EP3623079B1 - Device for the thermal treatment of melts produced from non-ferrous metals using a heat exchanger - Google Patents
Device for the thermal treatment of melts produced from non-ferrous metals using a heat exchanger Download PDFInfo
- Publication number
- EP3623079B1 EP3623079B1 EP18194933.0A EP18194933A EP3623079B1 EP 3623079 B1 EP3623079 B1 EP 3623079B1 EP 18194933 A EP18194933 A EP 18194933A EP 3623079 B1 EP3623079 B1 EP 3623079B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- melt
- container
- transfer line
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000155 melt Substances 0.000 title claims description 62
- 229910052751 metal Inorganic materials 0.000 title claims description 14
- 239000002184 metal Substances 0.000 title claims description 14
- -1 ferrous metals Chemical class 0.000 title claims description 10
- 238000007669 thermal treatment Methods 0.000 title 1
- 238000012546 transfer Methods 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 20
- 238000001816 cooling Methods 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 241000282887 Suidae Species 0.000 claims description 8
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 2
- 238000005485 electric heating Methods 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/04—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces
- F27B3/045—Multiple chambers, e.g. one of which is used for charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D39/00—Equipment for supplying molten metal in rations
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details peculiar to crucible or pot furnaces
- F27B14/14—Arrangements of heating devices
Definitions
- the invention relates to a device for the temperature treatment of melts made of non-ferrous metals and a use of a heat exchanger.
- Melts of non-ferrous metals are usually held in heated containers with crucibles, with the heating being carried out indirectly, e.g. with an electric or gas heating device over the crucible wall, or directly, e.g. using immersion heating rods that are introduced into the melt (e.g. US 2004/0107799 A1 ).
- WO2 / 058862 A2 is an arrangement of a melting furnace and a holding furnace designed as a metering furnace, which are connected to one another via a supply line and a return line.
- a pump is provided that the Melt pump transported through a degassing chamber and a filtration area from the melting furnace into the holding furnace and from there back into the melting furnace.
- heating elements in the form of thermally conductive blocks for example made of graphite, are arranged, through which electrical elements penetrate and are heated. These heating elements in the form of blocks are used to heat the melt in the holding furnace.
- non-ferrous metals in particular magnesium alloys
- the melting of non-ferrous metals is carried out in practice in furnaces with an open bath surface and can be divided into two phases.
- the non-ferrous metal is brought into the furnace directly into the melt, for example in the form of preheated pigs, strips, rods or piece goods and the material is heated until it liquefies, at which the solidus point of the alloy is reached.
- the energy required to melt the material comes mainly from the liquid melt in the immediate vicinity of the material. As a result, the melt in the environment cools down accordingly.
- the second phase is the overheating of the cooled material to the required target temperature. For this heating to the process temperature, energy must be supplied in order to restore the original temperature level.
- the energy supply is usually implemented in the furnace via the heated crucible wall, via heating elements exchanged in the melt or via radiation that acts on the bath surface.
- the size of the heat transferring surface is decisive in order to achieve the required heat flow under realistic boundary conditions.
- the risk potential increases with larger amounts of liquid material and larger bathroom surfaces.
- the invention is based on the object of creating a device for the temperature treatment of melts made of non-ferrous metals which allows the melts to be heated or cooled even with smaller melt surfaces.
- the device for temperature treatment of melts from non-ferrous metals comprises a container receiving the melt of the non-ferrous metal, a conveying device with transfer line and at least one heat exchanger, the conveying device with transfer line and the heat exchanger being designed to feed melt from the container into and through the at least one heat exchanger their heating or cooling and conveying back from the heat exchanger into the container or into another container. Because a heat exchanger is used, to which the melt is fed from the container via the transfer line, the melt can be heated up in a relatively short time without an additional bath surface and without oxide formation, but also cooled and can be returned to or into the container from the heat exchanger be directed to another container.
- the container can have small dimensions with a small volume, a small bath surface, little protective gassing with a smaller risk potential.
- the melting capacity is mainly determined by the size of the heat exchanger and is therefore independent of the container size (crucible size).
- Existing systems can be retrofitted with a higher melting capacity using the heat exchanger.
- the container or the further container can be designed as a melting and holding furnace, the crucible of the furnace being kept as small as possible by providing the heat exchanger, since the desired temperature of the melt is reached via the heat exchanger.
- the hazard potential of a fire is reduced. It is also possible to retrofit melting and holding furnaces in use without great effort.
- the conveying device has a pump which protrudes into the melt, whereby the melt can be transported via the transfer line from the container through the heat exchanger and back into the container or into another container.
- the further container can be designed in the most varied of ways.
- the term second container can also include a pipeline system for transporting the melt. It can also be another furnace in which filtering, alloying or cleaning is carried out.
- the melt can also be conveyed into an overflow system in which, for example, a level is kept constant and the overflow is fed back into the container.
- the container or the further container, the transfer line with the inlet end immersed in the melt and the outlet end immersed in the melt and the heat exchanger form a closed pipe system, so that the melt can be heated without contact with the atmosphere and thus the formation additional oxides are avoided.
- the melt cannot burn in the closed pipe system.
- no protective gassing is required in the closed pipe system.
- the device according to the invention can thus also be used for overheating melt which is to be raised in a process step to a higher processing temperature in the closed pipe system.
- the heat exchanger can advantageously be designed as a tube bundle heat exchanger in which the melt is guided on the inside of the tubes and energy is supplied on the outside of the tubes, whereby a high degree of heat transfer efficiency is achieved.
- heat exchangers can be used, such as plate heat exchangers, spiral or U-tube heat exchangers, jacket-tube heat exchangers and others.
- the heat exchanger advantageously has a heating device which comprises at least one burner and / or electrical heating elements or an inductor.
- the heat exchanger can include a cooling device that can quickly cool the melt, which is particularly important in the case of a magnesium melt in order to reduce the risk of fire in the event of overheating and to quickly bring the melt into the safe temperature range.
- Gas- and oil-heated burner systems can be used at least partially for cooling. To do this, the burner or burners are switched off and it is only over the combustion air fan blows air through the burner or burners, whereby the melt in the heat exchanger is cooled with air.
- heat exchangers in a modular design can be connected one after the other in series or in parallel between the transfer line, as a result of which a flexible increase in output is achieved.
- the device shown for the temperature treatment of melts made of non-ferrous metals has a container 1 on which a melt receives.
- the container 1 is assigned a conveying device which comprises at least one pump 10, which is immersed in the bath of the melt, and a transfer line 3.
- a heat exchanger 2 is over the transfer line 3 connected to the container 1 in such a way that all of them together form a closed pipe system.
- Another container 200 which is connected to the outlet of the heat exchanger 2 via the transfer line 3, is shown in dashed lines. In this embodiment, too, container 1, transfer line 3, heat exchanger 2, transfer line 3 and further container 200 form a closed pipe system.
- the melt is pumped by the pump 10 from the container 1 via the transfer line 3 into and through the heat exchanger 2, where the temperature of the melt is changed by heating or cooling, and the temperature-changed melt is returned by the pump 10 via the transfer line 3 transported back into the container 1 or passed into the further container 200.
- a further embodiment of the device according to the invention is shown, which is designed as a device for melting and keeping warm non-ferrous metals, which can contain, for example, magnesium, zinc, lead, etc. It has a melting and holding furnace 1 and a heat exchanger 2 as a container, the heat exchanger 2 being connected to the interior of the furnace 1 via the transfer line 3.
- the furnace comprises a crucible 4 in which the melt is accommodated, heating devices 5 being attached to the furnace walls which, depending on its heating power, bring the melt in the crucible 4 to a temperature that keeps the melt in the liquid state.
- the crucible 4 is closed by a cover 6 in which at least one opening 7 (shown open here) for the introduction of solid metal material to be melted, for example in the form of pigs, is arranged.
- the transfer line 3 comprises an inlet line 8 and a return line 9, which are each guided through the cover 6 of the crucible 4 and protrude into the melt and are connected to the heat exchanger 2.
- the pipe ends are below the surface of the bath.
- the transfer lines are heated by trace heating.
- Each pipe has a terminal box with a plug for the electrical connection.
- the pump 10 is provided, which also passes through the cover 6 protrudes and is connected with its suction end 11 to the end of the supply line 8.
- the in Fig. 2 The heat exchanger 2 shown is provided with a heating device which is designed as a gas burner 12 in the exemplary embodiment.
- Fig. 3a, b the heat exchanger 2 is shown in more detail and designed as a tube bundle heat exchanger.
- a flame tube 13 is provided in the center and is connected to the burner 12, the flames of the burner being directed into the flame tube 13.
- a tube bundle 14 is spirally wound around the flame tube 13, which is connected to the feed line 8 and the return line 9 and leads melt from the feed line 8 to the return line 9.
- a partition 19 divides the tube bundle 14 into a first tube bundle area 0 and a second tube bundle area 21.
- a heat-insulating cylindrical wall 15 and a corresponding base 16 and cover 17 are provided around the tube bundle 14, the burner 12 reaching through the cover 17.
- an exhaust pipe 18 is also connected to the interior of the heat exchanger, via which the exhaust gases generated by the combustion process are discharged.
- the shape shown is similar to that of an oil heater.
- the tube bundle 14 there is a large inner tube made of heat-resistant material with a refractory-lined bottom.
- the flame burns against the floor, the gases come back up the tube wall, flow over the upper edge back into the first tube bundle area 20.
- the gases flow downwards around the lower edge of the partition 19 in the second bundle area 21 and here from bottom to top to the side exhaust outlet. These exhaust gases can still be passed through the furnace.
- the temperature level is so high that the heating power is sufficient to compensate for the temperature losses in the crucible furnace.
- FIG. 13 is a further exemplary embodiment in a view similar to that in FIG Fig. 1 shown, with this embodiment to the embodiment according to Fig. 1
- the heat exchanger is designed as an induction heat exchanger.
- the pipeline is run through an inductor and the melt is heated by the alternating magnetic field.
- preheated pigs which for example consist of a magnesium alloy, are introduced into the crucible 4 through the opening 7 in the described furnaces, these pigs being heated and liquefied directly in the melt.
- This process cools the melt, particularly in the vicinity of the pigs. Therefore, as soon as pigs are to be melted, the pump 10 is activated, the melt is sucked in at a first temperature T1 and conveyed via the feed line 8 into the heat exchanger 2, in which the temperature of the melt is increased. After leaving the heat exchanger 2, the melt with the higher second temperature T2 is returned to the crucible 4 via the return line 9.
- This process of conveying the melt into the heat exchanger 2, the heating in the heat exchanger 2 and its return to the crucible 4 can be controlled by temperature, process or manually. It is advantageous if the position of the pigs to be melted is arranged between the outlet opening of the return line 9 and the suction point of the pump.
- the melt is conveyed into the heat exchanger 2, cooled in the heat exchanger and returned to the crucible 4.
- the intake temperature T1 is higher than the temperature T2 of the outlet opening of the return line 9.
- the process is started automatically or manually.
- the combustion air fan can be used for cooling with gas or oil heated heat exchangers.
- cooling air can also be passed through the heat exchanger 2 via an additional fan, with which the melt is cooled. With this process, thermal energy can be extracted from the melt. In the event of rapid shutdowns from the melting process or rapid temperature reductions in the melt, it is advantageous to quickly dissipate thermal energy from the system.
- the overheated furnace lining can be pushed in, and the melt may overshoot and critical excess temperatures, at which the effectiveness of the protective gassing decreases and the risk potential increases significantly.
- the cooling heat exchanger you can these situations can be avoided by forced cooling of the melt.
- the cooling process until the melt solidifies takes a long time with large amounts of melt in well-insulated furnaces.
- the melt passes through mixed crystal phases during this time, which results in segregation, which impairs the quality of the melt and later requires more maintenance. With the cooling heat exchanger, these times can be reduced and the side effects described above can be significantly reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Furnace Details (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Description
Die Erfindung betrifft eine Vorrichtung zur Temperaturbehandlung von Schmelzen aus Nichteisenmetallen und eine Verwendung eines Wärmetauschers.The invention relates to a device for the temperature treatment of melts made of non-ferrous metals and a use of a heat exchanger.
Schmelzen von Nichteisenmetallen werden üblicherweise in beheizten Behältern mit Tiegeln aufgenommen, wobei die Beheizung indirekt, z.B. mit einer elektrischen oder Gas-Heizvorrichtung über die Tiegelwand, oder direkt, z.B. über Tauchheizstäbe, die in die Schmelze eingebracht werden, vorgenommen wird (z.B.
Aus der Veröffentlichung
Das Aufschmelzen von Nichteisenmetallen, insbesondere Magnesiumlegierungen, wird in der Praxis in Öfen mit offener Badoberfläche durchgeführt und kann in zwei Phasen unterteilt werden. Das Nichteisenmetall wird beispielsweise in Form von vorgewärmten Masseln, Band, Stab oder Stückgut in den Ofen direkt in die Schmelze eingebracht und das Material wird bis zur Verflüssigung, bei der der Soliduspunkt der Legierung erreicht wird, aufgeheizt. Die erforderliche Energie zum Aufschmelzen des Materials kommt hauptsächlich aus der flüssigen Schmelze aus der direkten Umgebung des Materials. Dadurch kühlt sich die Schmelze in der Umgebung entsprechend ab. Die zweite Phase ist die Überhitzung des abgekühlten Materials auf die erforderliche Soll-Temperatur. Für diese Erhitzung auf Prozesstemperatur muss Energie zugeführt werden, um das ursprüngliche Temperaturniveau wieder herzustellen.The melting of non-ferrous metals, in particular magnesium alloys, is carried out in practice in furnaces with an open bath surface and can be divided into two phases. The non-ferrous metal is brought into the furnace directly into the melt, for example in the form of preheated pigs, strips, rods or piece goods and the material is heated until it liquefies, at which the solidus point of the alloy is reached. The energy required to melt the material comes mainly from the liquid melt in the immediate vicinity of the material. As a result, the melt in the environment cools down accordingly. The second phase is the overheating of the cooled material to the required target temperature. For this heating to the process temperature, energy must be supplied in order to restore the original temperature level.
Die Energiezufuhr wird, wie erwähnt, in der Regel bei dem Ofen über die beheizte Tiegelwand, über in die Schmelze eingetauschte Heizelemente oder über Strahlung, die auf die Badoberfläche wirkt, realisiert. Für den Wärmeaustausch ist die wärmeübertragende Fläche größenbestimmend, um bei realistischen Randbedingungen den erforderlichen Wärmestrom zu erreichen.As mentioned, the energy supply is usually implemented in the furnace via the heated crucible wall, via heating elements exchanged in the melt or via radiation that acts on the bath surface. For the heat exchange, the size of the heat transferring surface is decisive in order to achieve the required heat flow under realistic boundary conditions.
Mit der Größe der beheizten Tiegelfläche vergrößert sich auch die Bad- bzw. Schmelzeoberfläche und das Tiegelvolumen. Bei Schmelzesystemen verursachen Badoberflächen viele Probleme. Eine größere Badoberfläche bedeutet:
- Verstärkte Oxidbildung
- Größerer Schutzgasbedarf
- Erhöhte Wärmeabstrahlung durch schlechtere Isolierung
- Erhöhter Reinigungsaufwand.
- Increased oxide formation
- Greater shielding gas requirement
- Increased heat radiation due to poorer insulation
- Increased cleaning effort.
Grundsätzlich steigt das Gefahrenpotential mit größeren Mengen Flüssigmaterial und größeren Badoberflächen.Basically, the risk potential increases with larger amounts of liquid material and larger bathroom surfaces.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Temperaturbehandlung von Schmelzen aus Nichteisenmetallen zu schaffen, die ein Heizen oder Kühlen der Schmelzen auch bei kleineren Schmelzeoberflächen gestattet.The invention is based on the object of creating a device for the temperature treatment of melts made of non-ferrous metals which allows the melts to be heated or cooled even with smaller melt surfaces.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.This object is achieved according to the invention by the features of claim 1.
Durch die in den Unteransprüchen angegebenen Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen möglich.The measures specified in the subclaims are advantageous Further training and improvements possible.
Erfindungsgemäß umfasst die Vorrichtung zur Temperaturbehandlung von Schmelzen aus Nichteisenmetallen einen die Schmelze des Nichteisenmetalls aufnehmenden Behälter, eine Fördervorrichtung mit Überführungsleitung und mindestens einen Wärmetauscher, wobei die Fördervorrichtung mit Überführungsleitung und der Wärmetauscher ausgebildet sind, Schmelze aus dem Behälter in und durch den mindestens einen Wärmetauscher zu ihrer Aufheizung oder Abkühlung und aus dem Wärmetauscher in den Behälter zurück oder in einen weiteren Behälter zu fördern. Dadurch, dass ein Wärmetauscher verwendet wird, dem die Schmelze über die Überführungsleitung aus dem Behälter zugeführt wird, kann die Schmelze ohne zusätzlich Badoberfläche und ohne Oxidbildung in relativ kurzer Zeit aufgeheizt, aber auch abgekühlt werden und kann aus dem Wärmetauscher in den Behälter zurück oder in einen anderen Behälter geleitet werden. Dabei kann der Behälter kleine Abmessungen mit kleinem Volumen, kleiner Badoberfläche, geringer Schutzbegasung bei kleinerem Gefahrenpotential aufweisen. Die Schmelzleistung wird hauptsächlich durch die Größe des Wärmetauschers bestimmt und ist damit unabhängig von der Behältergröße (Tiegelgröße). Durch den Wärmetauscher können vorhandenen Systeme auf eine größere Schmelzleistung nachgerüstet werden.According to the invention, the device for temperature treatment of melts from non-ferrous metals comprises a container receiving the melt of the non-ferrous metal, a conveying device with transfer line and at least one heat exchanger, the conveying device with transfer line and the heat exchanger being designed to feed melt from the container into and through the at least one heat exchanger their heating or cooling and conveying back from the heat exchanger into the container or into another container. Because a heat exchanger is used, to which the melt is fed from the container via the transfer line, the melt can be heated up in a relatively short time without an additional bath surface and without oxide formation, but also cooled and can be returned to or into the container from the heat exchanger be directed to another container. The container can have small dimensions with a small volume, a small bath surface, little protective gassing with a smaller risk potential. The melting capacity is mainly determined by the size of the heat exchanger and is therefore independent of the container size (crucible size). Existing systems can be retrofitted with a higher melting capacity using the heat exchanger.
In einem vorteilhaften Ausführungsbeispiel kann der Behälter oder der weitere Behälter als Schmelz- und Warmhalteofen ausgebildet sein, wobei durch Vorsehen des Wärmetauschers der Tiegel des Ofens so klein wie möglich gehalten werden kann, da die gewünschte Temperatur der Schmelze über den Wärmetauscher erreicht wird. Außerdem wird das Gefahrenpotential eines Brandes verringert. Weiterhin ist es möglich, in Gebrauch befindliche Schmelz- und Warmhalteöfen ohne größeren Aufwand nachzurüsten.In an advantageous embodiment, the container or the further container can be designed as a melting and holding furnace, the crucible of the furnace being kept as small as possible by providing the heat exchanger, since the desired temperature of the melt is reached via the heat exchanger. In addition, the hazard potential of a fire is reduced. It is also possible to retrofit melting and holding furnaces in use without great effort.
Die Fördereinrichtung weist eine Pumpe auf, die in die Schmelze hineinragt, wodurch die Schmelze über die Überführungsleitung aus dem Behälter durch den Wärmetauscher und in den Behälter zurück oder einen weiteren Behälter transportiert werden kann. Dabei kann der weitere Behälter in verschiedenster Weise ausgebildet sein. Beispielsweise kann unter den Begriff zweiter Behälter auch ein Rohrleitungssystem zum Transport der Schmelze fallen. Es kann auch ein weiterer Ofen sein, in dem gefiltert, legiert oder gereinigt wird. Auch kann die Schmelze in ein Überlaufsystem gefördert werden, in dem z.B. ein Niveau konstant gehalten wird und der Überlauf wieder zurück in den Behälter geführt wird.The conveying device has a pump which protrudes into the melt, whereby the melt can be transported via the transfer line from the container through the heat exchanger and back into the container or into another container. The further container can be designed in the most varied of ways. For example, the term second container can also include a pipeline system for transporting the melt. It can also be another furnace in which filtering, alloying or cleaning is carried out. The melt can also be conveyed into an overflow system in which, for example, a level is kept constant and the overflow is fed back into the container.
Gemäß der Erfindung bilden der Behälter bzw. der weitere Behälter, die Überführungsleitung mit in die Schmelze eintauchendem Eintrittsende und in die Schmelze eintauchendem Austrittsende und der Wärmetauscher ein geschlossenes Rohrsystem, so dass eine Erwärmung der Schmelze ohne Kontakt zur Atmosphäre durchgeführt werden kann und damit die Bildung zusätzlicher Oxide vermieden wird. Außerdem kann die Schmelze in dem geschlossenen Rohrsystem nicht brennen. Weiterhin ist keine Schutzbegasung in dem geschlossenen Rohrsystem erforderlich. Die erfindungsgemäße Vorrichtung kann somit auch zur Überhitzung von Schmelze genutzt werden, die in einem Prozessschritt auf eine höhere Verarbeitungstemperatur im geschlossenen Rohrsystem angehoben werden soll.According to the invention, the container or the further container, the transfer line with the inlet end immersed in the melt and the outlet end immersed in the melt and the heat exchanger form a closed pipe system, so that the melt can be heated without contact with the atmosphere and thus the formation additional oxides are avoided. In addition, the melt cannot burn in the closed pipe system. Furthermore, no protective gassing is required in the closed pipe system. The device according to the invention can thus also be used for overheating melt which is to be raised in a process step to a higher processing temperature in the closed pipe system.
Vorteilhafterweise kann der Wärmetauscher als Rohrbündelwärmetauscher ausgebildet sein, bei dem auf der Innenseite der Rohre die Schmelze geführt wird und auf der Rohraußenseite Energie zugeführt wird, wodurch ein hoher Wärmeübertragungswirkungsgrad erreicht wird. Selbstverständlich sind andere Wärmetauschertypen verwendbar, wie Plattenwärmetauscher, Spiral- oder U-Rohrwärmetauscher, Mantelrohrwärmetauscher und andere.The heat exchanger can advantageously be designed as a tube bundle heat exchanger in which the melt is guided on the inside of the tubes and energy is supplied on the outside of the tubes, whereby a high degree of heat transfer efficiency is achieved. Of course, other types of heat exchangers can be used, such as plate heat exchangers, spiral or U-tube heat exchangers, jacket-tube heat exchangers and others.
Vorteilhafterweise weist der Wärmetauscher eine Heizvorrichtung auf, die mindestens einen Brenner und/oder elektrische Heizelemente oder einen Induktor umfasst.The heat exchanger advantageously has a heating device which comprises at least one burner and / or electrical heating elements or an inductor.
Zusätzlich kann der Wärmetauscher eine Kühlvorrichtung umfassen, die die Schmelze schnell abkühlen kann, was insbesondere bei einer Magnesiumschmelze von Bedeutung ist, um bei einer Überhitzung das Gefahrenpotential Brand zu reduzieren und die Schmelze schnell in den sicheren Temperaturbereich zu bringen.In addition, the heat exchanger can include a cooling device that can quickly cool the melt, which is particularly important in the case of a magnesium melt in order to reduce the risk of fire in the event of overheating and to quickly bring the melt into the safe temperature range.
Gas- und ölbeheizte Brennersysteme können zumindest teilweise zur Kühlung dienen. Dazu werden der oder die Brenner ausgeschaltet und es wird nur über das Brennluftgebläse Luft durch den oder die Brenner geblasen, wodurch die Schmelze in dem Wärmetauscher mit Luft gekühlt wird.Gas- and oil-heated burner systems can be used at least partially for cooling. To do this, the burner or burners are switched off and it is only over the combustion air fan blows air through the burner or burners, whereby the melt in the heat exchanger is cooled with air.
Gemäß einem vorteilhaften Ausführungsbeispiel können mehrere Wärmetauscher in einer Modulbauweise nacheinander in Reihe oder parallel zwischen die Überführungsleitung geschaltet werden, wodurch eine flexible Leistungserhöhung erreicht wird.According to an advantageous embodiment, several heat exchangers in a modular design can be connected one after the other in series or in parallel between the transfer line, as a result of which a flexible increase in output is achieved.
Die Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen
- Fig. 1
- eine schematische Darstellung der erfindungsgemäßen Vorrichtung zur Temperaturbehandlung von Schmelzen,
- Fig. 2
- ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung zur Temperaturbehandlung von Schmelzen aus Nichteisenmetallen in einer teilweise geschnittenen perspektivischen Ansicht,
- Fig. 3
- a) eine teilweise geschnittene perspektivische Ansicht des in
Fig. 1 verwendeten Wärmetauschers, b) eine Schnittansicht durch den Wärmetauscher, und - Fig. 4
- ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung in einer teilweise geschnittenen perspektivischen Ansicht.
- Fig. 1
- a schematic representation of the device according to the invention for the temperature treatment of melts,
- Fig. 2
- an embodiment of the device according to the invention for the temperature treatment of melts made of non-ferrous metals in a partially sectioned perspective view,
- Fig. 3
- a) a partially sectioned perspective view of the in
Fig. 1 heat exchanger used, b) a sectional view through the heat exchanger, and - Fig. 4
- a further embodiment of the device according to the invention in a partially sectioned perspective view.
Die in
Die Schmelze wird von der Pumpe 10 aus dem Behälter 1 über die Überführungsleitung 3 in den und durch den Wärmetauscher 2 gepumpt, dort wird die Temperatur der Schmelze durch Aufheizung oder Kühlung verändert, und die temperaturveränderte Schmelze wird von der Pumpe 10 wieder über die Überführungsleitung 3 in den Behälter 1 zurück transportiert oder in den weiteren Behälter 200 geleitet.The melt is pumped by the
In
Die Überführungsleitung 3 umfasst eine Zulaufleitung 8 und eine Rücklaufleitung 9, die jeweils durch den Deckel 6 des Tiegels 4 geführt sind und in die Schmelze hineinragen und mit dem Wärmetauscher 2 verbunden sind. Die Rohrenden liegen unter der Badoberfläche. Die Überführungsleitungen sind durch eine Begleitheizung beheizt. Jedes Rohr hat einen Klemmenkasten mit Stecker für den Elektroanschluss.The
Weiterhin ist die Pumpe 10 vorgesehen, die ebenfalls durch den Deckel 6 hindurch ragt und mit ihrem Saugende 11 mit dem Ende der Zulaufleitung 8 verbunden ist.Furthermore, the
Der in
In
Um das Rohrbündel 14 herum sind eine wärmeisolierende zylinderförmige Wand 15 und ein entsprechender Boden 16 und Deckel 17 vorgesehen, wobei der Brenner 12 den Deckel 17 durchgreift. Schließlich ist noch ein Abgasstutzen 18 mit dem Inneren des Wärmetauschers verbunden, über das die von dem Brennvorgang erzeugten Abgase abgeleitet werden.A heat-insulating
Die dargestellte Form ist ähnlich der einer Ölheizung. In dem Rohrbündel 14 steht ein großes Innenrohr aus hitzebeständigem Material mit einem feuerfest ausgekleideten Boden. Die Flamme brennt gegen den Boden, die Gase kommen an der Rohrwand nach oben zurück, strömen über die obere Kante zurück in den ersten Rohrbündelbereich 20. In dem Rohrbündel 14 nach unten umströmen die Gase die Unterkante der Trennwand 19 in dem zweiten Bündelbereich 21 und hier von unten nach oben zum seitlichen Abgasaustritt. Diese Abgase können noch durch den Ofen geführt werden. Das Temperaturniveau ist so hoch, dass die Heizleistung ausreicht, um die Temperaturverluste im Tiegelofen auszugleichen.The shape shown is similar to that of an oil heater. In the
In
Bei dem Aufheizen der Schmelze werden bei den beschriebenen Öfen vorgewärmte Masseln, die beispielsweise aus einer Magnesiumlegierung bestehen, durch die Öffnung 7 in den Tiegel 4 eingeführt, wobei diese Masseln direkt in der Schmelze aufgeheizt und verflüssigt werden. Durch diesen Vorgang wird die Schmelze, insbesondere in der Umgebung der Masseln abgekühlt. Daher wird, sobald Masseln geschmolzen werden sollen, die Pumpe 10 aktiviert, die Schmelze wird mit einer ersten Temperatur T1 ansaugt und über die Zulaufleitung 8 in den Wärmetauscher 2 gefördert, in dem die Temperatur der Schmelze erhöht wird. Nach Verlassen des Wärmetauschers 2 wird die Schmelze mit der höheren zweiten Temperatur T2 über die Rücklaufleitung 9 wieder in den Tiegel 4 rückgeführt.During the heating of the melt, preheated pigs, which for example consist of a magnesium alloy, are introduced into the
Dieser Vorgang des Förderns der Schmelze in den Wärmetauscher 2, die Erwärmung im Wärmtauscher 2 und ihrer Rückführung in den Tiegel 4 kann temperatur-, prozess- oder manuell gesteuert werden. Vorteilhaft ist, wenn die Position der aufzuschmelzenden Masseln zwischen der Auslassöffnung der Rücklaufleitung 9 und der Ansaugstelle der Pumpe angeordnet ist.This process of conveying the melt into the
Zum Zwangskühlen der Schmelze wird die Schmelze in den Wärmetauscher 2 gefördert, im Wärmetauscher abgekühlt und in den Tiegel 4 zurückgeführt. In diesem Fall ist die Ansaugtemperatur T1 höher als die Temperatur T2 der Auslassöffnung der Rücklaufleitung 9. Der Vorgang wird automatisch oder manuell gestartet. Zum Kühlen kann bei gas- oder öl-beheizten Wärmetauschern das Brennluftgebläse eingesetzt werden. Es kann aber auch über ein zusätzliches Gebläse Kühlluft durch den Wärmetauscher 2 geführt werden, mit dem die Schmelze abgekühlt wird. Mit diesem Prozess kann Wärmeenergie der Schmelze entzogen werden. Bei Schnellabschaltungen aus dem Schmelzprozess oder bei schnellen Temperaturabsenkungen der Schmelze ist es vorteilhaft, Wärmeenergie schnell aus dem System abzuführen. Bei Schnellabschaltungen kann es durch Nachdrücken der überhitzten Ofenausmauerung zu Temperaturüberschwinger der Schmelze sowie zu kritischen Übertemperaturen kommen, bei der die Wirksamkeit der Schutzbegasung nachlässt und das Gefahrenpotential deutlich steigt. Mit dem kühlenden Wärmetauscher können diese Situationen durch Zwangskühlung der Schmelze vermieden werden. Der Abkühlprozess bis zur Erstarrung der Schmelze dauert bei großen Schmelzemengen bei gut isolierten Öfen lange. Bei einigen Legierungen durchläuft die Schmelze in dieser Zeit Mischkristallphasen, die Ausseigerungen zur Folge hat, wodurch die Qualität der Schmelze beeinträchtigt wird und später einen erhöhten Pflegeaufwand nach sich zieht. Mit dem kühlenden Wärmetauscher können diese Zeiten reduziert werden und die oben beschriebenen Nebenwirkungen können deutlich reduziert werden.For the forced cooling of the melt, the melt is conveyed into the
Es ist möglich, im Gebrauch stehende Anlagen mit der Pumpe 10, der Überführungsleitung 2 und dem Wärmetauscher 3 nachzurüsten, so dass diese schon im Gebrauch befindlichen Anlagen auf eine höhere Schmelzleistung gebracht werden können.It is possible to retrofit systems that are in use with the
Claims (10)
- A device for heat treating melts made of non-ferrous metals, comprising a container (1) receiving the melt of the non-ferrous metal, a delivery device (10) including a transfer line (3) and at least one heat exchanger (2), the delivery device (10) including the transfer line (3) and the heat exchanger being designed to deliver melt from the container (1) into and through the at least one heat exchanger (2) for heating or cooling, and out of the heat exchanger (2) back into the container (1) or into a further container (200), characterized in that the transfer line (3), with the inlet end that is immersed into the melt and located beneath the bath surface and the outlet end that is immersed into the melt and located beneath the bath surface, and the heat exchanger (2) form a closed tube system passing through the heat exchanger.
- The device according to claim 1, wherein the container (1) is a melting and holding furnace (100).
- The device according to claim 1 or 2, wherein the delivery device comprises a pump (10) for pumping the melt through the heat exchanger (2) via the transfer line (3) out of the container (1), and back into the container (1) or into the further container (200).
- A device according to any one of claims 1 to 3, wherein the heat exchanger (2) is designed as a shell-and-tube heat exchanger.
- A device according to any one of claims 1 to 4, wherein the heat exchanger (2) comprises a heating device, which includes at least one burner (12), electric heating elements and/or an inductor.
- A device according to any one of claims 1 to 5, wherein the heat exchanger (2) comprises an exhaust gas outlet (18).
- A device according to any one of claims 2 to 6, wherein the melting and holding furnace comprises a feed opening (7) for feeding solid non-ferrous metal parts to be melted, such as pigs.
- A device according to any one of claims 1 to 7, wherein the heat exchanger (2) comprises a cooling device.
- The device according to claim 8, wherein the cooling device is designed in the form of a gas or air cooling system.
- A device according to any one of claims 1 to 9, wherein a plurality of heat exchangers (2) are consecutively connected in series or in parallel to one another between the transfer line (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18194933.0A EP3623079B1 (en) | 2018-09-17 | 2018-09-17 | Device for the thermal treatment of melts produced from non-ferrous metals using a heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18194933.0A EP3623079B1 (en) | 2018-09-17 | 2018-09-17 | Device for the thermal treatment of melts produced from non-ferrous metals using a heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3623079A1 EP3623079A1 (en) | 2020-03-18 |
EP3623079B1 true EP3623079B1 (en) | 2021-11-10 |
Family
ID=63637808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18194933.0A Active EP3623079B1 (en) | 2018-09-17 | 2018-09-17 | Device for the thermal treatment of melts produced from non-ferrous metals using a heat exchanger |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3623079B1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6585797B2 (en) * | 2001-01-25 | 2003-07-01 | Alcoa Inc. | Recirculating molten metal supply system and method |
DE10256513B4 (en) | 2002-12-04 | 2009-11-26 | Ing. Rauch Fertigungstechnik Ges.M.B.H. | Method for melting a metal and apparatus for carrying out the method |
-
2018
- 2018-09-17 EP EP18194933.0A patent/EP3623079B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3623079A1 (en) | 2020-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2551716A1 (en) | METAL MELTING PROCESS AND EQUIPMENT | |
DE3935263A1 (en) | MELTING STOVE AND HEATING METHOD FOR A MELTING STOVE | |
DE69001640T2 (en) | High pressure vessel for hot isostatic pressing with arrangements for cooling. | |
DE102009028865A1 (en) | Reflow soldering plant useful for continuous soldering of soldering material, comprises a pre-heating zone, a soldering zone, a cooling zone and a vacuum zone that connects the soldering zone | |
DE2050159A1 (en) | Convection oven for preparing food | |
EP0230492A1 (en) | Glass melting furnace of improved efficiency | |
DE102016114841A1 (en) | Batch furnace for annealing stock and heat treatment method | |
DE112011104460T5 (en) | Reflow soldering apparatus and method | |
EP3623079B1 (en) | Device for the thermal treatment of melts produced from non-ferrous metals using a heat exchanger | |
DE599522C (en) | Tapping device for metallurgical furnaces | |
DE2835673A1 (en) | METHOD AND DEVICE FOR PREHEATING SCRAP | |
EP2791606B2 (en) | Closed transport fluid system for furnace-internal heat exchange between annealing gases | |
DD216707A5 (en) | METHOD FOR MELTING GLASS | |
DE112004001923B4 (en) | High-pressure heat treatment furnace | |
DE19939786C2 (en) | Device for melting or refining glasses or glass ceramics | |
DE202009011875U1 (en) | Apparatus for supplying an inert gas to a wave soldering machine | |
DE102008052571A1 (en) | Diffusion oven useful in semiconductor manufacture and for doping solar cells, comprises reactor enclosed by reaction pipe, outer casing, heating elements, means for locking the pipe, means for locking the casing and vacuum producing means | |
DE102006043287B4 (en) | Thermal oil oven system | |
DE102012025436A1 (en) | Internal combustion engine | |
DE69802671T2 (en) | REFRIGERATED BASKET FOR STEEL PLANTS | |
DE320485C (en) | Process and furnace for bright hardening and bright annealing of metal objects | |
DE102019120831A1 (en) | Batch holder, nitriding furnace and heat treatment system | |
DE681232C (en) | Device for carrying out chemical reactions, especially for the production of lead-sodium alloys | |
DE102022205812A1 (en) | Melting furnace and method for melting metal with electrically heatable immersion heating element | |
DE542538C (en) | Electric induction furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17P | Request for examination filed |
Effective date: 20200918 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20201015 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210415 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1445597 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018007753 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220310 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220310 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220210 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220211 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018007753 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220917 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220917 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220917 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230912 Year of fee payment: 6 Ref country code: AT Payment date: 20230921 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240923 Year of fee payment: 7 |