EP3629343A1 - Carbon-metallic multi-strand conductive core for electric cable - Google Patents
Carbon-metallic multi-strand conductive core for electric cable Download PDFInfo
- Publication number
- EP3629343A1 EP3629343A1 EP19199938.2A EP19199938A EP3629343A1 EP 3629343 A1 EP3629343 A1 EP 3629343A1 EP 19199938 A EP19199938 A EP 19199938A EP 3629343 A1 EP3629343 A1 EP 3629343A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strand
- carbon
- strands
- conductive core
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/18—Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
- H01B7/182—Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
- H01B7/1825—Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments forming part of a high tensile strength core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/0009—Details relating to the conductive cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/08—Several wires or the like stranded in the form of a rope
Definitions
- the invention relates to an electric cable comprising a multi-strand conductive core and an insulating electric layer surrounding said multi-strand conductive core, said multi-strand conductive core comprising at least one metal strand, and at least one non-composite carbon strand and / or having a conductivity. at least 0.1% IACS, its manufacturing process, and the use of said multi-strand conductive core in various types of cables.
- the invention typically applies, but not exclusively, to the field of low voltage (less than 6 kV) and / or medium voltage (especially from 6 to 45-60 kV) energy cables, whether they are direct current or alternative.
- the invention also applies to cables used in the field of transport, such as, for example, the automobile, railway, aeronautics or navigation; or in the field of automation or servo motors (industrial automation cables such as sensor cables on production lines, robot arm cables, etc.); electrical control cables, or heating cables.
- the invention relates to a cable having a good compromise in terms of flexibility, mechanical strength, and electrical conductivity.
- An electric cable generally comprises a conductive core, the role of which is to conduct the electric current, and one or more layers of insulating and / or protective materials surrounding said conductive core.
- the conductive core can be rigid or flexible.
- Transport cables or cables for industrial automation conventionally comprise a flexible conductive core containing a plurality of metallic strands of copper or tinned copper, generally twisted to form a strand, and an insulating sheath surrounding said flexible conductive core, so as to increase the flexibility of said cables.
- a flexible conductive core makes it possible to obtain a cable which is flexible enough to be easily installed in places narrow and / or corner spaces, which is particularly advantageous for transport cables.
- mechanical stresses eg flexion or fatigue stresses
- such a conductive core has a high production cost, it is subject to corrosion problems induced by contact between the different metal strands, thus affecting its service life, and it does not have an optimized weight in a context. where we are always looking for lighter materials.
- EP1926108B1 is known an electrical control cable comprising a plurality of strands extending in the longitudinal direction of the cable, said strands being twisted to form a strand, only some of the strands of the strand being of electrically conductive material such as copper or copper clad aluminum, the rest of the strands being of a non-conductive material such as a polymer material chosen from a polyamide, a high tenacity polyester, and a polyetherimide.
- the electrical conductivity of such a cable is not sufficient.
- conductors comprising aluminum strands and copper strands are particularly sensitive to galvanic corrosion in the presence of solutes.
- the object of the present invention is therefore to provide an electrical cable having an improved electrical conductivity, while guaranteeing a reduction in weight, significantly reduced or even avoided galvanic corrosion, good mechanical strength, and good flexibility.
- the combination of at least one metallic strand and at least one non-composite carbon strand and / or having an electrical conductivity of at least about 0.1% IACS, within the multi-strand conductive core allows to obtain a cable having an improved electrical conductivity, while guaranteeing a reduction in weight, reduced or even avoided galvanic corrosion, good mechanical strength and good flexibility, in particular allowing its use as a transport, electrical control cable or for industrial automation.
- the presence of several layers of electrically conductive strands makes it possible to obtain a multistrand conductive core of cross section suitable for the abovementioned uses, while guaranteeing good flexibility.
- carbon strand means that the strand comprises carbon, preferably at least 80% by weight approximately of carbon element, in a particularly preferred manner from 85 to 99.5% by weight approximately of carbon element, and more particularly preferably from 90% to 99% by weight approximately of carbon element, relative to the total weight of said strand.
- the carbon strand may include carbon fibers, carbon nanofibers, carbon nanotubes and / or graphene, or a mixture thereof.
- the carbon strand preferably comprises carbon fibers, in particular continuous fibers. This thus optimizes the electrical conductivity of the electrical cable. Thanks to all of the carbon fibers, a carbon strand is obtained in which the orientation of the carbon fibers promotes electrical conduction. In particular, good electrical conductivity and good mechanical properties are maintained over the entire length of the strand, and thus of the electrical cable.
- the carbon strand consists of carbon fibers.
- a carbon fiber is mainly composed of crystalline carbon atoms aligned more or less parallel to the axis of the carbon fiber.
- a carbon fiber generally comprises from 85 to 99.5% by weight approximately of carbon element, and preferably from 90% to 99% by weight approximately of carbon element, relative to the total weight of said carbon fiber.
- the carbon element content of the carbon fiber essentially depends on the stages of the process for manufacturing said fiber.
- the carbon strand may comprise several thousand carbon fibers, in particular from 1000 to 96000 carbon fibers approximately, and preferably from 3000 to 24000 carbon fibers approximately.
- the carbon strand may be in the form of a wick of carbon fibers. Indeed, several carbon fibers can be organized into carbon threads commonly known as "wicks". As examples of carbon fiber yarns or wicks, mention may be made of a 12000 carbon fiber yarn, called "12K”.
- Carbon fibers can be organized parallel to each other.
- Carbon fibers can be cabled, twisted or braided.
- the use of twisted fibers facilitates their handling, and improves their mechanical strength.
- the use of braided fibers allows better covering power, and increased mechanical resistance in several directions. Twisted fibers are preferred.
- the carbon fibers may have a length ranging from approximately 100 m to 200 km, preferably ranging from approximately 100 m to 10 km, and more preferably ranging from approximately 100 m to 3 km.
- the carbon fibers can have a diameter ranging from 0.5 ⁇ m to 100 ⁇ m, preferably ranging from 1 ⁇ m to approximately 50 ⁇ m, and more preferably ranging from 2 ⁇ m to approximately 10 ⁇ m.
- the carbon strand may have a section ranging from 10 ⁇ m 2 to 10 mm 2 , preferably ranging from 0.1 mm 2 to 5 mm 2 approximately, and more preferably ranging from 0.2 mm 2 to 3 mm 2 approximately.
- the carbon fibers of a carbon strand may include metallized and / or bare carbon fibers.
- a metallized carbon fiber is a carbon fiber surrounded by one or more metallic layer (s).
- Metallized carbon fibers are carbon fibers surrounded (individually) by one or more metallic layer (s), i.e. each of the metallized carbon fibers is surrounded by one or more metallic layer (s).
- some of the carbon fibers or all of the carbon fibers contained in the carbon strand are metallized.
- the presence of metallized fibers can increase the electrical conductivity of the carbon strand.
- the metallic layer (s) of metallized carbon fibers can (at least) comprise at least one metal chosen from copper, nickel, zinc, tin, silver, aluminum, and one of their alloys.
- alloy is meant the combination or mixture of at least two metals, in particular chosen from those listed above.
- the metallic layer is of the same nature as the metallic strand (s), in particular in order to limit the risk of galvanic corrosion.
- the metal layer can be directly in physical contact with the carbon fiber of the metallized carbon fiber.
- the metal layer can be linked by physical and / or chemical interactions, preferably by covalent bonding, to the carbon fiber to allow good adhesion of the metal layer to the carbon fiber.
- An intermediate layer called “adhesion” can be placed between the carbon fiber and the metal layer of the metallized carbon fiber, in particular in order to improve the adhesion of the metal layer around the carbon fiber.
- the intermediate layer may be a metallic layer, which may include one or more metals chosen from tin, nickel, copper, aluminum, silver, and one of their mixtures.
- the metal layer may have an average thickness of at least about 100 nm, and preferably at least about 500 nm.
- the metal layer may have an average thickness of at most 5 ⁇ m, and preferably at most about 1 ⁇ m. These thickness values given for the metal layer are not included in the diameter values of the carbon fibers indicated in the invention.
- the metal layer can have a constant thickness over the entire length of the carbon fiber.
- a constant thickness means that the thickness of the metallic layer can vary by approximately ⁇ 30% relative to the average thickness of the metallic layer, preferably by ⁇ 20% relative to the average thickness of the metallic layer, and more preferably ⁇ 10% relative to the average thickness of the metal layer.
- the thickness of the metal layer can be adapted according to the nature of the metal or metals which it comprises and according to the desired conductivity.
- a metal layer comprising a metal having a low conductivity may be thicker than a metal layer comprising a metal having a higher conductivity.
- the metallization of the carbon fiber can be carried out by a process chosen from electroplating, electroplating (known under Anglicism " electroplating “), electroplating without electric current (known under Angldespite “ electroless plating ”) , vacuum thermal evaporation (“heated evaporation ”), electron beam evaporation , cathode sputtering , ion assisted deposition ").
- electroplating known under Angl convinced " electroplating”
- electroplating without electric current known under Angl convinced “ electroless plating ”
- vacuum thermal evaporation (“heated evaporation ”)
- electron beam evaporation evaporation
- cathode sputtering cathode sputtering
- ion assisted deposition ion assisted deposition
- the carbon strand preferably has a diameter ranging from 0.01 to 3 mm approximately, and more preferably ranging from 0.1 to 1.5 mm approximately.
- the carbon strand preferably has a circular or substantially circular section (e.g. oval).
- the electrical conductivity of a material is determined relative to the electrical conductivity at 20 ° C of pure annealed copper which is 5.8001x10 7 S / m.
- the electrical conductivity (S / m) characterizes the ability of a material to let the electrons it contains move freely under the effect of an electric field and therefore allow the passage of an electric current.
- the electrical conductivity in% IACS is a conductivity determined in direct current.
- the carbon strand may have an electrical conductivity of up to approximately 2% IACS, preferably up to approximately 10% IACS, and preferably up to approximately 15% IACS, in particular when the carbon fibers comprise fibers of carbon metallic.
- the multi-strand conductive core comprises several carbon strands as defined in the invention.
- each of the strands may comprise metallized and / or bare carbon fibers.
- Each carbon strand may then comprise a different number of metallized and / or bare carbon fibers, a different metal constituting the metallic layer of metallized carbon fibers, etc.
- the carbon strand has either an electrical conductivity of at least 0.1% IACS approximately in direct current, or it is a non-composite strand, or it has an electrical conductivity of at least 0.1% IACS in direct current and it is a non-composite strand.
- the carbon strand is non-composite, and preferably the carbon strand is non-composite and has an electrical conductivity of at least 0.1% IACS in direct current.
- non-composite relating to the carbon strand means that the carbon strand does not comprise any organic polymer or that the carbon strand is free of organic polymer.
- a non-composite carbon strand is different from a carbon strand in which the carbon is mixed with (or impregnated with) at least one organic polymer.
- the composite carbon strands as described in the prior art are non-conductive strands or strands having an insufficient electrical conductivity (i.e. electrical conductivity less than 0.1% IACS in direct current).
- the impregnation of carbon strands in an organic polymer matrix increases the rigidity of said carbon strands, which limits the flexibility of the cable obtained.
- the carbon strand having an electrical conductivity of at least 0.1% IACS preferably has an electrical conductivity of at least 0.6% IACS approximately, preferably of at least 0.8% IACS approximately, and particularly preferably at least about 1% IACS, in direct current.
- the expression “metallic strand” means that the strand comprises from 85 to 100% by weight approximately of metal, and preferably from 90 to 99% by weight of metal, relative to the total weight of the metallic strand.
- the metal strand may comprise at least one metal chosen from copper, aluminum, silver, a copper alloy, an aluminum alloy, a silver alloy, and one of their mixtures.
- the metal strand preferably has an electrical conductivity greater than or equal to 55% IACS, and more preferably ranging from 58 to 110% IACS approximately.
- the multi-strand conductive core comprises several metal strands as defined in the invention.
- each of the strands may comprise a different metal or mixture of metals.
- a metal strand preferably has a diameter ranging from 50 ⁇ m to approximately 3 mm, and more preferably ranging from 200 ⁇ m to approximately 1.5 mm.
- the metal strand may have a section ranging from 2 ⁇ m 2 to 10 mm 2 , preferably ranging from 0.1 mm 2 to 5 mm 2 approximately, and more preferably ranging from 0.2 mm 2 to 3 mm 2 approximately.
- Each of the metal strand (s) of the multi-strand conductive core may include one or more metal wires. This is called a multi-wire metallic strand. This thus makes it possible to soften the multi-strand conductive core.
- the metal strands are preferably of circular or substantially circular section (e.g. oval).
- the multi-strand conductive core preferably has an electrical conductivity of at least 30% IACS, particularly preferably at least 50% IACS, more particularly preferably at least 60% IACS, even more particularly preferably at least 70% IACS, and even more preferably at least 95% IACS.
- the multi-strand conductive core can have an electrical conductivity of at most 104% IACS.
- the multi-strand conductive core may have a tensile strength of at least 200 MPa, preferably at least 225 MPa, particularly preferably at least 250 MPa, and more particularly preferably at least 270 MPa.
- the multi-strand conductive core includes uninsulated strands.
- non-insulated strands means that each of said strands is free from an electrically insulating layer, in particular from an electrically insulating layer based on polymer (s) and / or ceramic (s).
- all the strands of the multi-strand conductive core are uninsulated strands.
- a strand of the multi-strand conductive core preferably has at least one surface of direct physical contact with another strand of the multi-strand conductive core which is adjacent to it.
- the multi-strand conductive core preferably comprises cabled or twisted strands.
- all the strands of the multi-strand conductive core are assembled by wiring operations, in particular to form a strand or a twist. This is called stranded or twisted strands.
- the multi-strand conductive core is preferably manufactured in a twisted configuration.
- the strands twisted within the multistrand conductive core can be in a concentric (“ concentric stranding"), random (“ bunched stranding "), or corded (“ rope stranding”) configuration.
- concentric constructions or configurations are appropriate such as the true concentric configuration (known under Anglicism " true concentric stranding "), the concentric configuration of constant pitch (known under Angldespite “ equilay concentric stranding "), the concentric configuration unidirectional (known as “unidirectional concentric stranding ”), and the unidirectional concentric configuration of constant pitch (known as “ unilay concentric stranding”).
- the central elongated electrically conductive element is surrounded by at least said first and second layers of electrically conductive strands arranged so helical in a geometric arrangement, with an alternating direction of step and an increasing step length.
- the central elongate electrically conductive element is surrounded by at least said first and second layers of electrically conductive strands laid helically in a geometric arrangement, with an alternate pitch direction and a constant pitch length .
- the central elongated electrically conductive element is surrounded by at least said first and second layers of electrically conductive strands laid helically in a geometric arrangement, with the same pitch direction and an increasing pitch length.
- the elongated central electrically conductive element is surrounded by at least said first and second layers of electrically conductive strands laid helically in a geometric arrangement, with the same pitch direction and the same length to not.
- the elongated electrically conductive member and the electrically conductive strands are more randomly arranged. Twisted in one operation, all strands have the same pitch direction and the same pitch length.
- single strands are formed by an assembly of strands in a concentric or random configuration.
- the core is formed by assembling the strands into a concentric or random final configuration.
- the multi-strand conductive core preferably has the shape of a strand of twists, in particular comprising the elongated electrically conductive element, and the electrically conductive strands of the first and second layers.
- the electrically conductive strands together form a strand (overall structure), and each of the electrically conductive strands is multifilar and is in the form of a twist.
- twisting allows individual strands or wires to be twisted together in the same direction, said individual strands or wires not having a specific organization or a particular geometric arrangement with respect to each other.
- the strands or wires therefore undergo a twisting process, said strands being initially arranged in bundles.
- the mechanical properties are optimized, in particular in terms of flexibility.
- the multi-strand conductive core comprises at least two layers of electrically conductive strands.
- the conductive core may further comprise one or more additional layers of electrically conductive strands.
- the electrically conductive strands (metallic strands and carbon strands) are distributed in the first and second layers, and in the additional layer or layers of electrically conductive strands.
- the conductive core can comprise from 4 to 50 electrically conductive strands, and preferably from 10 to 40 electrically conductive strands.
- the multi-strand conductive core comprises only metal strands as defined in the invention, and non-composite carbon strands and / or having a conductivity of at least 0.1% IACS as defined in the invention.
- the strands constituting the first layer are preferably of a shape such that said first layer (respectively said second layer) has an irregular surface.
- the strands constituting the first layer do not fit together to form a continuous envelope, or each of the strands constituting the first layer (respectively of the second layer) does not have a cross section of shape complementary to that of the strands constituting the first layer (respectively of the second layer) which are adjacent.
- the multi-strand conductive core advantageously comprises interstices between the strands.
- the elongated electrically conductive element of the multi-strand conductive core can be positioned in the center of the cable (i.e. central position).
- the elongated electrically conductive element of the multi-strand conductive core is in the form of an electrically conductive strand.
- the elongated electrically conductive element of the multi-strand conductive core can be a metallic strand as defined in the invention or a carbon strand as defined in the invention, and preferably a metallic strand.
- the elongated electrically conductive element of the conductive core is traversed like all the strands of the multi-strand conductive core (especially of the first and second layers), by an electric current. In other words, it is different from a mechanical reinforcement element such as traditionally used in particular in OHL cables which is not traversed by an electric current.
- the multi-strand conductive core comprises a plurality of metal strands as defined in the invention, and a plurality of non-composite carbon strands and / or having a conductivity of at least 0, 1% IACS as defined in the invention.
- the number of metallic strand (s) within the multi-strand conductive core is advantageously greater than or equal to the number of carbon strand (s). This ensures good electrical conductivity of the multi-strand conductive core.
- the metal strands and the carbon strands are advantageously alternated within the layer.
- the metal strands and the carbon strands are advantageously alternated within the layer.
- the metal strands are uniformly distributed within the layer between the carbon strands.
- the metal strands of the multi-strand conductive core preferably have a pitch length ranging from 2 to 32D, and more preferably from 8 to 16D, where D corresponds to the diameter of the layer.
- the carbon strands of the multi-strand conductive core preferably have a pitch length ranging from 2 to 32D, and more preferably from 8 to 16D, where D corresponds to the diameter of the layer.
- the pitch length corresponds to the distance required by a strand to complete a complete revolution around the diameter of the multi-strand conductive core.
- the metallic and carbon strands may have sections of different size within the conductive core.
- the multi-strand conductive core is surrounded by at least one polymer layer.
- the polymer layer therefore surrounds the first and second layers of electrically conductive strands. If other layer (s) of electrically conductive strands are present, the polymer layer surrounds the outermost layer of electrically conductive strands.
- the polymer layer is an electrically insulating layer.
- electrically insulating layer means a layer generally having an electrical conductivity of at most 1.10 -8 S / m (siemens per meter), preferably at most 1.10 -9 S / m, and in a particularly preferred manner d '' at most 1.10 -10 S / m, measured at 25 ° C in direct current.
- polymer layer is understood to mean a layer comprising at least one polymer, the term “polymer” as such meaning generally homopolymer or copolymer (e.g. block copolymer, random copolymer, terpolymer, etc.).
- the polymer of the polymer layer is advantageously an olefin polymer (polyolefin) or, in other words, an olefin homo- or copolymer.
- the polymer can be a thermoplastic or crosslinked polymer.
- the olefin polymer is a polymer of ethylene or propylene.
- the polymer layer comprises at least one polymer chosen from a linear low density polyethylene (LLDPE), a very low density polyethylene (VLDPE), a low density polyethylene (LDPE), a medium density polyethylene (MDPE) , a high density polyethylene (HDPE), a copolymer of ethylene and vinyl acetate (EVA), a copolymer of ethylene and butyl acrylate (EBA), methyl acrylate (EMA), of 2 -hexylethyl acrylate (2HEA), a copolymer of ethylene and alpha-olefin, a copolymer of ethylene and propylene (EPR), a polyurethane, a fluorinated polymer, a chlorinated polymer such as a polyvinyl chloride (PVC) ), a polyphenylene oxide (PPO), a technical polymer, and a mixture thereof.
- LLDPE linear low density polyethylene
- VLDPE very low density polyethylene
- LDPE
- a copolymer of ethylene and of alpha-olefin mention may, for example, be made of poly (ethylene-octene) (PEO).
- PEO poly (ethylene-octene)
- technical polymer means a polymer having improved properties, in particular chosen from a polyphenylethylene ether, a polyamide, a polyetheretherketone (PEEK), a polyimide, a fluorinated ethylene copolymer (FEP), a polyethylene furanoate (PEF), and one of their mixtures.
- the polymer layer may also comprise at least one additive chosen from antioxidants, stabilizers, crosslinking agents, toasting retarders, crosslinking co-agents, processing-promoting agents such as lubricants or waxes , compatibilizers, coupling agents, charge stabilizers, and a mixture thereof.
- the polymer layer is a so-called “HFFR” layer for “ Halogen-Free Flame Retardant” anglicism according to standard IEC 60754 Parts 1 and 2 (2011).
- the polymer layer may further comprise at least one filler.
- the filler of the invention can be a mineral or organic filler. It can be chosen from a flame retardant filler, an inert filler and one of their mixtures.
- the flame retardant filler is a hydrated filler, chosen in particular from metal hydroxides such as for example magnesium dihydroxide (MDH) or aluminum trihydroxide (ATH).
- MDH magnesium dihydroxide
- ATH aluminum trihydroxide
- These flame retardant charges act mainly by physical means by decomposing in an endothermic manner (eg release of water), which has the consequence of lowering the temperature of the polymer layer and of limiting the propagation of flames along the cable.
- endothermic manner eg release of water
- the inert filler can be chalk, talc, or clay (e.g. kaolin).
- the polymer layer can be extruded.
- the polymer layer can be crosslinked or uncrosslinked.
- Crosslinking can be carried out by conventional crosslinking techniques well known in the art. those skilled in the art such as, for example, peroxide crosslinking and / or hydrosilylation under the action of heat; silane crosslinking in the presence of a crosslinking agent; crosslinking by electron beams, gamma rays, X-rays, or microwaves; photochemical crosslinking such as beta radiation, or ultraviolet radiation in the presence of a photoinitiator.
- the crosslinking is preferably carried out according to the silane crosslinking technique.
- the polymer layer may have a thickness ranging from 10 ⁇ m to 2 mm, preferably from 100 ⁇ m to 1 mm, and more preferably from 100 ⁇ m to 700 ⁇ m.
- the polymer layer surrounds the multi-strand conductive core.
- the polymer layer is in direct physical contact with the second layer of the multi-strand conductive core, and when the multi-strand conductive core comprises one or more layers of electrically conductive strands, the polymer layer is advantageously in direct physical contact with the outermost layer of electrically conductive strands of the multi-strand conductive core.
- the electric cable can be a cable of the energy cable type, in particular low voltage or medium voltage, and preferably low voltage.
- the electric cable of the invention may also comprise a mechanical armor, preferably in the form of a sheet or a ribbon of aluminum or steel, or in the form of a metallic or carbon braid.
- the mechanical armor preferably surrounds the polymer layer.
- Step iii) is advantageously carried out by stranding or twisting, and preferably by stranding.
- Step i is advantageously carried out by stranding or twisting, and preferably by twisting.
- the non-composite carbon strand and / or having a conductivity of at least 0.1% IACS, the metal strand, the elongated electrically conductive element, the multi-strand conductive core, and the polymer layer are as defined in the first object. of the invention.
- the third object of the invention is the use of a multi-strand conductive core as defined in the first object of the invention, in a low voltage or medium voltage energy cable, in particular in the field of transport, industrial automation, electrical control cables, or heating cables.
- the metallic strand, the non-composite carbon strand and / or having an electrical conductivity of at least 0.1% IACS approximately in direct current, and the elongated electrically conductive element are preferably as defined in the first object of the invention.
- the multi-strand conductive core can be used in heating cables, in particular for heated seats, de-icing of roads or heating the floor of dwellings, in cables for articulated machine arms or other robotic solutions.
- the figure 1 shows a cross-sectional view of a cable according to the state of the prior art and three cables according to three embodiments of the invention.
- the figure 2 shows a cross-sectional view of four cables according to four other embodiments of the invention.
- FIG. 1 represents a cross-sectional view of a cable 1 according to the prior art (FIG. 1a), and according to three distinct embodiments of the invention ( Figures 1b, 1c, and 1d ).
- the electric cable 1a comprises a multi-strand conductive core comprising a central elongated electrically conductive element 2a in the form of a metal strand, a first layer comprising six metal strands 3a surrounding said central elongate electrically conductive element 2a, and a second layer comprising twelve strands metal 4a surrounding said first layer.
- the multi-strand conductive core is surrounded by a polymer layer 5a.
- the electric cable 1b comprises a multi-strand conductive core comprising an electrically conductive elongated central element 2b in the form of a non-composite carbon strand and / or having a conductivity of at least 0.1% IACS, a first layer comprising six strands metallic 3b surrounding said central elongated electrically conductive element 2b, and a second layer comprising twelve metallic strands 4b surrounding said first layer.
- the multi-strand conductive core is surrounded by a polymer layer 5b.
- the electric cable 1c comprises a multi-strand conductive core comprising an electrically conductive elongated central element 2c in the form of a non-composite carbon strand and / or having a conductivity of at least 0.1% IACS, a first layer comprising six strands metallic 3c surrounding said central elongated electrically conductive element 2c, and a second layer comprising six metallic strands 4c and six non-composite carbon strands and / or having a conductivity of at least 0.1% IACS 4c 'surrounding said first layer, said strands 4c and 4c 'being in alternate configuration.
- the multi-strand conductive core is surrounded by a polymer layer 5c.
- the electric cable 1d comprises a conductive multi-strand core comprising an electrically conductive elongated central element 2d in the form of a non-composite carbon strand and / or having a conductivity of at least 0.1% IACS, a first layer comprising six strands metallic metals surrounding said central elongated electrically conductive element 2d, and a second layer comprising twelve non-composite carbon strands and / or having a conductivity of at least 0.1% IACS 4d surrounding said first layer.
- the multi-strand conductive core is surrounded by a polymer layer 5d.
- FIG 2 shows a cross-sectional view of a cable 10 according to four distinct embodiments of the invention ( Figures 2a, 2b, 2c, and 2d ).
- the electric cable 10a comprises a multi-strand conductive core comprising an elongated central electrically conductive element 20a in the form of a metal strand, a first layer comprising six non-composite carbon strands and / or having a conductivity of at least 0.1% IACS 30a surrounding said central elongated electrically conductive member 20a, and a second layer comprising twelve metallic strands 40a surrounding said first layer.
- the multi-strand conductive core is surrounded by a polymer layer 50a.
- the electric cable 10b comprises a multi-strand conductive core comprising an elongated central electrically conductive element 20b in the form of a metal strand, a first layer comprising six non-composite carbon strands and / or having a conductivity of at least 0.1% IACS 30b surrounding said central elongated electrically conductive element 20b, and a second layer comprising nine metallic strands 40b and three non-composite carbon strands and / or having a conductivity of at least 0.1% IACS 40b 'surrounding said first layer, each of carbon strands 40b 'being alternated with three metal strands 40b.
- the multi-strand conductive core is surrounded by a polymer layer 50b.
- the electric cable 10c comprises a multi-strand conductive core comprising an elongated central electrically conductive element 20c in the form of a non-composite carbon strand and / or having a conductivity of at least 0.1% IACS, a first layer comprising six strands carbonaceous non-composite and / or having a conductivity of at least 0.1% IACS 30c surrounding said electrically conductive elongated central element 20c, and a second layer comprising nine metallic strands 40c and three carbonaceous strands non-composite and / or having a conductivity d 'at least 0.1% IACS 40c' surrounding said first layer, each of the carbon strands 40c 'being alternated with three metal strands 40c.
- the multi-strand conductive core is surrounded by a polymer layer 50c.
- the electric cable 10d comprises a multi-strand conductive core comprising an elongated central electrically conductive element 20d in the form of a non-composite carbon strand and / or having a conductivity of at least 0.1% IACS, a first layer comprising three strands metallic 30d and three non-composite carbon strands and / or having a conductivity of at least 0.1% IACS 30d 'surrounding said electrically conductive elongated central element 20d, said strands 30d and 30d' being in alternating configuration, and a second layer comprising nine metallic strands 40d and three non-composite carbon strands and / or having a conductivity of at least 0.1% IACS 40d 'surrounding said first layer, each of the carbon strands 40d' being alternated with three metallic strands 40d.
- the multi-strand conductive core is surrounded by a polymer layer 50d.
- the electric cable 100 comprises a multi-strand conductive core comprising a central elongated electrically conductive element 200 in the form of a metal strand, a first layer comprising three metal strands 300 and three non-composite carbon strands and / or having a conductivity of at least minus 0.1% IACS 300 'surrounding said elongated central electrically conductive element 200, said strands 300 and 300' being in alternating configuration, and a second layer comprising nine metallic strands 400 and three non-composite carbon strands and / or having a conductivity 'at least 0.1% IACS 400' surrounding said first layer, each of the carbon strands 400 'being alternated with three metal strands 400.
- the multi-strand conductive core is surrounded by a polymer layer 500.
- the multistrand conductive core A1 according to the invention has been compared with a conductive core A0 in which all the strands (19 strands: 1 + 6 + 12) are metallic strands of copper 0.408 mm in diameter, A0 not forming part of the invention.
- the multistrand conductive core of the invention has better mechanical properties than a pure copper core, while guaranteeing a good conductivity of 70% IACS and a lower weight.
Landscapes
- Non-Insulated Conductors (AREA)
Abstract
L'invention concerne un câble électrique comprenant une âme conductrice multibrin et une couche électrique isolante entourant ladite âme conductrice multibrin, ladite âme conductrice multibrin comprenant au moins un brin métallique, et au moins un brin carboné non composite et/ou ayant une conductivité d'au moins 0,1% IACS, son procédé de fabrication, et l'utilisation de ladite âme conductrice multibrin dans divers types de câblesThe invention relates to an electric cable comprising a multi-strand conductive core and an insulating electric layer surrounding said multi-strand conductive core, said multi-strand conductive core comprising at least one metal strand, and at least one non-composite carbon strand and / or having a conductivity. at least 0.1% IACS, its manufacturing process, and the use of said multi-strand conductive core in various types of cables
Description
L'invention concerne un câble électrique comprenant une âme conductrice multibrin et une couche électrique isolante entourant ladite âme conductrice multibrin, ladite âme conductrice multibrin comprenant au moins un brin métallique, et au moins un brin carboné non composite et/ou ayant une conductivité d'au moins 0,1% IACS, son procédé de fabrication, et l'utilisation de ladite âme conductrice multibrin dans divers types de câbles.The invention relates to an electric cable comprising a multi-strand conductive core and an insulating electric layer surrounding said multi-strand conductive core, said multi-strand conductive core comprising at least one metal strand, and at least one non-composite carbon strand and / or having a conductivity. at least 0.1% IACS, its manufacturing process, and the use of said multi-strand conductive core in various types of cables.
L'invention s'applique typiquement, mais non exclusivement, au domaine des câbles d'énergie basse tension (inférieure à 6 kV) et/ou moyenne tension (notamment de 6 à 45-60 kV), qu'ils soient à courant continu ou alternatif. L'invention s'applique également aux câbles utilisés dans le domaine du transport, tel que par exemple de l'automobile, du ferroviaire, de l'aéronautique ou de la navigation ; ou dans le domaine de l'automatisation ou des servo-moteurs (câbles d'automatisation industrielle tels que des câbles capteurs sur des chaînes de production, des câbles de bras robotisés, etc...) ; des câbles de contrôle électrique, ou des câbles chauffants.The invention typically applies, but not exclusively, to the field of low voltage (less than 6 kV) and / or medium voltage (especially from 6 to 45-60 kV) energy cables, whether they are direct current or alternative. The invention also applies to cables used in the field of transport, such as, for example, the automobile, railway, aeronautics or navigation; or in the field of automation or servo motors (industrial automation cables such as sensor cables on production lines, robot arm cables, etc.); electrical control cables, or heating cables.
En particulier, l'invention concerne un câble présentant un bon compromis en termes de flexibilité, de tenue mécanique, et de conductivité électrique.In particular, the invention relates to a cable having a good compromise in terms of flexibility, mechanical strength, and electrical conductivity.
Un câble électrique comprend généralement une âme conductrice dont le rôle consiste à conduire le courant électrique, et une ou plusieurs couches de matériaux isolants et/ou protecteurs entourant ladite âme conductrice. Selon le type de câble envisagé, l'âme conductrice peut être rigide ou souple.An electric cable generally comprises a conductive core, the role of which is to conduct the electric current, and one or more layers of insulating and / or protective materials surrounding said conductive core. Depending on the type of cable envisaged, the conductive core can be rigid or flexible.
Des câbles de transport ou pour l'automatisation industrielle comprennent classiquement une âme conductrice souple contenant une pluralité de brins métalliques en cuivre ou en cuivre étamé, généralement torsadés pour former un toron, et une gaine isolante entourant ladite âme conductrice souple, de façon à augmenter la flexibilité desdits câbles. En effet, l'utilisation d'une âme conductrice souple permet d'obtenir un câble suffisamment flexible pour pouvoir être facilement installé dans des lieux étroits et/ou des espaces d'angle, ce qui est particulièrement avantageux pour les câbles de transport. Par ailleurs, elle permet de mieux résister à des sollicitations mécaniques (e.g. sollicitations en flexion ou en fatigue) qui sont notamment particulièrement nombreuses dans les câbles pour l'automatisation industrielle. Toutefois, une telle âme conductrice présente un coût de production élevé, elle est sujette à des problèmes de corrosion induits par le contact entre les différents brins métalliques, affectant ainsi sa durée de vie, et elle n'a pas un poids optimisé dans un contexte où l'on recherche toujours des matériaux plus légers.Transport cables or cables for industrial automation conventionally comprise a flexible conductive core containing a plurality of metallic strands of copper or tinned copper, generally twisted to form a strand, and an insulating sheath surrounding said flexible conductive core, so as to increase the flexibility of said cables. Indeed, the use of a flexible conductive core makes it possible to obtain a cable which is flexible enough to be easily installed in places narrow and / or corner spaces, which is particularly advantageous for transport cables. Furthermore, it makes it possible to better resist mechanical stresses (eg flexion or fatigue stresses) which are particularly numerous in cables for industrial automation. However, such a conductive core has a high production cost, it is subject to corrosion problems induced by contact between the different metal strands, thus affecting its service life, and it does not have an optimized weight in a context. where we are always looking for lighter materials.
De
Le but de la présente invention est donc de fournir un câble électrique présentant une conductivité électrique améliorée, tout en garantissant une réduction de poids, une corrosion galvanique réduite de façon significative, voire évitée, une bonne tenue mécanique, et une bonne flexibilité.The object of the present invention is therefore to provide an electrical cable having an improved electrical conductivity, while guaranteeing a reduction in weight, significantly reduced or even avoided galvanic corrosion, good mechanical strength, and good flexibility.
L'invention a pour premier objet un câble électrique comprenant une âme conductrice multibrin, et une couche polymère entourant ladite âme conductrice multibrin, ladite âme conductrice multibrin comprenant au moins un élément électriquement conducteur allongé, au moins une première couche de brins électriquement conducteurs entourant ledit élément électriquement conducteur allongé, et au moins une deuxième couche de brins électriquement conducteurs entourant ladite première couche, caractérisé en ce que ladite âme conductrice multibrin comprend :
- * au moins un brin métallique, et
- * au moins un brin carboné non composite et/ou ayant une conductivité électrique d'au moins 0,1% IACS environ en courant continu.
- * at least one metal strand, and
- * at least one non-composite carbon strand and / or having an electrical conductivity of at least 0.1% IACS approximately in direct current.
En effet, la combinaison d'au moins un brin métallique et d'au moins un brin carboné non composite et/ou ayant une conductivité électrique d'au moins 0,1% IACS environ, au sein de l'âme conductrice multibrin, permet d'obtenir un câble ayant une conductivité électrique améliorée, tout en garantissant une réduction de poids, une corrosion galvanique réduite, voire évitée, une bonne tenue mécanique et une bonne flexibilité, notamment permettant son utilisation en tant que câble de transport, de contrôle électrique ou pour l'automatisation industrielle. Par ailleurs, la présence de plusieurs couches de brins électriquement conducteurs permet d'obtenir une âme conductrice multibrin de section transversale appropriée pour les utilisations précitées, tout en garantissant une bonne flexibilité.Indeed, the combination of at least one metallic strand and at least one non-composite carbon strand and / or having an electrical conductivity of at least about 0.1% IACS, within the multi-strand conductive core, allows to obtain a cable having an improved electrical conductivity, while guaranteeing a reduction in weight, reduced or even avoided galvanic corrosion, good mechanical strength and good flexibility, in particular allowing its use as a transport, electrical control cable or for industrial automation. Furthermore, the presence of several layers of electrically conductive strands makes it possible to obtain a multistrand conductive core of cross section suitable for the abovementioned uses, while guaranteeing good flexibility.
L'expression « brin carboné » signifie que le brin comprend du carbone, de préférence au moins 80% en poids environ d'élément carbone, de façon particulièrement préférée de 85 à 99,5% en poids environ d'élément carbone, et de façon plus particulièrement préférée de 90% à 99% en poids environ d'élément carbone, par rapport au poids total dudit brin.The expression “carbon strand” means that the strand comprises carbon, preferably at least 80% by weight approximately of carbon element, in a particularly preferred manner from 85 to 99.5% by weight approximately of carbon element, and more particularly preferably from 90% to 99% by weight approximately of carbon element, relative to the total weight of said strand.
Le brin carboné peut comprendre des fibres de carbone, des nanofibres de carbone, des nanotubes de carbone et/ou de graphène, ou un de leurs mélanges.The carbon strand may include carbon fibers, carbon nanofibers, carbon nanotubes and / or graphene, or a mixture thereof.
Le brin carboné comprend de préférence des fibres de carbone, notamment continues. Cela permet ainsi d'optimiser la conductivité électrique du câble électrique. Grâce à l'ensemble des fibres de carbone, on obtient un brin carboné dans lequel l'orientation des fibres de carbone favorise la conduction électrique. En particulier, une bonne conductivité électrique et de bonnes propriétés mécaniques sont maintenues sur toute la longueur du brin, et ainsi du câble électrique.The carbon strand preferably comprises carbon fibers, in particular continuous fibers. This thus optimizes the electrical conductivity of the electrical cable. Thanks to all of the carbon fibers, a carbon strand is obtained in which the orientation of the carbon fibers promotes electrical conduction. In particular, good electrical conductivity and good mechanical properties are maintained over the entire length of the strand, and thus of the electrical cable.
Selon un mode de réalisation préféré de l'invention, le brin carboné est constitué de fibres de carbone.According to a preferred embodiment of the invention, the carbon strand consists of carbon fibers.
Une fibre de carbone est composée majoritairement d'atomes de carbone cristallins alignés plus ou moins parallèlement à l'axe de la fibre de carbone. Une fibre de carbone comprend généralement de 85 à 99,5% en poids environ d'élément carbone, et de préférence de 90% à 99% en poids environ d'élément carbone, par rapport au poids total de ladite fibre de carbone. La teneur en élément carbone de la fibre de carbone dépend essentiellement des étapes du procédé de fabrication de ladite fibre.A carbon fiber is mainly composed of crystalline carbon atoms aligned more or less parallel to the axis of the carbon fiber. A carbon fiber generally comprises from 85 to 99.5% by weight approximately of carbon element, and preferably from 90% to 99% by weight approximately of carbon element, relative to the total weight of said carbon fiber. The carbon element content of the carbon fiber essentially depends on the stages of the process for manufacturing said fiber.
Le brin carboné peut comprendre plusieurs milliers de fibres de carbone, notamment de 1000 à 96000 fibres de carbone environ, et de préférence de 3000 à 24000 fibres de carbone environ.The carbon strand may comprise several thousand carbon fibers, in particular from 1000 to 96000 carbon fibers approximately, and preferably from 3000 to 24000 carbon fibers approximately.
Le brin carboné peut être sous la forme d'une mèche de fibres de carbone. En effet, plusieurs fibres de carbone peuvent être organisées en fils de carbone communément dénommés « mèches ». À titre d'exemples de fils ou mèches de fibres de carbone, on peut citer un fil de 12000 fibres de carbone, appelé « 12K ».The carbon strand may be in the form of a wick of carbon fibers. Indeed, several carbon fibers can be organized into carbon threads commonly known as "wicks". As examples of carbon fiber yarns or wicks, mention may be made of a 12000 carbon fiber yarn, called "12K".
Les fibres de carbone peuvent être organisées de façon parallèle les unes aux autres.Carbon fibers can be organized parallel to each other.
Les fibres de carbone peuvent être câblées, torsadées ou tressées. L'utilisation de fibres torsadées facilite leur manipulation, et améliore leur tenue mécanique. L'utilisation de fibres tressées permet un meilleur pouvoir couvrant, et une résistance mécanique accrue dans plusieurs directions. Les fibres torsadées sont préférées.Carbon fibers can be cabled, twisted or braided. The use of twisted fibers facilitates their handling, and improves their mechanical strength. The use of braided fibers allows better covering power, and increased mechanical resistance in several directions. Twisted fibers are preferred.
Les fibres de carbone peuvent avoir une longueur allant de 100 m à 200 km environ, de préférence allant de 100 m à 10 km environ, et plus préférentiellement allant de 100 m à 3 km environ.The carbon fibers may have a length ranging from approximately 100 m to 200 km, preferably ranging from approximately 100 m to 10 km, and more preferably ranging from approximately 100 m to 3 km.
Les fibres de carbone peuvent avoir un diamètre allant de 0,5 µm à 100 µm, de préférence allant de 1 µm à 50 µm environ, et plus préférentiellement allant de 2 µm à 10 µm environ.The carbon fibers can have a diameter ranging from 0.5 μm to 100 μm, preferably ranging from 1 μm to approximately 50 μm, and more preferably ranging from 2 μm to approximately 10 μm.
Le brin carboné peut avoir une section allant de 10 µm2 à 10 mm2, de préférence allant de 0,1 mm2 à 5 mm2 environ, et plus préférentiellement allant de 0,2 mm2 à 3 mm2 environ.The carbon strand may have a section ranging from 10 μm 2 to 10 mm 2 , preferably ranging from 0.1 mm 2 to 5 mm 2 approximately, and more preferably ranging from 0.2 mm 2 to 3 mm 2 approximately.
Les fibres de carbone d'un brin carboné peuvent comprendre des fibres de carbone métallisées et/ou nues.The carbon fibers of a carbon strand may include metallized and / or bare carbon fibers.
Une fibre de carbone métallisée est une fibre de carbone entourée par une ou plusieurs couche(s) métallique(s). Des fibres de carbone métallisées sont des fibres de carbone entourées (individuellement) par une ou plusieurs couche(s) métallique(s), i.e. chacune des fibres de carbone métallisées est entourée par une ou plusieurs couche(s) métallique(s).A metallized carbon fiber is a carbon fiber surrounded by one or more metallic layer (s). Metallized carbon fibers are carbon fibers surrounded (individually) by one or more metallic layer (s), i.e. each of the metallized carbon fibers is surrounded by one or more metallic layer (s).
À titre d'exemple, certaines des fibres de carbone ou la totalité des fibres de carbone contenues dans le brin carboné, sont métallisées. La présence de fibres métallisées peut permettre d'augmenter la conductivité électrique du brin carboné.For example, some of the carbon fibers or all of the carbon fibers contained in the carbon strand are metallized. The presence of metallized fibers can increase the electrical conductivity of the carbon strand.
La ou les couche(s) métallique(s) des fibres de carbone métallisées peu(ven)t comprendre au moins un métal choisi parmi le cuivre, le nickel, le zinc, l'étain, l'argent, l'aluminium, et un de leurs alliages.The metallic layer (s) of metallized carbon fibers can (at least) comprise at least one metal chosen from copper, nickel, zinc, tin, silver, aluminum, and one of their alloys.
Par « alliage », on entend la combinaison ou mélange d'au moins deux métaux, notamment choisis parmi ceux listés ci-dessus.By “alloy” is meant the combination or mixture of at least two metals, in particular chosen from those listed above.
De préférence, la couche métallique est de même nature que le(s) brin(s) métallique(s), notamment afin de limiter le risque de corrosion galvanique.Preferably, the metallic layer is of the same nature as the metallic strand (s), in particular in order to limit the risk of galvanic corrosion.
La couche métallique peut être directement en contact physique avec la fibre de carbone de la fibre de carbone métallisée.The metal layer can be directly in physical contact with the carbon fiber of the metallized carbon fiber.
La couche métallique peut être liée par interactions physiques et/ou chimiques, de préférence par liaison covalente, à la fibre de carbone pour permettre une bonne adhésion de la couche métallique à la fibre de carbone.The metal layer can be linked by physical and / or chemical interactions, preferably by covalent bonding, to the carbon fiber to allow good adhesion of the metal layer to the carbon fiber.
Une couche intermédiaire dite « d'adhésion » peut être placée entre la fibre de carbone et la couche métallique de la fibre de carbone métallisée, notamment afin d'améliorer l'adhésion de la couche métallique autour de la fibre de carbone. La couche intermédiaire peut être une couche métallique, pouvant comprendre un ou plusieurs métaux choisis parmi l'étain, le nickel, le cuivre, l'aluminium, l'argent, et un de leurs mélanges.An intermediate layer called “adhesion” can be placed between the carbon fiber and the metal layer of the metallized carbon fiber, in particular in order to improve the adhesion of the metal layer around the carbon fiber. The intermediate layer may be a metallic layer, which may include one or more metals chosen from tin, nickel, copper, aluminum, silver, and one of their mixtures.
Dans l'invention, la couche métallique peut avoir une épaisseur moyenne d'au moins 100 nm environ, et de préférence d'au moins 500 nm environ. La couche métallique peut avoir une épaisseur moyenne d'au plus 5 µm, et de préférence d'au plus 1 µm environ. Ces valeurs d'épaisseur données pour la couche métallique ne sont pas comprises dans les valeurs de diamètre des fibres de carbone indiquées dans l'invention.In the invention, the metal layer may have an average thickness of at least about 100 nm, and preferably at least about 500 nm. The metal layer may have an average thickness of at most 5 μm, and preferably at most about 1 μm. These thickness values given for the metal layer are not included in the diameter values of the carbon fibers indicated in the invention.
De préférence, la couche métallique peut avoir une épaisseur constante sur toute la longueur de la fibre de carbone. Une épaisseur constante signifie que l'épaisseur de la couche métallique peut varier de ±30% environ par rapport à l'épaisseur moyenne de la couche métallique, de préférence de ±20% par rapport à l'épaisseur moyenne de la couche métallique, et plus préférentiellement de ±10% par rapport à l'épaisseur moyenne de la couche métallique.Preferably, the metal layer can have a constant thickness over the entire length of the carbon fiber. A constant thickness means that the thickness of the metallic layer can vary by approximately ± 30% relative to the average thickness of the metallic layer, preferably by ± 20% relative to the average thickness of the metallic layer, and more preferably ± 10% relative to the average thickness of the metal layer.
Dans l'invention, l'épaisseur de la couche métallique peut être adaptée selon la nature du métal ou des métaux qu'elle comprend et selon la conductivité souhaitée. En particulier, une couche métallique comprenant un métal ayant une conductivité faible peut être plus épaisse qu'une couche métallique comprenant un métal ayant une conductivité plus élevée.In the invention, the thickness of the metal layer can be adapted according to the nature of the metal or metals which it comprises and according to the desired conductivity. In particular, a metal layer comprising a metal having a low conductivity may be thicker than a metal layer comprising a metal having a higher conductivity.
La métallisation de la fibre de carbone peut être réalisée par un procédé choisi parmi l'électrodéposition, l'électroplacage (connu sous l'anglicisme « electroplating »), l'électroplacage sans courant électrique (connu sous l'anglicisme « electroless plating »), l'évaporation thermique sous vide (« heated evaporation »), l'évaporation par faisceau d'électrons (« electron beam evaporation »), la pulvérisation cathodique (« sputtering »), la déposition assistée par faisceau ionique (« ion assisted deposition »). Selon un mode de réalisation préféré, la métallisation de la ou des fibre(s) de carbone est réalisée par électrodéposition.The metallization of the carbon fiber can be carried out by a process chosen from electroplating, electroplating (known under Anglicism " electroplating "), electroplating without electric current (known under Anglicism " electroless plating ") , vacuum thermal evaporation (“heated evaporation ”), electron beam evaporation , cathode sputtering , ion assisted deposition "). According to a preferred embodiment, the metallization of the carbon fiber (s) is carried out by electrodeposition.
Le brin carboné a de préférence un diamètre allant de 0,01 à 3 mm environ, et de préférence encore allant de 0,1 à 1,5 mm environ.The carbon strand preferably has a diameter ranging from 0.01 to 3 mm approximately, and more preferably ranging from 0.1 to 1.5 mm approximately.
Le brin carboné a de préférence une section circulaire ou sensiblement circulaire (e.g. ovale).The carbon strand preferably has a circular or substantially circular section (e.g. oval).
Dans l'invention, la conductivité électrique d'un matériau, exprimée en % IACS (IACS correspondant à l'anglicisme « International Annealed Copper Standard »), est déterminée par rapport à la conductivité électrique à 20°C du cuivre pur recuit qui est de 5,8001x107 S/m. La conductivité électrique (S/m) caractérise l'aptitude d'un matériau à laisser les électrons qu'il contient se déplacer librement sous l'effet d'un champ électrique et donc permettre le passage d'un courant électrique. La conductivité électrique en %IACS est une conductivité déterminée en courant continu.In the invention, the electrical conductivity of a material, expressed in% IACS (IACS corresponding to Anglicism " International Annealed Copper Standard "), is determined relative to the electrical conductivity at 20 ° C of pure annealed copper which is 5.8001x10 7 S / m. The electrical conductivity (S / m) characterizes the ability of a material to let the electrons it contains move freely under the effect of an electric field and therefore allow the passage of an electric current. The electrical conductivity in% IACS is a conductivity determined in direct current.
Le brin carboné peut avoir une conductivité électrique allant jusqu'à 2% IACS environ, de préférence allant jusqu'à 10% IACS environ, et de préférence allant jusqu'à 15% IACS environ, notamment lorsque les fibres de carbone comprennent des fibres de carbone métallisées.The carbon strand may have an electrical conductivity of up to approximately 2% IACS, preferably up to approximately 10% IACS, and preferably up to approximately 15% IACS, in particular when the carbon fibers comprise fibers of carbon metallic.
Selon une forme de réalisation préférée de l'invention, l'âme conductrice multibrin comprend plusieurs brins carbonés tels que définis dans l'invention.According to a preferred embodiment of the invention, the multi-strand conductive core comprises several carbon strands as defined in the invention.
Lorsque l'âme conductrice multibrin comprend plusieurs brins carbonés, chacun des brins peut comprendre des fibres de carbone métallisées et/ou nues. Chaque brin carboné peut alors comprendre un nombre différent de fibres de carbone métallisées et/ou nues, un métal différent constitutif de la couche métallique des fibres de carbone métallisées, etc....When the multistrand conductive core comprises several carbon strands, each of the strands may comprise metallized and / or bare carbon fibers. Each carbon strand may then comprise a different number of metallized and / or bare carbon fibers, a different metal constituting the metallic layer of metallized carbon fibers, etc.
Le brin carboné a soit une conductivité électrique d'au moins 0,1% IACS environ en courant continu, soit il est un brin non composite, soit il a une conductivité électrique d'au moins 0,1% IACS environ en courant continu et il est un brin non composite.The carbon strand has either an electrical conductivity of at least 0.1% IACS approximately in direct current, or it is a non-composite strand, or it has an electrical conductivity of at least 0.1% IACS in direct current and it is a non-composite strand.
Selon une forme de réalisation de l'invention, le brin carboné est non composite, et de préférence le brin carboné est non composite et a une conductivité électrique d'au moins 0,1% IACS en courant continu.According to one embodiment of the invention, the carbon strand is non-composite, and preferably the carbon strand is non-composite and has an electrical conductivity of at least 0.1% IACS in direct current.
Dans l'invention, l'expression « non composite » relative au brin carboné signifie que le brin carboné ne comprend pas de polymère organique ou que le brin carboné est exempt de polymère organique. En d'autres termes, un brin carboné non composite est différent d'un brin carboné dans lequel le carbone est mélangé avec (ou imprégné par) au moins un polymère organique. En effet, les brins carbonés composites tels que décrits dans l'art antérieur sont des brins non conducteurs ou des brins présentant une conductivité électrique insuffisante (i.e. conductivité électrique inférieure à 0,1% IACS en courant continu). Par ailleurs, l'imprégnation de brins carbonés dans une matrice polymère organique augmente la rigidité desdits brins carbonés, ce qui limite la flexibilité du câble obtenu.In the invention, the expression “non-composite” relating to the carbon strand means that the carbon strand does not comprise any organic polymer or that the carbon strand is free of organic polymer. In other words, a non-composite carbon strand is different from a carbon strand in which the carbon is mixed with (or impregnated with) at least one organic polymer. Indeed, the composite carbon strands as described in the prior art are non-conductive strands or strands having an insufficient electrical conductivity (i.e. electrical conductivity less than 0.1% IACS in direct current). Furthermore, the impregnation of carbon strands in an organic polymer matrix increases the rigidity of said carbon strands, which limits the flexibility of the cable obtained.
Le brin carboné ayant une conductivité électrique d'au moins 0,1% IACS (et éventuellement non composite) a de préférence une conductivité électrique d'au moins 0,6% IACS environ, de préférence d'au moins 0,8% IACS environ, et de façon particulièrement préférée d'au moins 1% IACS environ, en courant continu.The carbon strand having an electrical conductivity of at least 0.1% IACS (and optionally non-composite) preferably has an electrical conductivity of at least 0.6% IACS approximately, preferably of at least 0.8% IACS approximately, and particularly preferably at least about 1% IACS, in direct current.
Dans l'invention, l'expression « brin métallique » signifie que le brin comprend de 85 à 100% en poids environ de métal, et de préférence de 90 à 99% en poids de métal, par rapport au poids total du brin métallique.In the invention, the expression “metallic strand” means that the strand comprises from 85 to 100% by weight approximately of metal, and preferably from 90 to 99% by weight of metal, relative to the total weight of the metallic strand.
Le brin métallique peut comprendre au moins un métal choisi parmi le cuivre, l'aluminium, l'argent, un alliage de cuivre, un alliage d'aluminium, un alliage d'argent, et un de leurs mélanges.The metal strand may comprise at least one metal chosen from copper, aluminum, silver, a copper alloy, an aluminum alloy, a silver alloy, and one of their mixtures.
Le brin métallique a de préférence une conductivité électrique supérieure ou égale à 55% IACS, et de préférence encore allant de 58 à 110% IACS environ.The metal strand preferably has an electrical conductivity greater than or equal to 55% IACS, and more preferably ranging from 58 to 110% IACS approximately.
Selon une forme de réalisation préférée de l'invention, l'âme conductrice multibrin comprend plusieurs brins métalliques tels que définis dans l'invention.According to a preferred embodiment of the invention, the multi-strand conductive core comprises several metal strands as defined in the invention.
Lorsque l'âme conductrice multibrin comprend plusieurs brins métalliques, chacun des brins peut comprendre un métal ou un mélange de métaux différent.When the multi-strand conductive core comprises several metal strands, each of the strands may comprise a different metal or mixture of metals.
Un brin métallique a de préférence un diamètre allant de 50 µm à 3 mm environ, et de préférence encore allant de 200 µm à 1,5 mm environ.A metal strand preferably has a diameter ranging from 50 μm to approximately 3 mm, and more preferably ranging from 200 μm to approximately 1.5 mm.
Le brin métallique peut avoir une section allant de 2 µm2 à 10 mm2, de préférence allant de 0,1 mm2 à 5 mm2 environ, et plus préférentiellement allant de 0,2 mm2 à 3 mm2 environ.The metal strand may have a section ranging from 2 μm 2 to 10 mm 2 , preferably ranging from 0.1 mm 2 to 5 mm 2 approximately, and more preferably ranging from 0.2 mm 2 to 3 mm 2 approximately.
Chacun des brin(s) métallique(s) de l'âme conductrice multibrin peut comprendre un ou plusieurs fils métalliques. On parle alors de brin métallique multifilaire. Cela permet ainsi d'assouplir l'âme conductrice multibrin.Each of the metal strand (s) of the multi-strand conductive core may include one or more metal wires. This is called a multi-wire metallic strand. This thus makes it possible to soften the multi-strand conductive core.
Les brins métalliques sont de préférence de section circulaire ou sensiblement circulaire (e.g. ovale).The metal strands are preferably of circular or substantially circular section (e.g. oval).
L'âme conductrice multibrin a de préférence une conductivité électrique d'au moins 30% IACS, de façon particulièrement préférée d'au moins 50% IACS, de façon plus particulièrement préférée d'au moins 60% IACS, de façon encore plus particulièrement préférée d'au moins 70% IACS, et plus préférentiellement encore d'au moins 95% IACS.The multi-strand conductive core preferably has an electrical conductivity of at least 30% IACS, particularly preferably at least 50% IACS, more particularly preferably at least 60% IACS, even more particularly preferably at least 70% IACS, and even more preferably at least 95% IACS.
Selon l'invention, l'âme conductrice multibrin peut avoir une conductivité électrique d'au plus 104% IACS.According to the invention, the multi-strand conductive core can have an electrical conductivity of at most 104% IACS.
L'âme conductrice multibrin peut avoir une résistance à la traction d'au moins 200 MPa, de préférence d'au moins 225 MPa, de façon particulièrement préférée d'au moins 250 MPa, et de façon plus particulièrement préférée d'au moins 270 MPa.The multi-strand conductive core may have a tensile strength of at least 200 MPa, preferably at least 225 MPa, particularly preferably at least 250 MPa, and more particularly preferably at least 270 MPa.
L'âme conductrice multibrin comprend des brins non isolés.The multi-strand conductive core includes uninsulated strands.
Dans l'invention, l'expression « brins non isolés » signifie que chacun desdits brins est exempt d'une couche électriquement isolante, notamment d'une couche électriquement isolante à base de polymère(s) et/ou de céramique(s).In the invention, the expression “non-insulated strands” means that each of said strands is free from an electrically insulating layer, in particular from an electrically insulating layer based on polymer (s) and / or ceramic (s).
Avantageusement, tous les brins de l'âme conductrice multibrin sont des brins non isolés.Advantageously, all the strands of the multi-strand conductive core are uninsulated strands.
Un brin de l'âme conductrice multibrin a de préférence au moins une surface de contact physique direct avec un autre brin de l'âme conductrice multibrin qui lui est adjacent.A strand of the multi-strand conductive core preferably has at least one surface of direct physical contact with another strand of the multi-strand conductive core which is adjacent to it.
L"âme conductrice multibrin comprend de préférence des brins câblés ou torsadés.The multi-strand conductive core preferably comprises cabled or twisted strands.
Avantageusement, tous les brins de l'âme conductrice multibrin sont assemblés par des opérations de câblage, notamment pour former un toron ou un tordon. On parle alors de brins câblés ou torsadés.Advantageously, all the strands of the multi-strand conductive core are assembled by wiring operations, in particular to form a strand or a twist. This is called stranded or twisted strands.
L'âme conductrice multibrin est préférentiellement fabriquée selon une configuration torsadée.The multi-strand conductive core is preferably manufactured in a twisted configuration.
Par ailleurs, les brins torsadés au sein de l'âme conductrice multibrin peuvent être dans une configuration concentrique (« concentric stranding »), aléatoire (« bunched stranding »), ou cordée (« rope stranding »). Furthermore, the strands twisted within the multistrand conductive core can be in a concentric (" concentric stranding"), random (" bunched stranding "), or corded (" rope stranding") configuration.
Plusieurs types de constructions ou configurations concentriques sont appropriées telles que la configuration concentrique véritable (connue sous l'anglicisme « true concentric stranding »), la configuration concentrique de pas constant (connue sous l'anglicisme « equilay concentric stranding »), la configuration concentrique unidirectionnelle (connue sous l'anglicisme « unidirectional concentric stranding »), et la configuration concentrique unidirectionnelle et de pas constant (connue sous l'anglicisme « unilay concentric stranding »). Several types of concentric constructions or configurations are appropriate such as the true concentric configuration (known under Anglicism " true concentric stranding "), the concentric configuration of constant pitch (known under Anglicism " equilay concentric stranding "), the concentric configuration unidirectional (known as “unidirectional concentric stranding ”), and the unidirectional concentric configuration of constant pitch (known as “ unilay concentric stranding”).
Dans la configuration concentrique véritable, l'élément électriquement conducteur allongé central est entouré par au moins lesdites première et deuxième couches de brins électriquement conducteurs posés de manière hélicoïdale selon un arrangement géométrique, avec un sens de pas alterné et une longueur de pas croissante.In the true concentric configuration, the central elongated electrically conductive element is surrounded by at least said first and second layers of electrically conductive strands arranged so helical in a geometric arrangement, with an alternating direction of step and an increasing step length.
Dans la configuration concentrique de pas constant, l'élément électriquement conducteur allongé central est entouré par au moins lesdites première et deuxième couches de brins électriquement conducteurs posés de manière hélicoïdale selon un arrangement géométrique, avec une direction de pas alternée et une longueur de pas constante.In the concentric configuration of constant pitch, the central elongate electrically conductive element is surrounded by at least said first and second layers of electrically conductive strands laid helically in a geometric arrangement, with an alternate pitch direction and a constant pitch length .
Dans la configuration concentrique unidirectionnelle, l'élément électriquement conducteur allongé central est entouré par au moins lesdites première et deuxième couches de brins électriquement conducteurs posés de manière hélicoïdale selon un arrangement géométrique, avec la même direction de pas et une longueur de pas croissante.In the unidirectional concentric configuration, the central elongated electrically conductive element is surrounded by at least said first and second layers of electrically conductive strands laid helically in a geometric arrangement, with the same pitch direction and an increasing pitch length.
Dans la configuration concentrique unidirectionnelle et de pas constant, l'élément électriquement conducteur allongé central est entouré par au moins lesdites première et deuxième couches de brins électriquement conducteurs posés de manière hélicoïdale selon un arrangement géométrique, avec la même direction de pas et la même longueur de pas.In the concentric unidirectional and constant pitch configuration, the elongated central electrically conductive element is surrounded by at least said first and second layers of electrically conductive strands laid helically in a geometric arrangement, with the same pitch direction and the same length to not.
Dans la configuration aléatoire, l'élément électriquement conducteur allongé et les brins électriquement conducteurs sont disposés de manière plus aléatoire. Tordus en une seule opération, tous les brins ont la même direction de pas et la même longueur de pas.In the random configuration, the elongated electrically conductive member and the electrically conductive strands are more randomly arranged. Twisted in one operation, all strands have the same pitch direction and the same pitch length.
Dans la configuration cordée, des torons simples sont formés par un assemblage de brins en une configuration concentrique ou aléatoire. L'âme est formée par un assemblage des torons en une configuration finale concentrique ou aléatoire.In the corded configuration, single strands are formed by an assembly of strands in a concentric or random configuration. The core is formed by assembling the strands into a concentric or random final configuration.
L'âme conductrice multibrin a préférentiellement la forme d'un toron de tordons, notamment comprenant l'élément électriquement conducteur allongé, et les brins électriquement conducteurs des première et deuxième couches. Dans ce mode de réalisation, les brins électriquement conducteurs forment ensemble un toron (structure globale), et chacun des brins électriquement conducteurs est multifilaire et est sous la forme d'un tordon.The multi-strand conductive core preferably has the shape of a strand of twists, in particular comprising the elongated electrically conductive element, and the electrically conductive strands of the first and second layers. In this embodiment, the electrically conductive strands together form a strand (overall structure), and each of the electrically conductive strands is multifilar and is in the form of a twist.
La formation d'un toron est bien connue selon l'anglicisme « stranded wires », et la formation d'un tordon est bien connue selon l'anglicisme « bunched wires ». Le tordonnage permet de torsader ensemble des brins ou fils individuels dans la même direction, lesdits brins ou fils individuels n'ayant pas une organisation spécifique ou un arrangement géométrique particulier les uns par rapport aux autres. Les brins ou fils subissent donc un processus de torsion, lesdits brins étant initialement arrangés en faisceaux. Dans ce mode de réalisation, les propriétés mécaniques sont optimisées, notamment en termes de flexibilité.The formation of a strand is well known according to anglicism "stranded wires", and the formation of a tordon is well known according to anglicism "bunched wires". Twisting allows individual strands or wires to be twisted together in the same direction, said individual strands or wires not having a specific organization or a particular geometric arrangement with respect to each other. The strands or wires therefore undergo a twisting process, said strands being initially arranged in bundles. In this embodiment, the mechanical properties are optimized, in particular in terms of flexibility.
L'âme conductrice multibrin comprend au moins deux couches de brins électriquement conducteurs.The multi-strand conductive core comprises at least two layers of electrically conductive strands.
L'âme conductrice peut comprendre en outre une ou plusieurs couches supplémentaires de brins électriquement conducteurs. Ainsi, les brins électriquement conducteurs (brins métalliques et brins carbonés) sont répartis dans les première et deuxième couches, et dans la ou les couches supplémentaires de brins électriquement conducteurs.The conductive core may further comprise one or more additional layers of electrically conductive strands. Thus, the electrically conductive strands (metallic strands and carbon strands) are distributed in the first and second layers, and in the additional layer or layers of electrically conductive strands.
L'âme conductrice peut comprendre de 4 à 50 brins électriquement conducteurs, et de préférence de 10 à 40 brins électriquement conducteurs.The conductive core can comprise from 4 to 50 electrically conductive strands, and preferably from 10 to 40 electrically conductive strands.
Selon une forme de réalisation préférée de l'invention, l'âme conductrice multibrin comprend uniquement des brins métalliques tels que définis dans l'invention, et des brins carbonés non composites et/ou ayant une conductivité d'au moins 0,1% IACS tels que définis dans l'invention.According to a preferred embodiment of the invention, the multi-strand conductive core comprises only metal strands as defined in the invention, and non-composite carbon strands and / or having a conductivity of at least 0.1% IACS as defined in the invention.
Les brins constitutifs de la première couche (respectivement de la deuxième couche) sont de préférence de forme telle que ladite première couche (respectivement ladite deuxième couche) a une surface irrégulière. En d'autres termes, les brins constitutifs de la première couche (respectivement de la deuxième couche) ne s'emboîtent pas pour former une enveloppe continue, ou chacun des brins constitutifs de la première couche (respectivement de la deuxième couche) ne présente pas une section transversale de forme complémentaire à celle des brins constitutifs de la première couche (respectivement de la deuxième couche) qui lui sont adjacents.The strands constituting the first layer (respectively of the second layer) are preferably of a shape such that said first layer (respectively said second layer) has an irregular surface. In other words, the strands constituting the first layer (respectively of the second layer) do not fit together to form a continuous envelope, or each of the strands constituting the first layer (respectively of the second layer) does not have a cross section of shape complementary to that of the strands constituting the first layer (respectively of the second layer) which are adjacent.
Ainsi, l'âme conductrice multibrin comprend avantageusement des interstices entre les brins.Thus, the multi-strand conductive core advantageously comprises interstices between the strands.
L'élément électriquement conducteur allongé de l'âme conductrice multibrin peut être positionné au centre du câble (i.e. position centrale).The elongated electrically conductive element of the multi-strand conductive core can be positioned in the center of the cable (i.e. central position).
L'élément électriquement conducteur allongé de l'âme conductrice multibrin est sous la forme d'un brin électriquement conducteur.The elongated electrically conductive element of the multi-strand conductive core is in the form of an electrically conductive strand.
L'élément électriquement conducteur allongé de l'âme conductrice multibrin peut être un brin métallique tel que défini dans l'invention ou un brin carboné tel que défini dans l'invention, et de préférence un brin métallique.The elongated electrically conductive element of the multi-strand conductive core can be a metallic strand as defined in the invention or a carbon strand as defined in the invention, and preferably a metallic strand.
L'élément électriquement conducteur allongé de l'âme conductrice est parcouru comme tous les brins de l'âme conductrice multibrin (notamment des première et deuxième couches), par un courant électrique. En d'autres termes, il est différent d'un élément de renforcement mécanique tel que traditionnellement utilisé notamment dans les câbles OHL qui n'est pas parcouru par un courant électrique.The elongated electrically conductive element of the conductive core is traversed like all the strands of the multi-strand conductive core (especially of the first and second layers), by an electric current. In other words, it is different from a mechanical reinforcement element such as traditionally used in particular in OHL cables which is not traversed by an electric current.
Selon une forme de réalisation préférée de l'invention, l'âme conductrice multibrin comprend une pluralité de brins métalliques tels que définis dans l'invention, et une pluralité de brins carbonés non composites et/ou ayant une conductivité d'au moins 0,1% IACS tels que définis dans l'invention.According to a preferred embodiment of the invention, the multi-strand conductive core comprises a plurality of metal strands as defined in the invention, and a plurality of non-composite carbon strands and / or having a conductivity of at least 0, 1% IACS as defined in the invention.
Le nombre de brin(s) métallique(s) au sein de l'âme conductrice multibrin est avantageusement supérieur ou égal au nombre de brin(s) carboné(s). Cela permet de garantir une bonne conductivité électrique de l'âme conductrice multibrin.The number of metallic strand (s) within the multi-strand conductive core is advantageously greater than or equal to the number of carbon strand (s). This ensures good electrical conductivity of the multi-strand conductive core.
Selon une forme de réalisation préférée de l'invention, au moins l'une des première et deuxième couches comprend x brins métalliques et x' brins carbonés ; et au moins l'autre des première et deuxième couches comprend y brins carbonés et y' brins métalliques, de sorte que :
- * x ≥ x', et de préférence x > x',
- * y ≥ y', et de préférence y > y', et
- * x ≥ 1, x' ≥ 0, y ≥ 1, et y' ≥ 0,
- * x, x', y et y' étant des nombres entiers.
- * x ≥ x ', and preferably x>x',
- * y ≥ y ', and preferably y>y', and
- * x ≥ 1, x '≥ 0, y ≥ 1, and y' ≥ 0,
- * x, x ', y and y' being whole numbers.
Lorsque x = x', les brins métalliques et les brins carbonés sont avantageusement alternées au sein de la couche.When x = x ′, the metal strands and the carbon strands are advantageously alternated within the layer.
Lorsque y = y', les brins métalliques et les brins carbonés sont avantageusement alternées au sein de la couche.When y = y ', the metal strands and the carbon strands are advantageously alternated within the layer.
Lorsque x > x' et x' ≠ 0, les brins carbonés sont uniformément répartis au sein de la couche entre les brins métalliques.When x> x 'and x' ≠ 0, the carbon strands are uniformly distributed within the layer between the metal strands.
Lorsque y > y' et y' ≠ 0, les brins métalliques sont uniformément répartis au sein de la couche entre les brins carbonés.When y> y 'and y' ≠ 0, the metal strands are uniformly distributed within the layer between the carbon strands.
Les brins métalliques de l'âme conductrice multibrin ont de préférence une longueur du pas allant de 2 à 32D, et de préférence encore de 8 à 16D, où D correspond au diamètre de la couche.The metal strands of the multi-strand conductive core preferably have a pitch length ranging from 2 to 32D, and more preferably from 8 to 16D, where D corresponds to the diameter of the layer.
Les brins carbonés de l'âme conductrice multibrin ont de préférence une longueur du pas allant de 2 à 32D, et de préférence encore de 8 à 16D, où D correspond au diamètre de la couche.The carbon strands of the multi-strand conductive core preferably have a pitch length ranging from 2 to 32D, and more preferably from 8 to 16D, where D corresponds to the diameter of the layer.
La longueur de pas correspond à la distance requise par un brin pour achever une révolution complète autour du diamètre de l'âme conductrice multibrin.The pitch length corresponds to the distance required by a strand to complete a complete revolution around the diameter of the multi-strand conductive core.
Les brins métalliques et carbonés peuvent avoir des sections de taille différente au sein de l'âme conductrice.The metallic and carbon strands may have sections of different size within the conductive core.
Dans l'invention, l'âme conductrice multibrin est entourée par au moins une couche polymère. La couche polymère entoure donc les première et deuxième couches de brins électriquement conducteurs. Si d'autre(s) couche(s) de brins électriquement conducteurs sont présentes, la couche polymère entoure la couche la plus externe de brins électriquement conducteurs.In the invention, the multi-strand conductive core is surrounded by at least one polymer layer. The polymer layer therefore surrounds the first and second layers of electrically conductive strands. If other layer (s) of electrically conductive strands are present, the polymer layer surrounds the outermost layer of electrically conductive strands.
De préférence, la couche polymère est une couche électriquement isolante. On entend par « couche électriquement isolante » une couche ayant généralement une conductivité électrique d'au plus 1.10-8 S/m (siemens par mètre), de préférence d'au plus 1.10-9 S/m, et de façon particulièrement préférée d'au plus 1.10-10 S/m, mesurée à 25°C en courant continu.Preferably, the polymer layer is an electrically insulating layer. The term “electrically insulating layer” means a layer generally having an electrical conductivity of at most 1.10 -8 S / m (siemens per meter), preferably at most 1.10 -9 S / m, and in a particularly preferred manner d '' at most 1.10 -10 S / m, measured at 25 ° C in direct current.
On entend par couche polymère une couche comprenant au moins un polymère, le terme « polymère » en tant que tel signifiant de façon générale homopolymère ou copolymère (e.g. copolymère séquencé, copolymère statistique, terpolymère, ...etc).The term “polymer layer” is understood to mean a layer comprising at least one polymer, the term “polymer” as such meaning generally homopolymer or copolymer (e.g. block copolymer, random copolymer, terpolymer, etc.).
Dans l'invention, le polymère de la couche polymère est avantageusement un polymère d'oléfine (polyoléfine) ou, en d'autres termes, un homo- ou copolymère d'oléfine.In the invention, the polymer of the polymer layer is advantageously an olefin polymer (polyolefin) or, in other words, an olefin homo- or copolymer.
Le polymère peut être un polymère thermoplastique ou réticulé.The polymer can be a thermoplastic or crosslinked polymer.
De préférence, le polymère d'oléfine est un polymère d'éthylène ou de propylène.Preferably, the olefin polymer is a polymer of ethylene or propylene.
Dans un mode de réalisation particulier, la couche polymère comprend au moins un polymère choisi parmi un polyéthylène linéaire basse densité (LLDPE), un polyéthylène très basse densité (VLDPE), un polyéthylène basse densité (LDPE), un polyéthylène moyenne densité (MDPE), un polyéthylène haute densité (HDPE), un copolymère d'éthylène et d'acétate de vinyle (EVA), un copolymère d'éthylène et d'acrylate de butyle (EBA), d'acrylate de méthyle (EMA), de 2-hexyléthyl acrylate (2HEA), un copolymère d'éthylène et d'alpha-oléfine, un copolymère d'éthylène et de propylène (EPR), un polyuréthane, un polymère fluoré, un polymère chloré tel qu'un polychlorure de vinyle (PVC), un polyoxyde de phénylène (PPO), un polymère technique, et un leurs mélanges.In a particular embodiment, the polymer layer comprises at least one polymer chosen from a linear low density polyethylene (LLDPE), a very low density polyethylene (VLDPE), a low density polyethylene (LDPE), a medium density polyethylene (MDPE) , a high density polyethylene (HDPE), a copolymer of ethylene and vinyl acetate (EVA), a copolymer of ethylene and butyl acrylate (EBA), methyl acrylate (EMA), of 2 -hexylethyl acrylate (2HEA), a copolymer of ethylene and alpha-olefin, a copolymer of ethylene and propylene (EPR), a polyurethane, a fluorinated polymer, a chlorinated polymer such as a polyvinyl chloride (PVC) ), a polyphenylene oxide (PPO), a technical polymer, and a mixture thereof.
Comme exemple de copolymère d'éthylène et d'alpha-oléfine, on peut citer par exemple les poly(éthylène-octène) (PEO).As an example of a copolymer of ethylene and of alpha-olefin, mention may, for example, be made of poly (ethylene-octene) (PEO).
Comme exemple de copolymères d'éthylène et de propylène (EPR), on peut citer les terpolymères d'éthylène propylène diène (EPDM).As an example of copolymers of ethylene and propylene (EPR), mention may be made of terpolymers of ethylene propylene diene (EPDM).
On entend par « polymère technique » un polymère ayant des propriétés améliorées, notamment choisi parmi un polyphényléthylène éther, un polyamide, un polyétheréthercétone (PEEK), un polyimide, un copolymère d'éthylène fluoré (FEP), un polyéthylène furanoate (PEF), et un de leurs mélanges.The term “technical polymer” means a polymer having improved properties, in particular chosen from a polyphenylethylene ether, a polyamide, a polyetheretherketone (PEEK), a polyimide, a fluorinated ethylene copolymer (FEP), a polyethylene furanoate (PEF), and one of their mixtures.
La couche polymère peut comprendre en outre au moins un additif choisi parmi les antioxydants, les stabilisants, les agents de réticulation, les retardateurs de grillage, des co-agents de réticulation, des agents favorisants la mise en œuvre tels que des lubrifiants ou des cires, des agents compatibilisants, des agents de couplage, des stabilisants des charges, et un de leurs mélanges.The polymer layer may also comprise at least one additive chosen from antioxidants, stabilizers, crosslinking agents, toasting retarders, crosslinking co-agents, processing-promoting agents such as lubricants or waxes , compatibilizers, coupling agents, charge stabilizers, and a mixture thereof.
De préférence, la couche polymère est une couche dite « HFFR » pour l'anglicisme « Halogen-Free Flame Retardant » selon la norme IEC 60754 Parties 1 et 2 (2011).Preferably, the polymer layer is a so-called “HFFR” layer for “ Halogen-Free Flame Retardant” anglicism according to standard IEC 60754 Parts 1 and 2 (2011).
La couche polymère peut comprendre en outre au moins une charge. La charge de l'invention peut être une charge minérale ou organique. Elle peut être choisie parmi une charge ignifugeante, une charge inerte et un de leurs mélanges.The polymer layer may further comprise at least one filler. The filler of the invention can be a mineral or organic filler. It can be chosen from a flame retardant filler, an inert filler and one of their mixtures.
A titre d'exemple, la charge ignifugeante est une charge hydratée, choisie notamment parmi les hydroxydes métalliques tels que par exemple le dihydroxyde de magnésium (MDH) ou le trihydroxyde d'aluminium (ATH). Ces charges ignifugeantes agissent principalement par voie physique en se décomposant de manière endothermique (e.g. libération d'eau), ce qui a pour conséquence d'abaisser la température de la couche polymère et de limiter la propagation des flammes le long du câble. On parle notamment de propriétés de retard à la flamme, bien connues sous l'anglicisme « flame retardant ». For example, the flame retardant filler is a hydrated filler, chosen in particular from metal hydroxides such as for example magnesium dihydroxide (MDH) or aluminum trihydroxide (ATH). These flame retardant charges act mainly by physical means by decomposing in an endothermic manner (eg release of water), which has the consequence of lowering the temperature of the polymer layer and of limiting the propagation of flames along the cable. We speak in particular of flame retardant properties, well known under Anglicism " flame retardant".
La charge inerte peut être, quant à elle, de la craie, du talc, ou de l'argile (e.g. le kaolin).The inert filler can be chalk, talc, or clay (e.g. kaolin).
La couche polymère peut être extrudée.The polymer layer can be extruded.
La couche polymère peut être réticulée ou non réticulée. La réticulation peut s'effectuer par les techniques classiques de réticulation bien connues de l'homme du métier telles que par exemple la réticulation peroxyde et/ou l'hydrosilylation sous l'action de la chaleur ; la réticulation silane en présence d'un agent de réticulation ; la réticulation par faisceaux d'électron, rayons gamma, rayons X, ou microondes ; la réticulation par voie photochimique telle que l'irradiation sous rayonnement béta, ou l'irradiation sous rayonnement ultraviolet en présence d'un photo-amorceur. La réticulation est de préférence effectuée selon la technique de réticulation silane.The polymer layer can be crosslinked or uncrosslinked. Crosslinking can be carried out by conventional crosslinking techniques well known in the art. those skilled in the art such as, for example, peroxide crosslinking and / or hydrosilylation under the action of heat; silane crosslinking in the presence of a crosslinking agent; crosslinking by electron beams, gamma rays, X-rays, or microwaves; photochemical crosslinking such as beta radiation, or ultraviolet radiation in the presence of a photoinitiator. The crosslinking is preferably carried out according to the silane crosslinking technique.
La couche polymère peut avoir une épaisseur allant de 10 µm à 2 mm, de préférence de 100 µm à 1 mm, et plus préférentiellement de 100 µm à 700 µm.The polymer layer may have a thickness ranging from 10 μm to 2 mm, preferably from 100 μm to 1 mm, and more preferably from 100 μm to 700 μm.
La couche polymère entoure l'âme conductrice multibrin.The polymer layer surrounds the multi-strand conductive core.
Selon une forme de réalisation préférée de l'invention, la couche polymère est en contact physique direct avec la deuxième couche de l'âme conductrice multibrin, et lorsque l'âme conductrice multibrin comprend une ou plusieurs couches de brins électriquement conducteurs, la couche polymère est avantageusement en contact physique direct avec la couche la plus externe de brins électriquement conducteurs de l'âme conductrice multibrin.According to a preferred embodiment of the invention, the polymer layer is in direct physical contact with the second layer of the multi-strand conductive core, and when the multi-strand conductive core comprises one or more layers of electrically conductive strands, the polymer layer is advantageously in direct physical contact with the outermost layer of electrically conductive strands of the multi-strand conductive core.
Le câble électrique peut être un câble de type câble d'énergie, en particulier basse tension ou moyenne tension, et de préférence basse tension.The electric cable can be a cable of the energy cable type, in particular low voltage or medium voltage, and preferably low voltage.
Le câble électrique de l'invention peut comprendre en outre une armure mécanique, préférentiellement sous la forme d'un feuillet ou d'un ruban en aluminium ou acier, ou sous la forme d'une tresse métallique ou carbonée.The electric cable of the invention may also comprise a mechanical armor, preferably in the form of a sheet or a ribbon of aluminum or steel, or in the form of a metallic or carbon braid.
L'armure mécanique entoure de préférence la couche polymère.The mechanical armor preferably surrounds the polymer layer.
L'invention a pour deuxième objet un procédé de fabrication d'un câble électrique conforme au premier objet de l'invention, caractérisé en ce qu'il comprend au moins les étapes suivantes :
- i) fabriquer au moins un brin carboné non composite et/ou ayant une conductivité d'au moins 0,1% IACS,
- ii) fabriquer au moins un brin métallique,
- iii) assembler plusieurs brins obtenus selon les étapes i) et ii), afin de former la première couche, et la deuxième couche, autour de l'élément électriquement conducteur allongé, pour obtenir l'âme conductrice multibrin, et
- iv) extruder la couche polymère autour de l'âme conductrice multibrin formée à l'étape iii).
- i) manufacture at least one non-composite carbon strand and / or having a conductivity of at least 0.1% IACS,
- ii) fabricating at least one metal strand,
- iii) assembling several strands obtained according to steps i) and ii), in order to form the first layer, and the second layer, around the elongated electrically conductive element, in order to obtain the multi-strand conductive core, and
- iv) extruding the polymer layer around the multi-strand conductive core formed in step iii).
L'étape iii) est avantageusement effectuée par toronnage ou tordonnage, et de préférence par toronnage.Step iii) is advantageously carried out by stranding or twisting, and preferably by stranding.
L'étape i [respectivement l'étape ii)] est avantageusement effectuée par toronnage ou tordonnage, et de préférence par tordonnage.Step i [respectively step ii)] is advantageously carried out by stranding or twisting, and preferably by twisting.
Le brin carboné non composite et/ou ayant une conductivité d'au moins 0,1% IACS, le brin métallique, l'élément électriquement conducteur allongé, l'âme conductrice multibrin, et la couche polymère sont tels que définis dans le premier objet de l'invention.The non-composite carbon strand and / or having a conductivity of at least 0.1% IACS, the metal strand, the elongated electrically conductive element, the multi-strand conductive core, and the polymer layer are as defined in the first object. of the invention.
L'invention a pour troisième objet l'utilisation d'une âme conductrice multibrin telle que définie dans le premier objet de l'invention, dans un câble d'énergie basse tension ou moyenne tension, notamment dans le domaine du transport, de l'automatisation industrielle, des câbles de contrôle électrique, ou des câbles chauffants.The third object of the invention is the use of a multi-strand conductive core as defined in the first object of the invention, in a low voltage or medium voltage energy cable, in particular in the field of transport, industrial automation, electrical control cables, or heating cables.
Plus particulièrement, l'âme conductrice multibrin comprend au moins un élément électriquement conducteur allongé, au moins une première couche de brins électriquement conducteurs entourant ledit élément électriquement conducteur allongé, et au moins une deuxième couche de brins électriquement conducteurs entourant ladite première couche, caractérisée en ce qu'elle comprend :
- * au moins un brin métallique, et
- * au moins un brin carboné non composite et/ou ayant une conductivité électrique d'au moins 0,1% IACS environ en courant continu.
- * at least one metal strand, and
- * at least one non-composite carbon strand and / or having an electrical conductivity of at least 0.1% IACS approximately in direct current.
Le brin métallique, le brin carboné non composite et/ou ayant une conductivité électrique d'au moins 0,1% IACS environ en courant continu, et l'élément électriquement conducteur allongé sont de préférence tels que définis dans le premier objet de l'invention.The metallic strand, the non-composite carbon strand and / or having an electrical conductivity of at least 0.1% IACS approximately in direct current, and the elongated electrically conductive element are preferably as defined in the first object of the invention.
En particulier, l'âme conductrice multibrin peut être utilisée dans des câbles chauffants, notamment pour sièges chauffants, dégivrage des routes ou chauffage du sol des habitations, dans des câbles pour bras de machine articulés ou d'autres solutions robotiques.In particular, the multi-strand conductive core can be used in heating cables, in particular for heated seats, de-icing of roads or heating the floor of dwellings, in cables for articulated machine arms or other robotic solutions.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description d'exemples non limitatifs de câbles électriques selon l'invention, faits en référence à la
La
La
Pour des raisons de clarté, seuls les éléments essentiels pour la compréhension de l'invention ont été représentés de manière schématique, et ceci sans respect de l'échelle.For reasons of clarity, only the essential elements for the understanding of the invention have been represented schematically, and this without respecting the scale.
La
Sur la figure la, le câble électrique la comprend une âme conductrice multibrin comprenant un élément électriquement conducteur allongé central 2a sous la forme d'un brin métallique, une première couche comprenant six brins métalliques 3a entourant ledit élément électriquement conducteur allongé central 2a, et une deuxième couche comprenant douze brins métalliques 4a entourant ladite première couche. L'âme conductrice multibrin est entourée par une couche polymère 5a.In FIG. 1a, the
Sur la
Sur la
Sur la
La
Sur la
Sur la
Sur la
Sur la
Afin de montrer les effets techniques de la présente invention, des essais ont été réalisés.In order to show the technical effects of the present invention, tests were carried out.
L'exemple consiste à préparer une âme conductrice multibrin A1 comprenant :
- un élément électriquement conducteur allongé central en cuivre de 0,408 mm de diamètre,
- une première couche de brins électriquement conducteurs entourant ledit élément électriquement conducteur allongé, et constituée de 3 brins métalliques en cuivre de 0,408 mm de diamètre, et 3 brins en fibres de carbone de 0,38 mm de diamètre (fibres 3K non métallisées) ; et
- une deuxième couche de brins électriquement conducteurs entourant ladite première couche et constituée de 9 brins métalliques en cuivre de 0,408 mm de diamètre, et 3 brins en fibres de carbone de 0,38 mm de diamètre (fibres 3K non métallisées),
- an electrically conductive elongated central copper element 0.408 mm in diameter,
- a first layer of electrically conductive strands surrounding said elongated electrically conductive element, and consisting of 3 metallic strands of copper of 0.408 mm in diameter, and 3 strands of carbon fibers of 0.38 mm in diameter (3K fibers not metallized); and
- a second layer of electrically conductive strands surrounding said first layer and consisting of 9 metallic copper strands of 0.408 mm in diameter, and 3 strands of carbon fibers of 0.38 mm in diameter (3K fibers not metallized),
Sur la
L'âme conductrice multibrin A1 conforme à l'invention a été comparée avec une âme conductrice A0 dans laquelle tous les brins (19 brins : 1 + 6 + 12) sont des brins métalliques en cuivre de 0,408 mm de diamètre, A0 ne faisant pas partie de l'invention.The multistrand conductive core A1 according to the invention has been compared with a conductive core A0 in which all the strands (19 strands: 1 + 6 + 12) are metallic strands of copper 0.408 mm in diameter, A0 not forming part of the invention.
Le tableau ci-dessous montre les performances mécaniques et électriques des deux âmes conductrices multibrin A0 et A1.
L'âme conductrice multibrin de l'invention présente de meilleures propriétés mécaniques qu'une âme en cuivre pure, tout en garantissant une bonne conductivité de 70% IACS et un poids plus faible.The multistrand conductive core of the invention has better mechanical properties than a pure copper core, while guaranteeing a good conductivity of 70% IACS and a lower weight.
Claims (17)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1858909A FR3086791A1 (en) | 2018-09-27 | 2018-09-27 | CARBON-METAL MULTIBRIN CONDUCTIVE CORE FOR ELECTRIC CABLE |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3629343A1 true EP3629343A1 (en) | 2020-04-01 |
Family
ID=65243949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19199938.2A Withdrawn EP3629343A1 (en) | 2018-09-27 | 2019-09-26 | Carbon-metallic multi-strand conductive core for electric cable |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3629343A1 (en) |
FR (1) | FR3086791A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6576844B1 (en) * | 1999-09-30 | 2003-06-10 | Yazaki Corporation | High-strength light-weight conductor and twisted and compressed conductor |
JP3475433B2 (en) * | 1992-09-24 | 2003-12-08 | 住友電気工業株式会社 | Insulated wire and its manufacturing method |
EP1766639A1 (en) * | 2004-06-17 | 2007-03-28 | 3M Innovative Properties Company | Cable and method of making the same |
EP1926108A2 (en) | 2006-11-22 | 2008-05-28 | Nexans | Electrical control cable |
US20120267141A1 (en) * | 2010-01-20 | 2012-10-25 | Furukawa Electric Co., Ltd. | Composite electric cable and process for producing same |
CN202887771U (en) * | 2012-07-29 | 2013-04-17 | 安徽纵横高科电缆股份有限公司 | Automobile insulating wire reinforced by adopting carbon fiber |
US20180240569A1 (en) * | 2017-02-20 | 2018-08-23 | Delphi Technologies, Inc. | Metallic/carbon nanotube composite wire |
US20180247724A1 (en) * | 2017-02-24 | 2018-08-30 | Delphi Technologies, Inc. | Electrically conductive carbon nanotube wire having a metallic coating and methods of forming same |
-
2018
- 2018-09-27 FR FR1858909A patent/FR3086791A1/en not_active Withdrawn
-
2019
- 2019-09-26 EP EP19199938.2A patent/EP3629343A1/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3475433B2 (en) * | 1992-09-24 | 2003-12-08 | 住友電気工業株式会社 | Insulated wire and its manufacturing method |
US6576844B1 (en) * | 1999-09-30 | 2003-06-10 | Yazaki Corporation | High-strength light-weight conductor and twisted and compressed conductor |
EP1766639A1 (en) * | 2004-06-17 | 2007-03-28 | 3M Innovative Properties Company | Cable and method of making the same |
EP1926108A2 (en) | 2006-11-22 | 2008-05-28 | Nexans | Electrical control cable |
US20120267141A1 (en) * | 2010-01-20 | 2012-10-25 | Furukawa Electric Co., Ltd. | Composite electric cable and process for producing same |
CN202887771U (en) * | 2012-07-29 | 2013-04-17 | 安徽纵横高科电缆股份有限公司 | Automobile insulating wire reinforced by adopting carbon fiber |
US20180240569A1 (en) * | 2017-02-20 | 2018-08-23 | Delphi Technologies, Inc. | Metallic/carbon nanotube composite wire |
US20180247724A1 (en) * | 2017-02-24 | 2018-08-30 | Delphi Technologies, Inc. | Electrically conductive carbon nanotube wire having a metallic coating and methods of forming same |
Also Published As
Publication number | Publication date |
---|---|
FR3086791A1 (en) | 2020-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7049522B2 (en) | Lightweight composite electrical conductors and cables incorporating same | |
CN102056963B (en) | High performance, high temperature wire or cable | |
US20060137898A1 (en) | Electrical cables | |
FR2896078A1 (en) | LIGHT WEAPON WIRES FOR ELECTRIC CABLES | |
EP3443563B1 (en) | Electrical cable with improved resistance to galvanic corrosion | |
CA2591899A1 (en) | Electrical cables | |
FR2664987A1 (en) | SUBMARINE CABLE FOR TELECOMMUNICATIONS WITH OPTICAL FIBERS UNDER TUBE. | |
EP1816656B1 (en) | Electric cable protected against corrosion | |
EP0003104A1 (en) | Electric coaxial cable | |
JP2020038849A (en) | Resin composition | |
EP3358575B1 (en) | Electric cable resistant to partial discharges | |
EP3703079B1 (en) | Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness, robot wiring, and overhead line | |
EP3422366A1 (en) | Cable comprising an electrically conductive element comprising metallised carbon fibres | |
EP3629343A1 (en) | Carbon-metallic multi-strand conductive core for electric cable | |
EP3161833A1 (en) | Electrical transmission cable with composite cores | |
EP1986199B1 (en) | Method of producing a class 5 insulated electric conductor | |
FR2934410A1 (en) | CERAMIZABLE COMPOSITION FOR POWER CABLE AND / OR TELECOMMUNICATION | |
WO2017032933A1 (en) | Reflective protective sheath for a cable | |
EP3503125A1 (en) | Cable comprising at least one metallic layer of carbon material | |
WO2007147872A2 (en) | Method of producing an aluminium wire covered with a copper layer, and wire obtained | |
EP3913643A1 (en) | Cable having improved corrosion resistance | |
EP2784787A1 (en) | Electric cable including a layer with electrical property gradient | |
EP1164396A1 (en) | Optical fibre cable | |
WO2021014068A1 (en) | Composite wire comprising carbon nanotubes and at least one metal | |
JP2020184422A (en) | Carbon nanotube composite wire, carbon nanotube coated electric wire and wire harness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17P | Request for examination filed |
Effective date: 20201001 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20201106 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210518 |