EP3619732B1 - Snap-action switch having a current-conducting snap-action spring, method for producing such a snap-action switch, and overload relay and tripping indicator having such a snap-action switch - Google Patents

Snap-action switch having a current-conducting snap-action spring, method for producing such a snap-action switch, and overload relay and tripping indicator having such a snap-action switch Download PDF

Info

Publication number
EP3619732B1
EP3619732B1 EP18719879.1A EP18719879A EP3619732B1 EP 3619732 B1 EP3619732 B1 EP 3619732B1 EP 18719879 A EP18719879 A EP 18719879A EP 3619732 B1 EP3619732 B1 EP 3619732B1
Authority
EP
European Patent Office
Prior art keywords
snap
spring
action
switch
action switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18719879.1A
Other languages
German (de)
French (fr)
Other versions
EP3619732A1 (en
Inventor
Christoph Bausch
Claudia Pleikies
Raimund MATHEA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Intelligent Power Ltd
Original Assignee
Eaton Intelligent Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Intelligent Power Ltd filed Critical Eaton Intelligent Power Ltd
Publication of EP3619732A1 publication Critical patent/EP3619732A1/en
Application granted granted Critical
Publication of EP3619732B1 publication Critical patent/EP3619732B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/20Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition
    • H01H83/22Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being unbalance of two or more currents or voltages
    • H01H83/223Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being unbalance of two or more currents or voltages with bimetal elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H5/00Snap-action arrangements, i.e. in which during a single opening operation or a single closing operation energy is first stored and then released to produce or assist the contact movement
    • H01H5/04Energy stored by deformation of elastic members
    • H01H5/18Energy stored by deformation of elastic members by flexing of blade springs
    • H01H5/20Energy stored by deformation of elastic members by flexing of blade springs single blade moved across dead-centre position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/74Means for adjusting the conditions under which the device will function to provide protection
    • H01H71/7427Adjusting only the electrothermal mechanism
    • H01H71/7445Poly-phase adjustment

Definitions

  • the invention relates to a snap switch with a current-carrying spring according to claim 2, a method for producing such a snap switch according to claim 1 and an overload relay and a trip detector with such a snap switch according to claims 9 and 10, respectively.
  • a spring for an electrical snap switch which has a spring steel core plated with a thin layer of copper.
  • the thickness of the copper plating is chosen such that it has a significantly higher electrical conductivity than the spring steel core, but does not significantly affect its springiness.
  • the disruptive influence of the plated copper can cause increased production variability.
  • a miniature switch which has a movable spring plate which is plated in a contact area with fixed contacts with a noble metal such as silver, gold or an alloy thereof in order to increase the electrical conductivity at the corresponding interfaces and at the same time a moving one on the movable spring plate To set contact with extremely reduced thickness.
  • the US patent also discloses US5,121,095 a thermal motor protection switch with a bimetal provided with silver plating in a contact area to improve contactability.
  • German disclosure document DE 19537418 A1 discloses a thermally controlled electrical switching device having a temperature controller comprising a snap switch provided with a fixed contact and a movable contact connected to a metal snap spring, a bimetal element influencing the movement of the movable contact. Edge parts of the snap-action spring can be coated with an electrically highly conductive layer.
  • the object of the present invention is to improve a snap switch with a current-carrying spring.
  • An idea underlying the present invention is to produce the current-carrying spring of a spring switch from a multi-layer plated material, and to displace the plating at at least one adjustment point of the spring, and to deform the spring during assembly in the spring switch, so that by means of precise shaping A defined jump movement is made possible during the assembly process and, in particular, the jump switch is adjusted accordingly.
  • the plating is provided over as large an area as possible and in particular is only displaced at the adjustment point(s), so that the best possible electrical conductivity for a current flow via the spring and one that is as precisely defined as possible Jumping movement can be ensured by good deformability at the adjustment point(s), in contrast to plating only at a contact area to improve the contact ability.
  • the plating in particular has one or more metal layers, which preferably have better electrical conductivity than a base material or the base layer on which the plating is applied.
  • the plating can have a layer made of a non-ferrous metal and/or a layer made of a noble metal, while the base material or the base layer can be made of a spring material such as an elastic metal, in particular a spring steel.
  • the present invention differs in the shape of the spring formed from a multi-layer material, in which the plating with the more conductive material is partially or completely at the adjustment point (s) of the spring, i.e. in particular at bending and / or buckling points is displaced so that the core of the spring, the actual spring material, can receive the desired deformation. This ensures that the spring material can be deformed in a more defined manner and that springs manufactured in this way have less production variation.
  • the carrier of the leaf spring forming the spring can be individually slightly deformed in a partially assembled spring switch in order to avoid manufacturing tolerances of the spring in the operatively connected functional chain of a device in which the spring switch is installed and which has several parts and / or assemblies may have to compensate.
  • Jump switch has a current-carrying spring which can be brought into two rest positions by mechanical actuation, with the following steps: producing the spring from a multi-layer plated material, fixing the spring at least one end in the spring switch, and deforming the spring at the adjustment points at the Mounting in the spring switch to adjust the spring switch, with partial or complete displacement of the plating at adjustment points of the spring either during the deformation step or before the deformation step.
  • a further embodiment of the invention relates to a snap switch which has a current-carrying spring which can be brought into two rest positions by mechanical actuation and is made from a multi-layer plated material, the plating being partially or completely displaced at adjustment points of the spring, and wherein the Jump switch is adjusted in that the spring has been deformed at the adjustment points during assembly in the jump switch.
  • the jump switch is produced using the method according to the invention.
  • the current-carrying spring Before assembly in the snap switch, the current-carrying spring can already be pre-bent, which can, for example, make assembly of the snap switch easier.
  • the plating has at least one layer made of a non-ferrous metal and/or one layer made of a noble metal.
  • the plating can therefore be designed as a single layer, for example a plating with a layer of non-ferrous metal such as copper, or a plating with a layer of precious metal such as silver, or it can be designed in multiple layers, for example with a first layer of non-ferrous metal and a second layer of precious metal .
  • a multi-layer plating can be chosen, for example, to achieve a certain electrical conductivity of the spring.
  • the non-ferrous metal can in particular be copper and the current-carrying spring can in particular be made from a spring steel strip that is copper-plated on both sides by punching out and possibly pre-bending.
  • the spring switch When assembling the spring switch, for example, the spring switch may have been fixed at one, two or three ends either under tension or fixed without tension and tension in the spring spring generated after fixation, and/or the spring switch can be fixed by denting and/or bending the spring or on a support of the spring.
  • the non-ferrous metal can be copper
  • the spring has a defined copper layer so that the spring overall has a low specific resistance of less than 0.14 ohm * mm 2 /m
  • / or the multi-layer material which the spring is manufactured can have a low specific resistance of less than 0.14 ohm * mm 2 /m.
  • certain alloys for spring applications achieve a specific resistance of less than 0.14 ohm * mm 2 /m and could therefore be used as a spring material for the spring in order to achieve the desired corresponding electrical conductivity.
  • the specific resistance of the entire spring can also be influenced by a plating with a low specific resistance in such a way that the desired electrical conductivity is obtained.
  • the plating of the spring can in particular be applied to a spring core without an intermediate layer.
  • the spring can be designed for use at higher temperatures, in particular of more than approximately 100 ° C. This can be achieved in particular by selecting appropriate spring materials.
  • the operating temperature of spring steel can be between 80°C and 300°C, depending on the type. Since the spring properties of the spring are essentially determined by the spring material, for example the spring steel, and are only slightly influenced by the plating, the operating temperature of the spring essentially determined by the operating temperature of the spring material. By appropriately selecting, for example, a suitable type of spring steel with an operating temperature of more than approximately 100 ° C, the spring can be designed for use at this temperature.
  • the spring can be designed for frequent bending changes. This can be achieved in particular by selecting a suitable spring material, in particular spring steel; For example, a copper-beryllium alloy is suitable for frequent bending changes or high dynamic loads, but higher dynamic load ranges can also be achieved by selecting appropriate types of spring steel and a spring with such types of spring steel made of spring material can be designed for frequent bending changes and the corresponding dynamic load.
  • the invention relates to an overload relay with an overload release, an auxiliary switch which has a snap switch according to the invention and as described herein, and a mechanical transmission device for transmitting a tripping process from the overload release to the snap switch of the auxiliary switch, the transmission device during a tripping process a movement of the current-carrying spring of the jump switch causes the jump switch to switch.
  • a further embodiment of the invention relates to a trip indicator for a switching device, which is designed to signal a tripped state of a switching device mechanically coupled to it, and has a snap switch according to the invention and as described herein, wherein when the switching device is triggered via the mechanical Coupling causes a movement of the current-carrying spring of the jump switch in such a way that the jump switch switches.
  • Fig. 1 shows an exemplary embodiment of an overload relay 10, which includes an overload release 12 and an auxiliary switch 14.
  • the overload release 12 has a bimetal release per electrical phase, as is the case, for example DE 3840064 A1 is described.
  • Increased current flow in the individual phases causes the bimetal releases to deform or different current flows in the individual phases, as they do
  • a mechanical transmission device which will be described in detail below, is actuated. This actuation in turn results in a triggering process being transmitted to a snap switch of the auxiliary switch 14.
  • a tripping process is transmitted from the overload release 12 to the snap-action switch via the mechanical transmission device as described below: if the bimetal release of the overload release 12 is deformed, bridges 22 'and 22" are moved and an actuating lever 22 is changed in position (in the example shown shifted and rotated). in turn presses on the spring 16 (for example a so-called cracking frog), so that it jumps from a first rest position to a second rest position. In the first rest position, normally closed contacts 18 of the auxiliary switch 14 are closed and normally open contacts 20 of the auxiliary switch 14 are opened. In the second rest position, the normally closed contacts 18 are open and the normally open contacts 20 are closed.
  • the power supply to the control circuit of the associated contactor and thus indirectly the power supply to the phases of the circuit to be protected can be interrupted. This corresponds to the tripped state in the event of an overload or the tripped state in the event of a phase failure of the overload relay 10.
  • an adjustment mechanism 30 of the tripping threshold which is operatively connected to the temperature compensation strip 26, the transmission of the tripping process from the overload release 12 can also be made more precise, in particular to the operating conditions of the overload relay 10 be adjusted.
  • Fig. 2 shows the structure of the jump switch in the auxiliary switch 14 in detail.
  • the actuating lever 22, the release lever 24, the Temperature compensation strip 26 and the spring actuation lever 28 comprising mechanical transmission chain for the transmission of a triggering process to the spring 16 can be seen.
  • the basic shape of the spring 16 is punched out of a spring steel strip plated on both sides with an electrically conductive non-ferrous metal such as copper.
  • the spring 16 is pre-bent. However, pre-bending is not absolutely necessary.
  • the spring 16 is fixed under tension at its two ends.
  • the spring can also be fixed at just one or three ends.
  • the spring can also be fixed in a tension-free manner, with tension in the spring only being generated after fixation, for example by dents.
  • Two fixations 161 and 162 can be seen at one end of the spring 16 on a support 165 for the spring 16.
  • the other end of the spring 16 can be fixed separately with an aid during assembly, which is removed again after assembly has been completed.
  • the jump switch is now adjusted, in particular by buckling and/or bending at adjustment points 163, 164 of the spring 16 or on a support of the spring 16, that is, in particular, the jumping of the spring 16 from the first to the second rest position and back is adjusted.
  • the adjustment points 163, 164 can also be fixed, which can make the deformation easier. What is important here is that the non-ferrous metal plating is partially or even completely displaced at the adjustment points 163 and 164 of the spring 16, i.e.
  • This displacement can have already taken place during plating by partial plating, or after plating by specifically exposing the adjustment points 163 and 164, for example by grinding or denting, or even only during adjustment, for example by partial removal during bending and / or denting.
  • the displacement causes the core of the spring 16, i.e. the actual spring material can receive the desired deformation and the springs 16 have a lower production spread.
  • the carrier of the spring 16 can be individually slightly deformed in the partially assembled overload relay or auxiliary switch in order to compensate for any manufacturing tolerances of the spring 16 in an operatively connected functional chain.
  • Fig. 4 shows the overload relay 10 with the overload release 12 and the auxiliary switch 14, in which the auxiliary switch 14 differs from that in Fig. 1 and 2
  • a different configuration of the spring is used: in this case, the spring 16 'has a dent as an adjustment point 166; The adjustment point here is not at the fixings of the spring as in the exemplary embodiments Fig. 1 to 3 intended.
  • the dent is introduced in particular after mounting the spring 16 'and fixing it in the auxiliary switch 14 in order to ensure that the spring 16' in the auxiliary switch 14 is set as precisely as possible.
  • Fig. 5 shows the overload relay 10 with the overload release 12 and the auxiliary switch 14, with a spring 16" inserted in the auxiliary switch 14, which is punched out of a partially plated strip.
  • the partial plating of the spring is shown in the top view of the spring Fig. 6 shown: approximately in the middle of the spring 16" runs an area 161", which is not plated and extends between two plated areas 162" of the spring 16".
  • Adjustment points 163" and 164" are provided.
  • the invention makes it possible to avoid the use of harmful metals such as copper-beryllium.
  • the invention enables the production of snap switches with lower manufacturing tolerances for the springs used.

Landscapes

  • Breakers (AREA)

Description

Die Erfindung betrifft einen Sprungschalter mit einer stromführenden Sprungfeder gemäß Anspruch 2, ein Verfahren zur Herstellung eines derartigen Sprungschalters gemäß Anspruch 1 sowie ein Überlastrelais und einen Ausgelöstmelder mit einem derartigen Sprungschalter gemäß Anspruch 9 bzw. 10.The invention relates to a snap switch with a current-carrying spring according to claim 2, a method for producing such a snap switch according to claim 1 and an overload relay and a trip detector with such a snap switch according to claims 9 and 10, respectively.

Der Einsatz eines solchen Sprungschalters mit einer stromführenden Sprungfeder in einem Überlastrelais ist aus der deutschen Offenlegungsschrift DE 3840064 A1 bekannt und darin in Fig. 1 gezeigt. An die in solchen Überlastrelais eingesetzten Sprungfedern werden Anforderungen für eine hohe mechanische und thermische Langzeitstabilität und gute elektrische Leitfähigkeit gestellt. Zum Erfüllen dieser Anforderungen bieten sich Werkstoffe aus Kupfer-Beryllium-Legierungen an. Der Legierungsbestandteil Beryllium gilt jedoch als gesundheitsschädlich. Daher soll er möglichst vermieden werden. Zudem könnte sein Einsatz in Zukunft genau aus diesem Grund eingeschränkt oder ganz verboten werden.The use of such a snap switch with a current-carrying spring in an overload relay is from the German published application DE 3840064 A1 known and in it Fig. 1 shown. The springs used in such overload relays are subject to requirements for high mechanical and thermal long-term stability and good electrical conductivity. Materials made from copper-beryllium alloys can be used to meet these requirements. However, the alloy component beryllium is considered harmful to health. Therefore, it should be avoided if possible. In addition, its use could be restricted or banned entirely for precisely this reason in the future.

Als Alternative zur stromführenden Sprungfeder sind Lösungen bekannt, welche die Funktionen mechanische Langzeitstabilität und gute elektrische Leitfähigkeit entkoppeln. Es werden beispielsweise klassische Stahlfedern mit einer Kipplagerungsmechanik und beweglichen Schaltkontakten, welche den Strom führen, gepaart, siehe beispielsweise die aus der europäischen Patentanmeldung EP 2345056 A1 bekannte Lösung.As an alternative to the current-carrying spring, solutions are known that decouple the functions of long-term mechanical stability and good electrical conductivity. For example, classic steel springs are paired with a tilting bearing mechanism and movable switching contacts that carry the current, see for example those from the European patent application EP 2345056 A1 known solution.

Aus der britischen Offenlegungsschrift GB 669969 A ist eine Sprungfeder für einen elektrischen Schnappschalter bekannt, die einen Feder-Stahlkern aufweist, der mit einer dünnen Lage aus Kupfer plattiert ist. Die Dicke der Kupferplattierung ist hierbei derart gewählt, dass die sie eine wesentlich höhere elektrische Leitfähigkeit als der Feder-Stahlkern aufweist, dessen Federfähigkeit jedoch nicht wesentlich beeinträchtigt. Der Störeinfluss des aufplattierten Kupfers kann allerdings eine erhöhte Fertigungsstreuung bewirken.From the British disclosure document GB 669969 A A spring for an electrical snap switch is known which has a spring steel core plated with a thin layer of copper. The thickness of the copper plating is chosen such that it has a significantly higher electrical conductivity than the spring steel core, but does not significantly affect its springiness. However, the disruptive influence of the plated copper can cause increased production variability.

Schließlich ist aus der deutschen Offenlegungsschrift DE 3530221 A1 ein Miniaturschalter bekannt, der ein bewegliches Federplättchen aufweist, das in einem Kontaktbereich mit feststehenden Kontakten mit einem Edelmetall wie beispielsweise Silber, Gold oder einer Legierung daraus plattiert ist, um die elektrische Leitfähigkeit an den entsprechenden Grenzflächen zu erhöhen und gleichzeitig auf dem beweglichen Federplättchen einen bewegten Kontakt mit extrem verringerter Dicke festzulegen. Ebenso offenbart die US-Patentschrift US5,121,095 einen thermischen Motorschutzschalter mit einem Bimetall, das in einem Kontaktbereich mit einer Silberplattierung versehen ist, um die Kontaktfähigkeit zu verbessern. Die deutsche Offenlegungsschrift DE 19537418 A1 offenbart eine thermisch geregelte elektrische Schaltvorrichtung mit einem Temperaturregler, der einen Schnappschalter aufweist, der mit einem festen Kontakt und einem mit einer Schnappschaltfeder aus Metall verbundenen beweglichen Kontakt versehen ist, einem Bimetallelement, das die Bewegung des beweglichen Kontaktes beeinflußt. Randteile der Schnappschaltfeder können hierbei mit einer elektrisch gut leitenden Schicht beschichtet sein.Finally, from the German disclosure document DE 3530221 A1 a miniature switch is known which has a movable spring plate which is plated in a contact area with fixed contacts with a noble metal such as silver, gold or an alloy thereof in order to increase the electrical conductivity at the corresponding interfaces and at the same time a moving one on the movable spring plate To set contact with extremely reduced thickness. The US patent also discloses US5,121,095 a thermal motor protection switch with a bimetal provided with silver plating in a contact area to improve contactability. The German disclosure document DE 19537418 A1 discloses a thermally controlled electrical switching device having a temperature controller comprising a snap switch provided with a fixed contact and a movable contact connected to a metal snap spring, a bimetal element influencing the movement of the movable contact. Edge parts of the snap-action spring can be coated with an electrically highly conductive layer.

Aufgabe der vorliegenden Erfindung ist es nun, einen Sprungschalter mit einer stromführenden Sprungfeder zu verbessern.The object of the present invention is to improve a snap switch with a current-carrying spring.

Diese Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst. Weitere Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.This task is solved by the subject matter of the independent claims. Further refinements of the invention are the subject of the dependent claims.

Ein der vorliegenden Erfindung zugrundeliegender Gedanke besteht darin, die stromführende Sprungfeder eines Sprungschalters aus einem mehrschichtigen plattierten Werkstoff herzustellen, und die Plattierung an mindestens einer Justagestelle der Sprungfeder zu verdrängen, sowie die Sprungfeder bei der Montage im Sprungschalter zu verformen, so dass mittels präziser Formgebung beim Montagevorgang eine definierte Sprungbewegung ermöglicht wird und insbesondere dadurch der Sprungschalter entsprechend justiert wird. Die Plattierung ist hierbei möglichst großflächig vorgesehen und insbesondere nur an der oder den Justagestelle(n) verdrängt, so dass eine möglichst gute elektrische Leitfähigkeit für einen Stromfluss über die Sprungfeder sowie eine möglichst präzise definierte Sprungbewegung durch eine gute Verformbarkeit an der oder den Justagestelle(n) gewährleistet werden kann, im Unterschied zu einer Plattierung lediglich an einem Kontaktbereich zum Verbessern der Kontaktfähigkeit. Eine Verdrängung einer Plattierung an der oder den Justagestellen, an denen die Sprungfeder bei der Montage verformt wird, hat sich als eine Lösung für das Erreichen der zwei an sich nicht oder nur mit hohem technischem Aufwand kombinierbaren Effekte einer guten elektrischen Leitfähigkeit und einer möglichst präzise definierbaren Sprungbewegung bei der Montage herausgestellt. Die Plattierung weist insbesondere eine oder mehrere Metalllagen auf, die vorzugsweise eine bessere elektrische Leitfähigkeit als ein Basiswerkstoff oder die Grundschicht, auf dem bzw. der die Plattierung aufgebracht ist, besitzen. Beispielsweise kann die Plattierung eine Lage aus einem Buntmetall und/oder eine Lage aus einem Edelmetall aufweisen, während der Basiswerkstoff bzw. die Grundschicht aus einem Federwerkstoff wie beispielsweise einem elastischen Metall, insbesondere einem Federstahl hergestellt sein kann. Je nach Wahl des Federwerkstoffs für die Sprungfeder kann diese magnetische oder unmagnetische Eigenschaften aufweisen und für einen häufigen Biegewechsel ausgelegt sein. Von den aus der DE 3840064 A1 und GB 669969A bekannten Sprungfedern unterscheidet sich die vorliegende Erfindung in der Formgebung der aus einem mehrschichtigen Werkstoff gebildeten Sprungfeder, bei der die Plattierung mit dem besser leitfähigen Material an der oder den Justagestelle(n) der Sprungfeder, also insbesondere an Biege- und/oder Beulstellen teilweise oder vollständig verdrängt ist, damit der Kern der Feder, der eigentliche Federwerkstoff, die gewünschte Verformung erhalten kann. Dadurch wird erreicht, dass der Federwerkstoff definierter verformt werden kann und derart gefertigte Federn eine geringere Fertigungsstreuung aufweisen. Um den Störeinfluss der Federeigenschaften des aufplattierten Metalls zu minimieren, kann der Träger der die Sprungfeder bildenden Blattfeder in einem teilmontierten Sprungschalter individuell leicht verformt werden, um Fertigungstoleranzen der Feder in der wirkverbundenen Funktionskette eines Geräts, in dem der Sprungschalter eingebaut ist und die mehrere Teile und/oder Baugruppen aufweisen kann, auszugleichen.An idea underlying the present invention is to produce the current-carrying spring of a spring switch from a multi-layer plated material, and to displace the plating at at least one adjustment point of the spring, and to deform the spring during assembly in the spring switch, so that by means of precise shaping A defined jump movement is made possible during the assembly process and, in particular, the jump switch is adjusted accordingly. The plating is provided over as large an area as possible and in particular is only displaced at the adjustment point(s), so that the best possible electrical conductivity for a current flow via the spring and one that is as precisely defined as possible Jumping movement can be ensured by good deformability at the adjustment point(s), in contrast to plating only at a contact area to improve the contact ability. Displacing a plating at the adjustment point(s) where the spring is deformed during assembly has proven to be a solution for achieving the two effects of good electrical conductivity and one that can be defined as precisely as possible, which cannot be combined or can only be combined with great technical effort Jumping movement highlighted during assembly. The plating in particular has one or more metal layers, which preferably have better electrical conductivity than a base material or the base layer on which the plating is applied. For example, the plating can have a layer made of a non-ferrous metal and/or a layer made of a noble metal, while the base material or the base layer can be made of a spring material such as an elastic metal, in particular a spring steel. Depending on the choice of spring material for the spring, it can have magnetic or non-magnetic properties and can be designed for frequent bending changes. From the from the DE 3840064 A1 and GB 669969A Known springs, the present invention differs in the shape of the spring formed from a multi-layer material, in which the plating with the more conductive material is partially or completely at the adjustment point (s) of the spring, i.e. in particular at bending and / or buckling points is displaced so that the core of the spring, the actual spring material, can receive the desired deformation. This ensures that the spring material can be deformed in a more defined manner and that springs manufactured in this way have less production variation. In order to minimize the disruptive influence of the spring properties of the plated metal, the carrier of the leaf spring forming the spring can be individually slightly deformed in a partially assembled spring switch in order to avoid manufacturing tolerances of the spring in the operatively connected functional chain of a device in which the spring switch is installed and which has several parts and / or assemblies may have to compensate.

Eine Ausführungsform der Erfindung betrifft ein Verfahren zur Herstellung eines Sprungschalters nach der Erfindung und wie hierin beschrieben, wobei der Sprungschalter eine stromführende Sprungfeder aufweist, die durch mechanisches Betätigen in zwei Ruhestellungen gebracht werden kann, mit den folgenden Schritten: Herstellen der Sprungfeder aus einem mehrschichtigen plattierten Werkstoff, Fixieren der Sprungfeder an mindestens einem Ende im Sprungschalter, und Verformen der Sprungfeder an den Justagestellen bei der Montage im Sprungschalter, um den Sprungschalter zu justieren, wobei ein teilweises oder vollständiges Verdrängen der Plattierung an Justagestellen der Sprungfeder entweder beim Schritt des Verformens oder vor dem Schritt des Verformens erfolgt. Eine weitere Ausführungsform der Erfindung betrifft einen Sprungschalter, der eine stromführende Sprungfeder aufweist, die durch mechanisches Betätigen in zwei Ruhestellungen gebracht werden kann und aus einem mehrschichtigen plattierten Werkstoff hergestellt ist, wobei die Plattierung an Justagestellen der Sprungfeder teilweise oder vollständig verdrängt ist, und wobei der Sprungschalter dadurch justiert ist, dass die Sprungfeder an den Justagestellen bei der Montage im Sprungschalter verformt worden ist. Der Sprungschalter ist hierbei durch das erfindungsgemäße Verfahren hergestellt.One embodiment of the invention relates to a method of making a snap switch according to the invention and as described herein, wherein: Jump switch has a current-carrying spring which can be brought into two rest positions by mechanical actuation, with the following steps: producing the spring from a multi-layer plated material, fixing the spring at least one end in the spring switch, and deforming the spring at the adjustment points at the Mounting in the spring switch to adjust the spring switch, with partial or complete displacement of the plating at adjustment points of the spring either during the deformation step or before the deformation step. A further embodiment of the invention relates to a snap switch which has a current-carrying spring which can be brought into two rest positions by mechanical actuation and is made from a multi-layer plated material, the plating being partially or completely displaced at adjustment points of the spring, and wherein the Jump switch is adjusted in that the spring has been deformed at the adjustment points during assembly in the jump switch. The jump switch is produced using the method according to the invention.

Vor einer Montage im Sprungschalter kann die stromführende Sprungfeder bereits vorgebogen sein, was beispielsweise die Montage des Sprungschalters erleichtern kann.Before assembly in the snap switch, the current-carrying spring can already be pre-bent, which can, for example, make assembly of the snap switch easier.

Die Plattierung weist erfindungsgemäß mindestens eine Lage aus einem Buntmetall und/oder eine Lage aus einem Edelmetall auf.According to the invention, the plating has at least one layer made of a non-ferrous metal and/or one layer made of a noble metal.

Die Plattierung kann also im einfachsten Fall einlagig ausgebildet sein, beispielsweise eine Plattierung mit einer Lage Buntmetall wie Kupfer, oder eine Plattierung mit einer Lage Edelmetall wie Silber aufweisen, oder sie kann mehrlagig ausgebildet sein, beispielsweise mit einer ersten Lage Buntmetall und einer zweiten Lage Edelmetall. Eine mehrlagige Plattierung kann beispielsweise zum Erzielen einer bestimmten elektrischen Leitfähigkeit der Sprungfeder gewählt werden.In the simplest case, the plating can therefore be designed as a single layer, for example a plating with a layer of non-ferrous metal such as copper, or a plating with a layer of precious metal such as silver, or it can be designed in multiple layers, for example with a first layer of non-ferrous metal and a second layer of precious metal . A multi-layer plating can be chosen, for example, to achieve a certain electrical conductivity of the spring.

Das Buntmetall kann insbesondere Kupfer und die stromführende Sprungfeder insbesondere aus einem beidseitig Kupfer-plattierten Federstahlband durch Ausstanzen und ggf. Vorbiegen hergestellt sein.The non-ferrous metal can in particular be copper and the current-carrying spring can in particular be made from a spring steel strip that is copper-plated on both sides by punching out and possibly pre-bending.

Die Sprungfeder kann bei der Montage des Sprungschalters beispielsweise an ein, zwei oder drei Enden entweder unter Spannung fixiert worden sein oder spannungsfrei fixiert und eine Spannung der Sprungfeder nach der Fixierung erzeugt worden sein, und/oder der Sprungschalter kann durch Beulen und/oder Biegen an der Sprungfeder oder an einem Träger der Sprungfeder justiert worden sein.When assembling the spring switch, for example, the spring switch may have been fixed at one, two or three ends either under tension or fixed without tension and tension in the spring spring generated after fixation, and/or the spring switch can be fixed by denting and/or bending the spring or on a support of the spring.

Um eine gewünschte elektrische Leitfähigkeit zu erhalten, kann das Buntmetall Kupfer sein die Sprungfeder eine definierte Kupferschicht aufweisen so dass die Sprungfeder insgesamt einen geringen spezifischen Widerstand von kleiner als 0,14 Ohm * mm2/m aufweist, und/oder der mehrschichtige Werkstoff, aus dem die Sprungfeder herstellt ist, kann einen geringen spezifischen Widerstand von kleiner 0,14 Ohm * mm2/m aufweisen. Beispielsweise erreichen bestimmte Legierungen für Federanwendungen einen spezifischen Widerstand kleiner als 0,14 Ohm * mm2/m und könnten daher als Federwerkstoff für die Sprungfeder eingesetzt werden, um bereits dadurch eine gewünschte entsprechende elektrische Leitfähigkeit zu erreichen. Aber auch durch eine Plattierung mit einem geringen spezifischen Widerstand kann der spezifische Widerstand der gesamten Sprungfeder so beeinflusst werden, dass eine gewünschte elektrische Leitfähigkeit erhalten wird,
Die Plattierung der Sprungfeder kann insbesondere ohne Zwischenlage auf einem Federkern aufgebracht sein.
In order to obtain a desired electrical conductivity, the non-ferrous metal can be copper, the spring has a defined copper layer so that the spring overall has a low specific resistance of less than 0.14 ohm * mm 2 /m, and / or the multi-layer material which the spring is manufactured can have a low specific resistance of less than 0.14 ohm * mm 2 /m. For example, certain alloys for spring applications achieve a specific resistance of less than 0.14 ohm * mm 2 /m and could therefore be used as a spring material for the spring in order to achieve the desired corresponding electrical conductivity. But the specific resistance of the entire spring can also be influenced by a plating with a low specific resistance in such a way that the desired electrical conductivity is obtained.
The plating of the spring can in particular be applied to a spring core without an intermediate layer.

Weiterhin kann die Sprungfeder zum Einsatz bei höheren Temperaturen insbesondere von mehr als ungefähr 100 °C ausgelegt sein. Dies kann insbesondere durch die Auswahl entsprechend geeigneter Federwerkstoffe erreicht werden. Beispielsweise kann die Einsatztemperatur von Federstahl je nach Sorte bei 80°C bis 300°C liegen. Da die Feder Eigenschaften der Sprungfeder im Wesentlichen durch den Federwerkstoff, beispielsweise den Federstahl bestimmt werden, und nur gering von der Plattierung beeinflusst werden, wird die Einsatztemperatur der Sprungfeder wesentlich von der Einsatztemperatur des Federwerkstoffes bestimmt. Durch eine entsprechende Auswahl beispielsweise einer geeigneten Federstahlsorte mit einer Einsatztemperatur von mehr als ungefähr 100°C kann damit die Sprungfeder für den Einsatz bei dieser Temperatur ausgelegt werden.Furthermore, the spring can be designed for use at higher temperatures, in particular of more than approximately 100 ° C. This can be achieved in particular by selecting appropriate spring materials. For example, the operating temperature of spring steel can be between 80°C and 300°C, depending on the type. Since the spring properties of the spring are essentially determined by the spring material, for example the spring steel, and are only slightly influenced by the plating, the operating temperature of the spring essentially determined by the operating temperature of the spring material. By appropriately selecting, for example, a suitable type of spring steel with an operating temperature of more than approximately 100 ° C, the spring can be designed for use at this temperature.

Schließlich kann die Sprungfeder für häufige Biegewechsel ausgelegt sein. Dies kann insbesondere durch Auswahl eines geeigneten Federwerkstoffs insbesondere Federstahls erreicht werden; beispielsweise eignet sich für häufige Biegewechsel oder hohe dynamische Belastungen eine Kupfer-Beryllium-Legierung, aber es können durch eine Auswahl entsprechender Federstahlsorten auch höhere dynamische Belastungsbereiche erzielt und eine Sprungfeder mit solchen Federstahlsorten aus Federwerkstoff so für häufige Biegewechsel und die dementsprechende dynamische Belastung ausgelegt werden.Finally, the spring can be designed for frequent bending changes. This can be achieved in particular by selecting a suitable spring material, in particular spring steel; For example, a copper-beryllium alloy is suitable for frequent bending changes or high dynamic loads, but higher dynamic load ranges can also be achieved by selecting appropriate types of spring steel and a spring with such types of spring steel made of spring material can be designed for frequent bending changes and the corresponding dynamic load.

In einer weiteren Ausführungsform betrifft die Erfindung ein Überlastrelais mit einem Überlastauslöser, einem Hilfsschalter, der einen Sprungschalter nach der Erfindung und wie hierin beschrieben aufweist, und einer mechanischen Übertragungseinrichtung zum Übertragen eines Auslösevorgangs vom Überlastauslöser auf den Sprungschalter des Hilfsschalters, wobei die Übertragungseinrichtung bei einem Auslösevorgang eine Bewegung der stromführenden Sprungfeder des Sprungschalters derart bewirkt, dass der Sprungschalter schaltet.In a further embodiment, the invention relates to an overload relay with an overload release, an auxiliary switch which has a snap switch according to the invention and as described herein, and a mechanical transmission device for transmitting a tripping process from the overload release to the snap switch of the auxiliary switch, the transmission device during a tripping process a movement of the current-carrying spring of the jump switch causes the jump switch to switch.

Schließlich betrifft eine weitere Ausführungsform der Erfindung einen Ausgelöstmelder für ein Schaltgerät, der ausgebildet ist, einen Ausgelöst-Zustand eines mechanisch mit ihm gekoppelten Schaltgeräts zu signalisieren, und einen Sprungschalter nach der Erfindung und wie hierin beschrieben aufweist, wobei beim Auslösen des Schaltgeräts über die mechanische Kopplung eine Bewegung der stromführenden Sprungfeder des Sprungschalters derart bewirkt wird, dass der Sprungschalter schaltet.Finally, a further embodiment of the invention relates to a trip indicator for a switching device, which is designed to signal a tripped state of a switching device mechanically coupled to it, and has a snap switch according to the invention and as described herein, wherein when the switching device is triggered via the mechanical Coupling causes a movement of the current-carrying spring of the jump switch in such a way that the jump switch switches.

Weitere Vorteile und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung in Verbindung mit den in den Zeichnungen dargestellten Ausführungsbeispielen.Further advantages and possible applications of the present invention emerge from the following description in conjunction with those in the drawings illustrated embodiments.

Die Zeichnungen zeigen in

  • Fig. 1 ein Ausführungsbeispiel eines Überlastrelais mit einem Sprungschalter gemäß der Erfindung;
  • Fig. 2 eine Detailansicht der Auslösemechanik des Überlastrelais von Fig. 1;
  • Fig. 3 eine Detailansicht der Sprungfeder des im Überlastrelais von Fig. 1 eingebauten Sprungschalters;
  • Fig. 4 ein weiteres Ausführungsbeispiel eines Überlastrelais mit einem Sprungschalter, bei dem die Sprungfeder durch eine Blattfeder implementiert ist, die eine durch eine Beule ausgebildete Justagestelle besitzt, gemäß der Erfindung;
  • Fig. 5 ein weiteres Ausführungsbeispiel eines Überlastrelais mit einem Sprungschalter, bei dem die Sprungfeder durch eine Blattfeder implementiert ist, die aus einem teilplattierten Band ausgestanzt ist, gemäß der Erfindung; und
  • Fig. 6 eine Draufsicht auf die Sprungfeder des im Überlastrelais von Fig. 5 eingebauten Sprungschalters.
The drawings show in
  • Fig. 1 an embodiment of an overload relay with a snap switch according to the invention;
  • Fig. 2 a detailed view of the tripping mechanism of the overload relay Fig. 1 ;
  • Fig. 3 a detailed view of the spring in the overload relay Fig. 1 built-in jump switch;
  • Fig. 4 a further embodiment of an overload relay with a snap switch, in which the spring is implemented by a leaf spring having an adjustment point formed by a dent, according to the invention;
  • Fig. 5 a further embodiment of an overload relay with a spring switch, in which the spring is implemented by a leaf spring stamped from a partially plated strip, according to the invention; and
  • Fig. 6 a top view of the spring in the overload relay Fig. 5 built-in jump switch.

In der folgenden Beschreibung können gleiche, funktional gleiche und funktional zusammenhängende Elemente mit den gleichen Bezugszeichen versehen sein. Absolute Werte sind im Folgenden nur beispielhaft angegeben und sind nicht als die Erfindung einschränkend zu verstehen.In the following description, identical, functionally identical and functionally related elements may be provided with the same reference numerals. Absolute values are given below only as examples and are not to be understood as limiting the invention.

Fig. 1 zeigt ein Ausführungsbeispiel eines Überlastrelais 10, das einen Überlastauslöser 12 und einen Hilfsschalter 14 umfasst. Der Überlastauslöser 12 weist pro elektrischer Phase einen Bimetallauslöser, wie er beispielsweise in der DE 3840064 A1 beschrieben ist, auf. Erhöhter Stromfluss in den einzelnen Phasen, wie er beispielsweise bei Überlast auftreten kann, bewirkt eine Verformung der Bimetallauslöser oder unterschiedliche Stromflüsse in den einzelnen Phasen, wie sie beispielsweise beim Ausfall einer Phase auftreten können, bewirken entsprechende Differenzen bei der Verformung der Bimetallauslöser, wodurch eine mechanische Übertragungseinrichtung, die nachfolgend noch im Detail beschrieben wird, betätigt wird. Diese Betätigung führt wiederum dazu, dass ein Auslösevorgang auf einen Sprungschalter des Hilfsschalters 14 übertragen wird. Fig. 1 shows an exemplary embodiment of an overload relay 10, which includes an overload release 12 and an auxiliary switch 14. The overload release 12 has a bimetal release per electrical phase, as is the case, for example DE 3840064 A1 is described. Increased current flow in the individual phases, as can occur, for example, in the event of an overload, causes the bimetal releases to deform or different current flows in the individual phases, as they do For example, which can occur when a phase fails, cause corresponding differences in the deformation of the bimetal trigger, whereby a mechanical transmission device, which will be described in detail below, is actuated. This actuation in turn results in a triggering process being transmitted to a snap switch of the auxiliary switch 14.

Im Auslösefall wird also ein Auslösevorgang vom Überlastauslöser 12 über die mechanische Übertragungseinrichtung wie nun nachfolgend beschrieben auf den Sprungschalter übertragen: bei einer Verformung der Bimetallauslöser des Überlastauslösers 12 werden Brücken 22' und 22" verschoben und ein Betätigungshebel 22 in seiner Position verändert (im gezeigten Beispiel verschoben und gedreht). Die Positionsänderung des Betätigungshebels 22 wird auf einen Auslösehebel 24 im Hilfsschalter 14 übertragen. Dadurch wird der Auslösehebel 24 um eine Drehachse bewegt, und zwar so, dass er auf einen Sprungfeder-Betätigungshebel 28 Druck ausübt. Der Sprungfeder-Betätigungshebel 28 wiederum drückt auf die Sprungfeder 16 (zum Beispiel ein sogenannter Knackfrosch), so dass diese von einer ersten Ruhestellung in eine zweite Ruhestellung springt. In der ersten Ruhestellung sind Öffner-Kontakte 18 des Hilfsschalters 14 geschlossen und Schließer-Kontakte 20 des Hilfsschalters 14 geöffnet. In der zweiten Ruhestellung sind die Öffner-Kontakte 18 geöffnet und die Schließer-Kontakte 20 geschlossen. Durch das Öffnen der Öffner-Kontakte 18 kann beispielsweise die Stromzufuhr des Steuerstromkreises des zugehörigen Schützes und so indirekt die Stromzufuhr zu den Phasen des zu schützenden Stromkreises unterbrochen werden. Dies entspricht dem Ausgelöst-Zustand im Überlastfall oder dem Ausgelöst-Zustand bei Phasenausfall des Überlastrelais 10. Über einen Einstellmechanismus 30 der Auslöseschwelle, der wirkverbunden ist mit dem Temperaturkompensationsstreifen 26, kann zudem die Übertragung des Auslösevorgangs vom Überlastauslöser 12 insbesondere an Betriebsbedingungen des Überlastrelais 10 genauer angepasst werden.In the event of a trip, a tripping process is transmitted from the overload release 12 to the snap-action switch via the mechanical transmission device as described below: if the bimetal release of the overload release 12 is deformed, bridges 22 'and 22" are moved and an actuating lever 22 is changed in position (in the example shown shifted and rotated). in turn presses on the spring 16 (for example a so-called cracking frog), so that it jumps from a first rest position to a second rest position. In the first rest position, normally closed contacts 18 of the auxiliary switch 14 are closed and normally open contacts 20 of the auxiliary switch 14 are opened. In the second rest position, the normally closed contacts 18 are open and the normally open contacts 20 are closed. By opening the normally closed contacts 18, for example, the power supply to the control circuit of the associated contactor and thus indirectly the power supply to the phases of the circuit to be protected can be interrupted. This corresponds to the tripped state in the event of an overload or the tripped state in the event of a phase failure of the overload relay 10. Via an adjustment mechanism 30 of the tripping threshold, which is operatively connected to the temperature compensation strip 26, the transmission of the tripping process from the overload release 12 can also be made more precise, in particular to the operating conditions of the overload relay 10 be adjusted.

Fig. 2 zeigt den Aufbau des Sprungschalters im Hilfsschalter 14 im Detail. Hierbei ist deutlich die den Betätigungshebel 22, den Auslösehebel 24, den Temperaturkompensationsstreifen 26 und den Sprungfeder-Betätigungshebel 28 umfassende mechanische Übertragungskette für die Übertragung eines Auslösevorgangs auf die Sprungfeder 16 zu erkennen. Fig. 2 shows the structure of the jump switch in the auxiliary switch 14 in detail. Here it is clear that the actuating lever 22, the release lever 24, the Temperature compensation strip 26 and the spring actuation lever 28 comprising mechanical transmission chain for the transmission of a triggering process to the spring 16 can be seen.

Die stromführende Sprungfeder 16 und ihre Ausbildung sowie Lagerung im Sprungschalter sowie die Herstellung des Sprungschalters mit dieser Sprungfeder 16 wird nun nachfolgend unter Bezugnahme auf Fig. 3 beschrieben: die Grundform der Sprungfeder 16 wird aus einem beidseitig mit einem elektrisch leitfähigen Buntmetall wie beispielsweise Kupfer-plattierten Federstahlband ausgestanzt. Vor der Montage der Sprungfeder 16 im Sprungschalter wird die Sprungfeder 16 vorgebogen. Das Vorbiegen ist jedoch nicht unbedingt erforderlich. Für die Montage wird die Sprungfeder 16 an ihren zwei Enden unter Spannung fixiert. Die Sprungfeder kann auch an lediglich einem oder an drei Enden fixiert werden. Die Fixierung der Sprungfeder kann auch spannungsfrei erfolgen, wobei dann eine Spannung der Sprungfeder erst nach der Fixierung beispielsweise durch Beulen erzeugt wird. In Fig. 3 sind zwei Fixierungen 161 und 162 an einem Ende der Sprungfeder 16 auf einem Träger 165 für die Sprungfeder 16 erkennbar. Das andere Ende der Sprungfeder 16 kann mit einem Hilfsmittel bei der Montage gesondert fixiert werden, das nach erfolgter Montage wieder entfernt wird. Im derart fixierten Zustand wird nun insbesondere durch Beulen und/oder Durchbiegen an Justagestellen 163, 164 der Sprungfeder 16 oder an einem Träger der Sprungfeder 16 der Sprungschalter justiert, d.h. insbesondere das Springen der Sprungfeder 16 von der ersten in die zweite Ruhestellung und zurück eingestellt. Für die Justage können die Justagestellen 163, 164 auch fixiert werden, was die Verformung erleichtern kann. Hierbei kommt zum Tragen, dass an den Justagestellen 163 und 164 der Sprungfeder 16, also an den Stellen, an denen ein Biegen und/oder Beulen der Sprungfeder erfolgt, die Buntmetall-Plattierung teilweise oder sogar vollständig verdrängt ist. Diese Verdrängung kann bereits bei der Plattierung durch partielles Plattieren erfolgt sein, oder nach dem Plattieren durch gezieltes Freilegen der Justagestellen 163 und 164 beispielsweise durch Schleifen oder Beulen, oder sogar erst beim Justieren, beispielsweise durch partielles Abtragen beim Biegen und/oder Beulen. Die Verdrängung bewirkt, dass der Kern der Sprungfeder 16, also der eigentliche Federwerkstoff die gewünschte Verformung erhalten kann und die Sprungfedern 16 eine geringere Fertigungsstreuung aufweisen. Um den Störeinfluss der Federeigenschaften des aufplattierten Buntmetalls auf die Federeigenschaften der Sprungfeder 16 zu minimieren, kann der Träger der Sprungfeder 16 im teilmontierten Überlastrelais oder Hilfsschalter individuell leicht verformt werden, umso etwaige Fertigungstoleranzen der Sprungfeder 16 in einer wirkverbundenen Funktionskette auszugleichen.The current-carrying spring 16 and its design and storage in the spring switch as well as the production of the spring switch with this spring 16 will now be discussed below with reference to Fig. 3 described: the basic shape of the spring 16 is punched out of a spring steel strip plated on both sides with an electrically conductive non-ferrous metal such as copper. Before installing the spring 16 in the snap switch, the spring 16 is pre-bent. However, pre-bending is not absolutely necessary. For assembly, the spring 16 is fixed under tension at its two ends. The spring can also be fixed at just one or three ends. The spring can also be fixed in a tension-free manner, with tension in the spring only being generated after fixation, for example by dents. In Fig. 3 Two fixations 161 and 162 can be seen at one end of the spring 16 on a support 165 for the spring 16. The other end of the spring 16 can be fixed separately with an aid during assembly, which is removed again after assembly has been completed. In the fixed state in this way, the jump switch is now adjusted, in particular by buckling and/or bending at adjustment points 163, 164 of the spring 16 or on a support of the spring 16, that is, in particular, the jumping of the spring 16 from the first to the second rest position and back is adjusted. For the adjustment, the adjustment points 163, 164 can also be fixed, which can make the deformation easier. What is important here is that the non-ferrous metal plating is partially or even completely displaced at the adjustment points 163 and 164 of the spring 16, i.e. at the points where the spring spring bends and/or buckles. This displacement can have already taken place during plating by partial plating, or after plating by specifically exposing the adjustment points 163 and 164, for example by grinding or denting, or even only during adjustment, for example by partial removal during bending and / or denting. The displacement causes the core of the spring 16, i.e. the actual spring material can receive the desired deformation and the springs 16 have a lower production spread. In order to minimize the disruptive influence of the spring properties of the plated non-ferrous metal on the spring properties of the spring 16, the carrier of the spring 16 can be individually slightly deformed in the partially assembled overload relay or auxiliary switch in order to compensate for any manufacturing tolerances of the spring 16 in an operatively connected functional chain.

Fig. 4 zeigt das Überlastrelais 10 mit dem Überlastauslöser 12 und dem Hilfsschalter 14, wobei im Hilfsschalter 14 im Unterschied zu dem in Fig. 1 und 2 gezeigten Ausführungsbeispiel eine andere Ausgestaltung der Sprungfeder eingesetzt wird: in diesem Fall weist die Sprungfeder 16' als Justagestelle 166 eine Beule auf; die Justagestelle ist also hier nicht an den Fixierungen der Sprungfeder wie bei den Ausführungsbeispielen der Fig. 1 bis 3 vorgesehen. Die Beule wird insbesondere nach Montage der Sprungfeder 16' und Fixierung derselben im Hilfsschalter 14 eingebracht, um eine möglichst exakte Einstellung der Sprungfeder 16' im Hilfsschalter 14 zu gewährleisten. Fig. 4 shows the overload relay 10 with the overload release 12 and the auxiliary switch 14, in which the auxiliary switch 14 differs from that in Fig. 1 and 2 In the exemplary embodiment shown, a different configuration of the spring is used: in this case, the spring 16 'has a dent as an adjustment point 166; The adjustment point here is not at the fixings of the spring as in the exemplary embodiments Fig. 1 to 3 intended. The dent is introduced in particular after mounting the spring 16 'and fixing it in the auxiliary switch 14 in order to ensure that the spring 16' in the auxiliary switch 14 is set as precisely as possible.

Fig. 5 zeigt das Überlastrelais 10 mit dem Überlastauslöser 12 und dem Hilfsschalter 14, wobei im Hilfsschalter 14 eine Sprungfeder 16" eingesetzt ist, die aus einem teilplattierten Band ausgestanzt ist. Die Teilplattierung der Sprungfeder ist in der Draufsicht auf die Feder von Fig. 6 gezeigt: etwa in der Mitte der Feder 16" verläuft ein Bereich 161", der nicht plattiert ist und sich zwischen zwei plattierten Bereichen 162" der Sprungfeder 16" erstreckt. Weiterhin sind ähnlich wie bei der Sprungfeder 16 von Fig. 3 Justagestellen 163" und 164" vorgesehen. Fig. 5 shows the overload relay 10 with the overload release 12 and the auxiliary switch 14, with a spring 16" inserted in the auxiliary switch 14, which is punched out of a partially plated strip. The partial plating of the spring is shown in the top view of the spring Fig. 6 shown: approximately in the middle of the spring 16" runs an area 161", which is not plated and extends between two plated areas 162" of the spring 16". Furthermore, similar to the spring 16 of Fig. 3 Adjustment points 163" and 164" are provided.

Durch die Erfindung kann der Einsatz von gesundheitsschädlichen Metallen wie Kupfer-Beryllium vermieden werden. Zudem ermöglicht die Erfindung die Fertigung von Sprungschaltern mit geringeren Fertigungstoleranzen bei den eingesetzten Sprungfedern.The invention makes it possible to avoid the use of harmful metals such as copper-beryllium. In addition, the invention enables the production of snap switches with lower manufacturing tolerances for the springs used.

Claims (10)

  1. Method for producing a snap-action switch (16, 18, 20), which has a current-carrying snap-action spring (16) which can be brought into two rest positions by mechanical actuation, comprising the following steps:
    - producing the snap-action spring (16) from a multilayer plated material, the plating having at least one layer of a non-ferrous metal and/or a layer of a noble metal,
    - fixing the snap-action spring (16) at at least one end in the snap-action switch, and
    - deforming the fixed snap-action spring (16) at at least one adjustment point (163, 163", 164, 164", 166) during mounting in the snap-action switch (16, 18, 20) in order to adjust the snap-action switch (16, 18, 20),
    - characterized in that a partial or complete displacement of the plating at the adjustment point(s) of the span-action spring (16) either take(s) place in the deforming step or before the deforming step, such that the plating is provided on as large an area as possible and is only displaced at the adjustment point(s).
  2. Snap-action switch (16, 18, 20), which has a current-carrying snap-action spring (16) that can be brought into two rest positions by mechanical actuation and is made of a multi-layered plated material, wherein the plating has at least one layer of a non-ferrous metal and/or a layer of a noble metal, which is provided on as large an area as possible and is only partially or completely displaced at the adjustment point(s) of the snap-action spring (16), wherein the snap-action switch (16, 18, 20) is adjusted in that the snap-action spring (16) has been deformed at the at least one adjustment point during mounting in the snap-action switch (16, 18, 20), and wherein the snap-action switch (16, 18, 20) is produced by the method according to claim 1.
  3. Snap-action switch according to claim 2,
    characterized in that
    the current-carrying snap-action spring (16) is pre-bent prior to mounting in the snap-action switch (16, 18, 20).
  4. Snap-action switch according to either claim 2 or claim 3,
    characterized in that
    the non-ferrous metal is copper and the current-carrying snap-action spring (16) is produced from a copper-plated spring steel strip on both sides by punching out.
  5. Snap-action switch according to claims 2, 3 or 4,
    characterized in that
    when the snap-action switch (16, 18, 20) is mounted, the snap-action spring (16) has been fixed at one, two or three ends, either under tension or in a tension-free manner, and a tension of the snap-action spring has been produced after the fixing process, and/or has been adjusted by buckling and/or bending on the snap-action spring (16) or on a carrier of the snap-action spring (16) of the snap-action switch (16, 18, 20).
  6. Snap-action switch according to either claim 4 or claim 5,
    characterized in that
    the non-ferrous metal is copper and the snap-action spring (16) has a defined copper layer such that the snap-action spring (16) overall has a low specific resistance of less than 0.14 Ohm * mm2/m, and/or the multilayer material from which the snap-action spring (16) is produced has a low specific resistance of less than 0.14 Ohm * mm2/m.
  7. Snap-action switch according to any of claims 2 to 6,
    characterized in that
    the plating of the snap-action spring (16) is applied to a spring core without an intermediate layer.
  8. Snap-action switch according to any of claims 2 to 7,
    characterized in that
    the snap-action spring (16) is designed for use at temperatures of more than approximately 100 °C.
  9. Overload relay (10) comprising an overload release (12), an auxiliary switch (14), which has a snap-action switch (16, 18, 20) according to any of claims 2 to 8, and a mechanical transmission device (22, 22', 22", 24, 26, 28) for transmitting a release operation from the overload release (12) to the snap-action switch (16, 18, 20) of the auxiliary switch (14), the transmission device causing a movement of the current-carrying snap-action spring (16) of the snap-action switch during a release operation in such a way that the snap-action switch (16, 18, 20) switches.
  10. Tripping indicator for a switching device, which is designed to signal a released state of a switching device mechanically coupled thereto and has a snap-action switch (16, 18, 20) according to any of claims 2 to 9, wherein, when the switching device is released, a movement of the current-carrying snap-action spring (16) of the snap-action switch is effected via the mechanical coupling in such a way that the snap-action switch (16, 18, 20) switches.
EP18719879.1A 2017-05-03 2018-04-25 Snap-action switch having a current-conducting snap-action spring, method for producing such a snap-action switch, and overload relay and tripping indicator having such a snap-action switch Active EP3619732B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017109426.1A DE102017109426A1 (en) 2017-05-03 2017-05-03 Snap-action switch with a current-carrying spring, method for producing such a snap-action switch and overload relay and tripping alarm with such a snap-action switch
PCT/EP2018/060543 WO2018202488A1 (en) 2017-05-03 2018-04-25 Snap-action switch having a current-conducting snap-action spring, method for producing such a snap-action switch, and overload relay and tripping indicator having such a snap-action switch

Publications (2)

Publication Number Publication Date
EP3619732A1 EP3619732A1 (en) 2020-03-11
EP3619732B1 true EP3619732B1 (en) 2023-11-08

Family

ID=62046949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18719879.1A Active EP3619732B1 (en) 2017-05-03 2018-04-25 Snap-action switch having a current-conducting snap-action spring, method for producing such a snap-action switch, and overload relay and tripping indicator having such a snap-action switch

Country Status (4)

Country Link
EP (1) EP3619732B1 (en)
DE (1) DE102017109426A1 (en)
PL (1) PL3619732T3 (en)
WO (1) WO2018202488A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL156321C (en) 1950-09-20 1900-01-01
US4636766A (en) * 1983-09-19 1987-01-13 Gte Products Corporation Miniaturized circuit breaker
JPS6154119A (en) 1984-08-24 1986-03-18 松下電工株式会社 Small-sized switch
DE3840064A1 (en) 1988-11-28 1990-05-31 Kloeckner Moeller Elektrizit Thermal relay having a switching rocker
JP2519560B2 (en) * 1990-02-14 1996-07-31 生方 眞哉 Thermal switch
FR2725556B3 (en) * 1994-10-10 1996-08-02 Philips Electronics Nv THERMAL ADJUSTABLE ELECTRICAL SWITCHING DEVICE
DE102009043780B4 (en) 2008-11-12 2011-01-27 Abb Ag Electrical overload relay with a swivel mounted rocker

Also Published As

Publication number Publication date
EP3619732A1 (en) 2020-03-11
WO2018202488A1 (en) 2018-11-08
DE102017109426A1 (en) 2018-11-08
PL3619732T3 (en) 2024-03-04

Similar Documents

Publication Publication Date Title
DE102015213375B4 (en) Thermal overload release device and protective switching device
DE1949966C3 (en) Cam switch for high frequency
DE102009061050B4 (en) Bimetal part and thus equipped temperature-dependent switch
DE2917557C2 (en) Thermal circuit breaker
EP0225490A2 (en) Temperature limiter
EP0994498A2 (en) Switch with insulating support
DE19538767A1 (en) Switches with flexible conductor foil as a fixed contact and connection to connection contacts
DE3530221A1 (en) MINIATURE SWITCH
DE102010017875A1 (en) Contact system for relays for switching high currents
EP0994497A2 (en) Switch with insulating support
WO2003065398A1 (en) Electrical switching device
EP3619732B1 (en) Snap-action switch having a current-conducting snap-action spring, method for producing such a snap-action switch, and overload relay and tripping indicator having such a snap-action switch
EP1686600B1 (en) Two pole switch
DE3711666A1 (en) TEMPERATURE SWITCH
EP1393339B1 (en) Release armature in an electromagnetic release device
WO2012004197A1 (en) Bimetal controller
DE2639538B1 (en) Actuating transmission for switching contact spring set - has lever as transmission element with pins allocated to individual contact springs
DE102023102302B3 (en) Temperature dependent switch
DE102019110709B4 (en) Electrical switching device with a shape memory element
DE102019117804B4 (en) Switching device with an electrical contact system
DE102023102301B3 (en) Temperature-dependent switch and method for producing the same
DE4316068C2 (en) Electric snap switch
EP2191484B1 (en) Electrical wire spring contact system
WO2002067283A1 (en) Electromechanical component
EP3146549B1 (en) Circuit breaker

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230530

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013606

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 7