly extending profiles 110 exemplified in the figure as narrow flat metal plates, for stiffening the base plate 105.
  • a structure 100 as shown and including such profiles 110 may by way of example be used for making a hull part of a ship or other vessel where the profiles 110 are arranged in a pattern determined by the structural loads on the hull part; in such cases the profiles 110 will very often include a horizontal flange portion extending along the full length thereof, opposite the base plate 105.
  • a structure 100 as shown will have local areas C, such as formed by the shown rectangular cells C, defined by intersecting profiles 110.
  • a welding tool is applied within each cell C to perform a welding by a welding gun of the full length of the seam lines where the individual profiles 110 contact each other, and of the seam lines where the profiles 110 and the base plate 105 contact each other, the base plate 105 and the profiles 110 until that point in time being only temporarily connected by the tack-welding.
  • the material used for the tack-welding must be compatible with the material used for the final welding.
  • Shown in fig. 1 are also a plurality of individual scanners 30 mounted onto the cross-beam 15 along the length thereof.
  • the scanners 30 are line scanners, such as LDA (laser distance scanners) or ultra sound scanners, configured for establishing a 2D/3D image of the structure 100, eg. the location of the individual cells C. This image is created by moving the gantry 10 from one end of the structure 100 to the other, i.e. along direction P, while performing the scanning.
  • LDA laser distance scanners
  • ultra sound scanners configured for establishing a 2D/3D image of the structure 100, eg. the location of the individual cells C. This image is created by moving the gantry 10 from one end of the structure 100 to the other, i.e. along direction P, while performing the scanning.
  • a first step of operating the apparatus 1 the gantry 10 of the apparatus 1 is moved along the structure 100 as described above, to perform a full scanning of the structure 100, thereby obtaining global 3D topographical information about the structure 100.
  • robotic arms 200 of respective robotic devices R mounted to the cross-beam 15 and forming part of the apparatus 1 are in a retracted position as shown in fig. 1 , allowing free movement of the gantry 10 relative to the structure 100, without blocking the field of scanning of the scanners 30.
  • this scanning information is obtained and stored in a computer device (not shown, associated with the apparatus 1), about the position of the cells C; this information determines an approximate position of the generally horizontal and generally vertical seam lines within each cell C, the vertical seams lines extending upward at the corners of the cells C where the profiles 110 intersect each other.
  • This information also allows for an identification of each of the profiles scanned, and, hence, of the dimension of the weld seams to be formed, by electronically referring to a database which contains geometrical information about the profiles 110 used for the specific structure 100.
  • the gantry 10 is moved into a position aligned with a first row of cells C parallel with the cross-beam 15, as shown schematically in fig. 2 , this position having been determined on the basis of the information stored in the computer device.
  • the robotic arms 200 which are supported by the cross-beam 15 so as to be movable along the length thereof, are moved into the shown active position wherein a head H of each robotic arm 200 extends into a cell C, close to the base plate 105.
  • the head H of each robotic arm 200 includes a distance sensor S, such as a laser sensor, and a welding tool WT with any conventional welding gun with a welding torch, welding wire feeder and welding gas supply.
  • the head H may be of the type including a gripper or a mount for exchanging equipment held by the robotic arm, such as to allow the distance sensor S to be held at one time and the welding tool WT to be held at another time, or simultaneously.
  • the robotic arm 200 now carries out a second procedural step followed immediately by a third procedural step, each procedural step to be discussed below, before the robotic arm 200 is moved for processing a next cell C in the aforementioned row of cells C, after which the gantry 10 is moved to allow for a similar processing of a next row of cells C in the direction P.
  • the robotic arm 200 is shown with its extremity or head H dipped into a cell C to a position close to the support base 2, and with its sensor S on the head H positioned as close as possible to a seam line, the approximate position thereof having been determined by the scanners 30 on the cross-beam 15 during the preceding first procedural step.
  • a start position of the head H for carrying out an ensuing, second procedural step may be selected as one of the corners of the cell C, identified roughly during the preceding, first procedural step.
  • the robotic arm 200 In the second procedural step now initiated by the computer device the robotic arm 200, guided by information registered by the scanners 30, moves inside the cell C, normally generally approximately along each seam line as approximately identified position wise in the first procedural step, with the sensor S being activated for an exact determination of the position of the start and end points of each seam line within the area of operation of the dipped robotic arm, eg. within the given cell C, possibly including also a determination of the position of the ends of the vertical seam lines, relative to any given fixed point.
  • This sensing is represented schematically in fig. 2 by sensor beam B.
  • a welding using the welding tool and based on the stored information about the exact position of the seam line(s) is carried out as a third procedural step, either for the entirety of the seam line(s) of the cell C or only for some of the seam line(s).
  • This is schematically shown in fig. 3 , the welding torch on head H being identified in fig. 2 by reference letter T.
  • Welding may by way of example be started in the position of the head H where registration by the sensor S stopped at the end of the previous procedural step, such as where a seam line comes to an end, the welding following a return path along a just located seam line, or the just located seam line may be retraced where the just located seam line runs along a closed path as in the case of a closed cell C.
  • the sensor S is preferably in a protected configuration to be discussed further below.
  • a local area referred to herein may be an areas next to an isolated single profile; however, typically, such a structure will be compartmentalized to some extend along the major direction P whereby a stepwise movement of the gantry 10 relative to the structure 100 will be carried out, with the second and third procedural steps being carried out during each stop, by movement of the robotic device R in the direction of the cross-beam 15.
  • the robotic arm 200 is raised and lowered as required relative to the structure 100, such as for dipping the robotic arm head H into the cells C or in proximity of seam line(s) to be welded. The actual sensing and welding operations may be performed without raising or lowering the robotic arm 200, the robotic arm head H solely being moved for this purpose.
  • the welding torch T When a welding operation is finished, i.e. after completion of the aforementioned third procedural step and before initiation of another second procedural step followed by another third procedural step, using the same robotic arm 200, with or without any intermediate movement of the gantry 15 relative to the structure 100, the welding torch T may be automatically cleaned.
  • Figs. 4a , 4b and 4c show the robotic arm head H with sensor S and welding tool WT with welding torch T, with the sensor S in a first configuration and in the aforementioned protected configuration, respectively.
  • the sensor S is mounted in a housing 300 provided with a shutter 310 configured to be moved into a position in front of the sensor S, for protection thereof against any damage thereof due to its proximity to the welding torch.
  • pressurized fluid is led into the housing 300 via supply 350 to prevent dust settling on the sensor S.
  • the apparatus 1 may be operated in a way where the conveyor in the first procedural step is advanced until the position of a number, preferably only one, of rows of cells C have been established by the scanners 30, following which the robotic arms 200 are brought into their active position discussed above, for carrying out the aforementioned second and third procedural steps.
  • Figs. 5a and 5b show an individual, lone profile 110 including a web 102 integral with an upper horizontal flange 104, with a local area C next to it, into which local area C the head H (not shown) has been dipped in a previous step to identify/detect the location of the two ends of the profile 110 for an exact determination of the position of the start and end points of a weld seam to be formed.
  • the web 102 has a lower edge contacting the base plate 105 along a line, also referred to herein as a seam line, along which line the shown weld seam WS has been formed using welding wire and the welding torch on the head H.
  • the welding leg WL dimension is indicated in fig.
  • this dimension being an example of weld seam information stored in a database, as previously mentioned herein.
  • the seam line along which the weld seam is formed is hidden below the horizontal flange 104, i.e. it is not visible by the line scanner 30; however, based on the 3D topographical image providing information about the location of the edges of the horizontal flange 104, identified through a reduced distance from the scanner 30 to the work piece100, together with the geometrical information about each profile 110 stored in the database, eg. the width measured between the edges of the flange 104, the location of the seam line may be determined relative to a reference point.
  • overhead refers to a position higher than the work piece 100 arranged on the support base/shop floor 2. While above the invention has been discussed in connection with an embodiment where movement of the gantry relative to the structure 100 is by moving the gantry it will be understood that the structure 100 may alternatively by placed on a conveyor moving the structure 100 relative to the gantry 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Claims (9)

  1. Vorrichtung (1) zum automatisierten Nahtschweißen eines Werkstücks (100), das eine Basisplatte (105) mit einem Muster von hochstehenden Profilen (110) umfasst, wobei das Werkstück (100) auf einer Trägerbasis (2) angeordnet ist, wobei die Vorrichtung (1) Folgendes beinhaltet:
    - einen Überkopfträger (10) mit mindestens einem Robotergerät (R),
    durch Folgendes gekennzeichnet
    - mindestens einen Überkopflaserscanner (30), zum Beispiel ein LIDAR-Scanner, über dem Werkstück (100), um ein globales topografisches 3D-Bild des Werkstücks (100) durch relative Überkopfbewegung (P) über das Werkstück (100) des mindestens einen Überkopflaserscanners (30) zu ermitteln,
    -- wobei das Robotergerät (R), einen Gelenkarm (200) beinhaltet und dazu konfiguriert ist, aktive Positionen einzunehmen, wobei ein Kopf (H) des Gelenkarms (200) näher an der Trägerbasis (2) in lokalen Bereichen (C) des Werkstücks (100) ist,
    --- wobei der Kopf (H) einen Abstandssensor (S) beinhaltet,
    -- wobei das Robotergerät ferner dazu konfiguriert ist, ein Schweißwerkzeug (WT) mit einer Schweißpistole mit einem Schweißbrenner (T) zu tragen,
    ---- wobei der Abstandssensor (S) in verschiedenen Positionen innerhalb jedem der lokalen Bereiche (C) des Werkstücks (100) in den aktiven Positionen positionierbar ist,
    ----- wobei der Abstandssensor (S) dazu konfiguriert ist, lokale Informationen zu der Position von den Enden von Profilen (110), die innerhalb oder abgrenzend der lokalen Bereiche (C) liegen, und/oder von Kreuzungen zwischen Profilen (110), die innerhalb oder abgrenzend der lokalen Bereiche (C) liegen, zu generieren, und
    - ein Computergerät zum Speichern von Daten, die das ermittelte globale topografische 3D-Bild des Werkstücks (100) darstellen, und Daten, die die generierten lokalen Informationen zum Werkstück (100) darstellen,
    - wobei das Computergerät dazu konfiguriert ist, jedes der Profile (110) durch Vergleichen der Daten, die das globale topografische 3D-Bild darstellen, mit Informationen, die in einer Datenbank gespeichert sind und die geometrischen Daten für jedes der Profile (110) darstellen, zu identifizieren.
  2. Vorrichtung nach dem vorstehenden Anspruch, wobei die Datenbank Informationen zu einer Schweißnaht enthält, die zum Schweißen jedes Profils (110) auf die Basisplatte (105) anzuwenden ist.
  3. Vorrichtung nach einem der vorstehenden Ansprüche 1-2, wobei das Computergerät dazu konfiguriert ist, eine Schweißpistole zu aktivieren, die von dem Robotergerät getragen wird, zum Beispiel durch den Kopf (H), zum Initiieren von Schweißen in Übereinstimmung mit den generierten lokalen Informationen, bevorzugt zum Steuern von Bewegung des Kopfs (H) zwischen den Enden der Profile (100) zum Nahtschweißen.
  4. Vorrichtung nach einem der vorstehenden Ansprüche 1-3, wobei die lokalen Bereiche (C) durch Kreuzungen zwischen den Profilen (110) definiert sind.
  5. Vorrichtung nach einem der vorstehenden Ansprüche 1-4, wobei der Überkopfträger (10) eine Brückenstruktur beinhaltet, die einen Querträger (15), optional auf der Trägerbasis (2) durch ein Paar Beine (20, 22) getragen, aufweist, wobei das Robotergerät (R) entlang des Querträgers (15) beweglich ist, wobei der Überkopfscanner (30) auf dem Querträger (15) montiert ist.
  6. Vorrichtung nach einem der vorstehenden Ansprüche 1-5, wobei der Kopf (H) ein Gehäuse (300) für den Abstandssensor (S) beinhaltet, wobei das Gehäuse (300) mit einem Blendenverschluss (310) bereitgestellt ist, der dazu konfiguriert ist, in eine Position vor dem Abstandssensor (S) bewegt zu werden, um diesen vor Beschädigung durch seine Nähe zu dem Schweißbrenner (T) zu schützen.
  7. Vorrichtung nach dem vorstehenden Anspruch, die eine Versorgung (350) für unter Druck stehendes Fluid an das Gehäuse (300) beinhaltet, um ein Ablagern von Staub auf dem Sensor (S) zu verhindern.
  8. Verfahren zum automatisierten Nahtschweißen eines Werkstücks (100), das eine Basisplatte (105) mit einem Muster von hochstehenden Profilen (110) umfasst, wobei das Werkstück (100) auf einer Trägerbasis (2) angeordnet ist, wobei die Vorrichtung (1) Folgendes beinhaltet:
    - einen Überkopfträger (10) mit mindestens einem Robotergerät (R),
    - mindestens einen Überkopflaserscanner (30), zum Beispiel ein LIDAR-Scanner,
    -- wobei das Robotergerät (R) einen Gelenkarm (200) beinhaltet und dazu konfiguriert ist, aktive Positionen einzunehmen, wobei ein Kopf (H) des Gelenkarms (200) näher an der Trägerbasis (2) ist,
    --- wobei der Kopf (H) einen Abstandssensor (S) beinhaltet,
    -- wobei das Robotergerät (R) ein Schweißwerkzeug (WT) mit einer Schweißpistole mit einem Schweißbrenner (T) trägt,
    --- wobei der Abstandssensor (S) in verschiedenen Positionen innerhalb lokaler Bereiche (C) des Werkstücks (100) in den aktiven Positionen positionierbar ist,
    --- wobei der Abstandssensor (S) dazu konfiguriert ist, lokale Informationen zu Positionen von Nahtlinien in den lokalen Bereichen (C) zu generieren, zum Beispiel Informationen zu der Position von den Enden von Profilen (110), die innerhalb oder abgrenzend der lokalen Bereiche (C) liegen, und/oder von Kreuzungen zwischen Profilen (110), und
    - ein Computergerät zum Speichern von:
    -- Daten, die ein ermitteltes globales topografisches 3D-Bild des Werkstücks (100) darstellen,
    -- Daten, die die generierten lokalen Informationen zum Werkstück (100) darstellen,
    -- Informationen, die die geometrischen Daten für jedes der Profile (110) darstellen, und
    -- Informationen zu einer Schweißnaht, die zum Schweißen jedes Profils (110) auf die Basisplatte (105) anzuwenden ist, dadurch gekennzeichnet, dass
    - eine relative Bewegung über das Werkstück (100) von dem mindestens einen Überkopfscanner (30) relativ zu der Trägerbasis (2) initiiert wird,
    - das globale topografische 3D-Bild des Werkstücks (100) durch die relative Bewegung des mindestens einen Überkopflaserscanners (30) relativ zu dem Werkstück (100) ermittelt wird,
    - jedes der Profile (110) durch Vergleichen der Daten, die das globale topografische 3D-Bild darstellen, mit den Informationen, die geometrische Daten für jedes der Profile (110) darstellen, identifiziert wird,
    - der Sensor (S) in verschiedenen Positionen innerhalb jedem der lokalen Bereiche (C) des Werkstücks (100) positioniert wird, um die lokalen Informationen zu Positionen von Nahtlinien zu generieren,
    - Schweißen in den lokalen Bereichen (C) und Bewegen der Schweißpistole entlang der Nahtlinien für das Nahtschweißen durch Verwenden der gespeicherten Informationen zu der Schweißnaht, die zum Schweißen jedes Profils (110) auf die Basisplatte (105) anzuwenden ist, initiiert wird.
  9. Verfahren nach Anspruch 8, wobei die Informationen zu einer Schweißnaht, die zum Schweißen jedes Profils (110) auf die Basisplatte (105) anzuwenden ist, Informationen zur Dimension eines Schweißschenkels (WL) umfasst oder daraus besteht.
EP18728558.0A 2017-05-24 2018-05-24 Vorrichtung und verfahren zum automatisierten nahtschweissen eines werkstücks, das eine basisplatte mit einem muster von hochstehenden profilen enthält Active EP3630404B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA201700318 2017-05-24
PCT/EP2018/063648 WO2018215592A1 (en) 2017-05-24 2018-05-24 An apparatus and a method for automated seam welding of a work piece comprising a base plate with a pattern of upstanding profiles

Publications (3)

Publication Number Publication Date
EP3630404A1 EP3630404A1 (de) 2020-04-08
EP3630404C0 EP3630404C0 (de) 2024-01-03
EP3630404B1 true EP3630404B1 (de) 2024-01-03

Family

ID=62492603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18728558.0A Active EP3630404B1 (de) 2017-05-24 2018-05-24 Vorrichtung und verfahren zum automatisierten nahtschweissen eines werkstücks, das eine basisplatte mit einem muster von hochstehenden profilen enthält

Country Status (3)

Country Link
EP (1) EP3630404B1 (de)
CN (1) CN110831718A (de)
WO (1) WO2018215592A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3630404B1 (de) 2017-05-24 2024-01-03 Inrotech Aps Vorrichtung und verfahren zum automatisierten nahtschweissen eines werkstücks, das eine basisplatte mit einem muster von hochstehenden profilen enthält
CN113400315A (zh) * 2021-07-16 2021-09-17 安徽工布智造工业科技有限公司 一种适合机器人焊接的节点模型构建方法及装置
CN113909778B (zh) * 2021-11-08 2024-09-03 中国船舶集团有限公司第七一六研究所 一种焊缝识别与焊接组合装置
CN115041856B (zh) * 2022-06-30 2024-03-26 中船黄埔文冲船舶有限公司 一种中组立立角焊缝的焊接方法及装置
CN115488535B (zh) * 2022-09-14 2023-08-29 中船黄埔文冲船舶有限公司 一种中组立焊接焊缝的焊枪轨迹生成方法及装置
NL2033904B1 (en) 2023-01-03 2024-07-12 Kranendonk Beheersmaatschappij B V Method and system for automatically generating a weld plan for a (semi-)unique work piece.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904605B2 (ja) * 1995-12-27 2007-04-11 ファナック株式会社 複合センサーロボットシステム
US6226395B1 (en) * 1996-04-22 2001-05-01 Malcolm T. Gilliland Method and apparatus for determining the configuration of a workpiece
US6204469B1 (en) * 1999-03-04 2001-03-20 Honda Giken Kogyo Kabushiki Kaisha Laser welding system
DE102007008598A1 (de) * 2007-02-19 2008-08-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Automatische Programmierung von Robotern zum Abschweißen gehefteter Profile auf Mikropaneelen mit Hilfe digitaler Bilderfassung
EP2711120A1 (de) * 2012-09-19 2014-03-26 Richter Maschinenfabrik AG Verfahren und Vorrichtungen zum im Wesentlichen automatischen Bearbeiten, insbesondere Schweißen sehr großer Werkstücke
EP3630404B1 (de) 2017-05-24 2024-01-03 Inrotech Aps Vorrichtung und verfahren zum automatisierten nahtschweissen eines werkstücks, das eine basisplatte mit einem muster von hochstehenden profilen enthält

Also Published As

Publication number Publication date
CN110831718A (zh) 2020-02-21
EP3630404C0 (de) 2024-01-03
EP3630404A1 (de) 2020-04-08
WO2018215592A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
EP3630404B1 (de) Vorrichtung und verfahren zum automatisierten nahtschweissen eines werkstücks, das eine basisplatte mit einem muster von hochstehenden profilen enthält
US10449619B2 (en) System for processing a workpiece
US4380696A (en) Method and apparatus for manipulator welding apparatus with vision correction for workpiece sensing
EP1486283B1 (de) Verfahren zur Steuerung des Schweissens einer dreidimensionalen Struktur mit Aufnehmung von einem zweidimensionalen Bild der Struktur und mit Echtzeit-Justirien in der dritten Dimension
JP5981143B2 (ja) ロボットツールの制御方法
EP3863791B1 (de) System und verfahren zur erzeugung von schweissbahnen
US8338743B2 (en) Method and device for controlling robots for welding workpieces
CN111014879B (zh) 一种基于激光焊缝跟踪的机器人波纹板自动焊接方法
US9718189B2 (en) Robot teaching device for teaching robot offline
KR20110134562A (ko) 파이프 플랜지 자동 용접 방법 및 장치
JP2007021634A (ja) ワークの自動加工方法およびワークの自動加工システム
US20170371314A1 (en) Method And System For Correcting A Processing Path Of A Robot-Guided Tool
CN109848595A (zh) 焊接系统及方法
CN112620926A (zh) 一种焊点追踪方法、装置及存储介质
JPH1094874A (ja) 管継手の自動溶接方法
KR20140040689A (ko) 구조 부재의 가공 방법
JP2007025991A (ja) ワークの自動加工方法およびワークの自動加工システム
JP2899642B2 (ja) 加工位置検出装置および加工位置検出方法
CN215919506U (zh) 基于三维视觉定位的焊接系统
CA3201574A1 (en) Simplified robotic welding using traced profile, and robotic welding system
JP2001188604A (ja) ワークの配置位置決定方法および装置
Trebul'a et al. Robotic Measurement of the Weld Gap Geometry Using a 2D Laser Scanner
WO2024147738A1 (en) Method and system for automatically generating a weld plan for a (semi-)unique work piece
CN113681119A (zh) 焊缝检测的数据处理方法、装置、焊接的控制方法、装置
JPH04138875A (ja) 自動溶接装置の溶接開始位置検知方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221116

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JORGENSEN, FLEMMING

Inventor name: FAUDEL, RASMUS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230804

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018063582

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20240131

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

U20 Renewal fee paid [unitary effect]

Year of fee payment: 7

Effective date: 20240328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240404

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240503

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240404

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103