EP3618960A1 - Method for adding an organic compound to a porous solid in the gaseous phase - Google Patents

Method for adding an organic compound to a porous solid in the gaseous phase

Info

Publication number
EP3618960A1
EP3618960A1 EP18724147.6A EP18724147A EP3618960A1 EP 3618960 A1 EP3618960 A1 EP 3618960A1 EP 18724147 A EP18724147 A EP 18724147A EP 3618960 A1 EP3618960 A1 EP 3618960A1
Authority
EP
European Patent Office
Prior art keywords
organic compound
catalyst
compartment
porous
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18724147.6A
Other languages
German (de)
French (fr)
Inventor
Florent Guillou
P-Louis Carrette
Bertrand Guichard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3618960A1 publication Critical patent/EP3618960A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/50Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a process for adding an organic compound to a porous solid, in particular to a porous catalyst support.
  • the process according to the invention can be integrated in a process for preparing a heterogeneous catalyst, which is "additive" to an organic compound and comprises a porous support on which at least one Group VI metal is deposited and / or at least one Group VIII metal.
  • a heterogeneous catalyst which is "additive" to an organic compound and comprises a porous support on which at least one Group VI metal is deposited and / or at least one Group VIII metal.
  • Conventional hydrotreatment catalysts generally comprise a support based on an oxide of a metal (for example aluminum) or a metalloid (for example silicon) and an active phase based on at least one metal group VIB and / or at least one group VIII metal in their oxide forms and optionally phosphorus.
  • the preparation of these catalysts generally comprises a step of impregnating the metals and phosphorus on the support, optionally followed by a maturation step, followed by drying or calcination to obtain the active phase in the form of oxides.
  • these catalysts are generally subjected to sulphidation in order to form the active species in sulphide form.
  • a family of compounds now well known in the literature relates to chelating nitrogen compounds (EP 181035, EP 1043069 and US 6,540,908) with, for example, ethylenediaminetetraacetic acid (EDTA), ethylenediamine, diethylenetriamine or nitrilotriacetic acid (NT A).
  • EDTA ethylenediaminetetraacetic acid
  • NT A nitrilotriacetic acid
  • the processes for preparing the additivated catalysts generally implement an impregnation step in which the organic compound is introduced so as to fill the entire porosity of the support impregnated or not with metal precursors in order to obtain a homogeneous distribution. This leads to using large amounts of organic compound or diluting the organic compound in a solvent. After impregnation, a drying step is then necessary to eliminate the excess of organic compound or the solvent and thus release the porosity necessary for the implementation of the catalyst. The additional cost of the excess of the organic compound or the use of a solvent is added the cost of an additional stage of energy-consuming drying.
  • CN 102463151 discloses a method of heat treating a catalyst support comprising a metal phase in a gaseous atmosphere comprising the organic compound which is therefore in the gaseous state.
  • the heat treatment is thus performed at a temperature above the boiling temperature of said organic compound.
  • the heat treatment is carried out at a temperature of between 150 and 500 ° C. This process is not without risk in its implementation. Indeed, for many organic compounds, such as ethylene glycol cited in this document, the flash point is below the boiling point. There is therefore a risk of fire to work at a temperature above the boiling point.
  • a high temperature can also lead to partial or total decomposition of the additive greatly reducing its effect.
  • citric acid commonly used as an organic additive (US 2009/0321320) decomposes at 175 ° C while its boiling point is 368 ° C at atmospheric pressure.
  • An object of the invention is therefore to propose an alternative method for depositing an organic compound on a porous catalyst support which does not use a step of impregnating the support with a solution containing the organic compound and which is more safe and less expensive in its industrial implementation.
  • the present invention relates to a process for adding an organic compound to a porous solid comprising a step a) in which the solid is simultaneously brought into contact with the solid. porous and the organic compound in the liquid state and without physical contact between the solid and the organic compound in the liquid state, at a temperature below the boiling point of the organic compound and under pressure and duration conditions such as a fraction of said organic compound is transferred in the gaseous state to the porous solid.
  • the process for adding the organic compound according to the invention does not involve a conventional impregnation step by means of a solution containing a solvent in which the organic compound is diluted. Therefore it is not necessary to proceed to a solid drying step to remove the solvent hence a more economical method in terms of hot utility and raw material.
  • the step of adding the organic compound is conducted at a temperature below the boiling temperature of said organic compound, which results in a substantial gain in terms of energy and in terms of safety compared to the setting implemented in CN 102463151.
  • the process according to the invention is also characterized in that the addition of the organic compound to the porous solid is carried out without physical contact with the organic compound in the liquid state, that is to say without impregnation of the porous solid by the liquid.
  • the method is based on the principle of the existence of a vapor pressure of the organic compound which is generated by its liquid phase at a given temperature and pressure.
  • a part of the organic compound molecules in the liquid state passes to the gaseous state (vaporization) and is then transferred (gaseous) to the porous solid.
  • This step a) of bringing into contact is carried out for a time sufficient to reach the targeted content of organic compound in the porous solid.
  • step a) is carried out by means of an addition unit of said organic compound comprising a first and a second compartments in communication so as to allow the passage of a gaseous fluid between the compartments, the first compartment containing the porous solid and the second compartment containing the organic compound in the liquid state.
  • the unit comprises a chamber including the first and second compartments, the two compartments being in communication by gas.
  • the unit comprises two enclosures respectively forming the first and second compartments, the two chambers being in gaseous communication.
  • step a) bringing the porous solid into contact with the organic compound in the liquid state is carried out in the presence of a flow of a carrier gas flowing from the second compartment into the first compartment.
  • step a) is carried out at an absolute pressure of between 0 and 1 MPa.
  • the operating temperature of step a) is less than 200 ° C., preferably between 10 ° C. and 150 ° C., more preferably between 25 ° C. and 120 ° C.
  • step a) a gaseous effluent containing said organic compound is withdrawn from the first compartment and the effluent is recycled to the first and / or second compartment.
  • step a) a gaseous effluent containing said organic compound in the gaseous state is withdrawn from the first compartment, said effluent is condensed so as to recover a liquid fraction containing the organic compound in the liquid state. and said liquid fraction is recycled to the second compartment.
  • the porous solid is selected from a catalyst support and a catalyst support further comprising at least one Group VIB metal and / or at least one Group VIII metal.
  • the porous support is based on an oxide of a metal and / or a metalloid.
  • the porous support is based on alumina and / or silica.
  • the organic compound which is used in the process is chosen from organic molecules containing oxygen and / or nitrogen and / or sulfur.
  • the invention also relates to a process for preparing a catalyst comprising a porous support, at least one Group VIB metal and / or at least one Group VIII metal and at least one organic compound which comprises at least the following steps:
  • step i) being performed before or after steps ii) and iii).
  • the solution of step ii) may also comprise at least one additional organic compound different from the organic compound used in step i).
  • the process according to the invention for the preparation of a catalyst may also comprise at least one step of impregnating the porous support with a solution comprising an organic compound that is different from the organic compound used in step i).
  • the present invention relates to a process for treating a hydrocarbon feedstock in which the hydrocarbon feedstock and a catalyst are brought into contact with hydrogen at a temperature of between 180 and 450 ° C. at a pressure of between 0.degree. 5 and 30 MPa, with a hourly space velocity of between 0.1 and 20 h -1 and with a hydrogen / charge ratio expressed as a volume of hydrogen, measured under normal conditions of temperature and pressure, per volume of liquid charge of between 50 l / l at 5000 l / l, said catalyst having been prepared by a process according to the invention and subjected to at least one sulphurization step.
  • the subject of the present invention is a process for adding an organic compound to a porous solid which is, for example, a porous catalyst support or a porous support which already contains at least one Group VIB metal and / or at least one metal Group VIII which will be referred to as "catalyst precursor" in the remainder of the description.
  • the porous support is preferably based on at least one oxide of a metal or a metalloid.
  • the porous support is based on alumina or silica or silica-alumina.
  • the support When the support is based on alumina, it contains more than 50% by weight of alumina.
  • the alumina is gamma alumina.
  • the support is a silica-alumina that is to say that it contains at least 50% by weight of alumina.
  • the silica content in the support is at most 50% by weight, most often less than or equal to 45% by weight, preferably less than or equal to 40% by weight.
  • the support of said catalyst is based on silica, it contains more than 50% by weight of silica and, in general, it contains only silica.
  • the support consists of alumina, silica or silica-alumina.
  • the support may also advantageously contain from 0.1 to 50% by weight of zeolite.
  • the zeolite is chosen from the group FAU, BEA, ISV, IWR, IWW, MEI, UWY and, preferably, the zeolite is chosen from the group FAU and BEA, such as zeolite Y and / or beta.
  • the support may contain at least one doping element, such as, for example, phosphorus.
  • the porous solid preferably has a total pore volume of between 0.1 and 1.5 cm 3 / g, preferably between 0.4 and 1.1 cm 3 / g.
  • the total pore volume is measured by mercury porosimetry according to ASTM D4284 with a wetting angle of 140 °, as described in Rouquerol F .; Rouquerol J .; Singh K. "Adsorption by Powders & Porous Solids: Principle, Methodology and Applications", Academy Press, 1999, for example, using an Autopore III TM model from the Microméritics TM brand.
  • the specific surface of the porous solid is advantageously between 5 and 400 m 2 / g, preferably between 10 and 350 m 2 / g, more preferably between 40 and 350 m 2 / g.
  • the specific surface is determined in the present invention by the BET method according to ASTM D3663, a method described in the same work cited above.
  • the porous solid is generally in the form of balls, extrudates, pellets, or irregular and non-spherical agglomerates whose specific shape can result from a crushing step.
  • the process for adding the organic compound can be carried out on a porous solid which is a catalyst precursor, that is to say on a porous support further comprising at least one Group VIB metal and / or or at least one Group VIII metal.
  • the groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief D.R. Lide, 81st edition, 2000-2001).
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the catalyst precursor may be a fresh catalyst precursor, that is to say which has not been used before in a catalytic unit and in particular in hydrotreatment and / or hydrocracking.
  • the catalyst precursor according to the invention may also be a so-called "regenerated” catalyst.
  • the term “regenerated catalyst” refers to a catalyst which has been previously used in a catalytic unit and in particular in hydrotreating and / or hydrocracking and which has been subjected to at least one calcination step in order to burn the coke (regeneration).
  • the method of adding an organic compound to a porous solid can be carried out in an addition unit of said organic compound.
  • the addition unit used comprises first and second compartments in communication so as to allow the passage of a gaseous fluid between the two compartments and in which the first compartment is able to contain the porous solid and the second compartment. is capable of containing the organic compound in liquid form.
  • the process comprises a step a) in which the porous solid and the organic compound in liquid form are simultaneously brought into contact without physical contact between the solid and the organic compound in liquid form, at a temperature below the boiling point of the compound.
  • the unit of presence comprises a chamber including the first and second compartments, the compartments being in communication by gas.
  • the compartments are arranged side by side and separated by a partition, for example substantially vertical, integral with the bottom of the enclosure and extending only over a fraction of the height of the enclosure so as to let the sky spread. gaseous from one compartment to another.
  • the compartments are arranged one above the other and are in communication so as to allow the passage of the organic compound in the gaseous state between the two compartments.
  • the enclosure is closed.
  • the unit comprises two enclosures forming respectively the first and the second compartments, the two enclosures being in communication via gas, for example by means of a pipe.
  • the two enclosures are closed.
  • the compartment for containing the liquid organic compound comprises means for moving said liquid to facilitate the transfer of the organic compound in a gaseous state from one compartment to another.
  • the two compartments comprise means for moving the liquid and the porous solid respectively.
  • the compartment containing the organic compound in the liquid state is equipped with internals intended to maximize the surface of the gas / liquid interface. These internals are for example porous monoliths impregnated with capillarities, falling films, packings or any other means known to those skilled in the art.
  • step a) of bringing the porous solid into contact with the organic compound is carried out in the presence of a gas (vector) flowing from the second compartment into the first compartment so as to entrain the organic molecules to the gaseous state in the compartment containing the porous solid.
  • a gas may be chosen from carbon dioxide, ammonia, air with controlled hygrometry, a rare gas such as argon, nitrogen, hydrogen, natural gas or a refrigerant gas. of the classification published by IUPAC.
  • step a) comprises a step in which a gaseous effluent containing said organic compound is withdrawn from the first compartment and the effluent is recycled to the first and / or second compartment.
  • a gaseous effluent containing said organic compound in the gaseous state is withdrawn from the first compartment, said effluent is condensed so as to recover a liquid fraction containing the organic compound in the liquid state and said fraction is recycled. liquid in the second compartment.
  • the placing step is preferably carried out at an absolute pressure of between 0 and 1 MPa.
  • the temperature of the placing step is set at a temperature below the boiling point of the organic compound.
  • the temperature of the placing step is generally less than 200 ° C., preferably between 10 ° C. and 150 ° C., more preferably between 25 ° C. and 120 ° C.
  • any organic compound may be employed provided that said organic compound is in the liquid state under the temperature and pressure conditions implemented in step a).
  • the organic compound may be chosen for example from organic molecules containing oxygen and / or nitrogen and / or sulfur.
  • the organic compound is, for example, chosen from a compound comprising one or more chemical functional groups chosen from a carboxylic function, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide.
  • it may be chosen from triethylene glycol, diethylene glycol, ethylene glycol, propylene glycol, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethylene glycol monobutyl ether, 1,4-butanediol, 1-butanediol and the like.
  • the present invention relates to a process for preparing a catalyst with an organic compound additive comprising a porous support, at least one Group VIB metal and / or at least one Group VI II metal and at least one Group VI II metal. at least one organic compound, the process comprising at least the following steps: i) depositing the organic compound on the porous support by implementing the method according to the invention;
  • step i) being performed before or after steps ii) and iii).
  • the process for adding the organic compound according to the invention may be carried out one or more times in a production line of an additivated catalyst in order to introduce one or more organic compounds before the impregnation step. of the active metal phase and / or to allow the introduction of one or more organic compounds on a porous support already containing an active metal phase which can be optionally sulphured.
  • the porous support is subjected to an impregnation step with a solution comprising at least one Group VIB metal and / or at least one a group VIII metal so as to deposit an active metal phase (step ii).
  • the porous support impregnated with the active metal phase is optionally subjected to a maturation step and is then dried (step iii) in order to eliminate the solvent provided by step ii).
  • the porous support containing the active and dried metallic phase is treated according to stage i) in the unit of presence with the organic compound in the liquid state so as to provide an additivated catalyst of said organic compound.
  • the porous support may in particular already contain an additional organic compound different from that used in step i).
  • This additional organic compound may have been incorporated into the support by means of the addition process according to the invention or according to any other method known to those skilled in the art, for example by impregnation of a solution containing the additional organic compound.
  • a catalyst support containing no active phase is used.
  • the support is first subjected to a step of adding the organic compound according to the invention so as to provide an additive-containing catalyst support of the organic compound (step i), which after an optional phase of maturation, is sent to the step of impregnating the active phase (step ii).
  • This step may consist in bringing the additive-containing support into contact with a solution containing at least one precursor of at least one Group VIII metal and / or at least one precursor of at least one Group VIB metal.
  • the additive catalyst thus obtained is optionally left to mature and then subjected to a drying step (step iii) in order to remove the solvent provided during the step of impregnating the metal precursors of the active phase.
  • the porous support used may optionally already contain an additional organic compound different from that used in step i), the additional organic compound having been incorporated in the catalyst support by means of the process of addition according to the invention or according to any other method known to those skilled in the art.
  • the step ii) of deposition of the active metal phase can implement a solution containing at least one precursor of at least one metal of group VIII and or at least one precursor of at least one Group VIB metal and further one or more additional organic compounds different from that of step i).
  • the additivated catalyst obtained after steps i) to iii) described above can also be treated by one or more subsequent steps to incorporate one or more additional organic compounds different from that used in step i).
  • the incorporation of one or more other additional additional organic compounds can be carried out by means of the addition method according to the invention or according to any other method known to those skilled in the art.
  • Said said additional organic compound (s) may, for example, be introduced in one of the modes described in document FR 3 035 008.
  • the catalysts according to the invention may contain, as active phase, one or more Group VIB and / or Group VIII metals.
  • the preferred Group VIB metals are molybdenum and tungsten and the preferred Group VIII metals are non-noble elements, particularly cobalt and nickel.
  • the active phase is chosen from the group formed by the combinations of cobalt-molybdenum, nickel-molybdenum, nickel-tungsten or nickel-cobalt-molybdenum, or nickel-molybdenum-tungsten elements.
  • the catalysts generally have a total content of Group VIB metal and / or Group VIII greater than 6% by weight expressed as oxide relative to the total weight of dry catalyst.
  • the total content of Group VIB metals is between 5 and 40% by weight, preferably between 8 and 35% by weight, and more preferably between 10 and 32% by weight expressed as Group VIB metal oxide relative to total weight of dry catalyst.
  • the total content of metals of group VIII is generally between 1 and 10% by weight, preferably between 1.5 and 9% by weight, and more preferably between 2 and 8% by weight expressed in Group VIII metal oxide relative to to the total weight of dry catalyst.
  • the molar ratio of Group VIII metals to Group VIB metals in the catalyst is preferably between 0.1 and 0.8, preferably between 0.15 and 0.6, and even more preferably between 0.2 and 0.5.
  • the catalyst may also include phosphorus as a dopant.
  • the phosphorus content in said catalyst is preferably between 0.1 and 20% by weight, expressed as P205, preferably between 0.2 and 15% by weight, expressed as P205, and very preferably between 0.3 and 11% by weight. weight expressed as P205 relative to the total weight of dry catalyst.
  • the molar phosphorus ratio on the Group VIB metals in the catalyst is greater than or equal to 0.05, preferably greater than or equal to 0.07, preferably of between 0.08 and 1, preferably of between 0.01 and 0.9 and very preferably between 0.15 and 0.8.
  • the catalyst may advantageously also contain at least one dopant chosen from boron, fluorine and a mixture of boron and fluorine.
  • the boron content is preferably between 0.1 and 10% by weight expressed as boron oxide, preferably between 0.2 and 7% by weight, and very preferably between 0.2 and 5% by weight relative to the total weight of dry catalyst.
  • the fluorine content is preferably between 0.1 and 10% by weight expressed as fluorine, preferably between 0.2 and 7% by weight, and very preferably between 0.2 and 5% by weight. % by weight relative to the total weight of dry catalyst.
  • the additivated catalysts thus prepared are especially used for the hydrotreatment reactions of hydrocarbon feeds such as petroleum cuts or for the synthesis of hydrocarbons from synthesis gas.
  • hydrotreatment includes, in particular, total or selective hydrogenation reactions, hydrodenitrogenation, hydrodearomatization, hydrodesulphurization, hydrodeoxygenation, hydrodemetallation, and hydrocracking of hydrocarbon feeds.
  • the additivated catalyst generally undergoes a sulphurization step before its implementation.
  • the feedstocks used in the hydrotreatment process are, for example, gasolines, gas oils, vacuum gas oils, atmospheric residues, vacuum residues, atmospheric distillates, vacuum distillates, heavy fuels, oils, waxes. and paraffins, waste oils, deasphalted residues or crudes, feeds from thermal or catalytic conversion processes, lignocellulosic feedstocks or biomass feedstocks, alone or as a mixture.
  • the operating conditions used in the The processes employing the hydrotreatment reactions of hydrocarbon feedstocks described above are generally the following: the temperature is advantageously between 180 and 450 ° C., and preferably between 250 and 440 ° C., the pressure is advantageously between 0.5 and 30 MPa, and preferably between 1 and 18 MPa, the hourly volume velocity is advantageously between 0.1 and 20 h -1 and preferably between 0.2 and 5 h -1 , and the ratio Hydrogen / charge expressed as a volume of hydrogen, measured under normal conditions of temperature and pressure, per volume of liquid charge is advantageously between 50 l / l to 5000 l / l and preferably between 80 to 2000 l / l.
  • Figure 1 is a diagram illustrating the principle of addition of an organic compound according to the common practice known to those skilled in the art
  • FIG. 2 is a diagram illustrating the process according to the invention for adding an organic compound according to a first embodiment
  • FIG. 3 shows a diagram of the process for adding an organic compound according to a second embodiment
  • FIG. 4 is a diagram of the process for adding an organic compound according to a third embodiment.
  • FIG. 1 corresponds to a block diagram showing a known method of adding an organic compound to a porous catalyst support or a catalyst precursor as described above, which is hereinafter referred to by the generic term "solid" .
  • the solid batch 1 is subjected to optional pretreatment in a solid pretreatment unit 2, intended, if necessary, to condition the solid before the step of impregnating the organic compound.
  • This pretreatment step may be, for example and according to the desired effect, a preliminary drying step to adjust the residual moisture.
  • This pretreatment can also be an addition by controlled addition of the same solvent, provided by line 3, that which is used during the impregnation of the organic compound in order to avoid a too strong reaction of the solid during the phase of impregnation organic compound.
  • the type of reaction that is to be avoided is for example a strong release of heat due to the sudden adsorption of the solvent (such as water for example) on the active sites of the solid.
  • the batch of solid 4 resulting from the pretreatment stage is sent to an impregnation unit 5 of the organic compound.
  • this step employs a solution containing a solvent, for example water, in which the organic compound to be impregnated is dissolved.
  • the impregnation solution is brought via line 6.
  • the impregnation is carried out according to any method known to those skilled in the art, for example by dry impregnation.
  • the solid in motion is subjected to a jet of the impregnating solution, the volume of spray solution being generally equivalent to the accessible pore volume of the solid to be impregnated.
  • the impregnated solid is discharged via line 7 into a drying unit 8 in order to remove the solvent which has been incorporated in the solid together with the organic compound.
  • Flow 9 represents the hot utility that is used to dry the solid, which is for example hot air. This results in a dried porous solid comprising the chosen organic compound.
  • the amount introduced is not sufficient after a single impregnation step. In which case, it will be possible to use several impregnation and drying steps described above.
  • the porous solid may undergo one or more impregnation steps of one or more Group VIB and / or Group VIII metals in order to deposit a metal active phase.
  • the step or steps of impregnation of the metal or metals may be followed, after possibly a maturation step, a drying step at a moderate temperature, generally less than 200 ° C.
  • FIG. 2 represents a schematic diagram of the method for adding the organic compound according to the invention, which consists in bringing the porous solid to be treated in contact with the organic compound in the liquid state into a unit 1 1, the setting in the presence being performed without physical contact between the porous solid and the liquid phase.
  • the porous solid 1 is possibly sent to a pre-treatment unit 2 as mentioned above.
  • the pretreatment may consist of a step of drying the solid, for example when said porous solid is a catalyst precursor obtained by impregnating a solution containing at least one Group VIB metal and / or at least one Group VIII metal.
  • the porous solid 4 resulting from the pretreatment is fed into a unit 1 1 for bringing the solid into contact with the organic compound in the liquid state.
  • the unit 1 1 comprises an enclosure segmented into two compartments A and B separated from one another by a partition means 12, the two compartments being in communication so as to allow the passage of a gaseous flow of organic compound so that compartments A and B share the same gaseous atmosphere.
  • the compartment A is able to receive the porous solid 4 while the compartment B is able to contain the liquid organic compound.
  • the partition means 2 may be a perforated plate allowing the passage of the gaseous fluid.
  • This placing step is done in a controlled manner at a temperature below the boiling temperature of said organic compound. Under these conditions, there is a vapor pressure of the organic compound which is generated by its liquid phase. Thus a part of the organic compound molecules in the liquid state passes in gaseous form (vaporization) and is then transferred (gaseous) to the porous solid. Since the vapor phase of organic compound is gradually consumed by the solid, the liquid continues to vaporize. According to one embodiment, said in "batch" according to the English terminology, the amount of liquid organic compound contained in the compartment B is at least greater than the amount of organic compound that is to be introduced into the porous solid.
  • the organic compound can be continuously added in the liquid state as it is consumed by the porous solid or in a semi-continuous manner with a regular point feed so as to maintain a minimum liquid level in the liquid. compartment B.
  • the addition of organic compound in the liquid state is provided by a pipe 13.
  • the placing step according to the invention can be carried out by maintaining agitation of the liquid in compartment B and / or by moving the solid to be treated in compartment A.
  • the placing step is carried out with a forced circulation of a flow of a gas, from the compartment B containing the organic compound in the liquid state to the compartment A containing the porous solid to additiver.
  • the flow of a gas may be carbon dioxide, ammonia, air with controlled hygrometry, a rare gas such as argon, nitrogen, hydrogen, gas natural gas or a refrigerant gas under the classification published by IUPAC.
  • the gas is either supplied under pressure or pressurized to overcome the pressure drops induced by the circuit by means of a pressure increase equipment of a gas such as a compressor or a fan.
  • the gas is injected via line 14 into the liquid so to ensure its agitation to promote the saturation of the gas phase by the organic compound by increasing the gas / liquid exchange surface.
  • the placing step is carried out under conditions of controlled duration, temperature and pressure so as to ultimately provide a solid containing the organic compound.
  • the introduction of the organic compound into the porous solid may result from adsorption and / or capillary condensation processes.
  • the bringing together according to the invention may involve a recycling of the vapor phase extracted from compartment A by line 16 opening into compartment A and / or compartment B or possibly in line 14.
  • the gaseous phase 16 extracted from the compartment A is cooled so as to condense the organic compound in liquid form which is thus recycled to the compartment B via the line 12 or possibly via the line 13.
  • FIG. 3 is another embodiment of the process for adding the organic compound to a porous solid which differs from that of FIG. 2 in that the unit 1 1 for bringing the solid into contact with the liquid organic compound comprises two chambers 18 and 19 which are able respectively to contain the porous solid 4 possibly pretreated and the organic compound in the liquid state, the two enclosures being in communication by means of a pipe 20 so as to allow only the passage of a phase vapor containing the organic compound in the gaseous state.
  • FIG. 4 is a variant of the process for adding an organic compound to a porous solid according to the invention in which the porous additiver solid undergoes heat treatment at a temperature greater than that of the contacting step with the organic compound in the liquid state and wherein a heated entrainment gas is injected into the unit 1 1 bringing together.
  • the porous solid 1 undergoes a pretreatment step which consists of a heat treatment at a temperature which is greater than that applied to the placing step in the unit 11.
  • the method of Figure 4 includes a thermal integration process of using a carrier gas provided by line 21.
  • This carrier gas 21 may be, for example and without limitation, an effluent from another process or a dedicated carrier gas.
  • a dedicated carrier gas this may be, for example and without limitation, carbon dioxide, ammonia, air with controlled hygrometry, a rare gas such as argon, nitrogen, hydrogen, natural gas or a refrigerant gas under the classification published by IUPAC.
  • the gas is either supplied under pressure, is pressurized to overcome the pressure drops induced by the circuit by means of equipment for increasing the pressure of a gas such as a compressor or a fan. If the temperature of the carrier gas is lower than that applied in the step of bringing the solid into contact with the organic compound in the liquid state, it is advantageous to carry out a heat exchange, for example with a heat exchanger 22 of the type charge-effluent for heating the carrier gas 21 with a gaseous effluent 17 from the unit 1 1 which is described below. As shown in FIG. 4, the stream of warmed carrier gas 21 is sent via line 26 into a heat exchanger 23 in which it exchanges heat with the heat-treated solid 4. This heat exchange can be done by direct contact or indirect between the gas and the solid.
  • the heat exchange is done by contacting the carrier gas 21 with the porous solid 4, for example in a fluidized bed.
  • a gas / solid exchanger comprising a set of tubes traversed by the carrier gas which pass through the porous solid bed.
  • a cooled porous solid stream 24 and a stream of warmed carrier gas 25 are sent which are sent to the unit 1 1 for placing in the presence respectively in compartment A and compartment B.
  • the carrier gas feed heated in the compartment containing the liquid organic compound can be done for example by means of a bubbling device.
  • this hot carrier gas 25 provides calories in substitution or in addition to the temperature maintenance device for the placing step and it creates a movement of the gas phase from compartment B to compartment A thus participating in the transport of the organic compound in the gaseous state to the porous solid to additiver.
  • a gaseous effluent 17 which contains the carrier gas and optionally the organic compound in the gaseous state is removed from the compartment A to supply the heat exchanger 22 in order to heat the carrier gas 21.
  • the gaseous effluent 17 cooled at the outlet of the exchanger 22 is either wholly or partly recycled via the line 28 with the carrier gas 21, or is completely discharged from the unit 11 via the line 27.
  • the heat exchange 22 optionally allows, when the cooling of the gaseous effluent 17 is sufficient, to condense a fraction of the organic compound which is entrained by the carrier gas. The condensate can then be recycled to the compartment B containing the organic compound in the liquid state.
  • Example 1 Preparation of CoMoP catalysts on alumina without organic compounds C1 and C2 (not in accordance with the invention).
  • alumina support having a BET surface area of 230 m 2 / g, a pore volume measured by mercury porosimetry of 0.78 ml / g and a mean pore diameter of 1.15 nm defined as the median diameter of volume by mercury porosimetry and which is in the form "extruded” is added cobalt, molybdenum and phosphorus.
  • the impregnating solution is prepared by dissolving 90 ° C.
  • Example 2 Preparation of the CoMoP catalyst on C3 alumina (not in accordance with the invention) by co-impregnation.
  • Example 2 On the alumina support described above in Example 1 and which is in the "extruded” form, cobalt, molybdenum and phosphorus are added.
  • the impregnating solution is prepared by dissolving 90 ° C. of molybdenum oxide (28.28 g) and cobalt hydroxide (6.57 g) in 15.85 g of an aqueous solution of acid. phosphoric at 85% weight. After homogenization of the mixture, 38 g of citric acid was added before adjusting the volume of solution to the pore volume of the support by adding water.
  • the molar ratio (citric acid) / Mo is equal to 1 mol / mol and that (citric acid) / Co is equal to 2.7 mol / mol.
  • the extrudates are allowed to mature in a saturated water atmosphere for 24 hours at room temperature and then dried at 120 ° C for 16 hours.
  • the dried catalyst and additive of citric acid thus obtained is noted C3.
  • Example 3 Preparation of the CoMoP catalyst on C4 alumina (not in accordance with the invention) by post-impregnation.
  • catalyst precursor C1 18 g of catalyst precursor C1 described above in Example 1 are impregnated and which is in the form "extruded" with an aqueous solution containing 3.2 g of 2-methoxyethyl-3-oxobutanoate and whose volume is equal to porous volume of catalyst precursor.
  • the quantities involved are such that the amount of 2-methoxyethyl 3-oxobutanoate is 0.8 moles per mole of molybdenum (corresponding to 2.2 moles per mole of cobalt).
  • the extrudates are allowed to mature in a saturated atmosphere with water for 16 hours at room temperature.
  • Catalyst precursor C4 is then dried at 120 ° C for 2 hours to give catalyst C4.
  • EXAMPLE 4 Preparation of the CoMoP catalyst on C5 alumina (according to the invention) by introducing an organic compound in the vapor phase after impregnation of the metals.
  • a closed chamber In a closed chamber are placed 4 g of 2-methoxyethyl 3-oxobutanoate contained in a crystallizer. 12 g of the catalyst precursor C1 are introduced into the same closed chamber and placed on a stainless steel grid so that the liquid 2-methoxyethyl 3-oxobutanoate is not in physical contact with the catalyst precursor C1. The closed chamber is placed in an oven at 120 ° C for 6 hours. 14.1 g of catalyst C5 are thus obtained after bringing the catalyst precursor C1 into contact with the 2-methoxyethyl 3-oxobutanoate compound in the gaseous state.
  • the amount of 2-methoxyethyl-3-oxobutanoate thus transferred to the catalyst is such that the molar ratio of 2-methoxyethyl-3-oxobutanoate to Mo is 0.8 mol per mol of molybdenum (corresponding to 2.2 mol per mol of cobalt).
  • EXAMPLE 5 Preparation of the CoMoP catalyst on C6 alumina (according to the invention) by introducing an organic compound in the vapor phase before the impregnation of the metals.
  • a closed chamber In a closed chamber are placed 4 g of 2-methoxyethyl 3-oxobutanoate contained in a crystallizer. 8.4 g of the same support as that used in Example 1 are introduced into the same closed chamber and placed on a stainless steel grid so that liquid 2-methoxyethyl 3-oxobutanoate is not in physical contact. with the support.
  • the closed chamber is placed in an oven at 120 ° C for 6 hours. 10.5 g of additive support of 2-methoxyethyl 3-oxobutanoate are thus obtained.
  • the amount of 2-methoxyethyl 3-oxobutanoate introduced onto the support is fixed so as to obtain, after impregnation of the metals, a molar ratio of 2-methoxyethyl-3-oxobutanoate / Mo is 0.8 mol per mol of molybdenum (ie still 2.2 moles per mole of cobalt).
  • the modified support is then impregnated with an impregnation solution prepared by hot dissolving molybdenum oxide (2.4 g) and cobalt hydroxide (0.6 g) in 1.4 g of a solution. 85% aqueous phosphoric acid being careful to adjust by adding water the volume of the latter solution to the pore volume of the previous modified carrier.
  • Catalysts C1, C2, C3 and C4 (not in accordance with the invention) and C5 and C6 (in accordance with the invention) were tested with diesel HDS.
  • the test is conducted in an isothermal pilot reactor fixed bed traversed, flowing fluids from bottom to top.
  • the catalyst precursors are previously sulphurized in situ at 350 ° C. in the reactor under pressure using the test gas oil, to which 2% by weight of dimethyl disulphide is added.
  • the hydrodesulfurization tests were carried out under the following operating conditions: a total pressure of 7 MPa, a catalyst volume of 30 cm 3 , a temperature of 330 to 360 ° C., with a hydrogen flow rate of 24 l / h and with a flow rate of 60 cm 3 / h.
  • the catalytic performances of the catalysts tested are given in Table 1. They are expressed in degrees Celsius with respect to the catalyst C2 (comparative) chosen as reference (C2): they correspond to the temperature difference to be applied to reach 50 ppm of sulfur in the effluent. A negative value means that the target of sulfur content is reached for a lower temperature and that there is a gain in activity. A positive value means that the target of sulfur content is reached for a higher temperature and that there is therefore a loss of activity. The results obtained are reported in Table 1.
  • Table 1 Activities relating to iso-volume in gas oil hydrodesulphurization of catalysts C1, C2, C3 and C4 (not in accordance with the invention) and C5 and C6 (in accordance with the invention) with respect to catalyst C2 (non-compliant )
  • Table 1 clearly shows that the mode of introduction of the organic compound according to the invention makes it possible to avoid the use of a solvent and consequently to avoid a drying step while introducing the appropriate amount of organic compound to a temperature much lower than its boiling point.
  • 2-methoxyethyl 3-oxobutanoate is carried out at 120 ° C while its boiling point at atmospheric pressure is 254 ° C.
  • the catalysts according to the invention are at least as efficient as those prepared according to the prior art.
  • the catalysts C5 and C6 according to the invention are more efficient than all the other comparative catalysts.
  • the gain is very important compared to catalysts that do not use an organic molecule (C1 and C2) or citric acid (C3) commonly used by those skilled in the art.
  • the catalysts C5 and C6 are more efficient than the catalyst C4 using the same organic molecule introduced according to a protocol well known to those skilled in the art based on a post-additivation in aqueous solution.
  • the organic compound can thus be introduced according to the invention both before and after the impregnation of the metals forming the active metal phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The invention relates to a method for adding an organic compound to a porous solid, in which: the porous solid is brought together simultaneously with the organic compound in the liquid state, without physical contact between the solid and the organic compound in the liquid state, at a temperature lower than the boiling point of the organic compound and under pressure and time conditions such that a fraction of said organic compound is transferred by gaseous process to the porous solid.

Description

PROCEDE D'ADDITION D'UN COMPOSE ORGANIQUE  METHOD FOR ADDING AN ORGANIC COMPOUND
A UN SOLIDE POREUX EN PHASE GAZEUSE  HAS A POROUS SOLID IN A GAS PHASE
La présente invention concerne un procédé d'addition d'un composé organique sur un solide poreux, en particulier sur un support poreux de catalyseur. Le procédé selon l'invention peut être intégré dans un procédé de préparation d'un catalyseur hétérogène dit "additivé" d'un composé organique et comprenant un support poreux sur lequel est déposé au moins un métal du groupe VI et/ou au moins un métal du groupe VIII. Etat de la technique The present invention relates to a process for adding an organic compound to a porous solid, in particular to a porous catalyst support. The process according to the invention can be integrated in a process for preparing a heterogeneous catalyst, which is "additive" to an organic compound and comprises a porous support on which at least one Group VI metal is deposited and / or at least one Group VIII metal. State of the art
Les catalyseurs d'hydrotraitement classiques comprennent généralement un support à base d'un oxyde d'un métal (par exemple l'aluminium) ou d'un métalloïde (par exemple le silicium) et une phase active à base d'au moins un métal du groupe VIB et/ou d'au moins un métal du groupe VIII sous leurs formes oxydes et éventuellement du phosphore. La préparation de ces catalyseurs comprend généralement une étape d'imprégnation des métaux et du phosphore sur le support, suivie éventuellement d'une étape de maturation, suivie d'un séchage ou d'une calcination permettant d'obtenir la phase active sous forme d'oxydes. Avant leur utilisation dans une réaction d'hydrotraitement et/ou d'hydrocraquage, ces catalyseurs sont généralement soumis à une sulfuration afin de former l'espèce active sous forme sulfure.  Conventional hydrotreatment catalysts generally comprise a support based on an oxide of a metal (for example aluminum) or a metalloid (for example silicon) and an active phase based on at least one metal group VIB and / or at least one group VIII metal in their oxide forms and optionally phosphorus. The preparation of these catalysts generally comprises a step of impregnating the metals and phosphorus on the support, optionally followed by a maturation step, followed by drying or calcination to obtain the active phase in the form of oxides. Before their use in a hydrotreatment and / or hydrocracking reaction, these catalysts are generally subjected to sulphidation in order to form the active species in sulphide form.
L'ajout d'un composé organique sur les catalyseurs d'hydrotraitement pour améliorer leur activité a été préconisé par l'Homme du métier, notamment pour des catalyseurs qui ont été préparés par imprégnation suivie éventuellement d'une étape de maturation et suivie d'une étape de séchage. De nombreux documents décrivent l'utilisation de différentes gammes de composés organiques tels que des composés organiques contenant de l'azote et/ou des composés organiques contenant de l'oxygène.  The addition of an organic compound to the hydrotreatment catalysts to improve their activity has been recommended by those skilled in the art, in particular for catalysts which have been prepared by impregnation followed optionally by a stage of maturation followed by a drying step. Many documents describe the use of different ranges of organic compounds such as organic compounds containing nitrogen and / or organic compounds containing oxygen.
Une famille de composés maintenant bien connue de la littérature concerne les composés azotés chélatants (EP 181035, EP 1043069 et US 6,540,908) avec, à titre d'exemple, l'acide éthylènediaminetétraacétique (EDTA), l'éthylènediamine, la diéthylènetriamine ou l'acide nitrilotriacétique (NT A).  A family of compounds now well known in the literature relates to chelating nitrogen compounds (EP 181035, EP 1043069 and US 6,540,908) with, for example, ethylenediaminetetraacetic acid (EDTA), ethylenediamine, diethylenetriamine or nitrilotriacetic acid (NT A).
Dans la famille des composés organiques contenant de l'oxygène, l'utilisation de mono, -di- ou polyalcools éventuellement éthérifiés est décrite dans les documents W096/41848, WO01/76741 , US 4,012,340, US 3,954,673, EP 601722, et WO 2005/035691 . L'art antérieur évoque plus rarement des composés comportant des fonctions ester (EP 1046424, WO2006/077326). On trouve aussi plusieurs brevets qui revendiquent l'utilisation d'acides carboxyliques (EP 1402948, EP 482817). En particulier, dans le document EP 482817, l'acide citrique, mais aussi les acides tartrique, butyrique, hydroxyhexanoïque, malique, gluconique, glycérique, glycolique, hydroxybutyrique ont été décrits. In the family of organic compounds containing oxygen, the use of optionally etherified mono-, di- or polyalcohols is described in documents WO96 / 41848, WO01 / 76741, US 4,012,340, US 3,954,673, EP 601722, and WO 2005 / 035691. The prior art more rarely evokes compounds comprising ester functions (EP 1046424, WO2006 / 077326). There are also several patents that claim the use of carboxylic acids (EP 1402948, EP 482817). In particular, in EP 482817, citric acid, but also tartaric, butyric, hydroxyhexanoic, malic, gluconic, glyceric, glycolic, hydroxybutyric acids have been described.
Les procédés de préparation des catalyseurs additivés mettent en œuvre généralement une étape d'imprégnation dans laquelle le composé organique est introduit de manière à remplir toute la porosité du support imprégné ou non de précurseurs métalliques afin d'obtenir une répartition homogène. Cela conduit à utiliser de grandes quantités de composé organique ou à diluer le composé organique dans un solvant. Après imprégnation, une étape de séchage est alors nécessaire pour éliminer l'excédent de composé organique ou le solvant et ainsi libérer la porosité nécessaire à la mise en œuvre du catalyseur. Au surcoût lié à l'excédent du composé organique ou à l'utilisation d'un solvant s'ajoute le coût d'une étape supplémentaire de séchage consommatrice d'énergie. The processes for preparing the additivated catalysts generally implement an impregnation step in which the organic compound is introduced so as to fill the entire porosity of the support impregnated or not with metal precursors in order to obtain a homogeneous distribution. This leads to using large amounts of organic compound or diluting the organic compound in a solvent. After impregnation, a drying step is then necessary to eliminate the excess of organic compound or the solvent and thus release the porosity necessary for the implementation of the catalyst. The additional cost of the excess of the organic compound or the use of a solvent is added the cost of an additional stage of energy-consuming drying.
Le document CN 102463151 décrit un procédé de traitement thermique d'un support de catalyseur comprenant une phase métallique dans une atmosphère gazeuse comprenant le composé organique qui est donc à l'état gazeux. Le traitement thermique est ainsi pratiqué à une température supérieure à la température d'ébullition dudit composé organique. Selon le document CN 102463151 , le traitement thermique est réalisé à une température comprise entre 150 à 500°C. Ce procédé n'est pas sans risque dans sa mise en œuvre. En effet, pour de nombreux composés organiques, comme par exemple l'éthylène glycol cité dans ce document, le point d'inflammation est inférieur au point d'ébullition. Il y a donc un risque d'incendie à travailler à température supérieure au point d'ébullition. De plus, une température élevée peut aussi conduire à une décomposition partielle ou totale de l'additif réduisant fortement son effet. Par exemple l'acide citrique, couramment utilisé comme additif organique (US 2009/0321320), se décompose à 175°C alors que son point d'ébullition est de 368°C à pression atmosphérique.  CN 102463151 discloses a method of heat treating a catalyst support comprising a metal phase in a gaseous atmosphere comprising the organic compound which is therefore in the gaseous state. The heat treatment is thus performed at a temperature above the boiling temperature of said organic compound. According to CN 102463151, the heat treatment is carried out at a temperature of between 150 and 500 ° C. This process is not without risk in its implementation. Indeed, for many organic compounds, such as ethylene glycol cited in this document, the flash point is below the boiling point. There is therefore a risk of fire to work at a temperature above the boiling point. In addition, a high temperature can also lead to partial or total decomposition of the additive greatly reducing its effect. For example citric acid, commonly used as an organic additive (US 2009/0321320), decomposes at 175 ° C while its boiling point is 368 ° C at atmospheric pressure.
Un but de l'invention est donc de proposer un procédé alternatif pour déposer un composé organique sur un support poreux de catalyseur ne faisant pas appel à une étape d'imprégnation du support au moyen d'une solution contenant le composé organique et qui soit plus sûr et moins coûteux dans sa mise en œuvre industrielle. An object of the invention is therefore to propose an alternative method for depositing an organic compound on a porous catalyst support which does not use a step of impregnating the support with a solution containing the organic compound and which is more safe and less expensive in its industrial implementation.
Résumé de l'invention Summary of the invention
La présente invention concerne un procédé d'addition d'un composé organique à un solide poreux comprenant une étape a) dans laquelle on met en présence simultanément le solide poreux et le composé organique à l'état liquide et sans contact physique entre le solide et le composé organique à l'état liquide, à une température inférieure à la température d'ébullition du composé organique et dans des conditions de pression et de durée telles qu'une fraction dudit composé organique est transférée à l'état gazeux au solide poreux. The present invention relates to a process for adding an organic compound to a porous solid comprising a step a) in which the solid is simultaneously brought into contact with the solid. porous and the organic compound in the liquid state and without physical contact between the solid and the organic compound in the liquid state, at a temperature below the boiling point of the organic compound and under pressure and duration conditions such as a fraction of said organic compound is transferred in the gaseous state to the porous solid.
Le procédé d'addition du composé organique selon l'invention ne fait pas intervenir d'étape classique d'imprégnation au moyen d'une solution contenant un solvant dans lequel est dilué le composé organique. Par conséquent il n'est pas nécessaire de procéder à une étape de séchage du solide en vue d'éliminer le solvant d'où un procédé plus économique en termes d'utilité chaude et de matière première. Selon l'invention, l'étape d'addition du composé organique est conduite à une température inférieure à la température d'ébullition dudit composé organique d'où un gain substantiel du point de vue énergétique et en termes de sécurité par rapport à la mise en œuvre décrite dans le document CN 102463151 . Le procédé selon l'invention se caractérise également par le fait que l'addition du composé organique sur le solide poreux est réalisée sans contact physique avec le composé organique à l'état liquide, c'est-à-dire sans imprégnation du solide poreux par le liquide. Le procédé repose sur le principe de l'existence d'une pression de vapeur du composé organique qui est générée par sa phase liquide à une température et à une pression données. Ainsi une partie des molécules de composé organique à l'état liquide passe à l'état gazeux (vaporisation) et est alors transférée (par voie gazeuse) au solide poreux. Cette étape a) de mise en présence est réalisée pendant une durée suffisante pour atteindre la teneur ciblée en composé organique dans le solide poreux. The process for adding the organic compound according to the invention does not involve a conventional impregnation step by means of a solution containing a solvent in which the organic compound is diluted. Therefore it is not necessary to proceed to a solid drying step to remove the solvent hence a more economical method in terms of hot utility and raw material. According to the invention, the step of adding the organic compound is conducted at a temperature below the boiling temperature of said organic compound, which results in a substantial gain in terms of energy and in terms of safety compared to the setting implemented in CN 102463151. The process according to the invention is also characterized in that the addition of the organic compound to the porous solid is carried out without physical contact with the organic compound in the liquid state, that is to say without impregnation of the porous solid by the liquid. The method is based on the principle of the existence of a vapor pressure of the organic compound which is generated by its liquid phase at a given temperature and pressure. Thus a part of the organic compound molecules in the liquid state passes to the gaseous state (vaporization) and is then transferred (gaseous) to the porous solid. This step a) of bringing into contact is carried out for a time sufficient to reach the targeted content of organic compound in the porous solid.
Avantageusement, l'étape a) est réalisée au moyen d'une unité d'addition dudit composé organique comprenant un premier et un second compartiments en communication de manière à permettre le passage d'un fluide gazeux entre les compartiments, le premier compartiment contenant le solide poreux et le second compartiment contenant le composé organique à l'état liquide. Selon un mode de réalisation l'unité comprend une enceinte incluant les premier et second compartiments, les deux compartiments étant en communication par voie gazeuse. Selon un autre mode de réalisation l'unité comprend deux enceintes formant respectivement le premier et le second compartiments, les deux enceintes étant en communication par voie gazeuse.  Advantageously, step a) is carried out by means of an addition unit of said organic compound comprising a first and a second compartments in communication so as to allow the passage of a gaseous fluid between the compartments, the first compartment containing the porous solid and the second compartment containing the organic compound in the liquid state. According to one embodiment the unit comprises a chamber including the first and second compartments, the two compartments being in communication by gas. According to another embodiment, the unit comprises two enclosures respectively forming the first and second compartments, the two chambers being in gaseous communication.
Avantageusement, l'étape a) de mise en présence du solide poreux avec le composé organique à l'état liquide est réalisée en présence d'un flux d'un gaz vecteur circulant du second compartiment dans le premier compartiment.  Advantageously, step a) bringing the porous solid into contact with the organic compound in the liquid state is carried out in the presence of a flow of a carrier gas flowing from the second compartment into the first compartment.
Généralement l'étape a) est réalisée à une pression absolue comprise entre 0 et 1 MPa. De préférence, la température de mise en œuvre de l'étape a) est inférieure à 200°C, de préférence comprise entre 10°C et 150°C, de manière plus préférée comprise entre 25°C et 120°C. Generally, step a) is carried out at an absolute pressure of between 0 and 1 MPa. Preferably, the operating temperature of step a) is less than 200 ° C., preferably between 10 ° C. and 150 ° C., more preferably between 25 ° C. and 120 ° C.
Avantageusement à l'étape a) on soutire du premier compartiment un effluent gazeux contenant ledit composé organique et on recycle l'effluent dans le premier et/ou le second compartiment.  Advantageously, in step a), a gaseous effluent containing said organic compound is withdrawn from the first compartment and the effluent is recycled to the first and / or second compartment.
Selon un mode de réalisation, à l'étape a) on soutire du premier compartiment un effluent gazeux contenant ledit composé organique à l'état gazeux, on condense ledit effluent de manière à récupérer une fraction liquide contenant le composé organique à l'état liquide et on recycle ladite fraction liquide dans le second compartiment.  According to one embodiment, in step a) a gaseous effluent containing said organic compound in the gaseous state is withdrawn from the first compartment, said effluent is condensed so as to recover a liquid fraction containing the organic compound in the liquid state. and said liquid fraction is recycled to the second compartment.
Selon l'invention, le solide poreux est choisi parmi un support de catalyseur et un support de catalyseur comprenant en outre au moins un métal du groupe VIB et/ou au moins un métal du groupe VIII. De préférence, le support poreux est à base d'oxyde d'un métal et/ou d'un métalloïde. De préférence le support poreux est à base d'alumine et/ou de silice.  According to the invention, the porous solid is selected from a catalyst support and a catalyst support further comprising at least one Group VIB metal and / or at least one Group VIII metal. Preferably, the porous support is based on an oxide of a metal and / or a metalloid. Preferably the porous support is based on alumina and / or silica.
Le composé organique qui est mise en œuvre dans le procédé est choisi parmi les molécules organiques contenant de l'oxygène et/ou de l'azote et/ou du soufre. The organic compound which is used in the process is chosen from organic molecules containing oxygen and / or nitrogen and / or sulfur.
L'invention se rapporte également à un procédé de préparation d'un catalyseur comprenant un support poreux, au moins un métal du groupe VIB et/ou au moins métal du groupe VIII et au moins un composé organique qui comprend au moins les étapes suivantes : The invention also relates to a process for preparing a catalyst comprising a porous support, at least one Group VIB metal and / or at least one Group VIII metal and at least one organic compound which comprises at least the following steps:
i) on dépose le composé organique sur le support poreux en mettant en œuvre le procédé selon l'invention;  i) depositing the organic compound on the porous support by implementing the method according to the invention;
ii) on dépose au moins un métal du groupe VIB et/ou au moins un métal du groupe VIII sur le support poreux par mise en contact du support avec une solution contenant au moins un précurseur du ou desdits métaux du groupe VIII et/ou au moins un précurseur du ou desdits métaux du groupe VIB ;  ii) depositing at least one Group VIB metal and / or at least one Group VIII metal on the porous support by contacting the support with a solution containing at least one precursor of said group VIII metal (s) and / or minus a precursor of said group VIB metal (s);
iii) on sèche le solide obtenu à l'issue de l'étape ii),  iii) the solid obtained is dried after step ii),
l'étape i) étant réalisée avant ou après les étapes ii) et iii). step i) being performed before or after steps ii) and iii).
Selon l'invention, la solution de l'étape ii) peut comprend en outre au moins un composé organique additionnel différent du composé organique mis en œuvre à l'étape i).  According to the invention, the solution of step ii) may also comprise at least one additional organic compound different from the organic compound used in step i).
Le procédé selon l'invention de préparation d'un catalyseur peut comprendre en outre au moins une étape d'imprégnation du support poreux avec une solution comprenant un composé organique différent du composé organique mis en œuvre à l'étape i). The process according to the invention for the preparation of a catalyst may also comprise at least one step of impregnating the porous support with a solution comprising an organic compound that is different from the organic compound used in step i).
Enfin la présente invention concerne un procédé de traitement d'une charge hydrocarbonée dans lequel on met en contact de l'hydrogène, la charge hydrocarbonée et un catalyseur, à une température comprise entre 180 et 450°C, à une pression comprise entre 0,5 et 30 MPa, avec une vitesse volumique horaire comprise entre 0,1 et 20 h-1 et avec un rapport hydrogène/charge exprimé en volume d'hydrogène, mesuré dans les conditions normales de température et pression, par volume de charge liquide compris entre 50 l/l à 5000 l/l, ledit catalyseur ayant été préparé par un procédé selon l'invention et soumis à au moins une étape de sulfuration. Finally, the present invention relates to a process for treating a hydrocarbon feedstock in which the hydrocarbon feedstock and a catalyst are brought into contact with hydrogen at a temperature of between 180 and 450 ° C. at a pressure of between 0.degree. 5 and 30 MPa, with a hourly space velocity of between 0.1 and 20 h -1 and with a hydrogen / charge ratio expressed as a volume of hydrogen, measured under normal conditions of temperature and pressure, per volume of liquid charge of between 50 l / l at 5000 l / l, said catalyst having been prepared by a process according to the invention and subjected to at least one sulphurization step.
Description détaillée de l'invention Detailed description of the invention
La présente invention a pour objet un procédé d'addition d'un composé organique sur un solide poreux qui est par exemple un support poreux de catalyseur ou un support poreux qui contient déjà au moins un métal du groupe VIB et/ou au moins un métal du groupe VIII que l'on désignera par le terme "précurseur de catalyseur" dans le reste de la description. Le support poreux est de préférence à base d'au moins un oxyde d'un métal ou d'un métalloïde. De préférence le support poreux est à base d'alumine ou de silice ou de silice-alumine.  The subject of the present invention is a process for adding an organic compound to a porous solid which is, for example, a porous catalyst support or a porous support which already contains at least one Group VIB metal and / or at least one metal Group VIII which will be referred to as "catalyst precursor" in the remainder of the description. The porous support is preferably based on at least one oxide of a metal or a metalloid. Preferably the porous support is based on alumina or silica or silica-alumina.
Lorsque le support est à base d'alumine, il contient plus de 50% poids d'alumine. De préférence, l'alumine est l'alumine gamma. When the support is based on alumina, it contains more than 50% by weight of alumina. Preferably, the alumina is gamma alumina.
De façon alternative, le support est une silice-alumine c'est-à-dire qu'il contient au moins 50% poids d'alumine. La teneur en silice dans le support est d'au plus 50% poids, le plus souvent inférieure ou égale à 45% poids, de préférence inférieure ou égale à 40% poids. Lorsque le support dudit catalyseur est à base de silice, il contient plus de 50% poids de silice et, de façon générale, il contient uniquement de la silice.  Alternatively, the support is a silica-alumina that is to say that it contains at least 50% by weight of alumina. The silica content in the support is at most 50% by weight, most often less than or equal to 45% by weight, preferably less than or equal to 40% by weight. When the support of said catalyst is based on silica, it contains more than 50% by weight of silica and, in general, it contains only silica.
Selon une variante particulièrement préférée, le support est constitué d'alumine, de silice ou de silice-alumine.  According to a particularly preferred variant, the support consists of alumina, silica or silica-alumina.
Le support peut aussi avantageusement contenir en outre de 0,1 à 50% poids de zéolithe. De préférence, la zéolithe est choisie parmi le groupe FAU, BEA, ISV, IWR, IWW, MEI, UWY et de manière préférée, la zéolithe est choisie parmi le groupe FAU et BEA, telle que la zéolite Y et/ou bêta.  The support may also advantageously contain from 0.1 to 50% by weight of zeolite. Preferably, the zeolite is chosen from the group FAU, BEA, ISV, IWR, IWW, MEI, UWY and, preferably, the zeolite is chosen from the group FAU and BEA, such as zeolite Y and / or beta.
Dans certains cas particuliers, le support peut contenir au moins un élément dopant, tel que par exemple du phosphore.  In some particular cases, the support may contain at least one doping element, such as, for example, phosphorus.
Le solide poreux présente de préférence un volume poreux total compris entre 0,1 et 1 ,5 cm3/g, de préférence compris entre 0,4 et 1 ,1 cm3/g. Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284 avec un angle de mouillage de 140°, telle que décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Académie Press, 1999, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Microméritics™. La surface spécifique du solide poreux est avantageusement comprise entre 5 et 400 m2/g, de préférence entre 10 et 350 m2/g, de manière plus préférée entre 40 et 350 m2/g. La surface spécifique est déterminée dans la présente invention par la méthode B.E.T selon la norme ASTM D3663, méthode décrite dans le même ouvrage cité ci-dessus. The porous solid preferably has a total pore volume of between 0.1 and 1.5 cm 3 / g, preferably between 0.4 and 1.1 cm 3 / g. The total pore volume is measured by mercury porosimetry according to ASTM D4284 with a wetting angle of 140 °, as described in Rouquerol F .; Rouquerol J .; Singh K. "Adsorption by Powders & Porous Solids: Principle, Methodology and Applications", Academy Press, 1999, for example, using an Autopore III ™ model from the Microméritics ™ brand. The specific surface of the porous solid is advantageously between 5 and 400 m 2 / g, preferably between 10 and 350 m 2 / g, more preferably between 40 and 350 m 2 / g. The specific surface is determined in the present invention by the BET method according to ASTM D3663, a method described in the same work cited above.
Le solide poreux se présente généralement sous forme de billes, d'extrudés, de pastilles, ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage. The porous solid is generally in the form of balls, extrudates, pellets, or irregular and non-spherical agglomerates whose specific shape can result from a crushing step.
Comme mentionné plus haut, le procédé d'addition du composé organique peut être effectué sur un solide poreux qui est un précurseur de catalyseur, c'est-à-dire sur un support poreux comprenant en outre au moins un métal du groupe VIB et/ou au moins un métal du groupe VIII. Les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.  As mentioned above, the process for adding the organic compound can be carried out on a porous solid which is a catalyst precursor, that is to say on a porous support further comprising at least one Group VIB metal and / or or at least one Group VIII metal. The groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief D.R. Lide, 81st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
Dans le cadre de l'invention, le précurseur de catalyseur peut être un précurseur de catalyseur frais, c'est-à-dire qui n'a pas été utilisé auparavant dans une unité catalytique et notamment en hydrotraitement et/ou hydrocraquage. In the context of the invention, the catalyst precursor may be a fresh catalyst precursor, that is to say which has not been used before in a catalytic unit and in particular in hydrotreatment and / or hydrocracking.
Le précurseur de catalyseur selon l'invention peut aussi être un catalyseur dit "régénéré". On entend par le vocable "catalyseur régénéré" désigner un catalyseur qui a été préalablement utilisé dans une unité catalytique et notamment en hydrotraitement et/ou hydrocraquage et qui a été soumis à au moins une étape de calcination afin de brûler le coke (régénération).  The catalyst precursor according to the invention may also be a so-called "regenerated" catalyst. The term "regenerated catalyst" refers to a catalyst which has been previously used in a catalytic unit and in particular in hydrotreating and / or hydrocracking and which has been subjected to at least one calcination step in order to burn the coke (regeneration).
Le procédé d'addition d'un composé organique à un solide poreux peut être réalisé dans une unité d'addition dudit composé organique. L'unité d'addition mise en œuvre comprend un premier et un second compartiments en communication de manière à autoriser le passage d'un fluide gazeux entre les deux compartiments et dans laquelle le premier compartiment est apte à contenir le solide poreux et le second compartiment est apte à contenir le composé organique sous forme liquide. Le procédé comprend une étape a) dans laquelle on met en présence simultanément le solide poreux et le composé organique sous forme liquide sans contact physique entre le solide et le composé organique sous forme liquide, à une température inférieure à la température d'ébullition du composé organique et dans des conditions de pression et de durée telles qu'une fraction dudit composé organique est transférée par voie gazeuse au solide poreux par circulation d'un flux de composé organique sous forme gazeuse du second compartiment dans le premier compartiment, de manière à fournir in fine un solide poreux contenant le composé organique. Selon un mode de réalisation, l'unité de mise en présence comprend une enceinte incluant les premier et second compartiments, les compartiments étant en communication par voie gazeuse. Par exemple les compartiments sont disposés côte à côté et séparés par une cloison, par exemple sensiblement verticale, solidaire du fond de l'enceinte et ne s'étendant que sur une fraction de la hauteur de l'enceinte de manière à laisser diffuser le ciel gazeux d'un compartiment à l'autre. Alternativement, les compartiments sont disposés l'un au- dessus de l'autre et sont en communication de manière à permettre le passage du composé organique à l'état gazeux entre les deux compartiments. De préférence l'enceinte est fermée. Selon un autre mode de réalisation, l'unité comprend deux enceintes formant respectivement le premier et le second compartiments, les deux enceintes étant en communication par voie gazeuse, par exemple au moyen d'une conduite. De préférence, les deux enceintes sont fermées. The method of adding an organic compound to a porous solid can be carried out in an addition unit of said organic compound. The addition unit used comprises first and second compartments in communication so as to allow the passage of a gaseous fluid between the two compartments and in which the first compartment is able to contain the porous solid and the second compartment. is capable of containing the organic compound in liquid form. The process comprises a step a) in which the porous solid and the organic compound in liquid form are simultaneously brought into contact without physical contact between the solid and the organic compound in liquid form, at a temperature below the boiling point of the compound. organic and under pressure and time conditions such that a fraction of said organic compound is transferred by gaseous means to the porous solid by circulating a stream of gaseous organic compound from the second compartment into the first compartment, so as to provide in fine a porous solid containing the organic compound. According to one embodiment, the unit of presence comprises a chamber including the first and second compartments, the compartments being in communication by gas. For example the compartments are arranged side by side and separated by a partition, for example substantially vertical, integral with the bottom of the enclosure and extending only over a fraction of the height of the enclosure so as to let the sky spread. gaseous from one compartment to another. Alternatively, the compartments are arranged one above the other and are in communication so as to allow the passage of the organic compound in the gaseous state between the two compartments. Preferably the enclosure is closed. According to another embodiment, the unit comprises two enclosures forming respectively the first and the second compartments, the two enclosures being in communication via gas, for example by means of a pipe. Preferably, the two enclosures are closed.
De préférence, le compartiment destiné à contenir le composé organique liquide comprend des moyens pour mettre en mouvement ledit liquide afin de faciliter le transfert du composé organique à l'état gazeux d'un compartiment à l'autre. Selon un mode de réalisation préféré, les deux compartiments comprennent des moyens pour mettre en mouvement respectivement le liquide et le solide poreux. Avantageusement le compartiment contenant le composé organique à l'état liquide est équipé d'internes destinés à maximiser la surface de l'interface gaz/liquide. Ces internes sont par exemple des monolithes poreux imprégnés par capillarités, des films tombants, des garnissages ou tout autre moyen connu de l'Homme du métier.  Preferably, the compartment for containing the liquid organic compound comprises means for moving said liquid to facilitate the transfer of the organic compound in a gaseous state from one compartment to another. According to a preferred embodiment, the two compartments comprise means for moving the liquid and the porous solid respectively. Advantageously, the compartment containing the organic compound in the liquid state is equipped with internals intended to maximize the surface of the gas / liquid interface. These internals are for example porous monoliths impregnated with capillarities, falling films, packings or any other means known to those skilled in the art.
Dans un mode de réalisation préféré, l'étape a) de mise en présence du solide poreux avec le composé organique est réalisée en présence d'un gaz (vecteur) circulant du second compartiment dans le premier compartiment de manière à entraîner les molécules organiques à l'état gazeux dans le compartiment contenant le solide poreux. Par exemple le gaz vecteur peut être choisi parmi le dioxyde de carbone, l'ammoniac, l'air à hygrométrie contrôlée, un gaz rare comme l'argon, l'azote, l'hydrogène, du gaz naturel ou un gaz réfrigérant au titre de la classification éditée par l'IUPAC.  In a preferred embodiment, step a) of bringing the porous solid into contact with the organic compound is carried out in the presence of a gas (vector) flowing from the second compartment into the first compartment so as to entrain the organic molecules to the gaseous state in the compartment containing the porous solid. For example, the carrier gas may be chosen from carbon dioxide, ammonia, air with controlled hygrometry, a rare gas such as argon, nitrogen, hydrogen, natural gas or a refrigerant gas. of the classification published by IUPAC.
Selon un mode de réalisation préféré, l'étape a) comprend une étape dans laquelle on soutire du premier compartiment un effluent gazeux contenant ledit composé organique et on recycle l'effluent dans le premier et/ou le second compartiment.  According to a preferred embodiment, step a) comprises a step in which a gaseous effluent containing said organic compound is withdrawn from the first compartment and the effluent is recycled to the first and / or second compartment.
Selon un autre mode de réalisation, on soutire du premier compartiment un effluent gazeux contenant ledit composé organique à l'état gazeux, on condense ledit effluent de manière à récupérer une fraction liquide contenant le composé organique à l'état liquide et on recycle ladite fraction liquide dans le second compartiment. L'étape de mise en présence est réalisée de préférence à une pression absolue comprise entre 0 et 1 MPa. Comme précisé plus haut, la température de l'étape de mise en présence est fixée à une température inférieure à la température d'ébullition du composé organique. La température de l'étape de mise en présence est généralement inférieure à 200°C, de préférence comprise entre 10°C et 150°C, de manière plus préférée comprise entre 25°C et 120°C. According to another embodiment, a gaseous effluent containing said organic compound in the gaseous state is withdrawn from the first compartment, said effluent is condensed so as to recover a liquid fraction containing the organic compound in the liquid state and said fraction is recycled. liquid in the second compartment. The placing step is preferably carried out at an absolute pressure of between 0 and 1 MPa. As mentioned above, the temperature of the placing step is set at a temperature below the boiling point of the organic compound. The temperature of the placing step is generally less than 200 ° C., preferably between 10 ° C. and 150 ° C., more preferably between 25 ° C. and 120 ° C.
Selon l'invention, tout composé organique peut être employé à la condition que ledit composé organique soit à l'état liquide dans les conditions de température et de pression mises en œuvre à l'étape a). Le composé organique peut être choisi par exemple parmi les molécules organiques contenant de l'oxygène et/ou de l'azote et/ou du soufre. Le composé organique est par exemple choisi parmi un composé comportant une ou plusieurs fonctions chimiques choisies parmi une fonction carboxylique, alcool, thiol, thioéther, sulfone, sulfoxyde, éther, aldéhyde, cétone, ester, carbonate, aminé, nitrile, imide, oxime, urée et amide. A titre d'exemple, il peut être choisi parmi le triéthylèneglycol, le diéthylèneglycol, l'éthylèneglycol, le propylèneglycol, le monométhyléther de diéthylèneglycol, le monobutyléther de diéthylèneglycol, le monobutyléther d'éthylèneglycol, le 1 ,4-butanediol, le 1 -pentanol, l'acide malonique, l'acide succinique, l'acide γ-cétovalérique, l'acide maléique, l'acide citrique, l'alanine, la glycine, l'acide iminodiacétique, l'acide nitrilotriacétique, l'acide orthophtalique, le diéthylformamide, le diméthylformamide, l'acétoacétate de méthyle, le succinate de diméthyle, le 3-oxobutanoate de 2-méthoxyéthyle, le 3-oxobutanoate de 2- méthacryloyloxyéthyle, la γ-valérolactone, l'acide 4-hydroxyvalérique, l'acide 2-pentenoique, l'acide 3-pentenoique, l'acide 4-pentenoique, la 2-acétylbutyrolactone, l'acide 2-(2- hydroxyéthyl)-3-oxobutanoïque, l'acide 3-hydroxy-2-(2-hydroxyéthyl)-2-butenoïque, la N- méthylpyrrolidone, le carbonate de propylène, le sulfolane, le phosphite de diéthyle, le phosphite de triéthyle, le phosphate de triéthyle, l'acétophénone, la tétraméthylurée, l'acide thioglycolique. Dans le cadre de l'invention on peut également mettre en œuvre une composition constituée d'un mélange de composés organiques à l'état liquide. Le procédé d'addition du composé organique selon l'invention peut être intégré dans une chaîne de production de catalyseur dit « additivé » d'un composé organique. According to the invention, any organic compound may be employed provided that said organic compound is in the liquid state under the temperature and pressure conditions implemented in step a). The organic compound may be chosen for example from organic molecules containing oxygen and / or nitrogen and / or sulfur. The organic compound is, for example, chosen from a compound comprising one or more chemical functional groups chosen from a carboxylic function, alcohol, thiol, thioether, sulphone, sulphoxide, ether, aldehyde, ketone, ester, carbonate, amine, nitrile, imide, oxime, urea and amide. By way of example, it may be chosen from triethylene glycol, diethylene glycol, ethylene glycol, propylene glycol, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethylene glycol monobutyl ether, 1,4-butanediol, 1-butanediol and the like. pentanol, malonic acid, succinic acid, γ-ketovaleric acid, maleic acid, citric acid, alanine, glycine, iminodiacetic acid, nitrilotriacetic acid, orthophthalic acid , diethylformamide, dimethylformamide, methyl acetoacetate, dimethyl succinate, 2-methoxyethyl 3-oxobutanoate, 2-methacryloyloxyethyl 3-oxobutanoate, γ-valerolactone, 4-hydroxyvaleric acid, 2-pentenoic acid, 3-pentenoic acid, 4-pentenoic acid, 2-acetylbutyrolactone, 2- (2-hydroxyethyl) -3-oxobutanoic acid, 3-hydroxy-2- (2-hydroxyethyl) hydroxyethyl) -2-butenoic acid, N-methylpyrrolidone, propylene carbonate, sulphate folane, diethyl phosphite, triethyl phosphite, triethyl phosphate, acetophenone, tetramethylurea, thioglycolic acid. In the context of the invention, it is also possible to use a composition consisting of a mixture of organic compounds in the liquid state. The method for adding the organic compound according to the invention can be integrated in a catalyst production chain called "additive" of an organic compound.
Selon un second aspect, la présente invention se rapporte à un procédé de préparation d'un catalyseur additivé d'un composé organique comprenant un support poreux, au moins un métal du groupe VIB et/ou au moins un métal du groupe VI II et au moins un composé organique, le procédé comprenant au moins les étapes suivantes: i) on dépose le composé organique sur le support poreux en mettant en œuvre le procédé selon l'invention; According to a second aspect, the present invention relates to a process for preparing a catalyst with an organic compound additive comprising a porous support, at least one Group VIB metal and / or at least one Group VI II metal and at least one Group VI II metal. at least one organic compound, the process comprising at least the following steps: i) depositing the organic compound on the porous support by implementing the method according to the invention;
ii) on dépose au moins un métal du groupe VIB et/ou au moins un métal du groupe VIII sur le support par mise en contact du support poreux avec une solution contenant au moins un précurseur d'au moins un métal du groupe VIII et/ou au moins un précurseur d'au moins un métal du groupe VIB ;  ii) depositing at least one Group VIB metal and / or at least one Group VIII metal on the support by contacting the porous support with a solution containing at least one precursor of at least one Group VIII metal and or at least one precursor of at least one Group VIB metal;
iii) on sèche le solide obtenu à l'issue de l'étape ii),  iii) the solid obtained is dried after step ii),
l'étape i) étant réalisée avant ou après les étapes ii) et iii).  step i) being performed before or after steps ii) and iii).
Le procédé d'addition du composé organique selon l'invention peut être mis en œuvre une ou plusieurs fois dans une chaîne de production d'un catalyseur additivé pour réaliser l'introduction d'un ou plusieurs composés organiques avant l'étape d'imprégnation de la phase métallique active et/ou pour permettre l'introduction d'un ou plusieurs composés organiques sur un support poreux contenant déjà une phase métallique active qui peut être éventuellement sulfurée.  The process for adding the organic compound according to the invention may be carried out one or more times in a production line of an additivated catalyst in order to introduce one or more organic compounds before the impregnation step. of the active metal phase and / or to allow the introduction of one or more organic compounds on a porous support already containing an active metal phase which can be optionally sulphured.
Selon un premier mode de réalisation A) du procédé de préparation d'un catalyseur additivé d'un composé organique, le support poreux est soumis à une étape d'imprégnation avec une solution comprenant au moins un métal du groupe VIB et/ou au moins un métal du groupe VIII de manière à déposer une phase métallique active (étape ii). Le support poreux imprégné de la phase métallique active est éventuellement soumis à une étape de maturation puis est séché (étape iii) afin d'éliminer le solvant apporté par l'étape ii). Le support poreux contenant la phase métallique active et séché est traité selon l'étape i) dans l'unité de mise en présence avec le composé organique à l'état liquide de manière à fournir un catalyseur additivé dudit composé organique. According to a first embodiment A) of the process for preparing a catalyst with an organic compound additive, the porous support is subjected to an impregnation step with a solution comprising at least one Group VIB metal and / or at least one a group VIII metal so as to deposit an active metal phase (step ii). The porous support impregnated with the active metal phase is optionally subjected to a maturation step and is then dried (step iii) in order to eliminate the solvent provided by step ii). The porous support containing the active and dried metallic phase is treated according to stage i) in the unit of presence with the organic compound in the liquid state so as to provide an additivated catalyst of said organic compound.
Dans le mode de réalisation A), le support poreux peut notamment déjà contenir un composé organique additionnel différent de celui qui est utilisé à l'étape i). Ce composé organique additionnel peut avoir été incorporé au support au moyen du procédé d'addition selon l'invention ou selon toute autre méthode connue de l'Homme du métier comme par exemple par imprégnation d'une solution contenant le composé organique additionnel.  In embodiment A), the porous support may in particular already contain an additional organic compound different from that used in step i). This additional organic compound may have been incorporated into the support by means of the addition process according to the invention or according to any other method known to those skilled in the art, for example by impregnation of a solution containing the additional organic compound.
Selon un autre mode de réalisation B) de préparation d'un catalyseur additivé d'un composé organique, on utilise un support de catalyseur ne contenant pas de phase active. Le support est d'abord soumis à une étape d'addition du composé organique selon l'invention de manière à fournir un support de catalyseur additivé du composé organique (étape i), qui après une phase facultative de maturation, est envoyé à l'étape d'imprégnation de la phase active (étape ii). Cette étape peut consister à mettre en contact le support additivé avec une solution contenant au moins un précurseur d'au moins un métal du groupe VIII et/ou au moins un précurseur d'au moins un métal du groupe VIB. Le catalyseur additivé ainsi obtenu est éventuellement laissé en maturation et puis soumis à une étape de séchage (étape iii) en vue d'éliminer le solvant apporté lors de l'étape d'imprégnation des précurseurs métalliques de la phase active. Dans ce mode de réalisation B), le support poreux mis en œuvre peut éventuellement déjà contenir un composé organique additionnel différent de celui utilisé à l'étape i), le composé organique additionnel ayant été incorporé au support de catalyseur au moyen du procédé d'addition selon l'invention ou selon toute autre méthode connue de l'Homme du métier. According to another embodiment B) of preparation of a catalyst additive of an organic compound, a catalyst support containing no active phase is used. The support is first subjected to a step of adding the organic compound according to the invention so as to provide an additive-containing catalyst support of the organic compound (step i), which after an optional phase of maturation, is sent to the step of impregnating the active phase (step ii). This step may consist in bringing the additive-containing support into contact with a solution containing at least one precursor of at least one Group VIII metal and / or at least one precursor of at least one Group VIB metal. The additive catalyst thus obtained is optionally left to mature and then subjected to a drying step (step iii) in order to remove the solvent provided during the step of impregnating the metal precursors of the active phase. In this embodiment B), the porous support used may optionally already contain an additional organic compound different from that used in step i), the additional organic compound having been incorporated in the catalyst support by means of the process of addition according to the invention or according to any other method known to those skilled in the art.
Il est à noter que quelques soient les modes de réalisations A) et B), l'étape ii) de dépôt de la phase métallique active peut mettre en œuvre une solution contenant au moins un précurseur d'au moins un métal du groupe VIII et/ou au moins un précurseur d'au moins un métal du groupe VIB et en outre un ou plusieurs composés organiques additionnels différents de celui de l'étape i).  It should be noted that whatever the embodiments A) and B), the step ii) of deposition of the active metal phase can implement a solution containing at least one precursor of at least one metal of group VIII and or at least one precursor of at least one Group VIB metal and further one or more additional organic compounds different from that of step i).
Selon l'invention, le catalyseur additivé obtenu à l'issue des étapes i) à iii) décrites ci-dessus peut également être traité par une ou plusieurs étapes subséquentes afin d'incorporer un ou plusieurs autres composés organiques additionnels différents de celui employé à l'étape i). L'incorporation d'un ou plusieurs autres composés organiques additionnels différents peut être réalisée au moyen du procédé d'addition selon l'invention ou selon toute autre méthode connue de l'Homme du métier. Ledit ou lesdits composés organiques additionnels peuvent par exemple être introduits selon l'un des modes décrits dans le document FR 3 035 008. According to the invention, the additivated catalyst obtained after steps i) to iii) described above can also be treated by one or more subsequent steps to incorporate one or more additional organic compounds different from that used in step i). The incorporation of one or more other additional additional organic compounds can be carried out by means of the addition method according to the invention or according to any other method known to those skilled in the art. Said said additional organic compound (s) may, for example, be introduced in one of the modes described in document FR 3 035 008.
Les catalyseurs selon l'invention peuvent contenir comme phase active un ou plusieurs métaux du groupe VIB et/ou du groupe VIII. Les métaux du groupe VIB préférés sont le molybdène et le tungstène et les métaux du groupe VIII préférés sont des éléments non nobles et en particulier le cobalt et le nickel. Avantageusement, la phase active est choisie dans le groupe formé par les combinaisons des éléments cobalt-molybdène, nickel- molybdène, nickel-tungstène ou nickel-cobalt-molybdène, ou nickel-molybdène-tungstène. Selon l'invention, les catalyseurs présentent généralement une teneur totale en métal du groupe VIB et/ou du groupe VIII supérieure à 6% poids exprimé en oxyde par rapport au poids total de catalyseur sec. The catalysts according to the invention may contain, as active phase, one or more Group VIB and / or Group VIII metals. The preferred Group VIB metals are molybdenum and tungsten and the preferred Group VIII metals are non-noble elements, particularly cobalt and nickel. Advantageously, the active phase is chosen from the group formed by the combinations of cobalt-molybdenum, nickel-molybdenum, nickel-tungsten or nickel-cobalt-molybdenum, or nickel-molybdenum-tungsten elements. According to the invention, the catalysts generally have a total content of Group VIB metal and / or Group VIII greater than 6% by weight expressed as oxide relative to the total weight of dry catalyst.
De préférence la teneur totale en métaux du groupe VIB est comprise entre 5 et 40% poids, de préférence entre 8 et 35% poids, et de manière plus préférée entre 10 et 32% poids exprimé en oxyde de métal du groupe VIB par rapport au poids total de catalyseur sec. Preferably, the total content of Group VIB metals is between 5 and 40% by weight, preferably between 8 and 35% by weight, and more preferably between 10 and 32% by weight expressed as Group VIB metal oxide relative to total weight of dry catalyst.
La teneur totale en métaux du groupe VIII est généralement comprise entre 1 et 10% poids, de préférence entre 1 ,5 et 9% poids, et de manière plus préférée entre 2 et 8% poids exprimé en oxyde de métal du groupe VIII par rapport au poids total de catalyseur sec. Le rapport molaire métaux du groupe VIII sur métaux du groupe VIB dans le catalyseur est préférentiellement compris entre 0,1 et 0,8, de préférence compris entre 0,15 et 0,6 et de manière encore plus préférée compris entre 0,2 et 0,5. The total content of metals of group VIII is generally between 1 and 10% by weight, preferably between 1.5 and 9% by weight, and more preferably between 2 and 8% by weight expressed in Group VIII metal oxide relative to to the total weight of dry catalyst. The molar ratio of Group VIII metals to Group VIB metals in the catalyst is preferably between 0.1 and 0.8, preferably between 0.15 and 0.6, and even more preferably between 0.2 and 0.5.
Le catalyseur peut comprendre également du phosphore en tant que dopant. La teneur en phosphore dans ledit catalyseur est de préférence comprise entre 0,1 et 20% poids exprimée en P205, de préférence entre 0,2 et 15% poids exprimée en P205, et de manière très préférée entre 0,3 et 1 1 % poids exprimée en P205 par rapport au poids total de catalyseur sec.  The catalyst may also include phosphorus as a dopant. The phosphorus content in said catalyst is preferably between 0.1 and 20% by weight, expressed as P205, preferably between 0.2 and 15% by weight, expressed as P205, and very preferably between 0.3 and 11% by weight. weight expressed as P205 relative to the total weight of dry catalyst.
Le rapport molaire phosphore sur les métaux du groupe VIB dans le catalyseur est supérieur ou égal à 0,05, de préférence supérieur ou égal à 0,07, de préférence compris entre 0,08 et 1 , de préférence compris entre 0,01 et 0,9 et de manière très préférée compris entre 0,15 et 0,8.  The molar phosphorus ratio on the Group VIB metals in the catalyst is greater than or equal to 0.05, preferably greater than or equal to 0.07, preferably of between 0.08 and 1, preferably of between 0.01 and 0.9 and very preferably between 0.15 and 0.8.
Le catalyseur peut avantageusement contenir en outre au moins un dopant choisi parmi le bore, le fluor et un mélange de bore et de fluor. Lorsque le catalyseur contient du bore, la teneur en bore est de préférence comprise entre 0,1 et 10% poids exprimé en oxyde de bore, de préférence entre 0,2 et 7% poids, et de manière très préférée comprise entre 0,2 et 5% poids par rapport au poids total de catalyseur sec. Lorsque le catalyseur contient du fluor, la teneur en fluor est de préférence comprise entre 0, 1 et 10% poids exprimé en fluor, de préférence entre 0,2 et 7% poids, et de manière très préférée comprise entre 0,2 et 5% poids par rapport au poids total de catalyseur sec.  The catalyst may advantageously also contain at least one dopant chosen from boron, fluorine and a mixture of boron and fluorine. When the catalyst contains boron, the boron content is preferably between 0.1 and 10% by weight expressed as boron oxide, preferably between 0.2 and 7% by weight, and very preferably between 0.2 and 5% by weight relative to the total weight of dry catalyst. When the catalyst contains fluorine, the fluorine content is preferably between 0.1 and 10% by weight expressed as fluorine, preferably between 0.2 and 7% by weight, and very preferably between 0.2 and 5% by weight. % by weight relative to the total weight of dry catalyst.
Les catalyseurs additivés ainsi préparés sont notamment utilisés pour les réactions d'hydrotraitement de charges hydrocarbonées telles que les coupes pétrolières ou pour la synthèse d'hydrocarbures à partir de gaz de synthèse. Selon l'invention, le terme "hydrotraitement" englobe notamment les réactions d'hydrogénation totale ou sélective, d'hydrodéazotation, d'hydrodésaromatisation, d'hydrodésulfuration, d'hydrodéoxygénation, d'hydrodémétallation, et d'hydrocraquage de charges hydrocarbonées. The additivated catalysts thus prepared are especially used for the hydrotreatment reactions of hydrocarbon feeds such as petroleum cuts or for the synthesis of hydrocarbons from synthesis gas. According to the invention, the term "hydrotreatment" includes, in particular, total or selective hydrogenation reactions, hydrodenitrogenation, hydrodearomatization, hydrodesulphurization, hydrodeoxygenation, hydrodemetallation, and hydrocracking of hydrocarbon feeds.
Pour des applications en hydrotraitement, le catalyseur additivé subit généralement une étape de sulfuration avant sa mise en œuvre. Les charges employées dans le procédé d'hydrotraitement sont par exemple des essences, des gazoles, des gazoles sous vide, des résidus atmosphériques, des résidus sous vide, des distillais atmosphériques, des distillais sous vide, des fuels lourds, des huiles, des cires et des paraffines, des huiles usagées, des résidus ou des bruts désasphaltés, des charges provenant des procédés de conversion thermiques ou catalytiques, des charges lignocellulosiques ou des charges issues de la biomasse, prises seules ou en mélange. Les conditions opératoires utilisées dans les procédés mettant en œuvre les réactions d'hydrotraitement de charges hydrocarbonées décrites ci-dessus sont généralement les suivantes : la température est avantageusement comprise entre 180 et 450°C, et de préférence comprise entre 250 et 440°C, la pression est avantageusement comprise entre 0,5 et 30 MPa, et de préférence comprise entre 1 et 18 MPa, la vitesse volumique horaire est avantageusement comprise entre 0,1 et 20 h"1 et de préférence comprise entre 0,2 et 5 h"1 , et le rapport hydrogène/charge exprimé en volume d'hydrogène, mesuré dans les conditions normales de température et pression, par volume de charge liquide est avantageusement compris entre 50 l/l à 5000 l/l et de préférence comprise entre 80 à 2000 l/l. For hydrotreatment applications, the additivated catalyst generally undergoes a sulphurization step before its implementation. The feedstocks used in the hydrotreatment process are, for example, gasolines, gas oils, vacuum gas oils, atmospheric residues, vacuum residues, atmospheric distillates, vacuum distillates, heavy fuels, oils, waxes. and paraffins, waste oils, deasphalted residues or crudes, feeds from thermal or catalytic conversion processes, lignocellulosic feedstocks or biomass feedstocks, alone or as a mixture. The operating conditions used in the The processes employing the hydrotreatment reactions of hydrocarbon feedstocks described above are generally the following: the temperature is advantageously between 180 and 450 ° C., and preferably between 250 and 440 ° C., the pressure is advantageously between 0.5 and 30 MPa, and preferably between 1 and 18 MPa, the hourly volume velocity is advantageously between 0.1 and 20 h -1 and preferably between 0.2 and 5 h -1 , and the ratio Hydrogen / charge expressed as a volume of hydrogen, measured under normal conditions of temperature and pressure, per volume of liquid charge is advantageously between 50 l / l to 5000 l / l and preferably between 80 to 2000 l / l.
Description détaillée des figures Detailed description of the figures
Les autres caractéristiques et avantages de l'invention vont apparaître à la lecture de la description d'exemples de réalisations particuliers de l'invention, donnés à titre uniquement illustratif et non limitatif, et en référence aux figures suivantes:  The other features and advantages of the invention will appear on reading the description of examples of particular embodiments of the invention, given by way of illustration and non-limitation, and with reference to the following figures:
« la figure 1 est un schéma illustrant le principe d'addition d'un composé organique selon la pratique courante connue de l'Homme du métier;  "Figure 1 is a diagram illustrating the principle of addition of an organic compound according to the common practice known to those skilled in the art;
• la figure 2 est un schéma illustrant le procédé selon l'invention d'addition d'un composé organique selon un premier mode de réalisation;  FIG. 2 is a diagram illustrating the process according to the invention for adding an organic compound according to a first embodiment;
• la figure 3 montre un schéma du procédé d'addition d'un composé organique selon un deuxième mode de réalisation;  FIG. 3 shows a diagram of the process for adding an organic compound according to a second embodiment;
• la figure 4 est un schéma du procédé d'addition d'un composé organique selon un troisième mode de réalisation.  FIG. 4 is a diagram of the process for adding an organic compound according to a third embodiment.
Généralement, les éléments semblables sont dénotés par des références identiques dans les figures.  Generally, similar elements are denoted by identical references in the figures.
La figure 1 correspond à un schéma bloc présentant un procédé connu d'addition d'un composé organique sur un support poreux de catalyseur ou un précurseur de catalyseur tel que décrit précédemment que l'on désigne ci-après par le terme générique "solide". FIG. 1 corresponds to a block diagram showing a known method of adding an organic compound to a porous catalyst support or a catalyst precursor as described above, which is hereinafter referred to by the generic term "solid" .
Le lot solide 1 est soumis à un prétraitement facultatif dans une unité 2 de prétraitement du solide destinée, si besoin, à conditionner le solide avant l'étape d'imprégnation du composé organique. Cette étape de prétraitement peut être, par exemple et selon l'effet recherché, une étape préliminaire de séchage pour ajuster l'humidité résiduelle. The solid batch 1 is subjected to optional pretreatment in a solid pretreatment unit 2, intended, if necessary, to condition the solid before the step of impregnating the organic compound. This pretreatment step may be, for example and according to the desired effect, a preliminary drying step to adjust the residual moisture.
Ce prétraitement peut être également une addition par adjonction contrôlée du même solvant, apporté par la ligne 3, que celui qui est mis en œuvre lors de l'imprégnation du composé organique afin d'éviter une réaction trop vive du solide lors de la phase d'imprégnation du composé organique. Le type de réaction que l'on souhaite éviter est par exemple un fort dégagement de chaleur lié à l'adsorption brusque du solvant (comme de l'eau par exemple) sur les sites actifs du solide. This pretreatment can also be an addition by controlled addition of the same solvent, provided by line 3, that which is used during the impregnation of the organic compound in order to avoid a too strong reaction of the solid during the phase of impregnation organic compound. The type of reaction that is to be avoided is for example a strong release of heat due to the sudden adsorption of the solvent (such as water for example) on the active sites of the solid.
Le lot de solide 4 issu de l'étape de prétraitement est envoyé dans une unité d'imprégnation 5 du composé organique. Selon l'art antérieur, cette étape emploie une solution contenant un solvant, par exemple de l'eau, dans lequel est dissous le composé organique à imprégner. Sur la figure 1 , la solution d'imprégnation est amenée par la ligne 6. L'imprégnation se fait selon toute méthode connue de l'Homme du métier, par exemple par une imprégnation à sec. Dans ce mode d'imprégnation, le solide mis en mouvement est soumis à un jet de la solution d'imprégnation, le volume de solution pulvérisée étant généralement équivalent au volume poreux accessible du solide à imprégner. Conformément à la pratique de l'art antérieur, le solide imprégné est évacué par la ligne 7 dans une unité de séchage 8 afin d'éliminer le solvant qui a été incorporé dans le solide en même temps que le composé organique. Le flux 9 représente l'utilité chaude qui est utilisée pour sécher le solide, qui est par exemple de l'air chaud. Il en résulte un solide poreux séché 10 comprenant le composé organique choisi. The batch of solid 4 resulting from the pretreatment stage is sent to an impregnation unit 5 of the organic compound. According to the prior art, this step employs a solution containing a solvent, for example water, in which the organic compound to be impregnated is dissolved. In FIG. 1, the impregnation solution is brought via line 6. The impregnation is carried out according to any method known to those skilled in the art, for example by dry impregnation. In this mode of impregnation, the solid in motion is subjected to a jet of the impregnating solution, the volume of spray solution being generally equivalent to the accessible pore volume of the solid to be impregnated. In accordance with the practice of the prior art, the impregnated solid is discharged via line 7 into a drying unit 8 in order to remove the solvent which has been incorporated in the solid together with the organic compound. Flow 9 represents the hot utility that is used to dry the solid, which is for example hot air. This results in a dried porous solid comprising the chosen organic compound.
Selon le composé organique choisi et sa solubilité dans le solvant utilisé lors de l'étape d'imprégnation, il est possible que la quantité introduite ne soit pas suffisante à l'issue d'une seule étape d'imprégnation. Auquel cas, on pourra recourir à plusieurs étapes d'imprégnation et de séchage décrites précédemment. Depending on the chosen organic compound and its solubility in the solvent used during the impregnation step, it is possible that the amount introduced is not sufficient after a single impregnation step. In which case, it will be possible to use several impregnation and drying steps described above.
Après imprégnation du composé organique, le solide poreux peut subir une ou plusieurs étapes d'imprégnation d'un ou plusieurs métaux du groupe VIB et/ou du groupe VIII afin de déposer une phase active métallique. L'étape ou les étapes d'imprégnation du ou des métaux peuvent être suivies, après éventuellement une étape de maturation, d'une étape de séchage à une température modérée, généralement inférieure à 200°C. After impregnation of the organic compound, the porous solid may undergo one or more impregnation steps of one or more Group VIB and / or Group VIII metals in order to deposit a metal active phase. The step or steps of impregnation of the metal or metals may be followed, after possibly a maturation step, a drying step at a moderate temperature, generally less than 200 ° C.
La figure 2 représente un schéma de principe du procédé d'addition du composé organique selon l'invention qui consiste à mettre en présence, dans une unité 1 1 , le solide poreux à traiter avec le composé organique à l'état liquide, la mise en présence étant effectuée sans contact physique entre le solide poreux et la phase liquide. FIG. 2 represents a schematic diagram of the method for adding the organic compound according to the invention, which consists in bringing the porous solid to be treated in contact with the organic compound in the liquid state into a unit 1 1, the setting in the presence being performed without physical contact between the porous solid and the liquid phase.
En référence à la figure 2, le solide poreux 1 est éventuellement envoyé dans une unité de prétraitement 2 comme mentionné plus haut. Le prétraitement peut consister en une étape de séchage du solide par exemple lorsque ce solide poreux est un précurseur de catalyseur obtenu par imprégnation d'une solution contenant au moins un métal du groupe VIB et/ou au moins un métal du groupe VIII. Le solide poreux 4 issu du prétraitement est amené dans une unité 1 1 de mise en présence du solide avec le composé organique à l'état liquide. En référence à la figure 2, l'unité 1 1 comprend une enceinte segmentée en deux compartiments A et B séparés l'un de l'autre par un moyen de partition 12, les deux compartiments étant en communication de manière à autoriser le passage d'un flux gazeux de composé organique de sorte que les compartiments A et B partagent la même atmosphère gazeuse. Dans ce mode de réalisation, le compartiment A est apte à recevoir le solide poreux 4 tandis que le compartiment B est apte à contenir le composé organique liquide. Dans le mode de réalisation de la figure 2, le moyen de partition 2 peut être une plaque perforée permettant le passage du fluide gazeux. With reference to FIG. 2, the porous solid 1 is possibly sent to a pre-treatment unit 2 as mentioned above. The pretreatment may consist of a step of drying the solid, for example when said porous solid is a catalyst precursor obtained by impregnating a solution containing at least one Group VIB metal and / or at least one Group VIII metal. The porous solid 4 resulting from the pretreatment is fed into a unit 1 1 for bringing the solid into contact with the organic compound in the liquid state. In Referring to Figure 2, the unit 1 1 comprises an enclosure segmented into two compartments A and B separated from one another by a partition means 12, the two compartments being in communication so as to allow the passage of a gaseous flow of organic compound so that compartments A and B share the same gaseous atmosphere. In this embodiment, the compartment A is able to receive the porous solid 4 while the compartment B is able to contain the liquid organic compound. In the embodiment of Figure 2, the partition means 2 may be a perforated plate allowing the passage of the gaseous fluid.
Cette étape de mise en présence se fait de manière contrôlée, à une température inférieure à la température d'ébullition dudit composé organique. Dans ces conditions, il existe une pression de vapeur du composé organique qui est générée par sa phase liquide. Ainsi une partie des molécules de composé organique à l'état liquide passe sous forme gazeuse (vaporisation) et est alors transférée (par voie gazeuse) au solide poreux. Etant donné que la phase vapeur de composé organique est consommée progressivement par le solide, le liquide continue à se vaporiser. Selon un mode de réalisation, dit en "batch" selon la terminologie anglo-saxonne, la quantité de composé organique liquide contenue dans le compartiment B est au moins supérieure à la quantité du composé organique que l'on veut introduire dans le solide poreux. Alternativement on peut apporter en continu le composé organique à l'état liquide au fur et à mesure qu'il est consommé par le solide poreux ou de manière semi-continue avec un apport ponctuel régulier de manière à maintenir un niveau de liquide minimum dans le compartiment B. Sur la figure 2, l'appoint d composé organique à l'état liquide est assuré par une conduite 13.  This placing step is done in a controlled manner at a temperature below the boiling temperature of said organic compound. Under these conditions, there is a vapor pressure of the organic compound which is generated by its liquid phase. Thus a part of the organic compound molecules in the liquid state passes in gaseous form (vaporization) and is then transferred (gaseous) to the porous solid. Since the vapor phase of organic compound is gradually consumed by the solid, the liquid continues to vaporize. According to one embodiment, said in "batch" according to the English terminology, the amount of liquid organic compound contained in the compartment B is at least greater than the amount of organic compound that is to be introduced into the porous solid. Alternatively, the organic compound can be continuously added in the liquid state as it is consumed by the porous solid or in a semi-continuous manner with a regular point feed so as to maintain a minimum liquid level in the liquid. compartment B. In Figure 2, the addition of organic compound in the liquid state is provided by a pipe 13.
L'étape de mise en présence selon l'invention peut être conduite en maintenant une agitation du liquide dans le compartiment B et/ou en mettant en mouvement le solide à traiter dans le compartiment A.  The placing step according to the invention can be carried out by maintaining agitation of the liquid in compartment B and / or by moving the solid to be treated in compartment A.
Selon un mode de réalisation préféré, l'étape de mise en présence est mise en œuvre avec une circulation forcée d'un flux d'un gaz, depuis le compartiment B contenant le composé organique à l'état liquide vers le compartiment A contenant le solide poreux à additiver. A titre d'exemple non limitatif, le flux d'un gaz peut être le dioxyde de carbone, l'ammoniac, l'air à hygrométrie contrôlée, un gaz rare comme l'argon, l'azote, l'hydrogène, du gaz naturel ou un gaz réfrigérant au titre de la classification éditée par l'IUPAC. Le gaz est soit fourni sous pression, soit mis en pression pour vaincre les pertes de charge induites par le circuit au moyen d'un équipement de montée en pression d'un gaz tel qu'un compresseur ou une soufflante. De manière préférée, le gaz est injecté par la ligne 14 dans le liquide de manière à assurer son agitation pour favoriser la saturation de la phase gaz par le composé organique en augmentant la surface d'échange gaz/liquide. According to a preferred embodiment, the placing step is carried out with a forced circulation of a flow of a gas, from the compartment B containing the organic compound in the liquid state to the compartment A containing the porous solid to additiver. By way of non-limiting example, the flow of a gas may be carbon dioxide, ammonia, air with controlled hygrometry, a rare gas such as argon, nitrogen, hydrogen, gas natural gas or a refrigerant gas under the classification published by IUPAC. The gas is either supplied under pressure or pressurized to overcome the pressure drops induced by the circuit by means of a pressure increase equipment of a gas such as a compressor or a fan. Preferably, the gas is injected via line 14 into the liquid so to ensure its agitation to promote the saturation of the gas phase by the organic compound by increasing the gas / liquid exchange surface.
L'étape de mise en présence est réalisée dans des conditions de durée, de température et de pression contrôlées de manière à fournir in fine un solide 15 contenant le composé organique. Sans être lié à une théorie particulière, l'introduction du composé organique dans le solide poreux peut résulter de processus d'adsorption et/ou de condensation capillaire. Comme indiqué sur la figure 2, la mise en présence selon l'invention peut faire intervenir un recyclage de la phase vapeur extraite du compartiment A par la ligne 16 débouchant dans le compartiment A et/ou dans le compartiment B ou éventuellement dans la ligne 14. Alternativement, la phase gazeuse 16 extraite du compartiment A est refroidie de manière à condenser le composé organique sous forme liquide qui est ainsi recyclé dans le compartiment B via la ligne 12 ou éventuellement via la ligne 13.  The placing step is carried out under conditions of controlled duration, temperature and pressure so as to ultimately provide a solid containing the organic compound. Without being bound by any particular theory, the introduction of the organic compound into the porous solid may result from adsorption and / or capillary condensation processes. As shown in FIG. 2, the bringing together according to the invention may involve a recycling of the vapor phase extracted from compartment A by line 16 opening into compartment A and / or compartment B or possibly in line 14. Alternatively, the gaseous phase 16 extracted from the compartment A is cooled so as to condense the organic compound in liquid form which is thus recycled to the compartment B via the line 12 or possibly via the line 13.
La figure 3 est un autre mode de réalisation du procédé d'addition du composé organique sur un solide poreux qui diffère de celui de la figure 2 en ce que l'unité 1 1 de mise en présence du solide avec le composé organique liquide comprend deux enceintes 18 et 19 qui sont aptes à contenir respectivement le solide poreux 4 éventuellement prétraité et le composé organique à l'état liquide, les deux enceintes étant en communication au moyen d'une conduite 20 de manière à permettre uniquement le passage d'une phase vapeur contenant le composé organique à l'état gazeux. FIG. 3 is another embodiment of the process for adding the organic compound to a porous solid which differs from that of FIG. 2 in that the unit 1 1 for bringing the solid into contact with the liquid organic compound comprises two chambers 18 and 19 which are able respectively to contain the porous solid 4 possibly pretreated and the organic compound in the liquid state, the two enclosures being in communication by means of a pipe 20 so as to allow only the passage of a phase vapor containing the organic compound in the gaseous state.
La figure 4 est une variante du procédé d'addition d'un composé organique à un solide poreux selon l'invention dans lequel le solide poreux à additiver subit un traitement thermique à une température supérieure à celle de l'étape de mise en présence avec le composé organique à l'état liquide et dans lequel un gaz d'entraînement chauffé est injecté dans l'unité 1 1 de mise en présence. FIG. 4 is a variant of the process for adding an organic compound to a porous solid according to the invention in which the porous additiver solid undergoes heat treatment at a temperature greater than that of the contacting step with the organic compound in the liquid state and wherein a heated entrainment gas is injected into the unit 1 1 bringing together.
En référence à la figure 4, le solide poreux 1 subit une étape de prétraitement qui consiste en un traitement thermique à une température qui est supérieure à celle appliquée à l'étape de mise en présence dans l'unité 1 1 . Le procédé de la figure 4 inclut un processus d'intégration thermique consistant à utiliser un gaz vecteur apporté par la ligne 21 . Ce gaz vecteur 21 peut être par exemple et de façon non limitative un effluent issu d'un autre procédé ou un gaz vecteur dédié. Dans le cas d'un gaz vecteur dédié, celui-ci peut être par exemple et de façon non limitative le dioxyde de carbone, l'ammoniac, l'air à hygrométrie contrôlée, un gaz rare comme l'argon, l'azote, l'hydrogène, du gaz naturel ou un gaz réfrigérant au titre de la classification éditée par l'IUPAC. Le gaz est soit fourni sous pression, soit mis en pression pour vaincre les pertes de charge induites par le circuit au moyen d'un équipement de montée en pression d'un gaz tel qu'un compresseur ou une soufflante. Si la température du gaz vecteur est inférieure à celle appliquée dans l'étape de mise en présence du solide avec le composé organique à l'état liquide, il est avantageux de procéder à un échange de chaleur, par exemple avec un échangeur 22 de type charge-effluent pour chauffer le gaz vecteur 21 avec un effluent gazeux 17 issu de l'unité 1 1 qui est décrite ci- après. Comme montré sur la figure 4, le flux de gaz vecteur réchauffé 21 est envoyé par la ligne 26 dans un échangeur de chaleur 23 dans lequel il échange de la chaleur avec le solide traité thermiquement 4. Cet échange de chaleur peut se faire par contact direct ou indirect entre le gaz et le solide. Dans le cas d'un contact direct, l'échange de chaleur se fait par contact du gaz vecteur 21 avec le solide poreux 4, par exemple dans un lit fluidisé. Dans le cas d'un contact indirect, on peut utiliser un échangeur gaz/solide comprenant un ensemble de tubes parcourus par le gaz vecteur qui traversent le lit de solide poreux. A l'issue de cet échange thermique, il résulte un flux de solide poreux refroidi 24 et un flux de gaz vecteur réchauffé 25 qui sont envoyés dans l'unité 1 1 de mise en présence, respectivement dans le compartiment A et le compartiment B. L'alimentation de gaz vecteur chauffé 25 dans le compartiment contenant le composé organique liquide peut se faire par exemple au moyen d'un dispositif de bullage. La fonction de ce gaz vecteur chaud 25 est double : il apporte des calories en substitution ou en complément au dispositif de maintien en température pour l'étape de mise en présence et il crée un mouvement de la phase gazeuse du compartiment B vers le compartiment A participant ainsi au transport du composé organique à l'état gazeux au solide poreux à additiver. With reference to FIG. 4, the porous solid 1 undergoes a pretreatment step which consists of a heat treatment at a temperature which is greater than that applied to the placing step in the unit 11. The method of Figure 4 includes a thermal integration process of using a carrier gas provided by line 21. This carrier gas 21 may be, for example and without limitation, an effluent from another process or a dedicated carrier gas. In the case of a dedicated carrier gas, this may be, for example and without limitation, carbon dioxide, ammonia, air with controlled hygrometry, a rare gas such as argon, nitrogen, hydrogen, natural gas or a refrigerant gas under the classification published by IUPAC. The gas is either supplied under pressure, is pressurized to overcome the pressure drops induced by the circuit by means of equipment for increasing the pressure of a gas such as a compressor or a fan. If the temperature of the carrier gas is lower than that applied in the step of bringing the solid into contact with the organic compound in the liquid state, it is advantageous to carry out a heat exchange, for example with a heat exchanger 22 of the type charge-effluent for heating the carrier gas 21 with a gaseous effluent 17 from the unit 1 1 which is described below. As shown in FIG. 4, the stream of warmed carrier gas 21 is sent via line 26 into a heat exchanger 23 in which it exchanges heat with the heat-treated solid 4. This heat exchange can be done by direct contact or indirect between the gas and the solid. In the case of a direct contact, the heat exchange is done by contacting the carrier gas 21 with the porous solid 4, for example in a fluidized bed. In the case of indirect contact, it is possible to use a gas / solid exchanger comprising a set of tubes traversed by the carrier gas which pass through the porous solid bed. At the end of this heat exchange, a cooled porous solid stream 24 and a stream of warmed carrier gas 25 are sent which are sent to the unit 1 1 for placing in the presence respectively in compartment A and compartment B. The carrier gas feed heated in the compartment containing the liquid organic compound can be done for example by means of a bubbling device. The function of this hot carrier gas 25 is twofold: it provides calories in substitution or in addition to the temperature maintenance device for the placing step and it creates a movement of the gas phase from compartment B to compartment A thus participating in the transport of the organic compound in the gaseous state to the porous solid to additiver.
Un effluent gazeux 17 qui contient le gaz vecteur et éventuellement le composé organique à l'état gazeux est évacué du compartiment A pour alimenter l'échangeur de chaleur 22 afin de réchauffer le gaz vecteur 21 . L' effluent gazeux 17 refroidi en sortie de l'échangeur 22 est soit totalement ou en partie recyclé via la ligne 28 avec le gaz vecteur 21 , soit est totalement évacué de l'unité 1 1 par la ligne 27.  A gaseous effluent 17 which contains the carrier gas and optionally the organic compound in the gaseous state is removed from the compartment A to supply the heat exchanger 22 in order to heat the carrier gas 21. The gaseous effluent 17 cooled at the outlet of the exchanger 22 is either wholly or partly recycled via the line 28 with the carrier gas 21, or is completely discharged from the unit 11 via the line 27.
Outre la récupération des calories, l'échange de chaleur 22 permet éventuellement, lorsque le refroidissement de l'effluent gazeux 17 est suffisant, de condenser une fraction du composé organique qui est entraîné par le gaz vecteur. Le condensât peut être alors recyclé dans le compartiment B contenant le composé organique à l'état liquide.  In addition to recovering the calories, the heat exchange 22 optionally allows, when the cooling of the gaseous effluent 17 is sufficient, to condense a fraction of the organic compound which is entrained by the carrier gas. The condensate can then be recycled to the compartment B containing the organic compound in the liquid state.
Exemples Examples
Exemple 1 : Préparation des catalyseurs CoMoP sur alumine sans composé organique C1 et C2 (non-conformes à l'invention). Sur un support d'alumine présentant une surface BET de 230 m2/g, un volume poreux mesuré par porosimétrie au mercure de 0,78 ml/g et un diamètre moyen des pores de 1 1 ,5 nm défini comme le diamètre médian en volume par porosimétrie au mercure et qui se présente sous la forme « extrudé », on ajoute du cobalt, du molybdène et du phosphore. La solution d'imprégnation est préparée par dissolution à 90°C de l'oxyde de molybdène (21 ,1 g) et d'hydroxyde de cobalt (5,04 g) dans 1 1 ,8 g d'une solution aqueuse d'acide phosphorique à 85% poids. Après imprégnation à sec, les extrudés sont laissés à maturer en atmosphère saturée en eau pendant 24 h à température ambiante, puis ils sont séchés à 90°C pendant 16 heures. Le précurseur de catalyseur séché ainsi obtenu est noté C1 . La calcination du précurseur de catalyseur C1 à 450°C pendant 2 heures conduit au catalyseur calciné C2. La composition finale en métaux du précurseur de catalyseur C1 et du catalyseur C2 exprimée sous forme d'oxydes et rapportée au poids de catalyseur sec est alors la suivante : Mo03 = 19,5 ± 0,2 % poids, CoO = 3,8 ± 0,1 % poids et P205 = 6,7 ± 0,1 % poids. Exemple 2 : Préparation du catalyseur CoMoP sur alumine C3 (non conforme à l'invention) par co-impréqnation. Example 1 Preparation of CoMoP catalysts on alumina without organic compounds C1 and C2 (not in accordance with the invention). On an alumina support having a BET surface area of 230 m 2 / g, a pore volume measured by mercury porosimetry of 0.78 ml / g and a mean pore diameter of 1.15 nm defined as the median diameter of volume by mercury porosimetry and which is in the form "extruded" is added cobalt, molybdenum and phosphorus. The impregnating solution is prepared by dissolving 90 ° C. of molybdenum oxide (21.1 g) and cobalt hydroxide (5.04 g) in 1.18 g of an aqueous solution of phosphoric acid at 85% weight. After dry impregnation, the extrudates are allowed to mature in a saturated water atmosphere for 24 hours at room temperature and then dried at 90 ° C for 16 hours. The dried catalyst precursor thus obtained is denoted C1. Calcination of catalyst precursor C1 at 450 ° C. for 2 hours leads to calcined catalyst C2. The final metal composition of catalyst precursor C1 and catalyst C2 expressed as oxides and based on the weight of dry catalyst is then as follows: MoO 3 = 19.5 ± 0.2% by weight, CoO = 3.8 ± 0.1% by weight and P 2 O 5 = 6.7 ± 0.1% by weight. Example 2 Preparation of the CoMoP catalyst on C3 alumina (not in accordance with the invention) by co-impregnation.
Sur le support d'alumine décrit précédemment dans l'exemple 1 et qui se présente sous la forme « extrudé », on ajoute du cobalt, du molybdène et du phosphore. La solution d'imprégnation est préparée par dissolution à 90°C de l'oxyde de molybdène (28,28 g) et d'hydroxyde de cobalt (6,57 g) dans 15,85 g d'une solution aqueuse d'acide phosphorique à 85% poids. Après homogénéisation du mélange, 38 g d'acide citrique ont été ajoutés avant ajustement du volume de solution au volume poreux du support par addition d'eau. Le rapport molaire (acide citrique)/Mo est égal à 1 mol/mol et celui (acide citrique)/Co est égal à 2,7 mol/mol. Après imprégnation à sec, les extrudés sont laissés à maturer en atmosphère saturée en eau pendant 24 h à température ambiante, puis ils sont séchés à 120°C pendant 16 heures. Le catalyseur séché et additivé d'acide citrique ainsi obtenu est noté C3. La composition finale en métaux du catalyseur C3, exprimée sous forme d'oxydes et rapportée au poids de catalyseur sec est alors la suivante : Mo03 = 19,6 ± 0,2 % poids, CoO = 3,7 ± 0,1 % poids et P205 = 6,7 ± 0,1 % poids. On the alumina support described above in Example 1 and which is in the "extruded" form, cobalt, molybdenum and phosphorus are added. The impregnating solution is prepared by dissolving 90 ° C. of molybdenum oxide (28.28 g) and cobalt hydroxide (6.57 g) in 15.85 g of an aqueous solution of acid. phosphoric at 85% weight. After homogenization of the mixture, 38 g of citric acid was added before adjusting the volume of solution to the pore volume of the support by adding water. The molar ratio (citric acid) / Mo is equal to 1 mol / mol and that (citric acid) / Co is equal to 2.7 mol / mol. After dry impregnation, the extrudates are allowed to mature in a saturated water atmosphere for 24 hours at room temperature and then dried at 120 ° C for 16 hours. The dried catalyst and additive of citric acid thus obtained is noted C3. The final metal composition of catalyst C3, expressed in the form of oxides and based on the weight of dry catalyst, is then as follows: MoO 3 = 19.6 ± 0.2% by weight, CoO = 3.7 ± 0.1% by weight and P 2 O 5 = 6.7 ± 0.1% wt.
Exemple 3 : Préparation du catalyseur CoMoP sur alumine C4 (non conforme à l'invention) par post-imprégnation. Example 3 Preparation of the CoMoP catalyst on C4 alumina (not in accordance with the invention) by post-impregnation.
On imprègne 18 g de précurseur de catalyseur C1 décrit précédemment dans l'exemple 1 et qui se présente sous la forme « extrudé » avec une solution aqueuse contenant 3,2 g de 3- oxobutanoate de 2-méthoxyéthyle et dont le volume est égal au volume poreux du précurseur de catalyseur. Les quantités engagées sont telles que la quantité de 3- oxobutanoate de 2-méthoxyéthyle est de 0,8 mole par mole de molybdène (correspondant à 2,2 moles par mole de cobalt). Les extrudés sont laissés à maturer en atmosphère saturée en eau pendant 16 h à température ambiante. Le précurseur de catalyseur C4 est alors séché à 120°C durant 2 heures pour donner le catalyseur C4. La composition finale en métaux du catalyseur C4 rapportée au poids du catalyseur sec est : Mo03 = 19,5 ± 0,2 % poids, CoO = 3,8 ± 0,1 % poids et P205 = 6,7 ± 0,1 % poids. 18 g of catalyst precursor C1 described above in Example 1 are impregnated and which is in the form "extruded" with an aqueous solution containing 3.2 g of 2-methoxyethyl-3-oxobutanoate and whose volume is equal to porous volume of catalyst precursor. The quantities involved are such that the amount of 2-methoxyethyl 3-oxobutanoate is 0.8 moles per mole of molybdenum (corresponding to 2.2 moles per mole of cobalt). The extrudates are allowed to mature in a saturated atmosphere with water for 16 hours at room temperature. Catalyst precursor C4 is then dried at 120 ° C for 2 hours to give catalyst C4. The final metal composition of catalyst C4 relative to the weight of the dry catalyst is: Mo03 = 19.5 ± 0.2% by weight, CoO = 3.8 ± 0.1% by weight and P 2 0 5 = 6.7 ± 0 , 1% weight.
Exemple 4 : Préparation du catalyseur CoMoP sur alumine C5 (selon l'invention) par introduction d'un composé organique en phase vapeur après l'imprégnation des métaux.EXAMPLE 4 Preparation of the CoMoP catalyst on C5 alumina (according to the invention) by introducing an organic compound in the vapor phase after impregnation of the metals.
Dans une enceinte fermée sont disposés 4 g de 3-oxobutanoate de 2-méthoxyéthyle contenus dans un cristallisoir. 12 g du précurseur de catalyseur C1 sont introduits dans la même enceinte fermée et disposés sur une grille en acier inoxydable de manière à ce que le 3-oxobutanoate de 2-méthoxyéthyle liquide ne soit pas en contact physique avec le précurseur de catalyseur C1 . L'enceinte fermée est placée dans une étuve à 120°C pendant 6 heures. 14,1 g de catalyseur C5 sont ainsi obtenus à l'issue de la mise en présence du précurseur de catalyseur C1 avec le composé 3-oxobutanoate de 2-méthoxyéthyle à l'état gazeux. La quantité de 3-oxobutanoate de 2-méthoxyéthyle ainsi transféré sur le catalyseur est telle que le rapport molaire 3-oxobutanoate de 2-méthoxyéthyle/Mo est de 0,8 mole par mole de molybdène (correspondant à 2,2 moles par mole de cobalt). La composition finale en métaux du catalyseur C5 rapportée à la masse de de catalyseur sec est : Mo03 = 19,5 ± 0,2 % poids, CoO = 3,8 ± 0,1 % poids et P205 = 6,7 ± 0,1 % poids. In a closed chamber are placed 4 g of 2-methoxyethyl 3-oxobutanoate contained in a crystallizer. 12 g of the catalyst precursor C1 are introduced into the same closed chamber and placed on a stainless steel grid so that the liquid 2-methoxyethyl 3-oxobutanoate is not in physical contact with the catalyst precursor C1. The closed chamber is placed in an oven at 120 ° C for 6 hours. 14.1 g of catalyst C5 are thus obtained after bringing the catalyst precursor C1 into contact with the 2-methoxyethyl 3-oxobutanoate compound in the gaseous state. The amount of 2-methoxyethyl-3-oxobutanoate thus transferred to the catalyst is such that the molar ratio of 2-methoxyethyl-3-oxobutanoate to Mo is 0.8 mol per mol of molybdenum (corresponding to 2.2 mol per mol of cobalt). The final metal composition of catalyst C5 relative to the mass of dry catalyst is: MoO 3 = 19.5 ± 0.2% by weight, CoO = 3.8 ± 0.1% by weight and P 2 0 5 = 6.7 ± 0.1% by weight
Exemple 5 : Préparation du catalyseur CoMoP sur alumine C6 (selon l'invention) par introduction d'un composé organigue en phase vapeur avant l'imprégnation des métaux.EXAMPLE 5 Preparation of the CoMoP catalyst on C6 alumina (according to the invention) by introducing an organic compound in the vapor phase before the impregnation of the metals.
Dans une enceinte fermée sont disposés 4 g de 3-oxobutanoate de 2-méthoxyéthyle contenus dans un cristallisoir. 8,4 g du même support que celui utilisé dans l'exemple 1 sont introduits dans la même enceinte fermée et disposés sur une grille en acier inoxydable de manière à ce que le 3-oxobutanoate de 2-méthoxyéthyle liquide ne soit pas en contact physique avec le support. L'enceinte fermée est placée dans une étuve à 120°C pendant 6 heures. 10,5 g de support additivé de 3-oxobutanoate de 2-méthoxyéthyle sont ainsi obtenus. La quantité de 3-oxobutanoate de 2-méthoxyéthyle introduite sur le support est fixée de manière à obtenir, après imprégnation des métaux, un rapport molaire 3-oxobutanoate de 2- méthoxyéthyle/Mo est de 0,8 mole par mole de molybdène (soit encore 2,2 moles par mole de cobalt). Le support modifié est ensuite imprégné par une solution d'imprégnation préparée par dissolution à chaud de l'oxyde de molybdène (2,4 g) et d'hydroxyde de cobalt (0,6 g) dans 1 ,4 g d'une solution aqueuse d'acide phosphorique à 85% en prenant soin d'ajuster par addition d'eau le volume de cette dernière solution au volume poreux du support modifié précédent. Après imprégnation à sec, les extrudés ont été laissés à maturer en atmosphère saturée en eau pendant 24 h à température ambiante, puis séchés à 120°C pendant 16 heures pour conduire au catalyseur C6. La composition finale en métaux du catalyseur C6 rapportée au poids du catalyseur sec est la suivante : Mo03 = 19,8 ± 0,2 % poids, CoO = 3,9 ± 0,1 % poids et P205 = 6,9 ± 0,1 % poids. In a closed chamber are placed 4 g of 2-methoxyethyl 3-oxobutanoate contained in a crystallizer. 8.4 g of the same support as that used in Example 1 are introduced into the same closed chamber and placed on a stainless steel grid so that liquid 2-methoxyethyl 3-oxobutanoate is not in physical contact. with the support. The closed chamber is placed in an oven at 120 ° C for 6 hours. 10.5 g of additive support of 2-methoxyethyl 3-oxobutanoate are thus obtained. The amount of 2-methoxyethyl 3-oxobutanoate introduced onto the support is fixed so as to obtain, after impregnation of the metals, a molar ratio of 2-methoxyethyl-3-oxobutanoate / Mo is 0.8 mol per mol of molybdenum (ie still 2.2 moles per mole of cobalt). The modified support is then impregnated with an impregnation solution prepared by hot dissolving molybdenum oxide (2.4 g) and cobalt hydroxide (0.6 g) in 1.4 g of a solution. 85% aqueous phosphoric acid being careful to adjust by adding water the volume of the latter solution to the pore volume of the previous modified carrier. After dry impregnation, the extrudates were allowed to mature in a saturated water atmosphere for 24 h at room temperature, and then dried at 120 ° C for 16 hours to yield catalyst C6. The final metal composition of catalyst C6 relative to the weight of the dry catalyst is as follows: Mo03 = 19.8 ± 0.2% by weight, CoO = 3.9 ± 0.1% by weight and P 2 0 5 = 6.9 ± 0.1% by weight
Exemple 6 : Evaluation en HDS de gazole des catalyseurs C1 , C2, C3 et C4 (non conformes à l'invention) et C5 et C6 (conformes à l'invention) Example 6 Evaluation in HDS of Diesel of Catalysts C1, C2, C3 and C4 (not in Accordance with the Invention) and C5 and C6 (in Accordance with the Invention)
Les catalyseurs C1 , C2, C3 et C4 (non conformes à l'invention) et C5 et C6_(conformes à l'invention) ont été testés en HDS de gazole.  Catalysts C1, C2, C3 and C4 (not in accordance with the invention) and C5 and C6 (in accordance with the invention) were tested with diesel HDS.
Les caractéristiques de la charge gazole utilisée est la suivante :  The characteristics of the diesel fuel used are as follows:
• densité à 15 °C = 0,8522 g/cm3, Density at 15 ° C = 0.8522 g / cm 3 ,
• teneur en soufre = 1 ,44 % en poids.  Sulfur content = 1.44% by weight.
• Distillation Simulée :  • Simulated Distillation:
PI : 155 °C  PI: 155 ° C
10 /o : 247 °C  10 / o: 247 ° C
50 o //o : 315 °C  50 o / o: 315 ° C
90 o //o : 392 °C  90 o / o: 392 ° C
PF : 444 °C  PF: 444 ° C
Le test est mené dans un réacteur pilote isotherme à lit fixe traversé, les fluides circulant de bas en haut.  The test is conducted in an isothermal pilot reactor fixed bed traversed, flowing fluids from bottom to top.
Les précurseurs de catalyseurs sont préalablement sulfurés in situ à 350°C dans le réacteur sous pression au moyen du gazole du test auquel est additionné 2% en poids de diméthyldisulfure.  The catalyst precursors are previously sulphurized in situ at 350 ° C. in the reactor under pressure using the test gas oil, to which 2% by weight of dimethyl disulphide is added.
Les tests d'hydrodésulfuration ont été conduits dans les conditions opératoires suivantes : une pression totale de 7 MPa, un volume de catalyseur de 30 cm3, une température de 330 à 360°C, avec un débit d'hydrogène de 24 l/h et avec un débit de charge de 60 cm3/h. The hydrodesulfurization tests were carried out under the following operating conditions: a total pressure of 7 MPa, a catalyst volume of 30 cm 3 , a temperature of 330 to 360 ° C., with a hydrogen flow rate of 24 l / h and with a flow rate of 60 cm 3 / h.
Les performances catalytiques des catalyseurs testés sont données dans le Tableau 1 . Elles sont exprimées en degrés Celsius par rapport au catalyseur C2 (comparatif) choisi comme référence (C2) : elles correspondent à l'écart de température à appliquer pour atteindre 50 ppm de soufre dans l'effluent. Une valeur négative signifie que la cible de teneur en soufre est atteinte pour une température plus basse et qu'il y a donc un gain d'activité. Une valeur positive signifie que la cible de teneur en soufre est atteinte pour une température plus élevée et qu'il y a donc une perte d'activité. Les résultats obtenus sont reportés dans le Tableau 1 . The catalytic performances of the catalysts tested are given in Table 1. They are expressed in degrees Celsius with respect to the catalyst C2 (comparative) chosen as reference (C2): they correspond to the temperature difference to be applied to reach 50 ppm of sulfur in the effluent. A negative value means that the target of sulfur content is reached for a lower temperature and that there is a gain in activity. A positive value means that the target of sulfur content is reached for a higher temperature and that there is therefore a loss of activity. The results obtained are reported in Table 1.
Tableau 1 : Activités relatives à iso-volume en hydrodésulfuration de gazole des catalyseurs C1 , C2, C3 et C4 (non conformes à l'invention) et C5 et C6 (conformes à l'invention) par rapport au catalyseur C2 (non-conforme) Table 1: Activities relating to iso-volume in gas oil hydrodesulphurization of catalysts C1, C2, C3 and C4 (not in accordance with the invention) and C5 and C6 (in accordance with the invention) with respect to catalyst C2 (non-compliant )
Le Tableau 1 montre clairement que le mode d'introduction du composé organique selon l'invention permet d'éviter l'utilisation d'un solvant et par conséquent d'éviter une étape de séchage tout en introduisant la quantité adéquate de composé organique à une température très inférieure à son point d'ébullition. En effet, pour préparer les catalyseurs C5 et C6, le 3- oxobutanoate de 2-méthoxyéthyle est mis en œuvre à 120°C alors que son point d'ébullition à pression atmosphérique est de 254°C. Par ailleurs, les catalyseurs selon l'invention sont au moins aussi performants que ceux préparés selon l'art antérieur. En effet, les catalyseurs C5 et C6 selon l'invention sont plus performants que tous les autres catalyseurs comparatifs. Le gain est très important en comparaison des catalyseurs n'utilisant pas de molécule organique (C1 et C2) ou l'acide citrique (C3) couramment utilisé par l'Homme de l'art. De plus, les catalyseurs C5 et C6 sont plus performants que le catalyseur C4 utilisant la même molécule organique introduite suivant un protocole bien connu de l'Homme de l'art basé sur une post-additivation en solution aqueuse. Le composé organique peut donc être introduit selon l'invention aussi bien avant qu'après l'imprégnation des métaux formant la phase métallique active. Ces exemples montrent donc bien la faisabilité et la pertinence du mode d'introduction d'un composé organique selon l'invention pour notamment préparer des catalyseurs pouvant présenter des performances au moins aussi élevées que celles des catalyseurs de l'art antérieur. Table 1 clearly shows that the mode of introduction of the organic compound according to the invention makes it possible to avoid the use of a solvent and consequently to avoid a drying step while introducing the appropriate amount of organic compound to a temperature much lower than its boiling point. Indeed, to prepare catalysts C5 and C6, 2-methoxyethyl 3-oxobutanoate is carried out at 120 ° C while its boiling point at atmospheric pressure is 254 ° C. Furthermore, the catalysts according to the invention are at least as efficient as those prepared according to the prior art. Indeed, the catalysts C5 and C6 according to the invention are more efficient than all the other comparative catalysts. The gain is very important compared to catalysts that do not use an organic molecule (C1 and C2) or citric acid (C3) commonly used by those skilled in the art. In addition, the catalysts C5 and C6 are more efficient than the catalyst C4 using the same organic molecule introduced according to a protocol well known to those skilled in the art based on a post-additivation in aqueous solution. The organic compound can thus be introduced according to the invention both before and after the impregnation of the metals forming the active metal phase. These examples therefore clearly show the feasibility and relevance of the method of introduction of an organic compound according to the invention, in particular to prepare catalysts which can have performances at least as high as those of the catalysts of the prior art.

Claims

REVENDICATIONS
1 ) Procédé d'addition d'un composé organique à un solide poreux comprenant une étape a) dans laquelle on met en présence simultanément le solide poreux et le composé organique à l'état liquide et sans contact physique entre le solide et le composé organique à l'état liquide, à une température inférieure à la température d'ébullition du composé organique et dans des conditions de pression et de durée telles qu'une fraction dudit composé organique est transférée à l'état gazeux au solide poreux. 1) Process for adding an organic compound to a porous solid comprising a step a) in which the porous solid and the organic compound are simultaneously brought into the liquid state and without physical contact between the solid and the organic compound in the liquid state, at a temperature below the boiling point of the organic compound and under pressure and time conditions such that a fraction of said organic compound is transferred in the gaseous state to the porous solid.
2) Procédé selon la revendication 1 , dans lequel l'étape a) est réalisée au moyen d'une unité d'addition dudit composé organique comprenant un premier et un second compartiments en communication de manière à permettre le passage d'un fluide gazeux entre les compartiments, le premier compartiment contenant le solide poreux et le second compartiment contenant le composé organique à l'état liquide. 2) Process according to claim 1, wherein step a) is carried out by means of an addition unit of said organic compound comprising a first and a second compartments in communication so as to allow the passage of a gaseous fluid between the compartments, the first compartment containing the porous solid and the second compartment containing the organic compound in the liquid state.
3) Procédé selon la revendication 2, dans lequel l'unité comprend une enceinte incluant les premier et second compartiments, les deux compartiments étant en communication par voie gazeuse. 3) Method according to claim 2, wherein the unit comprises a chamber including the first and second compartments, the two compartments being in communication via the gas.
4) Procédé selon la revendication 2, dans lequel l'unité comprend deux enceintes formant respectivement le premier et le second compartiments, les deux enceintes étant en communication par voie gazeuse.  4) Method according to claim 2, wherein the unit comprises two enclosures respectively forming the first and the second compartments, the two enclosures being in gaseous communication.
5) Procédé selon l'une des revendications précédentes, dans lequel l'étape a) de mise en présence du solide poreux avec le composé organique à l'état liquide est réalisée en présence d'un flux d'un gaz vecteur circulant du second compartiment dans le premier compartiment.  5) Method according to one of the preceding claims, wherein the step a) bringing the porous solid into contact with the organic compound in the liquid state is carried out in the presence of a flow of a carrier gas flowing from the second compartment in the first compartment.
6) Procédé selon l'une des revendications précédentes, dans lequel l'étape a) est réalisée à une pression absolue comprise entre 0 et 1 MPa. 6) Method according to one of the preceding claims, wherein step a) is carried out at an absolute pressure of between 0 and 1 MPa.
7) Procédé selon l'une des revendications 2 à 6, dans lequel à l'étape a) on soutire du premier compartiment un effluent gazeux contenant ledit composé organique et on recycle l'effluent dans le premier et/ou le second compartiment. 7) Method according to one of claims 2 to 6, wherein in step a) is withdrawn from the first compartment a gaseous effluent containing said organic compound and the effluent is recycled into the first and / or second compartment.
8) Procédé selon l'une des revendications 2 à 6, dans lequel à l'étape a) on soutire du premier compartiment un effluent gazeux contenant ledit composé organique à l'état gazeux, on condense ledit effluent de manière à récupérer une fraction liquide contenant le composé organique à l'état liquide et on recycle ladite fraction liquide dans le second compartiment. 9) Procédé selon l'une des revendications précédentes dans lequel le solide poreux est choisi parmi un support de catalyseur et un support de catalyseur comprenant en outre au moins un métal du groupe VIB et/ou au moins un métal du groupe VIII. 8) Method according to one of claims 2 to 6, wherein in step a) is withdrawn from the first compartment a gaseous effluent containing said organic compound in the gaseous state, said effluent is condensed so as to recover a liquid fraction containing the organic compound in the liquid state and recycle said liquid fraction in the second compartment. 9) Method according to one of the preceding claims wherein the porous solid is selected from a catalyst support and a catalyst support further comprising at least one Group VIB metal and / or at least one Group VIII metal.
10) Procédé selon la revendication 9, dans lequel le support poreux est à base d'oxyde d'un métal et/ou d'un métalloïde.  10) The method of claim 9, wherein the porous support is based on an oxide of a metal and / or a metalloid.
1 1 ) Procédé de préparation selon la revendication 10, dans lequel le support poreux est à base d'alumine et/ou de silice.  1 1) Preparation process according to claim 10, wherein the porous support is based on alumina and / or silica.
12) Procédé selon l'une des revendications précédentes, dans lequel le composé organique est choisi parmi les molécules organiques contenant de l'oxygène et/ou de l'azote et/ou du soufre.  12) Method according to one of the preceding claims, wherein the organic compound is selected from organic molecules containing oxygen and / or nitrogen and / or sulfur.
13) Procédé de préparation d'un catalyseur comprenant un support poreux, au moins un métal du groupe VIB et/ou au moins métal du groupe VIII et au moins un composé organique, le procédé comprenant au moins les étapes suivantes :  13) Process for preparing a catalyst comprising a porous support, at least one Group VIB metal and / or at least one Group VIII metal and at least one organic compound, the process comprising at least the following steps:
i) on dépose le composé organique sur le support poreux en mettant en œuvre le procédé selon l'une des revendications 1 à 12;  i) depositing the organic compound on the porous support by implementing the method according to one of claims 1 to 12;
ii) on dépose au moins un métal du groupe VIB et/ou au moins un métal du groupe VIII sur le support poreux par mise en contact du support avec une solution contenant au moins un précurseur du ou desdits métaux du groupe VIII et/ou au moins un précurseur du ou desdits métaux du groupe VIB ;  ii) depositing at least one Group VIB metal and / or at least one Group VIII metal on the porous support by contacting the support with a solution containing at least one precursor of said group VIII metal (s) and / or minus a precursor of said group VIB metal (s);
iii) on sèche le solide obtenu à l'issue de l'étape ii),  iii) the solid obtained is dried after step ii),
l'étape i) étant réalisée avant ou après les étapes ii) et iii).  step i) being performed before or after steps ii) and iii).
14) Procédé selon la revendication 13, dans lequel la solution de l'étape ii) comprend en outre au moins un composé organique additionnel différent du composé organique mis en œuvre à l'étape i).  14) The method of claim 13, wherein the solution of step ii) further comprises at least one additional organic compound different from the organic compound implemented in step i).
15) Procédé de préparation selon l'une des revendications 13 à 14, comprenant en outre au moins une étape d'imprégnation du support poreux avec une solution comprenant un composé organique différent du composé organique mis en œuvre à l'étape i). 16) Procédé de traitement d'une charge hydrocarbonée dans lequel on met en contact de l'hydrogène, la charge hydrocarbonée et un catalyseur, à une température comprise entre 180 et 450°C, à une pression comprise entre 0,5 et 30 MPa, avec une vitesse volumique horaire comprise entre 0,1 et 20 h"1 et avec un rapport hydrogène/charge exprimé en volume d'hydrogène, mesuré dans les conditions normales de température et pression, par volume de charge liquide compris entre 50 l/l à 5000 l/l, ledit catalyseur ayant été préparé par un procédé selon l'une des revendication 13 à 15 et soumis à au moins une étape de sulfuration. 15) A method of preparation according to one of claims 13 to 14, further comprising at least one step of impregnating the porous support with a solution comprising an organic compound other than the organic compound used in step i). 16) Process for the treatment of a hydrocarbon feedstock in which the hydrocarbon feedstock and a catalyst are brought into contact with hydrogen at a temperature of between 180 and 450 ° C. at a pressure of between 0.5 and 30 MPa , with a hourly space velocity of between 0.1 and 20 h -1 and with a hydrogen / charge ratio expressed as a volume of hydrogen, measured under normal conditions of temperature and pressure, per volume of liquid charge of between 50 l / h and 1 to 5000 l / l, said catalyst having been prepared by a process according to one of claims 13 to 15 and subjected to at least one sulphurization step.
EP18724147.6A 2017-05-04 2018-04-24 Method for adding an organic compound to a porous solid in the gaseous phase Pending EP3618960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753921A FR3065887B1 (en) 2017-05-04 2017-05-04 METHOD OF ADDING AN ORGANIC COMPOUND TO A POROUS SOLID IN THE GASEOUS PHASE
PCT/EP2018/060406 WO2018202467A1 (en) 2017-05-04 2018-04-24 Method for adding an organic compound to a porous solid in the gaseous phase

Publications (1)

Publication Number Publication Date
EP3618960A1 true EP3618960A1 (en) 2020-03-11

Family

ID=60138415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18724147.6A Pending EP3618960A1 (en) 2017-05-04 2018-04-24 Method for adding an organic compound to a porous solid in the gaseous phase

Country Status (6)

Country Link
US (1) US11236275B2 (en)
EP (1) EP3618960A1 (en)
JP (1) JP7138119B2 (en)
CN (1) CN110573251B (en)
FR (1) FR3065887B1 (en)
WO (1) WO2018202467A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760293A4 (en) * 2018-02-28 2021-11-10 Kuraray Co., Ltd. Composition for removing sulfur-containing compound
FR3083139A1 (en) * 2018-06-27 2020-01-03 IFP Energies Nouvelles CATALYST BASED ON PIPERIDINONES, PIPERIDINEDIONES AND / OR AZEPANONES AND ITS USE IN A HYDROTREATMENT AND / OR HYDROCRACKING PROCESS
FR3083132A1 (en) * 2018-06-27 2020-01-03 IFP Energies Nouvelles CATALYST BASED ON 1- (2-HYDROXYETHYL) -2-PYRROLIDONE AND / OR 1- (2-HYDROXYETHYL) -2,5-PYRROLIDINEDIONE AND ITS USE IN A HYDROTREATMENT AND / OR HYDROCRACKING PROCESS
FR3083134A1 (en) * 2018-06-27 2020-01-03 IFP Energies Nouvelles CATALYST BASED ON 1-VINYL-2-PYRROLIDONE AND / OR 1-ETHYL-2-PYRROLIDONE AND ITS USE IN A HYDROTREATMENT AND / OR HYDROCRACKING PROCESS
FR3083131A1 (en) * 2018-06-27 2020-01-03 IFP Energies Nouvelles CATALYST BASED ON IMIDAZOLIDINONES, IMIDAZOLIDINEDIONES, PYRIMIDINONES AND / OR PYRIMIDINETRIONES AND ITS USE IN A HYDROPROCESSING AND / OR HYDROCRACKING PROCESS
FR3087786B1 (en) * 2018-10-25 2020-12-18 Ifp Energies Now FISCHER-TROPSCH SYNTHESIS PROCESS INCLUDING A CATALYST PREPARED BY ADDITION OF AN ORGANIC COMPOUND IN THE GASEOUS PHASE
FR3121367A1 (en) 2021-03-31 2022-10-07 IFP Energies Nouvelles Process for sulfurizing a hydrotreating and/or hydrocracking catalyst by hydrothermal synthesis and addition of an organic compound
FR3121368A1 (en) 2021-03-31 2022-10-07 IFP Energies Nouvelles Process for sulfurizing a hydrotreating and/or hydrocracking catalyst containing an organic compound by hydrothermal synthesis
KR102538535B1 (en) * 2021-07-27 2023-06-02 삼성중공업 주식회사 Ammonia treatment system of ship

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526711B1 (en) 1971-02-01 1977-02-24
US4012340A (en) 1971-02-01 1977-03-15 Chiyoda Kako Kensetsu Kabushiki Kaisha Process for preparing catalysts for hydrodesulfurization
CA1261815A (en) 1984-11-05 1989-09-26 Mark S. Thompson Preparation of high activity silica-supported hydrotreating catalysts and catalysts thus prepared
JP3244692B2 (en) 1990-10-17 2002-01-07 住友金属鉱山株式会社 Method for producing catalyst for hydrotreating hydrocarbon oil
JP2900771B2 (en) 1992-11-18 1999-06-02 住友金属鉱山株式会社 Method for producing catalyst for hydrotreating hydrocarbon oil
JP3802106B2 (en) 1995-06-08 2006-07-26 日本ケッチェン株式会社 Hydrocarbon oil hydrotreating catalyst, production method thereof and activation method thereof
FR2755626B1 (en) * 1996-11-13 1999-01-08 Eurecat Europ Retrait Catalys OFF-SITE PRE-PACKAGING PROCESS FOR A HYDROCARBON PROCESSING CATALYST
FR2758478B1 (en) * 1997-01-21 1999-02-26 Elf Aquitaine PROCESS FOR THE PRESULFURIZATION OF CATALYSTS
DE19827844A1 (en) * 1998-06-23 1999-12-30 Aventis Res & Tech Gmbh & Co Production of shell catalysts useful in e.g. hydrogenation and oxidation, especially gas phase production of vinyl acetate
DE60020292T2 (en) 1999-04-08 2006-05-04 Albemarle Netherlands B.V. A process for sulfiding an organic nitrogen and carbonyl-containing hydrotreating catalyst
FR2792551B1 (en) 1999-04-20 2001-06-08 Atochem Elf Sa PROCESS FOR SULFURIZING HYDROTREATMENT CATALYSTS
EP1272272B1 (en) 2000-04-11 2011-12-21 Albemarle Netherlands B.V. Process for sulphiding an additive-containing catalyst
JP2002122296A (en) 2000-08-08 2002-04-26 Denso Corp Method of pre-treatment of gas adsorbing material to be filled in gas storage container and device used in the same
CA2431314C (en) 2000-12-11 2010-04-20 United States Filter Corporation Activated carbon for odor control and method for making same
JP4156859B2 (en) 2001-06-20 2008-09-24 コスモ石油株式会社 Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
FR2853262B1 (en) 2003-04-07 2006-07-07 Atofina PROCESS FOR IMPREGNATING HYDROTREATMENT CATALYSTS WITH ORTHOPHTHALATE AND SULFURING METHOD EMPLOYING THE SAME
BRPI0414865B1 (en) 2003-10-03 2014-07-08 Albemarle Netherlands Bv PROCESS FOR ACTIVATION OF A HYDROTRACTING CATALYST
FR2880823B1 (en) 2005-01-20 2008-02-22 Total France Sa HYDROTREATING CATALYST, PROCESS FOR PREPARING THE SAME AND USE THEREOF
CN101374598B (en) 2006-01-17 2014-05-28 埃克森美孚研究工程公司 Selective catalysts having high temperature alumina supports for naphtha hydrodesulfurization
JP2008307475A (en) * 2007-06-14 2008-12-25 Shimizu Corp Hydrogen sulfide removing method and hydrogen sulfide removing apparatus
FR2949982B1 (en) * 2009-09-11 2011-12-09 Eurecat Sa PROCESS FOR SULFURING HYDROCARBON PROCESSING CATALYSTS
CN102463151B (en) 2010-11-04 2014-05-21 中国石油化工股份有限公司 Preparation method of hydrotreatment catalyst
CN103071540B (en) * 2011-10-25 2015-06-17 中国石油化工股份有限公司 Catalyst and preparation method and application thereof, and hydrocracking method
FR3000907B1 (en) * 2013-01-14 2016-07-29 Uppa - Univ De Pau Et Des Pays De L'adour REACTIVE MEDIA COMPRISING A POROUS SUPPORT IMPREGNATED WITH AN ORGANIC COMPOUND CAPABLE OF FORMING GAS CLATHRATES
JP6646349B2 (en) 2014-06-20 2020-02-14 日揮グローバル株式会社 Method for producing catalyst for hydrodesulfurization of hydrocarbon oil and method for hydrodesulfurization of hydrocarbon oil
JP6554876B2 (en) 2015-04-03 2019-08-07 東洋紡株式会社 Organic solvent recovery system
US11040307B2 (en) * 2016-01-29 2021-06-22 Purafil, Inc. Method for removing contaminant from a fluid stream
FR3035008B1 (en) 2016-07-28 2021-08-27 Ifp Energies Now CATALYST BASED ON AN ORGANIC COMPOUND AND ITS USE IN A HYDROTREATMENT AND / OR HYDROCRACKING PROCESS

Also Published As

Publication number Publication date
FR3065887B1 (en) 2020-05-15
US11236275B2 (en) 2022-02-01
CN110573251B (en) 2022-10-28
FR3065887A1 (en) 2018-11-09
CN110573251A (en) 2019-12-13
JP2020518447A (en) 2020-06-25
JP7138119B2 (en) 2022-09-15
WO2018202467A1 (en) 2018-11-08
US20200071625A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
EP3618960A1 (en) Method for adding an organic compound to a porous solid in the gaseous phase
EP3618959A1 (en) Method for the indirect addition of an organic compound to a porous solid
EP3490707B1 (en) Catalyst based on an organic compound and the use thereof in a process of hydrotreating and/or hydrocracking
EP3288678B1 (en) Catalyst containing gamma-valerolactone and/or the hydrolysis products thereof, and use thereof in a hydroprocessing and/or hydrocracking method
RU2244592C2 (en) Preparation of catalyst of hydrorefining
EP2794104B1 (en) Process of preparation of a hydrotreatment/hydroconversion catalyst
EP2174712B1 (en) Method for regenerating hydrocarbon processing catalysts.
WO2016173760A1 (en) Γ-ketovaleric acid-based catalyst and use thereof in a hydroprocessing and/or hydrocracking method
KR101311968B1 (en) Hydrogenation catalyst composition, process for preparing the same and use thereof
JP2000117121A (en) Ex-situ presulfurization in the presence of hydrocarbon molecule
EP3713669A1 (en) Catalyst containing a furan compound and use thereof in a hydroprocessing and/or hydrocracking method
CN109926105B (en) Regeneration method of hydrogenation catalyst
CN109926101B (en) Startup method of vulcanized catalyst
FR3121368A1 (en) Process for sulfurizing a hydrotreating and/or hydrocracking catalyst containing an organic compound by hydrothermal synthesis
WO2021121982A1 (en) Process for the preparation of a hydrotreating and/or hydrocracking catalyst by impregnation in a melted medium, catalyst obtained, and use thereof
EP3490708B1 (en) Catalyst based on acetlybutyrolactone and/or its hydrolysis products and the use thereof in a process of hydrotreating and/or hydrocracking
FR3083142A1 (en) CATALYST BASED ON 1,5-PENTANEDIOL DERIVATIVES AND ITS USE IN A HYDROPROCESSING AND / OR HYDROCRACKING PROCESS
FR3061038A1 (en) PROCESS FOR SULFURING A CATALYST FROM A HYDROCARBON CUT PREVIOUSLY HYDROTREATED AND A SULFUR COMPOUND
WO2020002140A1 (en) Catalyst based on amine derivatives and use thereof in a hydrotreatment and/or hydrocracking process
WO2020002137A1 (en) Catalyst based on a beta-oxygen ester and use thereof in a hydrotreating and/or hydrocracking process
FR3121367A1 (en) Process for sulfurizing a hydrotreating and/or hydrocracking catalyst by hydrothermal synthesis and addition of an organic compound
CN112295575A (en) Preparation method of hydrogenation catalyst and start-up method of hydrogenation device
WO2020002138A1 (en) C5 or c6 acid ester-based catalyst and use thereof in a hydroprocessing and/or hydrocracking process
WO2020002136A1 (en) Catalyst based on a beta-substituted ester and use thereof in a hydrotreatment and/or hydrocracking process
WO2020002139A1 (en) Catalyst additivated with alkyl lactate, preparation thereof and use thereof in a hydrotreating and/or hydrocracking process

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210512